1
|
Wang W, Xu C, Lu X, Cao W, Zuo T, Zhang Y, Zou H, Sun Y. Glycated CD59 is a potential biomarker for gestational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1374253. [PMID: 39351537 PMCID: PMC11439654 DOI: 10.3389/fendo.2024.1374253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Objective To explore the diagnostic value of glycated CD59 (gCD59) in gestational diabetes mellitus (GDM). Methods A total of 707 pregnant women who underwent the first visit in the obstetric outpatient clinic of the Affliated Suqian Hospital of Xuzhou Medical University from January 2022 to July 2023 were included, and were grouped according to the International Association of the Diabetes and Pregnancy Study Groups(IADPSG) diagnostic criteria, and finally 113 cases in the GDM group and 559 cases in the normal glucose tolerance (NGT) group were included, and the concentration of gCD59 was determined by enzyme-linked immunosorbent assay (ELISA). The baseline data characteristics of the two groups were compared, the risk factors for GDM were explored by multivariate binary logistic analysis, and the diagnostic value of gCD59 in predicting GDM was explored by receiver operating characteristic (ROC) curve analysis. Results The level of gCD59 in the GDM group was significantly higher than that in the NGT group (1.49 SPU vs 0.87 SPU). Multivariate regression analysis showed that gCD59, diastolic blood pressure (DBP) and thyroid stimulating hormone (TSH) were independent risk factors for GDM.The area under the curve (AUC) of gCD59 for the diagnosis of GDM was 0.681 (95% CI: 0.583-0.717), with a sensitivity of 71.7% and a specificity of 58.3%. In combination with fasting glucose, gCD59 effectively diagnosed GDM with higher AUC of 0.871 (95% CI: 0.708-1.000). Conclusion gCD59 is an independent risk factor for GDM and a good biomarker for the diagnosis of GDM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huiling Zou
- Department of Endocrinology, The Affiliated Suqian Hospital of Xuzhou Medical
University, Suqian, Jiangsu, China
| | - Yu Sun
- Department of Endocrinology, The Affiliated Suqian Hospital of Xuzhou Medical
University, Suqian, Jiangsu, China
| |
Collapse
|
2
|
Dörschmann P, Thalenhorst T, Seeba C, Tischhöfer MT, Neupane S, Roider J, Alban S, Klettner A. Comparison of Fucoidans from Saccharina latissima Regarding Age-Related Macular Degeneration Relevant Pathomechanisms in Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:7939. [PMID: 37175646 PMCID: PMC10178501 DOI: 10.3390/ijms24097939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Tabea Thalenhorst
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Charlotte Seeba
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | | | - Sandesh Neupane
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
3
|
Pastore S, Troisi A, Romani R, Bellezza I, Gargaro M, Di Michele A, Orlandi R, Guerrera G, Bazzano M, Polisca A. Isolation of extracellular vesicles from bitch's amnion-derived cells culture and their CD59 expression: Preliminary results. Theriogenology 2023; 198:164-171. [PMID: 36587540 DOI: 10.1016/j.theriogenology.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are small spherical particles surrounded by a membrane with an unusual lipid composition and a striking cholesterol/phospholipidic ratio. About 2000 lipid and 3500 protein species were identified in EVs secreted by different cell sources. EVs mediate cell to cell communication in proximity to or distant from the cell of origin. In particular, it was suggested that they represent modulators of multiple processes during pregnancy. The aim of this study was to identify the presence of EVs in canine amnion-derived cells (ASCs) culture and the expression of CD 59 on their surface. Amniotic membrane was collected in PBS with antibiotics added from 2 bitches during elective caesarean section. Cells culture was prepared and EVs were isolated. EVs were used to evaluate CD59 expression by flow cytofluorimetry. We found that the majority of EVs expressed CD59. Our results could increase the knowledge about the complex mechanisms that regulate the pregnancy in the bitch.
Collapse
Affiliation(s)
- S Pastore
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126, Perugia, Italy.
| | - A Troisi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Macerata, Italy
| | - R Romani
- Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli, 1, 06129, Perugia, Italy
| | - I Bellezza
- Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli, 1, 06129, Perugia, Italy
| | - M Gargaro
- Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli, 1, 06129, Perugia, Italy
| | - A Di Michele
- Department of Physic and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - R Orlandi
- Anicura Tyrus Clinica Veterinaria, Via Bartocci 1G, 05100, Terni, Italy
| | - G Guerrera
- Veterinarian Freelance, Campobasso, Italy
| | - M Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Macerata, Italy
| | - A Polisca
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126, Perugia, Italy
| |
Collapse
|
4
|
Wang L, Li RF, Guan XL, Liang SS, Gong P. Predictive value of soluble CD59 for poor 28-day neurological prognosis and all-cause mortality in patients after cardiopulmonary resuscitation: a prospective observatory study. J Intensive Care 2023; 11:3. [PMID: 36732841 PMCID: PMC9893612 DOI: 10.1186/s40560-023-00653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND sCD59, as a soluble form of CD59, is observed in multiple types of body fluids and correlated with the cell damage after ischemia/reperfusion injury. This study aims to observe the dynamic changes of serum sCD59 in patients after restoration of spontaneous circulation (ROSC) and explore the association of serum sCD59 with neurological prognosis and all-cause mortality in patients after ROSC. METHODS A total of 68 patients after ROSC were prospectively recruited and divided into survivors (n = 23) and non-survivors (n = 45) groups on the basis of 28-day survival. Twenty healthy volunteers were enrolled as controls. Serum sCD59 and other serum complement components, including sC5b-9, C5a, C3a, C3b, C1q, MBL, Bb, and pro-inflammatory mediators tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), neurological damage biomarkers neuron-specific enolase (NSE) and soluble protein 100β (S100β) were measured by enzyme linked immunosorbent assay on day 1, 3, and 7 after ROSC. Neurologic outcome was assessed using cerebral performance category scores, with poor neurologic outcome defined as 3-5 points. RESULTS In the first week after ROSC, serum levels of sCD59, sC5b-9, C5a, C3a, C3b, C1q, MBL, Bb, TNF-α, IL-6, NSE and S100β were significantly elevated in patients after ROSC compared to healthy volunteers, with a significant elevation in the non-survivors compared to survivors except serum C1q and MBL. Serum sCD59 levels were positively correlated with serum sC5b-9, TNF-α, IL-6, NSE, S100β, SOFA score and APACHE II score. Moreover, serum sCD59 on day 1, 3, and 7 after ROSC could be used for predicting poor 28-day neurological prognosis and all-cause mortality. Serum sCD59 on day 3 had highest AUCs for predicting poor 28-day neurological prognosis [0.862 (95% CI 0.678-0.960)] and 28-day all-cause mortality [0.891 (95% CI 0.769-0.962)]. In multivariate logistic regression analysis, the serum level of sCD59D1 was independently associated with poor 28-day neurological prognosis and all-cause mortality. CONCLUSIONS The elevated serum level of sCD59 was positively correlated with disease severity after ROSC. Moreover, serum sCD59 could have good predictive values for the poor 28-day neurological prognosis and all-cause mortality in patients after ROSC.
Collapse
Affiliation(s)
- Ling Wang
- grid.413458.f0000 0000 9330 9891Department of Neurology, The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, Guizhou China ,grid.452435.10000 0004 1798 9070Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Rui-Fang Li
- grid.412645.00000 0004 1757 9434Department of Emergency, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiao-Lan Guan
- grid.452435.10000 0004 1798 9070Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Shuang-Shuang Liang
- grid.452435.10000 0004 1798 9070Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Ping Gong
- grid.440218.b0000 0004 1759 7210Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province China
| |
Collapse
|
5
|
Johnstone BA, Joseph R, Christie MP, Morton CJ, McGuiness C, Walsh JC, Böcking T, Tweten RK, Parker MW. Cholesterol-dependent cytolysins: The outstanding questions. IUBMB Life 2022; 74:1169-1179. [PMID: 35836358 PMCID: PMC9712165 DOI: 10.1002/iub.2661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Conall McGuiness
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
6
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Host gene expression is associated with viral shedding magnitude in blue-winged teals (Spatula discors) infected with low-path avian influenza virus. Comp Immunol Microbiol Infect Dis 2022; 90-91:101909. [PMID: 36410069 PMCID: PMC10500253 DOI: 10.1016/j.cimid.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Intraspecific variation in host infectiousness affects disease transmission dynamics in human, domestic animal, and many wildlife host-pathogen systems including avian influenza virus (AIV); therefore, identifying host factors related to host infectiousness is important for understanding, controlling, and preventing future outbreaks. Toward this goal, we used RNA-seq data collected from low pathogenicity avian influenza virus (LPAIV)-infected blue-winged teal (Spatula discors) to determine the association between host gene expression and intraspecific variation in cloacal viral shedding magnitude, the transmissible fraction of virus. We found that host genes were differentially expressed between LPAIV-infected and uninfected birds early in the infection, host genes were differentially expressed between shed level groups at one-, three-, and five-days post-infection, host gene expression was associated with LPAIV infection patterns over time, and genes of the innate immune system had a positive linear relationship with cloacal viral shedding. This study provides important insights into host gene expression patterns associated with intraspecific LPAIV shedding variation and can serve as a foundation for future studies focused on the identification of host factors that drive or permit the emergence of high viral shedding individuals.
Collapse
Affiliation(s)
- Amanda C Dolinski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jared J Homola
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Mark D Jankowski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; US Environmental Protection Agency, Region 10, Seattle, WA 98101, USA
| | - John D Robinson
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jennifer C Owen
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; Michigan State University, Department of Large Animal Clinical Sciences, 736 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Bogdanet D, Toth Castillo M, Doheny H, Dervan L, Angel Luque-Fernandez M, Halperin J, O'Shea PM, Dunne FP. The utility of first trimester plasma glycated CD59 (pGCD59) in predicting gestational diabetes mellitus: A prospective study of non-diabetic pregnant women in Ireland. Diabetes Res Clin Pract 2022; 190:110023. [PMID: 35907507 PMCID: PMC9483034 DOI: 10.1016/j.diabres.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
AIMS To evaluate the ability of first trimester plasma glycated CD59 (pGCD59) to predict gestational diabetes mellitus (GDM) at 24-28 weeks of gestation. METHODS Prospectively, in 378 pregnant women, GDM was diagnosed using the one step 2 h 75 g oral glucose tolerance test adjudicated by the World Health Organisation (WHO) 2013 criteria. The ability of pGCD59 to predict GDM was assessed using receiver operating characteristic (ROC) curves adjusted for maternal age, body mass index (BMI), maternal ethnicity, parity, previous GDM, family history of diabetes mellitus and week of gestation at time of pGCD59 sampling. RESULTS pGCD59 generated an adjusted area under the curve (AUC) of (a) 0.63 (95 %CI:0.56-0.70, p < 0.001) for predicting GDM, and (b) 0.71 (95 %CI:0.62-0.79, p < 0.001 for GDM diagnosed with a fasting plasma glucose (FPG) ≥ 5.1 mmol/L. Sensitivity analysis of BMI subgroups showed that pGCD59 generated the highest AUC in the 35 kg/m2 ≤ BMI < 40 kg/m2 (AUC:0.85, 95 %CI:0.70-0.98) and BMI ≥ 40 kg/m2 (AUC:0.88, 95 %CI:0.63-0.99) categories. CONCLUSIONS Early in pregnancy, pGCD59 may be a good predictor of GDM in women with a high BMI and a fair predictor of GDM diagnosed by an elevated FPG independent of BMI.
Collapse
Affiliation(s)
- Delia Bogdanet
- College of Medicine, Nursing and Health Sciences, School of Medicine, National University of Ireland, Galway, Ireland.
| | - Michelle Toth Castillo
- Divisions of Haematology, Brigham & Women's Hospital, Harvard Medical School, United States.
| | - Helen Doheny
- Department of Clinical Biochemistry, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland.
| | - Louise Dervan
- College of Medicine, Nursing and Health Sciences, School of Medicine, National University of Ireland, Galway, Ireland.
| | - Miguel Angel Luque-Fernandez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jose Halperin
- Divisions of Haematology, Brigham & Women's Hospital, Harvard Medical School, United States.
| | - Paula M O'Shea
- College of Medicine, Nursing and Health Sciences, School of Medicine, National University of Ireland, Galway, Ireland; Department of Clinical Biochemistry, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland.
| | - Fidelma P Dunne
- College of Medicine, Nursing and Health Sciences, School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
8
|
Complement Activation in Patients With Heat-Related Illnesses: Soluble CD59 Is a Novel Biomarker Indicating Severity of Heat-Related Illnesses. Crit Care Explor 2022; 4:e0678. [PMID: 35474654 PMCID: PMC9029987 DOI: 10.1097/cce.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although multiple organ dysfunction syndrome (MODS) is the main cause of death in patients with heat-related illnesses, its underlying pathophysiological mechanism remains elusive. Complement activation is considered one of the main causes of MODS in patients with sepsis and trauma. Considering the pathophysiological similarity of heat related-illnesses with sepsis and trauma, the complement system might be activated in patients with heat-related illnesses as well. Our aim was to investigate whether excessive complement activation occurs in patients with heat-related illnesses.
Collapse
|
9
|
Kneiber D, Kowalski EH, Amber KT. The Immunogenetics of Autoimmune Blistering Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:173-212. [DOI: 10.1007/978-3-030-92616-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021; 12:668207. [PMID: 33912195 PMCID: PMC8071949 DOI: 10.3389/fimmu.2021.668207] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Torleif T. Gjølberg
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Eye Research and Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Sundlisæter
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Dihydro-stilbene gigantol relieves CCl 4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta Pharmacol Sin 2020; 41:1433-1445. [PMID: 32404983 DOI: 10.1038/s41401-020-0406-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
In general, anti-inflammatory treatment is considered for multiple liver diseases despite the etiology. But current drugs for alleviating liver inflammation have defects, making it necessary to develop more potent and safer drugs for liver injury. In this study, we screened a series of (dihydro-)stilbene or (dihydro-)phenanthrene derivatives extracted from Pholidota chinensis for their potential biological activities. Among 31 compounds, the dihydro-stilbene gigantol exerted most potent protective effects on human hepatocytes against lithocholic acid toxicity, and exhibited solid antioxidative and anti-inflammatory effect in vitro. In mice with CCl4-induced acute liver injury, pre-administration of gigantol (10, 20, 40 mg· kg-1· d-1, po, for 7 days) dose-dependently decreased serum transaminase levels and improved pathological changes in liver tissues. The elevated lipid peroxidation and inflammatory responses in the livers were also significantly alleviated by gigantol. The pharmacokinetic studies showed that gigantol was highly concentrated in the mouse livers, which consisted with its efficacy in preventing liver injury. Using a label-free quantitative proteomic analysis we revealed that gigantol mainly regulated the immune system process in liver tissues of CCl4-treated mice, and the complement and coagulation cascades was the predominant pathway; gigantol markedly inhibited the expression of complement component C9, which was a key component for the formation of terminal complement complex (TCC) C5b-9. These results were validated by immunohistochemistry (IHC) or real time-PCR. Confocal microscopy analysis showed that gigantol significantly inhibited the vascular deposition of TCC in the liver. In conclusion, we demonstrate for the first time that oral administration of gigantol potently relieves liver oxidative stress and inflammation, possibly via a novel mechanism of inhibiting the C5b-9 formation in the liver.
Collapse
|
12
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
14
|
Ma D, Luque-Fernandez MA, Bogdanet D, Desoye G, Dunne F, Halperin JA. Plasma Glycated CD59 Predicts Early Gestational Diabetes and Large for Gestational Age Newborns. J Clin Endocrinol Metab 2020; 105:dgaa087. [PMID: 32069353 PMCID: PMC7082084 DOI: 10.1210/clinem/dgaa087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Gestational diabetes mellitus (GDM) diagnosed in early pregnancy is a health care challenge because it increases the risk of adverse outcomes. Plasma-glycated CD59 (pGCD59) is an emerging biomarker for diabetes and GDM. The aim of this study was to assess the performance of pGCD59 as a biomarker of early GDM and its association with delivering a large for gestational age (LGA) infant. OBJECTIVES To assess the performance of pGCD59 to identify women with GDM in early pregnancy (GDM < 20) and assess the association of pGCD59 with LGA and potentially others adverse neonatal outcomes linked to GDM. METHODS Blood levels of pGCD59 were measured in samples from 693 obese women (body mass index > 29) undergoing a 75-g, 2-hour oral glucose tolerance test (OGTT) at <20 weeks' gestation in the Vitamin D and Lifestyle Intervention study: the main analyses included 486 subjects who had normal glucose tolerance throughout the pregnancy, 207 who met criteria for GDM at <20 weeks, and 77 diagnosed with GDM at pregnancy weeks 24 through 28. Reference tests were 75-g, 2-hour OGTT adjudicated based on International Association of Diabetes and Pregnancy Study Group criteria. The index test was a pGCD59 ELISA. RESULTS Mean pGCD59 levels were significantly higher (P < 0.001) in women with GDM < 20 (3.9 ± 1.1 standard peptide units [SPU]) than in those without (2.7 ± 0.7 SPU). pGCD59 accurately identified GDM in early pregnancy with an area under the curve receiver operating characteristic curves of 0.86 (95% confidence interval [CI], 0.83-0.90). One-unit increase in maternal pGCD59 level was associated with 36% increased odds of delivering an LGA infant (odds ratio for LGA vs non-LGA infant: 1.4; 95% CI, 1.1-1.8; P = 0.016). CONCLUSION Our results indicate that pGCD59 is a simple and accurate biomarker for detection of GDM in early pregnancy and risk assessment of LGA.
Collapse
MESH Headings
- Adult
- Biomarkers/blood
- Blood Glucose/analysis
- CD59 Antigens/blood
- Diabetes, Gestational/blood
- Diabetes, Gestational/diagnosis
- Diabetes, Gestational/epidemiology
- Female
- Fetal Macrosomia/blood
- Fetal Macrosomia/diagnosis
- Fetal Macrosomia/epidemiology
- Follow-Up Studies
- Gestational Age
- Glycosylation
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/blood
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/epidemiology
- Pregnancy
- Pregnancy Complications/blood
- Pregnancy Complications/diagnosis
- Pregnancy Complications/epidemiology
- Prognosis
- Risk Factors
- Young Adult
Collapse
Affiliation(s)
- DongDong Ma
- Divisions of Hematology, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Miguel Angel Luque-Fernandez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medizinische Universitaet Graz, Graz, Austria
| | | | - Jose A Halperin
- Divisions of Hematology, Brigham & Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
15
|
Hansen VL, Miller RD. Evidence for regulation of the complement system during pregnancy being ancient and conserved in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103562. [PMID: 31785265 PMCID: PMC6937380 DOI: 10.1016/j.dci.2019.103562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Here we demonstrate that regulation of the Complement (C') components of the immune system is an ancient and conserved feature of mammalian pregnancy. Transcript levels were reduced for complement components C3 and C4 throughout pregnancy in a marsupial, Monodelphis domestica. Downstream C' component transcripts were significantly less abundant relative to non-pregnant controls at the start of pregnancy but increased during late pregnancy, in some cases peaking close to parturition. These results are consistent with observations in human pregnancy that deposition of C5 through C9 on fetal membranes is associated with labor and parturition. Complement regulators CD46 and CD59 are present at the fetomaternal interface during M. domestica pregnancy as well, implying regulation of C' effector mechanisms is necessary for maintenance of normal marsupial pregnancy. Collectively these results support regulating the complement system may have contributed to the transition from oviparity to viviparity in mammals over 165 million years ago.
Collapse
Affiliation(s)
- Victoria L Hansen
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
16
|
Luo SW, Wei W, Yang P, Lai CM, Liang QJ, Liu Y, Wang WN. Characterization of a CD59 in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 89:486-497. [PMID: 30980917 DOI: 10.1016/j.fsi.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
CD59, a multifunctional glycoprotein, not only plays a regulatory role in complement cascades, but also participates in modulation of teleostean immunity. In this study, full length sequence of EcCD59 was obtained, comprising a 5'UTR of 163 bp, an ORF of 354 bp and a 3'UTR of 559 bp. EcCD59 gene encoded a polypeptide of 117 amino acids. Tissue-specific analysis revealed that the highest expression of EcCD59 mRNA was observed in muscle. Vibrio alginolyticus challenge can significantly increase EcCD59 mRNA expression in liver, kidney and spleen. EcCD59 distribution was detected by a combined approach using GFP-overexpression, immunofluorescence and ELISA assay, indicating that EcCD59 may be predominantly aggregated in cellular membrane. Both EcCD59 and EcCD59delGPI can directly bind to V. alginolyticus and decrease the in vitro growth of V. alginolyticus. Additionally, vibrio injection experiment indicated that the binding of EcCD59 or EcCD59delGPI to V. alginolyticus can restrict its growth rate in vivo. In this study, we found that EcCD59 may be involved in immune defense against vibrio infection in a complement-independent manner.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ping Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chu-Min Lai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
17
|
Jia Y, Qi Y, Wang Y, Ma X, Xu Y, Wang J, Zhang X, Gao M, Cong B, Han S. Overexpression of CD59 inhibits apoptosis of T-acute lymphoblastic leukemia via AKT/Notch1 signaling pathway. Cancer Cell Int 2019; 19:9. [PMID: 30636930 PMCID: PMC6325688 DOI: 10.1186/s12935-018-0714-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND T-acute lymphoblastic leukemia (T-ALL) was a hematological malignancy characterized by the accumulation of immature T cells in bone marrow and peripheral blood. In this study, we tried to explore the physiological role of CD59 in T-ALL. METHODS In this study, we collected the bone marrow samples from 17 T-ALL patients and 38 healthy participants to find differences in CD59 expression patterns. Then, CD59 was over-expressed in T-ALL cell line Jurkat, and its biological functions were detected. In addition, in order to understand the active site of CD59, the Trp40 was mutated. Further, we constructed a mouse model by transplanting Jurkat cells into the nude mice to verify the function of CD59 in vitro. At last, mechanism studies were performed by western blot. RESULTS We found that the proportion of T lymphocytes expressing CD59 in bone marrow of T-ALL patients was significantly higher than that of healthy individuals. Then, we found that the overexpression of CD59 in Jurkat cells was beneficial to the cell survival by inhibiting apoptosis and promoting IL-2 secretion. In this process, Trp40 of CD59 was a key functional site. Further, the high expression of CD59 inhibited apoptosis of bone marrow and peripheral blood cells, and promoted IL-2 secretion in mouse model. At last, mechanism studies showed that the activation of AKT, STAT5 and Notch1 signaling pathways in Jurkat cells, may be involved in the regulation of apoptosis by CD59; and mutation in the Trp40 affect the interaction of CD59 with these signaling pathways. CONCLUSIONS In conclusion, CD59 inhibited apoptosis of T-ALL by regulating AKT/Notch1 signaling pathway, providing a new perspective for the treatment of T-ALL.
Collapse
Affiliation(s)
- Yanfei Jia
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Yan Qi
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong People’s Republic of China
| | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Xiaoli Ma
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Yihui Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Jun Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Xiaoqian Zhang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Meihua Gao
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong People’s Republic of China
| | - Beibei Cong
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, 115 Jie Fang Road, Jinan, Shandong 250013 People’s Republic of China
| |
Collapse
|
18
|
Chang JC. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J 2018; 16:20. [PMID: 30127669 PMCID: PMC6087012 DOI: 10.1186/s12959-018-0174-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
TTP is characterized by microangiopathic hemolytic anemia and thrombocytopenia associated with brain and kidney dysfunction. It occurs due to ADAMTS13 deficiency. TTP-like syndrome occurs in critically ill patients with the similar hematologic changes and additional organ dysfunction syndromes. Vascular microthrombotic disease (VMTD) includes both TTP and TTP-like syndrome because their underlying pathology is the same disseminated intravascular microthrombosis (DIT). Microthrombi are composed of platelet-unusually large von Willebrand factor multimers (ULVWF) complexes. TTP occurs as a result of accumulation of circulating ULVWF secondary to ADAMTS13 deficiency. This protease deficiency triggers microthrombogenesis, leading to "microthrombi" formation in microcirculation. Unlike TTP, TTP-like syndrome occurs in critical illnesses due to complement activation. Terminal C5b-9 complex causes channel formation to endothelial membrane, leading to endotheliopathy, which activates two different molecular pathways (i.e., inflammatory and microthrombotic). Activation of inflammatory pathway triggers inflammation. Activation of microthrombotic pathway promotes platelet activation and excessive endothelial exocytosis of ULVWF from endothelial cells (ECs). Overexpressed and uncleaved ULVWF become anchored to ECs as long elongated strings to recruit activated platelets, and assemble "microthrombi". In TTP, circulating microthrombi typically be lodged in microvasculature of the brain and kidney, but in TTP-like syndrome, microthrombi anchored to ECs of organs such as the lungs and liver as well as the brain and kidneys, leading to multiorgan dysfunction syndrome. TTP occurs as hereditary or autoimmune disease and is the phenotype of ADAMTS13 deficiency-associated VMTD. But TTP-like syndrome is hemostatic disorder occurring in critical illnesses and is the phenotype of endotheliopathy-associated VMTD. Thus, this author's contention is TTP and TTP-like syndrome are two distinctly different disorders with dissimilar underlying pathology and pathogenesis.
Collapse
Affiliation(s)
- Jae C. Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
19
|
Guo Y, Han Z, Guo L, Liu Y, Li G, Li H, Zhang J, Bai L, Wu H, Chen B. Identification of urinary biomarkers for the prediction of gestational diabetes mellitus in early second trimester of young gravidae based on iTRAQ quantitative proteomics. Endocr J 2018; 65:727-735. [PMID: 29760307 DOI: 10.1507/endocrj.ej17-0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) has brought great harm to maternal and fetus. Up to now, only a few plasma biomarkers for its early diagnosis have been reported; nevertheless, there is no report about identification of urinary biomarkers for prediction of GDM. Thus, it is necessary to correct this deficiency. In our study, urine samples were collected from 889 healthy young gravidae at the early second trimester (15 to 20 weeks), 69 of whom were subsequently diagnosed with GDM at 24 to 28 weeks. iTRAQ (the isobaric tags for relative and absolute quantification) quantitative proteomics was conducted on sixteen GDM (trial group) and an equal number of matched healthy young gravidae (control group). Validation was performed in 40 cases of each group by ELISA. A total of 1,901 proteins were identified in this study, including 119 significantly differential proteins (fold change ≧1.2 or ≦0.83 and p < 0.05). Compared with control group, 83 differential proteins were increased and 36 proteins were decreased in GDM group. The validation for expression of CD59 and IL1RA showed significant difference and the area under the receiver operating characteristic curve was 0.729 and 0.899, respectively (p < 0.05). The two candidate protein biomarkers (CD59 and IL1RA) in urine could be an early, noninvasive diagnostic predictors of young pravidae with GDM, and IL1RA is stronger diagnostic power than CD59.
Collapse
Affiliation(s)
- Ying Guo
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Zhonghou Han
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Li Guo
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yu Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Gang Li
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Huiqing Li
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Liwei Bai
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Hongli Wu
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
20
|
Cheng L, Gou S, Qiu H, Ma L, Fu P. Complement regulatory proteins in kidneys of patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin Exp Immunol 2018; 191:116-124. [PMID: 28940198 PMCID: PMC5721235 DOI: 10.1111/cei.13051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
The complement system activation is involved in the development of anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). The study aimed to investigate the expression of complement regulatory proteins (CRPs) CD46, CD55 and CD59 in kidneys of 51 AVV patients. The expression of CD46, CD55 and CD59 in kidneys was detected by immunohistochemistry and double immunofluorescence staining. The immunohistochemical examination revealed that expression of the three CRPs could be detected in the glomeruli and tubules of both AAV patients and normal controls. The expression levels of the three CRPs in glomeruli of patients with AAV were significantly lower than those of normal controls. The scores of CD46 and CD55 expression in the tubules of AAV patients were significantly lower than those of normal controls, while there was no significant difference between the scores of CD59 expression in tubules of AAV patients and those of normal controls. Among AAV patients, the expression level of CD46 in glomeruli correlated inversely with the proportion of normal glomeruli, while it correlated with tubular atrophy in renal interstitium (r = -0·305, P = 0·026; r = 0·330, P = 0·023, respectively). The expression levels of CD55 and CD59 in glomeruli correlated with the proportion of total crescents (r = 0·384, P = 0·006; r = 0·351, P = 0·011, respectively). Double immunofluorescence staining indicated that all three CRPs were expressed on endothelial cells, podocytes and mesangial cells in glomeruli. The expression levels of the three CRPs were dysregulated in kidneys of patients with AAV. The expression levels of CD46, CD55 and CD59 were associated with the severity of renal injury of AAV patients.
Collapse
Affiliation(s)
- L. Cheng
- Division of NephrologyKidney Research Institute, West China Hospital of Sichuan UniversityChengduChina
| | - S.‐J. Gou
- Division of NephrologyKidney Research Institute, West China Hospital of Sichuan UniversityChengduChina
| | - H.‐Y. Qiu
- Division of NephrologyKidney Research Institute, West China Hospital of Sichuan UniversityChengduChina
| | - L. Ma
- Division of NephrologyKidney Research Institute, West China Hospital of Sichuan UniversityChengduChina
| | - P. Fu
- Division of NephrologyKidney Research Institute, West China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
21
|
Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin. Front Microbiol 2017; 8:1667. [PMID: 28919885 PMCID: PMC5585158 DOI: 10.3389/fmicb.2017.01667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay. Thus, we have proposed that TcCRT is a pleiotropic molecule, present not only in the parasite endoplasmic reticulum, but also on the trypomastigote surface, participating in key processes to establish T. cruzi infection, such as inhibition of the complement system and serving as an important virulence factor. Additionally, TcCRT interaction with key complement components, participates as an anti-angiogenic and anti-tumor molecule, inhibiting at least in important part, tumor growth in infected animals.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of ChileSantiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
22
|
Laranjeira S, Symmonds M, Palace J, Payne SJ, Orlowski P. A mathematical model of cellular swelling in Neuromyelitis optica. J Theor Biol 2017; 433:39-48. [PMID: 28843390 DOI: 10.1016/j.jtbi.2017.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
Neuromyelitis Optica (NMO) is a severe neuro-inflammatory disease of the central nervous system characterized by predominant damage to the optic nerve and of the spinal cord. The pathogenic antibody found in the majority of patients targets the AQP4 channels on astrocytic endfeet and causes the cells to swell. Although, the pathophysiology of the disease is broadly known, there are no specific targeted treatments for this process clinically available nor accurate prognostic markers both during attacks and for predicting long term neuronal damage. This lack is, in part, due to the rarity of the disease and its relatively recent pathogenic clarity. Hence, the ability to mathematically model the progress of the condition to test prospective therapies in silico would be a step forward. This paper combines state of the art models of cellular metabolism and cytotoxic oedema in neurons and astrocytes and augments it with a detailed characterization of water transport across the cellular membrane. In particular, we capture the process of perforation of the cell through the human complement cascade and resulting water and ionic fluxes. Simulating NMO by injecting its antibody and human complement into the extracellular space showed a 25% increase of the astrocytic volume after 12 h from onset. Most of the volume change occurred during the first 30 min of simulation with a peak volume change of 38%. The model was further adapted to simulate the therapeutic potential of CD59. It was found that there is a threshold of CD59 concentration that can prevent the swelling of astrocytes. Since the astrocyte volume changes mostly during the first hour, further experimental work should focus on this time scale to provide data for further model refinement and validation.
Collapse
Affiliation(s)
- Simão Laranjeira
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, OX3 7DQ, Oxford, United Kingdom
| | - Mkael Symmonds
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | - Jacqueline Palace
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | - Stephen J Payne
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, OX3 7DQ, Oxford, United Kingdom
| | - Piotr Orlowski
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, OX3 7DQ, Oxford, United Kingdom.
| |
Collapse
|
23
|
Yao X, Verkman AS. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol Commun 2017; 5:57. [PMID: 28750658 PMCID: PMC5532786 DOI: 10.1186/s40478-017-0462-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/10/2022] Open
Abstract
Pathogenesis in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorders (herein called NMO) involves complement-dependent cytotoxicity initiated by AQP4-IgG binding to astrocyte AQP4. We recently reported that rats lacking complement inhibitor protein CD59 were highly susceptible to development of NMO pathology in brain and spinal cord following direct AQP4-IgG administration (Yao and Verkman, Acta Neuropath Commun 2017, 5:15). Here, we report evidence that CD59 is responsible for protection of peripheral, AQP4-expressing tissues in seropositive NMO. Rats made seropositive by intraperitoneal injection of AQP4-IgG developed marked weakness by 24 h and died soon thereafter. Serum creatine phosphokinase at 24 h was >900-fold greater in seropositive CD59-/- rats than in seropositive CD59+/+ (or control) rats. AQP4-expressing cells in skeletal muscle and kidney, but not in stomach, of seropositive CD59-/- rats showed injury with deposition of AQP4-IgG and activated complement C5b-9, and inflammation. Organ injury in seropositive CD59-/- rats was prevented by a complement inhibitor. Significant pathological changes in seropositive CD59-/- rats were not seen in optic nerve, spinal cord or brain, including circumventricular tissue. These results implicate a major protective role of CD59 outside of the central nervous system in seropositive NMO, and hence offer an explanation as to why peripheral, AQP4-expressing cells are largely unaffected in NMO.
Collapse
|
24
|
Araki M, Yamamura T. Neuromyelitis optica spectrum disorders: Emerging therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Manabu Araki
- Multiple Sclerosis Center; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
| | - Takashi Yamamura
- Multiple Sclerosis Center; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
| |
Collapse
|
25
|
Sui ZH, Li MF, Sun L. Tongue sole (Cynoglossus semilaevis) CD59: A complement inhibitor that binds bacterial cells and promotes bacterial escape from the killing of fish serum. FISH & SHELLFISH IMMUNOLOGY 2016; 58:442-448. [PMID: 27688119 DOI: 10.1016/j.fsi.2016.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
CD59 is a complement regulatory protein that inhibits the formation of membrane attack complex of complement. In this study, we examined the expression and activity of tongue sole (Cynoglossus semilaevis) CD59 (CsCD59). CsCD59 possesses the conserved structural features of CD59 and shares 33%-46% sequence identities with other fish CD59. Expression of CsCD59 was high in liver, spleen, and muscle, and was stimulated by infection of bacterial pathogens. Recombinant CsCD59 (rCsCD59) exhibited an apparent inhibition effect on the activation of tongue sole serum complement. ELISA and microscopy detected binding of rCsCD59 to a number of Gram-negative and Gram-positive bacteria. Interaction with rCsCD59 did not affect bacterial viability but significantly enhanced bacterial resistance against the killing effect of fish serum. Together these results indicate that fish CD59 may to some degrees facilitate a general escape of bacteria from complement-mediated immunity.
Collapse
Affiliation(s)
- Zhi-Hai Sui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
26
|
Choudhary P, Whiting PJ. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells. Stem Cell Res Ther 2016; 7:127. [PMID: 27590276 PMCID: PMC5010679 DOI: 10.1186/s13287-016-0380-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
Cell replacement and regenerative therapy using embryonic stem cell-derived material holds promise for the treatment of several pathologies. However, the safety of this approach is of prime importance given the teratogenic potential of residual stem cells, if present in the differentiated cell product. Using the example of embryonic stem cell-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration, we present a novel strategy for ensuring the absence of stem cells in the RPE population. Based on an unbiased screening approach, we identify and validate the expression of CD59, a cell surface marker expressed on RPE but absent on stem cells. We further demonstrate that flow sorting on the basis of CD59 expression can effectively purify RPE and deplete stem cells, resulting in a population free from stem cell impurity. This purification helps to ensure removal of stem cells and hence increases the safety of cells that may be used for clinical transplantation. This strategy can potentially be applied to other pluripotent stem cell-derived material and help mitigate concerns of using such cells for therapy.
Collapse
Affiliation(s)
- Parul Choudhary
- Pfizer Neuroscience and Pain Research Unit, The Portway, Granta Park, Great Abington, Cambridge, CB21 6GS UK
| | - Paul John Whiting
- Present Address: AR-UK Drug Discovery Institute, University College London, London, WC1E 6BT UK
| |
Collapse
|
27
|
Liu QN, Xin ZZ, Chai XY, Jiang SH, Li CF, Zhang HB, Ge BM, Zhang DZ, Zhou CL, Tang BP. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 56:248-254. [PMID: 27235365 DOI: 10.1016/j.fsi.2016.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Bao-Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, PR China.
| |
Collapse
|
28
|
García-Valladares I, Atisha-Fregoso Y, Richaud-Patin Y, Jakez-Ocampo J, Soto-Vega E, Elías-López D, Carrillo-Maravilla E, Cabiedes J, Ruiz-Argüelles A, Llorente L. Diminished expression of complement regulatory proteins (CD55 and CD59) in lymphocytes from systemic lupus erythematosus patients with lymphopenia. Lupus 2016; 15:600-5. [PMID: 17080916 DOI: 10.1177/0961203306071916] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD55 and CD59 are glycophosphatidylinositol-anchored proteins with complement inhibitory properties. Lymphopenia in systemic lupus erythematosus (SLE) has been associated with autoantibodies targeting nuclear antigens. The aim of this study was to evaluate the surface density of CD55 and CD59 in T and B lymphocytes from patients with SLE and lymphopenia and its possible correlation with the presence of common SLE autoantibodies. Flow cytometric analyses were performed on CD55 and CD59 stained CD3 and CD19 cells from 40 SLE patients, 30 with lymphopenia and 10 without it, and 25 healthy controls. Autoantibodies were detected in the sera by enzyme linked immunosorbent assay. The mean fluorescence intensity of CD55 and CD59 in T and B cells was significantly diminished in SLE patients with lymphopenia when compared with healthy subjects. Interestingly, the opposite was found in T and B cells from non-lymphopenic SLE patients. Although there was no correlation between CD55 and CD59 surface density and the presence of any specificity of the autoantibodies tested, higher titres of anti-dsDNA, anti-SM and anti-ribosomal p antibodies were significantly associated with lymphopenia. The deficiency of CD55 and CD59 expression may play a role in the pathophysiology of lymphopenia, most likely by increasing the susceptibility of cells to complement mediated cytolysis.
Collapse
Affiliation(s)
- I García-Valladares
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ouyang Q, Zhang L, Jiang Y, Ni X, Chen S, Ye F, Du Y, Huang L, Ding P, Wang N, Yang C, Huang T, Sun Y, Li S, Xia Y, Hu W, Luo R, Shao Z. The membrane complement regulatory protein CD59 promotes tumor growth and predicts poor prognosis in breast cancer. Int J Oncol 2016; 48:2015-2024. [PMID: 26935178 DOI: 10.3892/ijo.2016.3408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. CD59, a membrane complement regulatory protein, has been demonstrated to be overexpressed in most solid tumors, where it facilitates tumor cell escape from complement surveillance. However, the role of CD59 in breast cancer growth and clinical prognosis is not fully revealed. To investigate the role of CD59 in breast cancer growth and prognostic significance, we knocked down CD59 in a breast cancer cell line that is highly metastatic to the lungs, MDA-MB‑231-HM. Cell growth was measured in vitro and in vivo using a xenograft model. In addition, clinical data on a cohort of 120 patients with or without lung metastasis was analyzed based on CD59 expression, which was detected by immunohistochemistry. Knockdown of CD59 significantly inhibited MDA-MB‑231-HM cell growth both in vitro and in vivo. An analysis of clinical data on 120 patients revealed that patients with CD59 overexpression may have a worse prognosis. CD59 may therefore be a prognostic biomarker for poor outcome in breast cancer patients.
Collapse
Affiliation(s)
- Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi, P.R. China
| | - Long Zhang
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Yizhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Xiaojian Ni
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Sheng Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Fugui Ye
- Department of General Surgery, Affiliated Union Hospital of Fujian Medical University, Union Clinical School, Fujian Medical University, Fujian, P.R. China
| | - Yiqun Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Peipei Ding
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Na Wang
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Chaoqun Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Tianbao Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P.R. China
| | - Yujing Sun
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Shan Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Yun Xia
- Department of Breast Surgery, The Third Hospital of Nanchang, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi, P.R. China
| | - Weiguo Hu
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| |
Collapse
|
30
|
Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement-mediated 'bystander' damage initiates host NLRP3 inflammasome activation. J Cell Sci 2016; 129:1928-39. [PMID: 27006116 DOI: 10.1242/jcs.179291] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
Complement activation has long been associated with inflammation, primarily due to the elaboration of the complement anaphylotoxins C5a and C3a. In this work, we demonstrate that the phagocytosis of complement-opsonized particles promotes host inflammatory responses by a new mechanism that depends on the terminal complement components (C5b-C9). We demonstrate that during the phagocytosis of complement-opsonized particles, the membrane attack complex (MAC) of complement can be transferred from the activating particle to the macrophage plasma membrane by a 'bystander' mechanism. This MAC-mediated bystander damage initiates NLRP3 inflammasome activation, resulting in caspase-1 activation and IL-1β and IL-18 secretion. Inflammasome activation is not induced when macrophages phagocytize unopsonized particles or particles opsonized with serum deficient in one of the terminal complement components. The secretion of IL-1β and IL-18 by macrophages depends on NLRP3, ASC (also known as PYCARD) and caspase-1, as macrophages deficient in any one of these components fail to secrete these cytokines following phagocytosis. The phagocytosis of complement-opsonized particles increases leukocyte recruitment and promotes T helper 17 cell (TH17) biasing. These findings reveal a new mechanism by which complement promotes inflammation and regulates innate and adaptive immunity.
Collapse
Affiliation(s)
- Rahul Suresh
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Fayyaz S Sutterwala
- The Inflammation Program, Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
31
|
Bloom AC, Collins FL, Van't Hof RJ, Ryan ES, Jones E, Hughes TR, Morgan BP, Erlandsson M, Bokarewa M, Aeschlimann D, Evans BAJ, Williams AS. Deletion of the membrane complement inhibitor CD59a drives age and gender-dependent alterations to bone phenotype in mice. Bone 2016; 84:253-261. [PMID: 26721735 PMCID: PMC4764651 DOI: 10.1016/j.bone.2015.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture. In vivo bone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cortical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed in female mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis, with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bone cells were studied in isolation, in vitro osteoclastogenesis was significantly increased in male CD59a-deficient mice, although osteoblast formation was not altered. Our data reveal, for the first time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation in male mice results in longer and wider bones, but with less density, which is likely a major contributing factor for their susceptibility to osteoarthritis. These findings increase our understanding of the role of complement regulation in degenerative arthritis.
Collapse
Affiliation(s)
- Anja C Bloom
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Fraser L Collins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Rob J Van't Hof
- Bone Research Group, Institute of Ageing & Chronic Disease, University ofLiverpool, Liverpool, UK
| | - Elizabeth S Ryan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma Jones
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Malin Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Göteborg, Gothenburg, Sweden
| | - Maria Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Göteborg, Gothenburg, Sweden
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair, Dental School, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK
| | - Bronwen A J Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK
| | - Anwen S Williams
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK.
| |
Collapse
|
32
|
Hinson SR, Lennon VA, Pittock SJ. Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:377-403. [PMID: 27112688 DOI: 10.1016/b978-0-444-63432-0.00021-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving group of central nervous system (CNS)-inflammatory autoimmune demyelinating diseases unified by a pathogenic autoantibody specific for the aquaporin-4 (AQP4) water channel. It was historically misdiagnosed as multiple sclerosis (MS), which lacks a distinguishing biomarker. The discovery of AQP4-IgG moved the focus of CNS demyelinating disease research from emphasis on the oligodendrocyte and myelin to the astrocyte. NMO is recognized today as a relapsing disease, extending beyond the optic nerves and spinal cord to include brain (especially in children) and skeletal muscle. Brain magnetic resonance imaging abnormalities, identifiable in 60% of patients at the second attack, are consistent with MS in 10% of cases. NMOSD-typical lesions (another 10%) occur in AQP4-enriched regions: circumventricular organs (causing intractable nausea and vomiting) and the diencephalon (causing sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Advances in understanding the immunobiology of AQP4 autoimmunity have necessitated continuing revision of NMOSD clinical diagnostic criteria. Assays that selectively detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 are promising prognostically. When referring to AQP4 autoimmunity, we suggest substituting the term "autoimmune aquaporin-4 channelopathy" for the term "NMO spectrum disorders." Randomized clinical trials are currently assessing the efficacy and safety of newer immunotherapies. Increasing therapeutic options based on understanding the molecular pathogenesis is anticipated to improve the outcome for patients with AQP4 channelopathy.
Collapse
Affiliation(s)
- Shannon R Hinson
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Vanda A Lennon
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Sean J Pittock
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA.
| |
Collapse
|
33
|
Abstract
Neuromyelitis optica and neuromyelitis optica spectrum disorder (NMO/NMOSD) is a rare but clinically aggressive demyelinating disease of the central nervous system (CNS) caused by antibodies against water channel protein aquaporin 4 (AQP4) in the astrocytic foot processes. Patients typically present with optic neuritis (ON) or longitudinally extensive transverse myelitis (LETM). The majority of patients with NMOSD show good response to treatment with steroids and plasmapheresis in the acute setting; however, 90 % of patients will eventually have clinical relapses and accrue permanent disability. Currently, immune modulation is the mainstay of maintenance therapy with anti CD-20 (rituximab, Rituxan™) having collectively the strongest evidence to support its use and mycophenolate mofetil having comparable reductions in absolute relapse rate (ARR) and expanded disability status scale (EDSS) scores. Azathioprine, mitoxantrone, and methotrexate also have retrospective case series data that demonstrate reduction in ARR and stabilization of EDSS but with higher relapse rates and exposure to greater risk of treatment toxicities. Excitingly, multiple novel therapies are under clinical study for patients who are refractory to these first-line therapies including monoclonal antibodies targeting interleukin-6 (IL-6), CD19, CD20, complement, and neutrophil elastase inhibitors which may provide additional options for patients with severe clinical presentations. Importantly, no randomized clinical trials have been published to date comparing clinical outcomes of different maintenance therapies in NMOSD. Several trials are currently underway, and results will help guide future management decisions as current evidence is from many small, retrospective case series and cohort studies with many potential confounds.
Collapse
Affiliation(s)
- Elena Sherman
- Department of Neurology and Neurological Sciences, Stanford University, 1201, Welch Road, Stanford, CA, 94305, USA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University, 1201, Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Pereira WLDCJ, Reiche EMV, Kallaur AP, Kaimen-Maciel DR. Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: A review. J Neurol Sci 2015; 355:7-17. [PMID: 26050520 DOI: 10.1016/j.jns.2015.05.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/16/2023]
Abstract
The aim of this study was to review the epidemiological and clinical characteristics of neuromyelitis optica (NMO) and the immunopathological mechanisms involved in the neuronal damage. NMO is an inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. NMO is thought to be more prevalent among non-Caucasians and where multiple sclerosis (MS) prevalence is low. NMO follows a relapsing course in more than 80-90% of cases, which is more commonly in women. It is a complex disease with an interaction between host genetic and environmental factors and the main immunological feature is the presence of anti-aquaporin 4 (AQP4) antibodies in a subset of patients. NMO is frequently associated with multiple other autoantibodies and there is a strong association between NMO with other systemic autoimmune diseases. AQP4-IgG can cause antibody-dependent cellular cytotoxicity (ADCC) when effector cells are present and complement-dependent cytotoxicity (CDC) when complement is present. Acute therapies, including corticosteroids and plasma exchange, are designed to minimize injury and accelerate recovery. Several aspects of NMO pathogenesis remain unclear. More advances in the understanding of NMO disease mechanisms are needed in order to identify more specific biomarkers to NMO diagnosis.
Collapse
Affiliation(s)
- Wildéa Lice de Carvalho Jennings Pereira
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil; Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná 86061-335, Brazil.
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| | - Ana Paula Kallaur
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| | - Damacio Ramón Kaimen-Maciel
- Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná 86061-335, Brazil; Department of Clinical Medicine, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| |
Collapse
|
35
|
Gan Z, Wang B, Zhou W, Lu Y, Zhu W, Tang J, Jian J, Wu Z. Molecular and functional characterization of CD59 from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2015; 44:50-59. [PMID: 25661843 DOI: 10.1016/j.fsi.2015.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
CD59, the major inhibitor of membrane attack complex, plays a crucial role in regulation of complement activation. In this paper, a CD59 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD59) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for complement-inhibitory activity were detected in the deduced amino acid sequence of On-CD59. In healthy Nile tilapia, the On-CD59 transcripts could be detected in all the examined tissues, with the most abundant expression in the brain. When immunized with inactivated S. agalactiae, there was a clear time-dependent expression pattern of On-CD59 in the skin, brain, head kidney, thymus and spleen, with quite different kinetic expressions. The assays for the complement-inhibitory activity suggested that recombinant On-CD59 protein had a species-selective inhibition of complement. Moreover, our works showed that recombinant On-CD59 protein may possess both binding activities to PGN and LTA and inhibiting activity of S. agalactiae. These findings indicated that On-CD59 may play important roles in the immune response to S. agalactiae in Nile tilapia.
Collapse
Affiliation(s)
- Zhen Gan
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Wei Zhou
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China.
| | - Weiwei Zhu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - JiChang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| |
Collapse
|
36
|
Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology 2015; 221:747-51. [PMID: 25956457 DOI: 10.1016/j.imbio.2015.04.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The final common pathway of all routes of complement activation involves the non-enzymatic assembly of a complex comprising newly formed C5b with the plasma proteins C6, C7, C8 and C9. When assembly occurs on a target cell membrane the forming complex inserts into and through the bilayer to create a pore, the membrane attack complex (MAC). On some targets, pore formation causes rapid lytic destruction; however, most nucleated cell targets resist lysis through a combination of ion pumps, membrane regulators and active recovery processes. Cells survive but not without consequence. The MAC pore causes ion fluxes and directly or indirectly impacts several important signalling pathways that in turn activate a diverse series of events in the cell, many of which are highly pro-inflammatory. Although this non-lytic, pro-inflammatory role of MAC has been recognised for thirty years, no consensus signalling pathway has emerged. Recent work, summarised here, has implicated specific signalling routes and, in some cells, inflammasome involvement, opening the door to novel approaches to therapy in complement-driven pathologies.
Collapse
Affiliation(s)
- B Paul Morgan
- School of Medicine, Cardiff University, Heath Park, Cardiff CF144XN, UK.
| |
Collapse
|
37
|
Abstract
In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions.
Collapse
|
38
|
Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol 2014; 10:493-506. [PMID: 25112508 DOI: 10.1038/nrneurol.2014.141] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date.
Collapse
Affiliation(s)
- Marios C Papadopoulos
- Academic Neurosurgery Unit, St George's, University of London, Room 0.136 Jenner Wing, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, Research Complex 2, Mail stop B-182, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, Health Science East Tower Room 1246, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59. J Autoimmun 2014; 53:67-77. [PMID: 24698947 DOI: 10.1016/j.jaut.2014.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
Spinal cord pathology with inflammatory, demyelinating lesions spanning three or more vertebral segments is a characteristic feature of neuromyelitis optica (NMO). NMO pathogenesis is thought to involve binding of immunoglobulin G anti-aquaporin-4 autoantibodies (NMO-IgG) to astrocytes, causing complement-dependent cytotoxicity (CDC) and secondary inflammation, demyelination and neuron loss. We investigated the involvement of CD59, a glycophosphoinositol (GPI)-anchored membrane protein on astrocytes that inhibits formation of the terminal C5b-9 membrane attack complex. CD59 inhibition by a neutralizing monoclonal antibody greatly increased NMO-IgG-dependent CDC in murine astrocyte cultures and ex vivo spinal cord slice cultures. Greatly increased NMO pathology was also found in spinal cord slice cultures from CD59 knockout mice, and in vivo following intracerebral injection of NMO-IgG and human complement. Intrathecal injection (at L5-L6) of small amounts of NMO-IgG and human complement in CD59-deficient mice produced robust, longitudinally extensive white matter lesions in lumbar spinal cord. Pathology was most severe at day 2 after injection, showing loss of AQP4 and GFAP, C5b-9 deposition, microglial activation, granulocyte infiltration, and demyelination. Hind limb motor function was remarkably impaired as well. There was partial remyelination and recovery of motor function by day 5. Our results implicate CD59 as an important modulator of the immune response in NMO, and provide a novel animal model of NMO that closely recapitulates human NMO pathology. Up-regulation of CD59 on astrocytes may have therapeutic benefit in NMO.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, CA, USA
| | - A S Verkman
- Department of Medicine, University of California, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
40
|
Birke MT, Lipo E, Adhi M, Birke K, Kumar-Singh R. AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice. Gene Ther 2014; 21:507-13. [PMID: 24670995 DOI: 10.1038/gt.2014.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Approximately 50% of AMD patients have a polymorphism in the negative regulator of complement known as Factor H. Individuals homozygous for a Y402H polymorphism in Factor H have elevated levels of membrane attack complex (MAC) in their choroid and retinal pigment epithelium relative to individuals homozygous for the wild-type allele. An inability to form MAC due to a polymorphism in C9 is protective against the formation of choroidal neovascularization (CNV) in AMD patients. Hence, blocking MAC in AMD patients may be protective against CNV. Here we investigate the potential of human proline/arginine-rich end leucine-rich repeat protein (PRELP) as an inhibitor of complement-mediated damage when delivered via the subretinal route using an AAV2/8 vector. In a fluorescence-activated cell sorting (FACS) lysis assay, PRELP inhibited normal human serum-mediated lysis of Hepa-1c1c7 cells by 18.7%. Unexpectedly, PRELP enhanced the formation of tubes by human umbilical vein endothelial cells (HUVECs) by approximately 240%, but, when delivered via an AAV vector to the retina of mice, PRELP inhibited laser-induced CNV by 60%. PRELP reduced deposition of MAC in vivo by 25.5%. Our results have implications for the development of complement inhibitors as a therapy for AMD.
Collapse
Affiliation(s)
- M T Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - E Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - M Adhi
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - K Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - R Kumar-Singh
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells. PLoS One 2014; 9:e85934. [PMID: 24454946 PMCID: PMC3893272 DOI: 10.1371/journal.pone.0085934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/03/2013] [Indexed: 01/09/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.
Collapse
|
42
|
Lipo E, Cashman SM, Kumar-Singh R. Aurintricarboxylic acid inhibits complement activation, membrane attack complex, and choroidal neovascularization in a model of macular degeneration. Invest Ophthalmol Vis Sci 2013; 54:7107-14. [PMID: 24106121 DOI: 10.1167/iovs.13-12923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Immunocytochemical and genetic data implicate a significant role for the activation of complement in the pathology of AMD. Individuals homozygous for a Y402H polymorphism in Factor H have elevated levels of membrane attack complex (MAC) in their choroidal blood vessels and RPE relative to individuals homozygous for the wild-type allele. An R95X polymorphism in C9, a protein necessary for the final assembly of MAC, is partially protective against the formation of choroidal neovascularization (CNV) in AMD patients. Aurintricarboxylic Acid (ATA) is a small molecule inhibitor of MAC. Our hypothesis was that attenuation of the formation of MAC on ocular tissues by ATA may protect mice against laser-induced CNV. METHODS The ability of ATA to inhibit human complement-mediated cell lysis, inhibit formation of human MAC, and inhibit formation of tubes by endothelial cells was examined in vitro. Subsequently, the Bruch's membrane of adult mice was damaged using an argon laser, followed by intravitreal injection of ATA. One week later, choroidal flat mounts from these mice were stained for the presence of MAC, endothelial cells, and macrophages. RESULTS ATA protects cells from human complement-mediated lysis, attenuates assembly of the MAC, and inhibits tube formation by endothelial cells in vitro. ATA also attenuates CNV, MAC deposition, and macrophage infiltration in a murine model of exudative AMD. CONCLUSIONS ATA warrants further study as a potential drug for the treatment of exudative and nonexudative AMD.
Collapse
Affiliation(s)
- Erion Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| | | | | |
Collapse
|
43
|
Birke K, Lipo E, Birke MT, Kumar-Singh R. Topical application of PPADS inhibits complement activation and choroidal neovascularization in a model of age-related macular degeneration. PLoS One 2013; 8:e76766. [PMID: 24130789 PMCID: PMC3793916 DOI: 10.1371/journal.pone.0076766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly. AMD patients have elevated levels of membrane attack complex (MAC) in their choroidal blood vessels and retinal pigment epithelium (RPE). MAC forms pores in cell membranes. Low levels of MAC result in an elevation of cytokine release such as vascular endothelial growth factor (VEGF) that promotes the formation of choroidal neovascularization (CNV). High levels of MAC result in cell lysis and RPE degeneration is a hallmark of advanced AMD. The current standard of care for CNV associated with wet AMD is intravitreal injection of anti-VEGF molecules every 4 to 12 weeks. Such injections have significant side effects. Recently, it has been found that membrane pore-forming proteins such as α-haemolysin can mediate their toxic effects through auto- and paracrine signaling and that complement-induced lysis is amplified through ATP release followed by P2X receptor activation. We hypothesized that attenuation of P2X receptor activation may lead to a reduction in MAC deposition and consequent formation of CNV. Hence, in this study we investigated topical application of the purinergic P2X antagonist Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) as a potential treatment for AMD. We found that 4.17 µM PPADS inhibited formation of HUVEC master junctions and master segments by 74.7%. In a human complement mediated cell lysis assay, 104 µM PPADS enabled almost complete protection of Hepa1c1c7 cells from 1% normal human serum mediated cell lysis. Daily topical application of 4.17 mM PPADS for 3 days attenuated the progression of laser induced CNV in mice by 41.8% and attenuated the deposition of MAC at the site of the laser injury by 19.7%. Our data have implications for the future treatment of AMD and potentially other ocular disorders involving CNV such as angioid streaks, choroidal rupture and high myopia.
Collapse
Affiliation(s)
- Kerstin Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Erion Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Marco T. Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Rajendra Kumar-Singh
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Sun C, Wu J, Liu S, Li H, Zhang S. Zebrafish CD59 has both bacterial-binding and inhibiting activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:178-188. [PMID: 23707788 DOI: 10.1016/j.dci.2013.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
CD59, known as protectin, usually plays roles as a regulatory inhibitor of complement, but it also exhibits activities independent of its function as a complement inhibitor. This study reported the identification and characterization of an ortholog of mammalian cd59 from zebrafish Danio rerio, which is similar to known cd59 in terms of both amino acid sequence and genomic structure as well as synteny conservation. We showed that zebrafish cd59 was maternally expressed in early embryos and expressed in a tissue-specific manner, with most abundant expression in the brain. We further showed that recombinant zebrafish CD59 was capable of binding to both the Gram-negative and Gram-positive bacteria as well as the microbial signature molecules LPS and LTA. In addition we demonstrated that recombinant zebrafish CD59 displayed slight antimicrobial activity capable of inhibiting the growth of E. coli and S. aureus. All these data indicate that zebrafish CD59 can not only binds to the bacteria and their signature molecules LPS and LTA but can also inhibit their growth, a novel role assigned to CD59.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
45
|
Ghosh P, Sahoo R, Vaidya A, Cantel S, Kavishwar A, Goldfine A, Herring N, Bry L, Chorev M, Halperin JA. A specific and sensitive assay for blood levels of glycated CD59: a novel biomarker for diabetes. Am J Hematol 2013; 88:670-6. [PMID: 23670858 DOI: 10.1002/ajh.23478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 02/04/2023]
Abstract
Increasing evidence links the complement system with complications of human diabetes. The complement regulatory protein CD59, an inhibitor of formation of membrane attack complex (MAC), is inhibited by hyperglycemia-induced glycation fostering increased deposition of MAC, a major effector of complement-mediated tissue damage. CD59, an ubiquitous GPI-anchored membrane protein, is shed from cell membranes by phospholipases generating a soluble form present in blood and urine. We established an enzyme-linked immunosorbent assay (ELISA) to measure serum/plasma glycated human CD59 (hCD59) (GCD59) and evaluated its potential as a diabetes biomarker. We used a synthetic peptide strategy to generate (a) a mouse monoclonal antibody to capture hCD59, (b) a rabbit monoclonal antibody to detect GCD59, and (c) a GCD59 surrogate for assay standardization. ELISA conditions were optimized for precision, reproducibility, and clinical sensitivity. The clinical utility of the assay was initially evaluated in 24 subjects with or without diabetes and further validated in a study that included 100 subjects with and 90 subjects without a diagnosis of diabetes. GCD59 (a) was significantly higher in individuals with than in individual without diabetes, (b) was independently associated with HbA1c, and (c) identified individuals with diabetes with high specificity and sensitivity. We report the development and standardization of a novel, sensitive, and specific ELISA for measuring GCD59 in blood. The assay distinguished individuals with diabetes from those without, and showed strong correlation between GCD59 and HbA1c. Because GCD59 likely contributes to the pathogenesis of diabetes complications, measurement of blood levels of GCD59 may be useful in the diagnosis and management of diabetes.
Collapse
Affiliation(s)
- Pamela Ghosh
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Rupam Sahoo
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Anand Vaidya
- Division of Endocrinology; Diabetes and Hypertension; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Sonia Cantel
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Amol Kavishwar
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | | | - Neil Herring
- Crimson Biospecimen Core, Partners Healthcare System; Boston; Massachusetts
| | - Lynn Bry
- Crimson Biospecimen Core, Partners Healthcare System; Boston; Massachusetts
| | - Michael Chorev
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| | - Jose A. Halperin
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
46
|
Monson MS, Mendoza KM, Velleman SG, Strasburg GM, Reed KM. Expression profiles for genes in the turkey major histocompatibility complex B-locus. Poult Sci 2013; 92:1523-34. [PMID: 23687148 DOI: 10.3382/ps.2012-02951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic region of the genome essential to immune responses and animal health. In galliforms, the MHC is divided into 2 genetically unlinked regions (MHC-B and MHC-Y). Many MHC-B genes are involved in adaptive or innate immunity, yet others have nonimmune or unknown functions. The sequenced MHC-B region of the turkey (Meleagris gallopavo) contains 40 genes, the majority of which are predicted transcripts based on comparison with the chicken or quail, without direct evidence for expression. This study was designed to test for the presence of MHC-B gene transcripts in a panel of immune and nonimmune system tissues from domestic turkeys. This analysis provides the first locus-wide examination of MHC-B gene expression in any avian species. Most MHC-B genes were broadly expressed across tissues. Expression of all predicted genes was verified by reverse-transcription PCR, including B-butyrophilin 2 (BTN2), a predicted gene with no previous evidence for expression in any species. Previously undescribed splice variants were also detected and sequenced from 3 genes. Characterization of MHC-B expression patterns helps elucidate unknown gene functions and potential gene coregulation. Determining turkey MHC-B expression profiles increases our overall understanding of the avian MHC and provides a necessary resource for future research on the immunological response of these genes.
Collapse
Affiliation(s)
- M S Monson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Complement-dependent destruction of invading micro-organisms is a crucial first-line defense against infection, yet both African and American trypanosomes are able to resist attack by complement. African trypanosomes resist non-specific complement attack by virtue of a thick glycoprotein surface coat, and the host range of certain African trypanosomes is believed to be defined by their susceptibility to a subclass of human high density lipoprotein (HDL) and/or a high molecular weight protein complex present in human serum. In the first part of this review, Stephen Tomlinson and Jayne Raper look at the properties and mechanisms of action of these trypanolytic factors on African trypanosomes, and discuss briefly the possible mechanisms whereby these human pathogens resist lysis by human serum. The mechanisms that enable the American trypanosome Trypanosoma cruzi to resist complement attack are reviewed in the second part of this article.
Collapse
Affiliation(s)
- S Tomlinson
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
48
|
Song JX, Cao WL, Li FQ, Shi LN, Jia X. Anti-Sp17 monoclonal antibody with antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity activities against human ovarian cancer cells. Med Oncol 2011; 29:2923-31. [PMID: 22198696 DOI: 10.1007/s12032-011-0137-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 12/09/2011] [Indexed: 01/25/2023]
Abstract
Sperm protein 17 (Sp17) is a cancer testis antigen that has been shown to be overexpressed in a variety of gynecologic malignancies, in particular ovarian cancer. Emerging evidences indicate that Sp17 is involved in tumorigenesis and in the migration of malignant cells. It has been proposed as a useful target for tumor-vaccine strategies and a novel marker to define tumor subsets and predict drug response. However, the antitumor activity of anti-Sp17 monoclonal antibody (anti-Sp17 mAb) has not been investigated. In this study, the in vitro cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities of anti-Sp17 mAb were evaluated using Sp17-positive ovarian cancer cells as targets, Sp17-negative ovarian cancer cells as the control, and healthy human peripheral blood monocytes and healthy human serum as effectors. Our preliminary results indicate that the direct cytotoxicity of anti-Sp17 mAb against the investigated ovarian cancer cells was very weak. However, the cytotoxicity of anti-Sp17 mAb, mediated by peripheral blood mononuclear cells (PBMCs), as ADCC, or by human serum, as CDC, was relatively strong in the Sp17-positive ovarian cancer cells. This finding suggested that anti-Sp17 mAb could be a useful tool against ovarian cancer and may provide insight into the development of low side-effect targeting therapy for this malignant disease.
Collapse
Affiliation(s)
- Jia-xi Song
- Laboratory of Molecular Biology, Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China.
| | | | | | | | | |
Collapse
|
49
|
The effects of CD59 gene as a target gene on breast cancer cells. Cell Immunol 2011; 272:61-70. [PMID: 22000275 DOI: 10.1016/j.cellimm.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 01/03/2023]
Abstract
The retroviral-vector-targeted CD59 gene (pSUPER-siCD59) was constructed and transfected into breast cells (MCF-7). The results demonstrated that the retroviral vector-mediated RNAi successfully suppressed human CD59 gene. The expression of CD59 decreased at both mRNA and protein levels. Knockdown of CD59 abrogated its protective effect on complement-mediated cytolysis. Fas and caspase-3 were remarkably upregulated, which induced apoptosis and tumor growth suppression in MCF-7 cells. In addition, overexpression of CD59 promoted the proliferation of MCF-7 cells and inhibited anti-apoptotic Bcl-2 expression. In conclusion, CD59 may be a promising target in the gene therapy of breast cancer.
Collapse
|
50
|
Kafsack BFC, Carruthers VB. Apicomplexan perforin-like proteins. Commun Integr Biol 2011; 3:18-23. [PMID: 20539776 DOI: 10.4161/cib.3.1.9794] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/12/2009] [Indexed: 12/13/2022] Open
Abstract
Numerous perforin-like proteins are encoded in the genomes of apicomplexan parasites, where they are expressed in various life-cycle stages and play critical roles in pathogenesis and lifecycle progression. These ApiPLPs are characterized by the presence of a MACPF domain, responsible for pore-formation in target membranes in a number of systems, including many bacterial pathogens and effector cells of the immune response. ApiPLP MACPF domains maintain the critical structural elements but are often present in new and intriguing domain arrangements. Recent work in Toxoplasma and Plasmodium has shown that ApiPLPs are important for breaching membranes during parasite egress and cell traversal. Here we present an overview of this important protein family from a structural, functional and phylogenetic perspective across the Apicomplexa.
Collapse
Affiliation(s)
- Björn F C Kafsack
- Department of Microbiology and Immunology; University of Michigan; Ann Arbor, MI USA
| | | |
Collapse
|