1
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 PMCID: PMC12066093 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
2
|
Tetteh-Quarshie S, Morrison KM, Olszewski NA, Young LE, Mensah EN, Sword MK, Henderson BJ. The influence of high-fat diet on nicotine vapor self-administration, neuronal excitability, and leptin levels in adult mice. Physiol Behav 2025; 292:114823. [PMID: 39870287 PMCID: PMC11874065 DOI: 10.1016/j.physbeh.2025.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors. Here, mice were assigned standard diet (SD) or HFD for 6 weeks and then trained to self-administer nicotine using an e-vape® self-administration (EVSA) assay. After the last session, changes in glucose, insulin, and leptin were assessed with ELISA. HFD-assigned mice displayed a decrease in intrinsic excitability of VTA dopamine neurons; but an increase in intrinsic excitability of layer VI prelimbic mPFC neurons. SD-assigned female mice demonstrated enhanced nicotine EVSA during fixed-ratio 3 relative to SD males. HFD-assigned male and female mice displayed increased nicotine EVSA during FR1. However, only HFD-assigned male mice exhibited enhanced nicotine EVSA during FR3. Finally, HFD-assigned male and female mice displayed increased leptin levels. However, we only observed a direct correlation between leptin levels and EVSA responding during FR1 in HFD-fed male mice. These results suggest that high-fat diet alter nicotine intake in a sex-specific manner, and this may be due to diet-induced changes in neuronal excitability and circulating leptin levels.
Collapse
Affiliation(s)
- Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Karli M Morrison
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Lauren E Young
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Esther N Mensah
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Mason K Sword
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA.
| |
Collapse
|
3
|
Oyabambi AO, Bamidele O, Aindero BB, Awolola AM. L-arginine mitigates cardiac lipid and glucose accumulation through leptin modulation and enhancement of PIK3 activities in high fat-fed male Wistar rats. Nutr Metab (Lond) 2024; 21:103. [PMID: 39633392 PMCID: PMC11616303 DOI: 10.1186/s12986-024-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND AIM Insulin resistance and other metabolic risk factors are associated with increased cardiovascular diseases in animals fed with high fat diets (HFD). L-arginine is a semi-essential amino acid produced both endogenously and taken in the diet as supplements. It has been documented to possess antioxidant and anti-inflammatory properties and has been considered a plausible candidate for the management of metabolic disorders. Therefore, this study is aimed to determine the effects of L-arginine on lipid dysregulation and insulin resistance in high fat-fed male Wistar rats. METHODS AND RESULTS Twenty-four (24) male Wistar rats randomly selected into 4 groups, mean weight 110 ± 5 and, (n = 6) were fed rat chow + distilled water (vehicle); CTR, rat chow + L-arginine (150 mg/kg), HFD + vehicle, HFD + L-Arginine (150 mg/kg) for 6 weeks. The animals were anesthetized with 50 mg/kg pentobarbital sodium intraperitoneally, blood sample was taken via cardiac puncture and thereafter collected into a heparinized tube. Data were expressed as means ± SEM. HFD increased body weight gain, serum Insulin, Homeostasis model assessment of insulin resistance (HOMA-IR), area under the curve (AUC), leptin, Lipoprotein(a) or Lp(a), triglyceride-glucose index (TYG), triglycerides (TG), free fatty acids (FFAs), total cholesterol (TC), low density lipoprotein (LDL-C), TC/HDL-C, Log TG/HDL-C, TC-HDL-C)/HDL-C but decreased phospoinositide-3-kinase (PIK3) when compared with control. L-arginine, resulted in significant reduction in weight gain, fasting blood sugar (FBS), insulin, AUC, HOMA-IR, leptin, while increasing PIK3, Lp(a), TG, TC and FFA when compared with HFD. CONCLUSION The amelioration of lipid and glucose accumulation by L-arginine supplementation in high fat diet-fed male Wistar rats is accompanied by reduced leptin levels and PIK3 augmentation.
Collapse
Affiliation(s)
- Adewumi Oluwafemi Oyabambi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Olubayode Bamidele
- Physiology Programme, Department of Physiology, College of Health Sciences, Bowen University, P.M.B. 284, Iwo, Osun State, Nigeria.
| | - Blessing Boluwatife Aindero
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeoba Mobolaji Awolola
- Physiology Programme, Department of Anatomy, College of Health Sciences, Bowen University, P.M.B. 284, Iwo, Osun State, Nigeria
| |
Collapse
|
4
|
Alshehri AA, Younes NM, Kamel R, Shawir SM. Characterization and potential health benefits of millet flour and banana peel mixtures on rats fed with a high-fat diet. Heliyon 2024; 10:e39424. [PMID: 39497975 PMCID: PMC11532225 DOI: 10.1016/j.heliyon.2024.e39424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Millet (M) and banana peel (Bp) possess significant nutritional qualities and have been shown to reduce obesity resulting from a high-fat diet (HFD). The present research assessed the effect of millet flour and banana peel mixtures on lipid profiles, liver and kidney functions, and characterized food products derived from these mixtures. Thirty-five male albino rats were allocated into five groups for a biochemical analysis. The control group (n = 7) received a basal diet, while the remaining 28 rats were fed a high-fat diet (HFD) for 8 weeks to induce obesity. These rats were then separated into four sub-groups (n = 7 each): sub-group 1 as the positive control (+ve) receiving only HFD, while sub-groups 2, 3, and 4 were administered HFD supplemented with millet flour and banana peel mixtures (M90+Bp10 %, M80+Bp20 %, and M70+Bp30 %), respectively for an additional 8 weeks. The chemical composition analysis showed that banana peel (Bp) has higher levels of fat, ash, fiber, magnesium, and potassium, while millet flour is richer in carbohydrates. Bp also had superior antioxidant activity and total phenol content (13.32 % and 10.54 mg/100g) compared to millet flour (3.75 % and 4.55 mg/100g). Biochemical tests on the HFD plus (M70+Bp30 %) group revealed improved lipid profiles, leptin, antioxidant enzymes, and kidney and liver functions. Glucose levels were higher in the HFD group (137.33 mg/dl) than in the control (85.70 mg/dl), but these levels were reduced with millet and banana peel treatment. The histology of liver tissues confirmed the biochemical results. Sensory evaluation of pancakes and toast from the (M70+Bp30 %) mixture by forty panelists showed high acceptability, aligning with the biochemical outcomes. This study suggests that a banana peel and millet flour mixture could help reduce obesity.
Collapse
Affiliation(s)
- Azizah A. Alshehri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Nashwa M. Younes
- Home Economics Department, Faculty of Specific Education, Alexandria, University Alexandria, Egypt
| | - Reham Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza, 12611, Egypt
| | - Samar M. Shawir
- Home Economics Department, Faculty of Specific Education, Alexandria, University Alexandria, Egypt
| |
Collapse
|
5
|
Shama AT, Shova LM, Bristy AT, Emran T, Shabnam S, Shill MC, Bepari AK, Reza HM. Anti-obesity effects and underlying molecular mechanisms of the ethanolic extract of figs from Ficus hispida using high fat-fed wister rats. Heliyon 2024; 10:e35392. [PMID: 39170114 PMCID: PMC11336639 DOI: 10.1016/j.heliyon.2024.e35392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity is a known risk factor for many chronic diseases and a substantial threat to public health. We investigated the effects of figs sourced from Ficus hispida on a high fat-fed experimental rat model. We found that a 500-mg dose of ethanolic extract of figs (EFH) reduced oxidative stress markers nitric oxide (NO), malondialdehyde (MDA), and advanced oxidation protein products (AOPP), which were increased in high fat-fed rats. Antioxidant enzymes superoxide dismutase (SOD), catalase, reduced glutathione (GSH), and myeloperoxidase (MPO), found elevated in high fat-fed rats, were also normalized to nearly regular levels by fig treatment. Administration of EFH further reduced fat deposition and expression of adipogenic genes leptin, fatty acid synthase (FAS), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1c (SERBP-1c). Our results suggest that figs have significant effects on reducing oxidative stress and mitigating obesity-associated liver and adipose tissue abnormalities via suppressing adipogenesis. Thus, we propose that F. hispida has potential benefits in reducing obesity.
Collapse
Affiliation(s)
- Anika Tabassum Shama
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Luluin Maknun Shova
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Sadia Shabnam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
6
|
Corrado A, Scidà G, Vitale M, Caprio B, Costabile G, Annuzzi E, Della Pepa G, Lupoli R, Bozzetto L. Eating habits and sleep quality in individuals with type 1 diabetes on continuous glucose monitoring and insulin pump. Nutr Metab Cardiovasc Dis 2024; 34:1703-1711. [PMID: 38644079 DOI: 10.1016/j.numecd.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND AND AIMS Sleep disorders are bidirectionally linked with eating behaviors and glucose metabolism, which could be clinically relevant in type 1 diabetes (T1D). We investigated the relationship between dietary habits and sleep quality in individuals with T1D on insulin pumps and continuous glucose monitoring (CGM). METHODS AND RESULTS In a cross-sectional study, dietary habits (7-day food diary, EPIC questionnaire) and sleep quality (Pittsburgh Sleep Quality Index questionnaire) were assessed in 59 men and 58 women with T1D, aged 19-79 years, using CGM and insulin pump. Differences in dietary habits and blood glucose after dinner (6 h) between participants differing in sleep quality, sleep duration, and sleep onset latency were evaluated. Bad Sleepers (n = 81) were twice as prevalent as Good Sleepers (n = 36) and had a significantly higher intake of fat than Good Sleepers (dinner: 30.7 ± 10.7 vs. 24.0 ± 10.5 g, p = 0.004). Short sleepers had a significantly higher usual intake (g/1000 kcal) of coffee and tea (90.4 ± 71.7 vs. 62.0 ± 35.6), alcoholic (47.8 ± 51.1 vs. 28.9 ± 31.5) and carbonated beverages (21.8 ± 38.1 vs. 9.3 ± 17.2) (p < 0.05 for all) than Long Sleepers. Long Sleep Onset Latency was associated with a significantly higher fat intake at dinner (41.8 ± 7.4 vs. 38.1 ± 9.1 % total energy, p = 0.029) than Short Sleep Onset Latency. No significant differences in post-dinner blood glucose levels were detected between participants with good or bad sleep quality. CONCLUSION Sleep disruption is common in T1D and is associated with unhealthy dietary choices, especially at dinner, independently of post-dinner blood glucose control.
Collapse
Affiliation(s)
- Alessandra Corrado
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Giuseppe Scidà
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Benedetta Caprio
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Eric Annuzzi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
7
|
Kang J, Park M, Oh CM, Kim T. High-fat diet-induced dopaminergic dysregulation induces REM sleep fragmentation and ADHD-like behaviors. Psychiatry Res 2023; 327:115412. [PMID: 37607442 DOI: 10.1016/j.psychres.2023.115412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Consumption of a high-fat diet (HFD) has been associated with reduced wakefulness and various behavioral deficits, including anxiety, depression, and anhedonia. The dopaminergic system, which plays a crucial role in sleep and ADHD, is known to be vulnerable to chronic HFD. However, the association between HFD-induced behavioral and molecular changes remains unclear. Therefore, we investigated the effects of a HFD on the dopaminergic system and its association with behavioral deficits in male mice. The mice were divided into normal diet and HFD groups and were analyzed for sleep patterns, behavior tests, and transcription levels of dopamine-related genes in the brain. The HFD group showed decreased wakefulness, increased REM sleep with fragmented patterns, decreased time spent in the center zone of the open field test, shorter immobile time in the tail suspension test, impaired visuospatial memory, and reduced sucrose preference. Additionally, the HFD group had decreased mRNA levels of D1R, COMT, and DAT in the nucleus accumbens, which negatively correlated with REM sleep proportion and REM sleep bout count. The results suggest that HFD-induced behavioral deficits were resemblance to ADHD-like behavioral phenotypes and disturbs REM sleep by dysregulating the dopaminergic system.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Barzalobre-Geronimo R, Contreras-Ramos A, Cervantes-Cruz AI, Cruz M, Suárez-Sánchez F, Goméz-Zamudio J, Diaz-Rosas G, Ávalos-Rodríguez A, Díaz-Flores M, Ortega-Camarillo C. Pancreatic β-Cell Apoptosis in Normoglycemic Rats is Due to Mitochondrial Translocation of p53-Induced by the Consumption of Sugar-Sweetened Beverages. Cell Biochem Biophys 2023; 81:503-514. [PMID: 37392315 DOI: 10.1007/s12013-023-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Overstimulation of pancreatic β-cells can lead to dysfunction and death, prior to the clinical manifestations of type 2 diabetes (T2D). The excessive consumption of carbohydrates induces metabolic alterations that can affect the functions of the β-cells and cause their death. We analyzed the role of p53 in pancreatic β cell death in carbohydrate-supplemented Sprague Dawley rats. For four months, the animals received drinking water containing either 40% sucrose or 40% fructose. The glucose tolerance test was performed at week 15. Apoptosis was assessed with the TUNEL assay (TdT-mediated dUTP-nick end-labeling). Bax, p53, and insulin were assessed by Western blotting, immunofluorescence, and real-time quantitative PCR. Insulin, triacylglycerol, and serum glucose and fatty acids in pancreatic tissue were measured. Carbohydrate consumption promotes apoptosis and mobilization of p53 from the cytosol to rat pancreatic β-cell mitochondria before blood glucose rises. An increase in p53, miR-34a, and Bax mRNA was also detected (P < 0.001) in the sucrose group. As well as hypertriglyceridemia, hyperinsulinemia, glucose intolerance, insulin resistance, visceral fat accumulation, and increased pancreatic fatty acids in the sucrose group. Carbohydrate consumption increases p53 and its mobilization into β-cell mitochondria and coincides with the increased rate of apoptosis, which occurs before serum glucose levels rise.
Collapse
Affiliation(s)
- Raúl Barzalobre-Geronimo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. CDMX, México, Mexico
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Alejandra Contreras-Ramos
- Molecular Biology Research Lab Congenital Malformations Center, Children Hospital of Mexico Federico Gomez (HIMFG). CDMX, México, Mexico
| | - Aaron I Cervantes-Cruz
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Miguel Cruz
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Fernando Suárez-Sánchez
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Jaime Goméz-Zamudio
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Guadalupe Diaz-Rosas
- Molecular Biology Research Lab Congenital Malformations Center, Children Hospital of Mexico Federico Gomez (HIMFG). CDMX, México, Mexico
| | - Alejandro Ávalos-Rodríguez
- Deparment of Agricultural and Animal Prod, Universidad Autónoma Metropolitana- Xoch. CDMX, México, México
| | - Margarita Díaz-Flores
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Clara Ortega-Camarillo
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México.
| |
Collapse
|
9
|
Hong GH, Lee SY, Yoo JI, Chung JH, Park KY. Catechin with Lactic Acid Bacteria Starters Enhances the Antiobesity Effect of Kimchi. J Med Food 2023; 26:560-569. [PMID: 37405755 DOI: 10.1089/jmf.2023.k.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
The antiobesity effects of kimchi with catechin and lactic acid bacteria as starters were studied in C57BL/6 mice with high-fat diet (HFD)-induced obesity. We prepared four types of kimchi: commercial kimchi, standard kimchi, green tea functional kimchi, and catechin functional kimchi (CFK). Body weight and weight of adipose tissue were significantly lower in the kimchi-treated groups than in the HFD and Salt (HFD +1.5% NaCl) groups. In addition, in the CFK group, the serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol were significantly lower and those of high-density lipoprotein cholesterol were markedly higher than the corresponding levels in the HFD and Salt groups. Moreover, CFK reduced fat cells and crown-like structures in the liver and epididymal fat tissues. The protein expression of adipo/lipogenesis-related genes in the liver and epididymal fat tissues was significantly lower (1.90-7.48-fold) in the CFK group than in the HFD and Salt groups, concurrent with upregulation of lipolysis-related genes (1.71-3.38-fold) and downregulation of inflammation-related genes (3.17-5.06-fold) in epididymal fat tissues. In addition, CFK modulated the gut microbiomes of obese mice by increasing the abundance of Bacteroidetes (7.61%), while in contrast, Firmicutes (82.21%) decreased. In addition, the presence of the Erysipelotrichaceae (8.37%) family in the CFK group decreased, while the number of beneficial bacteria of the families, Akkermansiaceae (6.74%), Lachnospiraceae (14.95%), and Lactobacillaceae (38.41%), increased. Thus, CFK exhibited an antiobesity effect through its modulation of lipid metabolism and the microbiome.
Collapse
Affiliation(s)
- Geun-Hye Hong
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi-do, South Korea
- Immunobiotech Corp., Seoul, South Korea
| | - So-Young Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi-do, South Korea
- Immunobiotech Corp., Seoul, South Korea
| | - Jung-Im Yoo
- Pungmi Food Agricultural Co. Ltd., Suwon, South Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, CHA University, Seongnam, Gyeonggi-do, South Korea
| | - Kun-Young Park
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi-do, South Korea
- Immunobiotech Corp., Seoul, South Korea
| |
Collapse
|
10
|
Kim YC, Fattah H, Fu Y, Nespoux J, Vallon V. Expression of leptin receptor in renal tubules is sparse but implicated in leptin-dependent kidney gene expression and function. Am J Physiol Renal Physiol 2023; 324:F544-F557. [PMID: 37102688 PMCID: PMC10228677 DOI: 10.1152/ajprenal.00279.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
Leptin regulates energy balance via leptin receptors expressed in central and peripheral tissues, but little is known about leptin-sensitive kidney genes and the role of the tubular leptin receptor (Lepr) in response to a high-fat diet (HFD). Quantitative RT-PCR analysis of Lepr splice variants A, B, and C revealed a ratio of ∼100:10:1 in the mouse kidney cortex and medulla, with medullary levels being ∼10 times higher. Leptin replacement in ob/ob mice for 6 days reduced hyperphagia, hyperglycemia, and albuminuria, associated with normalization of kidney mRNA expression of molecular markers of glycolysis, gluconeogenesis, amino acid synthesis, and megalin. Normalization of leptin for 7 h in ob/ob mice did not normalize hyperglycemia or albuminuria. Tubular knockdown of Lepr [Pax8-Lepr knockout (KO)] and in situ hybridization revealed a minor fraction of Lepr mRNA in tubular cells compared with endothelial cells. Nevertheless, Pax8-Lepr KO mice had lower kidney weight. Moreover, while HFD-induced hyperleptinemia, increases in kidney weight and glomerular filtration rate, and a modest blood pressure lowering effect were similar compared with controls, they showed a blunted rise in albuminuria. Use of Pax8-Lepr KO and leptin replacement in ob/ob mice identified acetoacetyl-CoA synthetase and gremlin 1 as tubular Lepr-sensitive genes that are increased and reduced by leptin, respectively. In conclusion, leptin deficiency may increase albuminuria via systemic metabolic effects that impinge on kidney megalin expression, whereas hyperleptinemia may induce albuminuria by direct tubular Lepr effects. Implications of Lepr variants and the novel tubular Lepr/acetoacetyl-CoA synthetase/gremlin 1 axis remain to be determined.NEW & NOTEWORTHY This study provides new insights into kidney gene expression of leptin receptor splice variants, leptin-sensitive kidney gene expression, and the role of the leptin receptor in renal tubular cells for the response to diet-induced hyperleptinemia and obesity including albuminuria.
Collapse
Affiliation(s)
- Young Chul Kim
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Hadi Fattah
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Yiling Fu
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Josselin Nespoux
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
- Department of Pharmacology, University of California-San Diego, La Jolla, California, United States
| |
Collapse
|
11
|
Palus-Chramiec K, Sanetra AM, Lewandowski MH. Day/night Changes in the Dorsomedial Hypothalamus Firing Responses to Ghrelin are Modulated by High-fat Diet. Neuroscience 2022; 494:167-177. [PMID: 35569641 DOI: 10.1016/j.neuroscience.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Dorsomedial hypothalamus (DMH) is a part of the feeding center involved in food intake and regulation of the metabolism. DMH neurons express many receptors for different metabolic cues which can modulate its network and influence animals' behaviour. One of the metabolic peptides deliveredto this structure is ghrelin, the only well-known hunger signal, produced mainly in the stomach. Diet-induced obesity is a physiological model of obesity widely used in research. Here we investigated how time-of-day and high-fat diet (HFD) affect neuronal networks and the sensitivity to the metabolic information received by the DMH. Our results indicate that even a short period of HFD (2-3 weeks) consumption can cause dysregulation of the DMH neuronal network, manifested as a disruption of the day/night pattern of basal activity and altered sensitivity to incoming information. We showed for the first time a day/night pattern of sensitivity to ghrelin in the DMH, with a higher level during the behaviorally active phase of animals. This day/night rhythm of sensitivity to ghrelin was reversed in HFD group, causing a stronger effect during the non-active phase. After prolongation of the HFD consumption to 7-8 weeks we observed an increase in the responsiveness to ghrelin, than during the short-term diet.
Collapse
Affiliation(s)
- K Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - A M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - M H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| |
Collapse
|
12
|
Ugusman A, Shahrin SAS, Azizan NH, Pillai SB, Krishnan K, Salamt N, Aminuddin A, Hamid AA, Kumar J, Mokhtar MH. Role of Honey in Obesity Management: A Systematic Review. Front Nutr 2022; 9:924097. [PMID: 35811958 PMCID: PMC9263567 DOI: 10.3389/fnut.2022.924097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/02/2022] [Indexed: 12/20/2022] Open
Abstract
Obesity is a metabolic disorder that has become critically prevalent throughout the world. Obesity has been linked to other chronic diseases such as diabetes mellitus, cardiovascular diseases and cancer. Natural products such as honey have been investigated for their potential effect on obesity. Hence, this study systematically reviewed the recent literature concerning the effects of honey on obesity in obese animal models and in people with obesity. The Ovid MEDLINE, PubMed, Scopus, Web of Science and Google Scholar electronic databases were searched for relevant articles. A total of 130 relevant articles were obtained from the initial search. Following a thorough screening, nine articles were selected for data extraction, including six animal studies and three clinical trials. In most of the animal studies, honey demonstrated an anti-obesity effect by reducing body weight, body fat composition and adipocyte size, among others. However, supplementation of honey in clinical trials showed conflicting results. Even though honey supplementation did not demonstrate any weight-reducing effect in some of the clinical trials, none of the trials showed that honey increases body weight. However, the results should be interpreted with caution as most of the studies involved animal models and there is a limited number of high quality, randomized, controlled clinical trials. Systematic Review Registration https://inplasy.com/inplasy-2022-6-0038/ PROSPERO, identifier 10.37766/inplasy2022.6.0038.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Stępniowska A, Tutaj K, Juśkiewicz J, Ognik K. Effect of a high-fat diet and chromium on hormones level and Cr retention in rats. J Endocrinol Invest 2022; 45:527-535. [PMID: 34550535 PMCID: PMC8850218 DOI: 10.1007/s40618-021-01677-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
AIMS The aim of the study was to determine how the administration of a high-fat diet supplemented with various forms of chromium to rats affects accumulation of this element in the tissues and levels of leptin, ghrelin, insulin, glucagon, serotonin, noradrenaline and histamine, as well as selected mineral elements. METHODS The experiment was conducted on 56 male Wistar rats, which were divided into 8 experimental groups. The rats received standard diet or high fat diet (HFD) with addition of 0.3 mg/kg body weight of chromium(III) picolinate (Cr-Pic), chromium(III)-methioninate (Cr-Met), or chromium nanoparticles (Cr-NP). RESULTS Chromium in organic forms was found to be better retained in the body of rats than Cr in nanoparticles form. However, Cr-Pic was the only form that increased the insulin level, which indicates its beneficial effect on carbohydrate metabolism. In blood plasma of rats fed a high-fat diet noted an increased level of serotonin and a reduced level of noradrenaline. The addition of Cr to the diet, irrespective of its form, also increased the serotonin level, which should be considered a beneficial effect. Rats fed a high-fat diet had an unfavourable reduction in the plasma concentrations of Ca, P, Mg and Zn. The reduction of P in the plasma induced by supplementation with Cr in the form of Cr-Pic or Cr-NP may exacerbate the adverse effect of a high-fat diet on the level of this element. CONCLUSION A high-fat diet was shown to negatively affect the level of hormones regulating carbohydrate metabolism (increasing leptin levels and decreasing levels of ghrelin and insulin).
Collapse
Affiliation(s)
- A Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - K Tutaj
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - J Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - K Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
14
|
Azarcoya-Barrera J, Wollin B, Veida-Silva H, Makarowski A, Goruk S, Field CJ, Jacobs RL, Richard C. Egg-Phosphatidylcholine Attenuates T-Cell Dysfunction in High-Fat Diet Fed Male Wistar Rats. Front Nutr 2022; 9:811469. [PMID: 35187037 PMCID: PMC8847771 DOI: 10.3389/fnut.2022.811469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with immune dysfunction including an impaired T-cell function characterized by a lower IL-2 (proliferation marker) production after stimulation. Phosphatidylcholine (PC), a form of choline mostly found in eggs, has been shown to beneficially modulate T-cell responses during the lactation period by increasing the production of IL-2. To determine the impact of egg-PC as part of a high-fat diet on immune function we randomly fed male Wistar rats one of three diets containing the same amount of total choline but differing in the form of choline: 1-Control low fat [CLF, 10% wt/wt fat, 100% free choline (FC)]; 2- Control high-fat (CHF, 25% wt/wt fat, 100% FC); 3- PC high-fat (PCHF, 25% wt/wt, 100% PC). After 9 weeks of feeding, rats were euthanized. Cell phenotypes and ex vivo cytokine production by splenocytes stimulated with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I), lipopolysaccharide (LPS) and pokeweed (PWM) were measured by flow cytometry and ELISA, respectively. Rats fed the PCHF diet had a lower proportion of CD3+ cells when compared to both the CLF and the CHF. Following PMA+I stimulation, splenocytes from the CHF group produced less IL-2 and TNF-α compared to CLF and PCHF groups. No significant differences in cytokine production were found among groups after LPS and PWM stimulation. Our results show that feeding a high-fat diet impairs T-cell responses, as measured by ex vivo cytokine production, which can be attenuated by providing egg-PC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Female obesity: Association with endocrine disruption and reproductive dysfunction. OBESITY MEDICINE 2021; 28:100375. [DOI: 10.1016/j.obmed.2021.100375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Torok J, Zemancikova A, Valaskova Z, Balis P. The Role of Perivascular Adipose Tissue in Early Changes in Arterial Function during High-Fat Diet and Its Combination with High-Fructose Intake in Rats. Biomedicines 2021; 9:biomedicines9111552. [PMID: 34829781 PMCID: PMC8615157 DOI: 10.3390/biomedicines9111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to evaluate the influence of a high-fat diet and its combination with high-fructose intake on young normotensive rats, with focus on the modulatory effect of perivascular adipose tissue (PVAT) on the reactivity of isolated arteries. Six-week-old Wistar–Kyoto rats were treated for 8 weeks with a control diet (10% fat), a high-fat diet (HFD; 45% fat), or a combination of the HFD with a 10% solution of fructose. Contractile and relaxant responses of isolated rat arteries, with preserved and removed PVAT for selected vasoactive stimuli, were recorded isometrically by a force displacement transducer. The results demonstrated that, in young rats, eight weeks of the HFD might lead to body fat accumulation and early excitation of the cardiovascular sympathetic nervous system, as shown by increased heart rate and enhanced arterial contractile responses induced by endogenous noradrenaline released from perivascular sympathetic nerves. The addition of high-fructose intake deteriorated this state by impairment of arterial relaxation and resulted in mild elevation of systolic blood pressure; however, the increase in arterial neurogenic contractions was not detected. The diet-induced alterations in isolated arteries were observed only in the presence of PVAT, indicating that this structure is important in initiation of early vascular changes during the development of metabolic syndrome.
Collapse
Affiliation(s)
- Jozef Torok
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Correspondence: (J.T.); (A.Z.); Tel.: +421-2-3229-6044 (J.T. & A.Z.)
| | - Anna Zemancikova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Correspondence: (J.T.); (A.Z.); Tel.: +421-2-3229-6044 (J.T. & A.Z.)
| | - Zuzana Valaskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (Z.V.); (P.B.)
| |
Collapse
|
17
|
Nasiri K, Akbari A, Nimrouzi M, Ruyvaran M, Mohamadian A. Safflower seed oil improves steroidogenesis and spermatogenesis in rats with type II diabetes mellitus by modulating the genes expression involved in steroidogenesis, inflammation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114139. [PMID: 33894286 DOI: 10.1016/j.jep.2021.114139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/02/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus (DM), as a multiorgan syndrome, is an endocrine and metabolic disorder that is associated with male reproductive system dysfunction and infertility. Safflower (Carthamus tinctorius L.) as an herbal remedy improves DM and infertility-related disorders. The anti-hypercholesterolemic, anti-inflammatory, and antioxidative properties of this herb have been well documented, but its role in testosterone production, male reproductive system and zinc homeostasis has not been fully illustrated. AIM OF THE STUDY This study aimed to investigate the preventive and therapeutic properties of different doses of safflower seed oil against reproductive damage caused by type II DM by investigating zinc element homeostasis, inflammation and oxidative damage in testis tissue and their relationship with testosterone production and sperm parameters. MATERIALS AND METHODS Eighty adult male Sprague-Dawley rats were randomly divided into eight groups and treated daily for 12 and 24 weeks in protective and therapeutic studies, respectively. Type II DM was induced by a High Fat Diet (HFD) in normoglycemic rats for three months. At the end of each study, serum level of glucose, testosterone, gonadotropins, TNF-α, insulin, and leptin were measured. Moreover, antioxidant enzymes activity, lipid peroxidation, zinc and testosterone along with the expression of Nrf-2, NF-κB, TNF-α, StAR, P450scc, and 17βHSD3 genes in the testis were detected. RESULTS After the intervention, the activity of antioxidant enzymes and the level of testosterone and gonadotropins significantly decreased in the rats with DM in comparison to the others. However, lipid peroxidation and serum level of insulin, leptin and TNF-α increased and the testicular level of zinc significantly changed in the rats with DM compared to the control groups (p < 0.05). The gene expression of NF-κB and TNF-α were also significantly increased and the gene expression of Nrf2, StAR, P450scc and 17βHSD3 were decreased in the testis of diabetic rats (p < 0.05). The results showed that pretreatment and treatment with safflower seed oil could improve these parameters in diabetic rats compared with untreated diabetic rats (p < 0.05). CONCLUSION HFD could impair the production of testosterone and sperm, and reduce gonadotropin by increasing the serum level of leptin and inducing insulin resistance, oxidative stress and inflammation. However, safflower oil in a dose-dependent manner could improve testosterone level and sperm parameters by improving the level of leptin, zinc and insulin resistance, and the genes expression involved in testosterone synthesis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran.
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Majid Nimrouzi
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maede Ruyvaran
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Mohamadian
- Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Binayi F, Zardooz H, Ghasemi R, Hedayati M, Askari S, Pouriran R, Sahraei M. The chemical chaperon 4-phenyl butyric acid restored high-fat diet- induced hippocampal insulin content and insulin receptor level reduction along with spatial learning and memory deficits in male rats. Physiol Behav 2021; 231:113312. [PMID: 33412188 DOI: 10.1016/j.physbeh.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/18/2022]
Abstract
This study assessed the effect of a chronic high-fat diet (HFD) on plasma and hippocampal insulin and corticosterone levels, the hippocampus insulin receptor amount, and spatial learning and memory with or without receiving 4-phenyl butyric acid (4-PBA) in male rats. Rats were divided into high-fat and normal diet groups, then each group was subdivided into dimethyl sulfoxide (DMSO) and 4-PBA groups. After weaning, the rats were fed with HFD for 20 weeks. Then, 4-PBA or DMSO were injected for 3 days. Subsequently, oral glucose tolerance test was done. On the following day, spatial memory tests were performed. Then the hippocampus Bip, Chop, insulin, corticosterone, and insulin receptor levels were determined. HFD increased plasma glucose, leptin and corticosterone concentrations, hippocampus Bip, Chop and corticosterone levels, food intake, abdominal fat weight and body weight along with impaired glucose tolerance. It decreased plasma insulin, and insulin content, and its receptor amount in hippocampus. HFD lengthened escape latency and shortened the duration spent in target zone. 4-PBA administration improved the HFD- induced adverse changes. Chronic HFD possibly through the induction of endoplasmic reticulum (ER) stress and subsequent changes in the levels of hippocampal corticosterone, insulin and insulin receptor along with possible leptin resistance caused spatial learning and memory deficits.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Integrative analysis of physiological responses to high fat feeding with diffusion tensor images and neurochemical profiles of the mouse brain. Int J Obes (Lond) 2021; 45:1203-1214. [PMID: 33574566 PMCID: PMC8159736 DOI: 10.1038/s41366-021-00775-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 02/03/2023]
Abstract
Background Obesity proceeds with important physiological and microstructural alterations in the brain, but the precise relationships between the diet and feeding status, its physiological responses, and the observed neuroimaging repercussions, remain elusive. Here, we implemented a mouse model of high fat diet (HFD) feeding to explore specific associations between diet, feeding status, phenotypic and endocrine repercussions, and the resulting microstructural and metabolic alterations in the brain, as detected by diffusion tensor imaging (DTI) and neurochemical metabolic profiling. Methods Brain DTI images were acquired from adult male C57BL6/J mice after 6 weeks of HFD, or standard diet (SD) administrations, both under the fed, and overnight fasted conditions. Metabolomic profiles of the cortex (Ctx), hippocampus (Hipc), and hypothalamus (Hyp) were determined by 1H high-resolution magic angle spinning (HRMAS) spectroscopy, in cerebral biopsies dissected after microwave fixation. Mean diffusivity (MD), fractional anisotropy (FA) maps, and HRMAS profiles were complemented with determinations of phenotypic alterations and plasma levels of appetite-related hormones, measured by indirect calorimetry and multiplex assays, respectively. We used Z-score and alternating least squares scaling (ALSCAL) analysis to investigate specific associations between diet and feeding status, physiological, and imaging parameters. Results HFD induced significant increases in body weight and the plasma levels of glucose and fatty acids in the fed and fasted conditions, as well as higher cerebral MD (Ctx, Hipc, Hyp), FA (Hipc), and mobile saturated fatty acids resonances (Ctx, Hipc, Hyp). Z-score and ASLCAL analysis identified the precise associations between physiological and imaging variables. Conclusions The present study reveals that diet and feeding conditions elicit prominent effects on specific imaging and spectroscopic parameters of the mouse brain that can be associated to the alterations in phenotypic and endocrine variables. Together, present results disclose a neuro-inflammatory response to HFD, characterized primarily by vasogenic edema and compensatory responses in osmolyte concentrations.
Collapse
|
20
|
Chu B, Ji C, Zhou J, Zhou Y, Hua L. Why does the plateau zokor ( Myospalax fontanieri: Rodentia: Spalacidae) move on the ground in summer in the eastern Qilian Mountains? J Mammal 2021. [DOI: 10.1093/jmammal/gyaa151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Subterranean rodents spend most of their lives in underground burrow systems, and most studies to date on their morphological, behavioral, and physiological, adaptations have been based on their whole-life existence in subterranean ecotopes. However, a few studies have reported that some subterranean rodents exhibit aboveground activity under particular circumstances, and the results of these studies help zoologists to better understand the adaptations of subterranean rodents coping both with belowground and aboveground environments. These studies, however, do not include direct observations of the aboveground activity of these rodents. Moreover, studies into the factors that influence the movement of these subterranean rodents outside of their burrow systems are relatively scarce. Here, we report the aboveground activity pattern of plateau zokor (Myospalax fontanieri) based on videos and photographs captured by infrared cameras combined with radiotracking technology in the eastern Qilian Mountains, northwest China. In addition, the potential factors that influence the aboveground activity of plateau zokor, including temperature, humidity, food, dispersal, and mating, were studied in 2015 and 2016. We found that, of the 16 zokors with radiocollars, five females moved aboveground during the day and night in June and July 2015, with the frequency of their aboveground activity being higher during the day than that at night. Temperature, humidity, mating, and dispersal, had no effects on aboveground plateau zokor movement. However, results of a binary logistic regression indicated that the crude fat contents of aboveground and belowground plants were positively and negatively correlated with the aboveground activity of these zokors, respectively. We infer that plateau zokor move on the ground to forage for plants with higher fat content and that changes in available nutrients might serve as potential cues that affect the surface activity of plateau zokor.
Collapse
Affiliation(s)
- Bin Chu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, China
| | - Chengpeng Ji
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, China
| | - Jianwei Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, China
| | - Yanshan Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, China
| | - Limin Hua
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, China
| |
Collapse
|
21
|
De la Fuente-Reynoso AL, Barrios De Tomasi E, Juárez J. Differential effects of citalopram on the intake of high fat or high carbohydrates diets in female and male rats. Nutr Neurosci 2021; 25:1477-1487. [PMID: 33427121 DOI: 10.1080/1028415x.2020.1870198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic administration of selective serotonin reuptake inhibitors (SSRI), usually prescribed as antidepressants, decreases total energy intake; however, at present the differential effect on the intake of distinct macronutrients and on female vs. male organisms is not clear. On this basis, female and male adult Wistar rats were exposed to two types of diets: (1) a standard balanced diet (BD); or (2) two types of diets simultaneously, (a) one high in carbohydrates (HC); the other (b) high in fat (HF). Both study groups were given a dose of 10 mg/kg/day i.p. of citalopram or a vehicle for 21 days. Food and water consumption and body weight were recorded daily at baseline (BL), during treatment (TX), and post-treatment (PTx1-PTx2). The male rats exposed to BD reduced total energy consumption during treatment with citalopram, but body weight gain decreased both females and males compared to BL. During exposure to the two types of diets, citalopram treatment reduced fat consumption with respect to BL and PTx1 only in the male group. This group also decreased its total energy consumption during TX compared to PTx1. Finally, the females gained less body weight in TX than PTx1, while weight gain in the males during TX decreased with respect to BL and PTx1. Results show a differential effect of citalopram on females vs. males that was dependent on the type of macronutrient administered.
Collapse
Affiliation(s)
- Amparo L De la Fuente-Reynoso
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, México
| | - Eliana Barrios De Tomasi
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, México
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
22
|
Kim M, Lee SM, Jung J, Kim YJ, Moon KC, Seo JH, Ha TK, Ha E. Pinealectomy increases thermogenesis and decreases lipogenesis. Mol Med Rep 2020; 22:4289-4297. [PMID: 33000192 PMCID: PMC7533451 DOI: 10.3892/mmr.2020.11534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
The present study was designed to determine the effects of pineal gland-derived melatonin on obesity by employing a rat pinealectomy (Pnx) model. After 10 weeks of a high-fat diet, rats received sham or Pnx surgery followed by a normal chow diet for 10 weeks. Reverse transcription-quantitative PCR, western blotting analysis, immunohistochemistry and ELISA were used to determine the effects of Pnx. Pnx decreased the expression of melatonin receptor (MTNR)1A and MTNR1B, in brown adipose tissues (BAT) and white adipose tissues (WAT). Pnx rats showed increased insulin sensitivity compared with those that received sham surgery. Leptin levels were significantly decreased in the serum of the Pnx group. In addition, Pnx stimulated thermogenic genes in BAT and attenuated lipogenic genes in both WAT and the liver. Histological analyses revealed a marked decrease in the size of lipid droplets and increased expression of uncoupling protein 1 in BAT. In the liver of the Pnx group, the size and number of lipid droplets had also decreased. In conclusion, the results presented in the current study suggested that Pnx increases thermogenesis in BAT and decreases lipogenesis in WAT and the liver.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - So Min Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jeeyoun Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Yun Jin Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Kyo Chul Moon
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
23
|
Dagher-Hamalian C, Stephan J, Zeeni N, Harhous Z, Shebaby WN, Abdallah MS, Faour WH. Ghrelin-induced multi-organ damage in mice fed obesogenic diet. Inflamm Res 2020; 69:1019-1026. [PMID: 32719925 DOI: 10.1007/s00011-020-01383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE AND DESIGN Ghrelin has a key role in modulating energy metabolism and weight gain. The present study aimed at studying the potential role of ghrelin in the development and/or exacerbation of organ damage in a mouse model of diet-induced obesity. OBJECTIVE AND DESIGN Adult mice were fed one of two diets for 20 weeks: standard high carbohydrate (HC) or high-fat high-sugar (HFHS). Starting week 17, the animals were given regular intraperitoneal ghrelin (160 µg/kg) or saline injections Abdominal fat, serum creatinine, and glucose levels, as well as kidney, liver and heart weight and pathology were assessed. RESULTS Ghrelin-injected mice showed significant organ damage, which was more exacerbated in HFHS-fed animals. While the HFHS diet was associated with significant liver damage, ghrelin administration did not reverse it. Interestingly, ghrelin administration induced moderate kidney damage and significantly affected the heart by increasing perivascular and myocardium fibrosis, steatosis as well as inflammation. Moreover, serum creatinine levels were higher in the animal group injected with ghrelin. CONCLUSION Ghrelin administration was associated with increased functional and structural organ damage, regardless of diet. The present study provides novel evidence of multi-organ physiologic alterations secondary to ghrelin administration.
Collapse
Affiliation(s)
- Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Joseph Stephan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nadine Zeeni
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Zeina Harhous
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Maya S Abdallah
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon.
| |
Collapse
|
24
|
Shaito A, Hasan H, Habashy KJ, Fakih W, Abdelhady S, Ahmad F, Zibara K, Eid AH, El-Yazbi AF, Kobeissy FH. Western diet aggravates neuronal insult in post-traumatic brain injury: Proposed pathways for interplay. EBioMedicine 2020; 57:102829. [PMID: 32574954 PMCID: PMC7317220 DOI: 10.1016/j.ebiom.2020.102829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a global health burden and a major cause of disability and mortality. An early cascade of physical and structural damaging events starts immediately post-TBI. This primary injury event initiates a series of neuropathological molecular and biochemical secondary injury sequelae, that last much longer and involve disruption of cerebral metabolism, mitochondrial dysfunction, oxidative stress, neuroinflammation, and can lead to neuronal damage and death. Coupled to these events, recent studies have shown that lifestyle factors, including diet, constitute additional risk affecting TBI consequences and neuropathophysiological outcomes. There exists molecular cross-talk among the pathways involved in neuronal survival, neuroinflammation, and behavioral outcomes, that are shared among western diet (WD) intake and TBI pathophysiology. As such, poor dietary intake would be expected to exacerbate the secondary damage in TBI. Hence, the aim of this review is to discuss the pathophysiological consequences of WD that can lead to the exacerbation of TBI outcomes. We dissect the role of mitochondrial dysfunction, oxidative stress, neuroinflammation, and neuronal injury in this context. We show that currently available data conclude that intake of a diet saturated in fats, pre- or post-TBI, aggravates TBI, precludes recovery from brain trauma, and reduces the response to treatment.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon and Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - Walaa Fakih
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medicine, Lebanese University
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, College of Health Sciences, Doha, Qatar
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
25
|
Azzolino D, Arosio B, Marzetti E, Calvani R, Cesari M. Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People. Nutrients 2020; 12:E444. [PMID: 32050677 PMCID: PMC7071235 DOI: 10.3390/nu12020444] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Fatigue is an often-neglected symptom but frequently complained of by older people, leading to the inability to continue functioning at a normal level of activity. Fatigue is frequently associated with disease conditions and impacts health status and quality of life. Yet, fatigue cannot generally be completely explained as a consequence of a single disease or pathogenetic mechanism. Indeed, fatigue mirrors the exhaustion of the physiological reserves of an older individual. Despite its clinical relevance, fatigue is typically underestimated by healthcare professionals, mainly because reduced stamina is considered to be an unavoidable corollary of aging. The incomplete knowledge of pathophysiological mechanisms of fatigue and the lack of a gold standard tool for its assessment contribute to the poor appreciation of fatigue in clinical practice. Inadequate nutrition is invoked as one of the mechanisms underlying fatigue. Modifications in food intake and body composition changes seem to influence the perception of fatigue, probably through the mechanisms of inflammation and/or mitochondrial dysfunction. Here, we present an overview on the mechanisms that may mediate fatigue levels in old age, with a special focus on nutrition.
Collapse
Affiliation(s)
- Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
26
|
El-Kadi SW, McCauley SR, Seymour KA, Sunny NE, Rhoads RP. Lipid Intake Enhances Muscle Growth But Does Not Influence Glucose Kinetics in 3-Week-Old Low-Birth-Weight Neonatal Pigs. J Nutr 2019; 149:933-941. [PMID: 31149711 DOI: 10.1093/jn/nxz030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Low-birth-weight (LBWT) neonates grow at a slower rate than their normal-birth-weight (NBWT) counterparts and may develop hypoglycemia postnatally. OBJECTIVE We investigated whether dietary lipid supplementation would enhance growth and improve glucose production in LBWT neonatal pigs. METHODS Twelve 3-d-old NBWT (1.606 kg) crossbred pigs were matched to 12 LBWT (1.260 kg) same-sex littermates. At 6 d of age, 6 pigs in each group were fed a low-energy (LE) or a high-energy (HE) isonitrogenous formula containing 5.2% and 7.3% fat, respectively. Body composition was assessed using dual-energy X-ray absorptiometry; plasma glucose and glycerol kinetics were assessed using stable isotope tracers. After killing, weights of skeletal muscles and visceral organs were measured. Data were analyzed by ANOVA for a 2 × 2 factorial design; temporal effects were investigated using repeated-measures analysis. RESULTS Lipid supplementation did not affect body weight of LBWT or NBWT pigs. However, liver and longissimus dorsi weights as a percentage of body weight were greater for pigs fed an HE diet than for those fed an LE diet (4.3% compared with 3.4% and 1.5% compared with 1.2%, respectively) but remained less for LBWT than for NBWT pigs (3.8% compared with 3.9% and 1.3% compared with 1.5%, respectively) (P < 0.05). In addition, hepatic fat content increased (7.9 compared with 2.6 g) in pigs fed the HE compared with those fed the LE formula (P < 0.05). Lipid supplementation did not influence plasma glucose concentration which remained lower in the LBWT than in the NBWT group (4.1 compared with 4.5 mmol/L) (P < 0.05). CONCLUSIONS Our data suggest that lipid supplementation modestly improved growth of skeletal muscle and the liver but did not affect glucose homeostasis in all groups, and glucose concentration remained lower in LBWT than in NBWT pigs. These data suggest that the previously reported hyperglycemic effect of lipid supplementation may depend on the route of administration or age of the neonatal pig.
Collapse
Affiliation(s)
- Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Sydney R McCauley
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Kacie A Seymour
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| |
Collapse
|
27
|
Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res 2019; 311:251-263. [PMID: 30806766 PMCID: PMC6469644 DOI: 10.1007/s00403-019-01893-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis is a multiorgan autoimmune disease characterized by vasculopathy and tissue fibrosis of unknown etiology. Recently, adipokines (cell signaling proteins secreted by adipose tissue) have attracted much attention as a cytokine family contributing to the various pathological processes of systemic sclerosis. Adipokines, such as leptin, adiponectin, resistin, adipsin, visfatin or chemerin are a heterogenic group of molecules. Adiponectin exhibits anti-fibrotic features and affects inflammatory reactions. Leptin promotes fibrosis and inflammation. Resistin was linked to vascular involvement in systemic sclerosis. Visfatin was associated with regression of skin lesions in late-stage systemic sclerosis. Chemerin appears as a marker of increased risk of impaired renal function and development of skin sclerosis in the early stage of systemic sclerosis. Vaspin was indicated to have a protective role in digital ulcers development. Novel adipokines-adipsin, apelin, omentin and CTRP-3-are emerging as molecules potentially involved in SSc pathogenesis. Serum adipokine levels may be used as predictive and diagnostic factors in systemic sclerosis. However, further investigations are required to establish firm correlations between distinct adipokines and systemic sclerosis.
Collapse
Affiliation(s)
- Jakub Żółkiewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008, Warszawa, Poland.
| |
Collapse
|
28
|
Song X, Jiao H, Zhao J, Wang X, Lin H. Ghrelin serves as a signal of energy utilization and is involved in maintaining energy homeostasis in broilers. Gen Comp Endocrinol 2019; 272:76-82. [PMID: 30508509 DOI: 10.1016/j.ygcen.2018.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Ghrelin, one of the most important appetite regulating peptides, is involved in the regulation of energy homeostasis. The anorexia effect of ghrelin in chickens is contrary to that of ghrelin in mammals. In the present study, the effects of feeding status and dietary energy level on plasma total ghrelin levels and expression were studied in broilers. The gene expression of ghrelin and its receptor GHS-R1a were measured in the hypothalamus, proventriculus, duodenum, liver, and abdominal fat pad. The results showed that ghrelin mRNA and GHS-R1a mRNA are moderately expressed in liver and abdominal fat. Ghrelin secretion was increased by fasting and refeeding. The gene expression of ghrelin and GHS-R1a in the hypothalamus, proventriculus, liver, and abdominal fat pad were changed by feeding status and dietary energy level. The results suggest that ghrelin is a signal of energy utilization in chickens. The abundant expression of ghrelin and GHS-R1a in liver and abdominal fat pad may be associated with energy balance.
Collapse
Affiliation(s)
- Xixi Song
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
29
|
Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. The Effects of Vitamin E from Elaeis guineensis (Oil Palm) in a Rat Model of Bone Loss Due to Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091828. [PMID: 30149518 PMCID: PMC6164987 DOI: 10.3390/ijerph15091828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The beneficial effects of vitamin E in improving components of MetS or bone loss have been established. This study aimed to investigate the potential of palm vitamin E (PVE) as a single agent, targeting MetS and bone loss concurrently, using a MetS animal model. Twelve-week-old male Wistar rats were divided into five groups. The baseline group was sacrificed upon arrival. The normal group was given standard rat chow. The remaining three groups were fed with high-carbohydrate high-fat (HCHF) diet and treated with tocopherol-stripped corn oil (vehicle), 60 mg/kg or 100 mg/kg PVE. At the end of the study, the rats were evaluated for MetS parameters and bone density. After euthanasia, blood and femurs were harvested for the evaluation of lipid profile, bone histomorphometric analysis, and remodeling markers. PVE improved blood pressure, glycemic status, and lipid profile; increased osteoblast surface, osteoid surface, bone volume, and trabecular thickness, as well as decreased eroded surface and single-labeled surface. Administration of PVE also significantly reduced leptin level in the HCHF rats. PVE is a potential agent in concurrently preventing MetS and protecting bone loss. This may be, in part, achieved by reducing the leptin level and modulating the bone remodeling activity in male rats.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Farihah Hj Suhaimi
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Wang X, Zhang X, Hu L, Li H. Exogenous leptin affects sperm parameters and impairs blood testis barrier integrity in adult male mice. Reprod Biol Endocrinol 2018; 16:55. [PMID: 29855380 PMCID: PMC5984414 DOI: 10.1186/s12958-018-0368-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Serum leptin levels are augmented in obese infertile men and in men with azoospermia. They also correlate inversely with sperm concentration, motility and normal forms. The mechanisms underlying the adverse effects of excess leptin on male reproductive function remain unclear. The present study aimed to evaluate the effects of exogenous leptin on sperm parameters in mice and to explore the underlying mechanisms. METHODS We treated normal adult male mice with saline, 0.1, 0.5 or 3 mg/kg leptin daily for 2 weeks. After treatment, serum leptin levels, serum testosterone levels, sperm parameters and testicular cell apoptosis were evaluated. Blood testis barrier integrity and the expression of tight junction-associated proteins in testes were also assessed. We further verified the direct effects of leptin on tight junction-associated proteins in Sertoli cells and the possible leptin signaling pathways involved in this process. RESULTS After treatment, there were no significant differences in body weights, reproductive organ weights, serum leptin levels and serum testosterone levels between leptin-treated mice and control mice. Administration of 3 mg/kg leptin reduced sperm concentration, motility and progressive motility while increasing the percentage of abnormal sperm and testicular cell apoptosis. Mice treated with 3 mg/kg leptin also had impaired blood testis barrier integrity, which was related to decreased tight junction-associated proteins in testes. Leptin directly reduced tight junction-associated proteins in Sertoli cells, JAK2/STAT, PI3K and ERK pathways were suggested to be involved in this process. CONCLUSIONS Exogenous leptin negatively affects sperm parameters and impairs blood testis barrier integrity in mice. Leptin reduced tight junction-associated proteins in Sertoli cells, indicating that leptin has a direct role in impairing blood testis barrier integrity. Given the function of blood testis barrier in maintaining normal spermatogenesis, leptin-induced blood testis barrier impairment may be one of the mechanisms contributing to male subfertility and infertility.
Collapse
Affiliation(s)
- Xiaotong Wang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoke Zhang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- grid.412719.8Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lian Hu
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Honggang Li
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
31
|
Physiological and molecular study on the anti-obesity effects of pineapple ( Ananas comosus) juice in male Wistar rat. Food Sci Biotechnol 2018; 27:1429-1438. [PMID: 30319853 DOI: 10.1007/s10068-018-0378-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
The present study was performed to assess anti-obesity effects of raw pineapple juice in high fat diet (HFD)-induced fatness. Based on food type, rats were divided into normal diet and HFD groups. When animals of HFD group become obese, they were given pineapple juice along with either HFD or normal diet. Blood biochemistry, liver and muscle gene expressions were analyzed. HFD induced significant elevations in body weight, body mass index (BMI), body fat accumulation, liver fat deposition and blood lipids while juice restored these parameters near to their normal values. Juice significantly decreased serum insulin and leptin while adiponectin was increased. Juice administration downregulated the increment of FAS and SERBP-1c mRNA expression in liver and upregulated HSL and GLUT-2 expressions. The muscular lipolytic CPT-1 expression was upregulted by juice treatment. Pineapple juice, therefore, may possibly be used as anti-obesity candidate where it decreased lipogenesis and increased lipolysis.
Collapse
|
32
|
Iwasa T, Matsuzaki T, Yano K, Irahara M. The effects of ovariectomy and lifelong high-fat diet consumption on body weight, appetite, and lifespan in female rats. Horm Behav 2018; 97:25-30. [PMID: 29054797 DOI: 10.1016/j.yhbeh.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/16/2017] [Accepted: 10/10/2017] [Indexed: 01/16/2023]
Abstract
In females, ovarian hormones play pivotal roles in metabolic, appetite, and body weight regulation. In addition, it has been reported that ovarian hormones also affect longevity in some species. Recently, it was found that the consumption of a high-fat diet aggravates ovariectomy-associated metabolic dysregulation in female rodents. The aim of this study was to investigate the hypothesis that long-term high-fat diet consumption and ovariectomy interact to worsen body weight regulation and longevity in female rats. At 21days of age, female rats were weaned and randomly divided into two groups, one of which was given the high-fat diet, and the other was supplied with standard chow. At 23weeks of age, each group was further divided into ovariectomized and sham-operated groups, and then their body weight changes, food intake, and longevity were measured until 34months of age. The sham - high-fat diet rats exhibited greater body weight changes and higher feed efficiency than the sham - standard chow rats. On the other hand, the ovariectomized - high-fat diet and ovariectomized - standard chow rats displayed similar body weight changes and feed efficiency. The sham - high-fat diet and ovariectomized - standard chow rats demonstrated similar body weight changes and feed efficiency, indicating that the impact of ovariectomy on the regulation of body weight and energy metabolism might be similar to that of high-fat diet. Contrary to our expectations, ovariectomy and high-fat diet consumption both had small favorable effects on longevity. As the high-fat diet used in the present study not only had a high fat content, but also had a high caloric content and a low carbohydrate content compared with the standard chow, it is possible that the effects of the high-fat diet on body weight and longevity were partially induced by its caloric/carbohydrate contents. These findings indicate that the alterations in body weight and energy metabolism induced by ovariectomy and high-fat diet might not directly affect the lifespan of female rats.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|
33
|
Morgan AH, Andrews ZB, Davies JS. Less is more: Caloric regulation of neurogenesis and adult brain function. J Neuroendocrinol 2017; 29. [PMID: 28771924 DOI: 10.1111/jne.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Calorie intake is essential for regulating normal physiological processes and is fundamental to maintaining life. Indeed, both extremes of calorie intake result in increased morbidity and mortality. In this review, we discuss the effect of calorie intake on adult brain function, with an emphasis on the beneficial effects of mild calorie restriction. Recent findings relating to the regenerative and protective effects of the gastrointestinal hormone, ghrelin, suggest that it may underlie the beneficial effects of calorie restriction. We discuss the putative cellular mechanisms underlying the action of ghrelin and their possible role in supporting healthy brain ageing.
Collapse
Affiliation(s)
- A H Morgan
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| | - Z B Andrews
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
34
|
Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1342150. [PMID: 28246535 PMCID: PMC5299215 DOI: 10.1155/2017/1342150] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/09/2016] [Indexed: 11/27/2022]
Abstract
Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.
Collapse
|
35
|
Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Glucose, amino acids and fatty acids directly regulate ghrelin and NUCB2/nesfatin-1 in the intestine and hepatopancreas of goldfish (Carassius auratus) in vitro. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:24-35. [PMID: 28089858 DOI: 10.1016/j.cbpa.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Ghrelin and nesfatin-1 are two peptidyl hormones primarily involved in food intake regulation. We previously reported that the amount of dietary carbohydrates, protein and lipids modulates the expression of these peptides in goldfish in vivo. In the present work, we aimed to characterize the effects of single nutrients on ghrelin and nesfatin-1 in the intestine and hepatopancreas. First, immunolocalization of ghrelin and NUCB2/nesfatin-1 in goldfish hepatopancreas cells was studied by immunohistochemistry. Second, the effects of 2 and 4hour-long exposures of cultured intestine and hepatopancreas sections to glucose, l-tryptophan, oleic acid, linolenic acid (LNA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on ghrelin and nesfatin-1 gene and protein expression were studied. Co-localization of ghrelin and NUCB2/nesfatin-1 in the cytoplasm of goldfish hepatocytes was found. Exposure to glucose led to an upregulation of preproghrelin and a downregulation of nucb2/nesfatin-1 in the intestine. l-Tryptophan mainly decreased the expression of both peptides in the intestine and hepatopancreas. Fatty acids, in general, downregulated NUCB2/nesfatin-1 in the intestine, but only the longer and highly unsaturated fatty acids inhibited preproghrelin. EPA exposure led to a decrease in preproghrelin, and an increase in nucb2/nesfatin-1 expression in hepatopancreas after 2h. These results show that macronutrients exert a dose- and time-dependent, direct regulation of ghrelin and nesfatin-1 in the intestine and hepatopancreas, and suggest a role for these hormones in the digestive process and nutrient metabolism.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Prov. de Buenos Aires, Argentina.
| | - Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Luis Fabián Canosa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Prov. de Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
36
|
Prognostic Significance of Preoperative and Postoperative Plasma Levels of Ghrelin in Gastric Cancer: 3-Year Survival Study. Clin Transl Gastroenterol 2017; 8:e209. [PMID: 28055030 PMCID: PMC5288598 DOI: 10.1038/ctg.2016.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES: We aimed to investigate prognostic effects of plasma levels of ghrelin before and after gastrectomy in gastric cancer (GC). METHODS: We followed 81 GC patients up to 3 years in this study. They were candidates for curative gastrectomy with or without neoadjuvant chemotherapy. Plasma levels of total and active ghrelins before and after the operation were assessed. Association of plasma levels of ghrelin with survival were assessed and adjusted for other potential prognostic factors using Cox regression analyses. RESULTS: Both total and active ghrelins dropped after gastrectomy (P<0.001 for both). Multiple Cox models revealed worse survival for patients with postoperative total ghrelins below median (hazards ratio (HR)=2.33, 95% confidence interval (CI): 1.01–5.41) or 25th percentile (HR=4.29, 95% CI: 1.48–12.44) compared with patients with higher ghrelin levels. In case of preoperative total ghrelin, patients with either second or third quartiles of plasma ghrelin showed worse survival compared with patients with the lowest quartile (HR=2.67, 95% CI: 1.11–6.38 for second quartile, and HR=2.32, 95% CI: 1.01–5.35 for third quartile vs. the lowest quartile). However, there was no difference between patients with the highest and lowest quartiles (HR=0.78, 95% CI: 0.22–2.73). Similar pattern was observed for preoperative active ghrelin (HR=4.92, 95% CI: 1.80–13.54 for second quartile, and HR=2.87, 95% CI: 1.11–7.38 for third quartile vs. the lowest quartile). Advanced TNM stage (HR=4.88, 95% CI: 1.10–21.77), cachexia (HR=2.99, 95% CI: 1.35–6.63), and receiving no neoadjuvant chemotherapy (HR=2.02, 95% CI: 1.04–3.92) were other poor prognostic factors. CONCLUSIONS: Preoperative and postoperative plasma levels of ghrelin could predict survival of GC patients with different patterns. This prognostic effect was independent of stage and cachexia. Measurement of plasma ghrelin in GC patients could complement conventional staging for more precise risk-stratification of the patients. Extrinsic admirations of ghrelin after total gastrectomy has potentials to improve survival of GC patients.
Collapse
|
37
|
de Melo TS, Lima PR, Carvalho KMMB, Fontenele TM, Solon FRN, Tomé AR, de Lemos TLG, da Cruz Fonseca SG, Santos FA, Rao VS, de Queiroz MGR. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. ACTA ACUST UNITED AC 2017; 50:e5630. [PMID: 28076453 PMCID: PMC5264540 DOI: 10.1590/1414-431x20165630] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022]
Abstract
Previous studies have reported on the glucose and lipid-lowering effects of ferulic
acid (FA) but its anti-obesity potential has not yet been firmly established. This
study investigated the possible anti-obesitogenic effects of FA in mice fed a
high-fat diet (HFD) for 15 weeks. To assess the antiobesity potential of FA, 32 male
Swiss mice, weighing 20–25 g (n=6–8 per group) were fed a normal diet (ND) or HFD,
treated orally or not with either FA (10 mg/kg) or sibutramine (10 mg/kg) for 15
weeks and at the end of this period, the body weights of animals, visceral fat
accumulation, plasma levels of glucose and insulin hormone, amylase and lipase
activities, the satiety hormones ghrelin and leptin, and tumor necrosis factor-α
(TNF-α) and monocyte chemoattractant protein-1 (MCH-1) were analyzed. Results
revealed that FA could effectively suppress the HFD-associated increase in visceral
fat accumulation, adipocyte size and body weight gain, similar to sibutramine, the
positive control. FA also significantly (P<0.05) decreased the HFD-induced
elevations in serum lipid profiles, amylase and lipase activities, and the levels of
blood glucose and insulin hormone. The markedly elevated leptin and decreased ghrelin
levels seen in HFD-fed control mice were significantly (P<0.05) reversed by FA
treatment, almost reaching the values seen in ND-fed mice. Furthermore, FA
demonstrated significant (P<0.05) inhibition of serum levels of inflammatory
mediators TNF-α, and MCH-1. These results suggest that FA could be beneficial in
lowering the risk of HFD-induced obesity via modulation of enzymatic, hormonal and
inflammatory responses.
Collapse
Affiliation(s)
- T S de Melo
- Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P R Lima
- Laboratório de Produtos Naturais, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - K M M B Carvalho
- Laboratório de Produtos Naturais, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - T M Fontenele
- Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F R N Solon
- Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A R Tomé
- Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - T L G de Lemos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | - F A Santos
- Laboratório de Produtos Naturais, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - V S Rao
- Laboratório de Produtos Naturais, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M G R de Queiroz
- Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
38
|
Pichiah PBT, Cho SH, Han SK, Cha YS. Fermented Barley Supplementation Modulates the Expression of Hypothalamic Genes and Reduces Energy Intake and Weight Gain in Rats. J Med Food 2016; 19:418-26. [PMID: 27074621 DOI: 10.1089/jmf.2015.3600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dietary fiber and proteins are individually known to decrease feeding, but could result greater weight management benefit when both are combined. We hypothesized that supplementing the diet with fermented barley, being rich in both dietary fiber and proteins, could lower energy intake by modulating the mRNA expression level of hypothalamic genes associated with the regulation of feeding behavior and satiety; thereby decreasing body weight gain. To test our hypothesis, four groups of Sprague Dawley rats were arranged in a 2 × 2 factorial design (n = 6), low-fat diet with either guar gum (LFD-G) or fermented barley (LFD-FB) and high-fat diet with either guar gum (HFD-G) or fermented barley (HFD-FB). Using oral gavage, fermented barley was given at a dosage of 1500 mg/kg body weight and guar gum was supplemented in an equivalent quantity to that of the fiber in the fermented barley. After 19 weeks, the fermented barley-supplemented groups showed a significant reduction in energy intake, triglyceride, body weight gain, and serum leptin, compared to the guar gum-supplemented groups in both the low- and high-fat diet groups. Likewise, the anorexigenic gene proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) mRNA level were significantly higher in the fermented barley-supplemented groups compared to the guar gum-supplemented groups in rats fed on both high- and low-fat diets. In conclusion, fermented barley supplementation upregulated hypothalamic POMC/CART, decreased energy intake in both low- and high-fat diet groups, and prevented excessive weight gain in rats.
Collapse
Affiliation(s)
- P B Tirupathi Pichiah
- 1 Department of Food Science and Human Nutrition, Chonbuk National University , Jeonju, Korea
| | - Suk-Ho Cho
- 2 Mealtobalance, Co., Ltd. , Jeongeup, Jeonbuk, Korea
| | - Seong-Kyu Han
- 3 Department of Oral Physiology School of Dentistry and Institute of Oral Bioscience, Chonbuk National University , Jeonju, Korea
| | - Youn-Soo Cha
- 1 Department of Food Science and Human Nutrition, Chonbuk National University , Jeonju, Korea.,4 AgroBiofood R&D Institute of Chonbuk National University , Jeonju, Korea
| |
Collapse
|
39
|
Fernandez CDB, Fernandes GSA, Favareto APA, Perobelli JE, Sanabria M, Kempinas WDG. Decreased Implantation Number After In Utero Artificial Insemination Can Reflect an Impairment of Fertility in Adult Male Rats After Exogenous Leptin Exposure. Reprod Sci 2016; 24:234-241. [PMID: 27324433 DOI: 10.1177/1933719116653678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leptin is a protein secreted by the adipocytes, which serves as a link between fat and brain. Its main action is to decrease appetite and increase energy expenditure, but it is also involved in the control of different neuroendocrine systems, including gonadal axis. Although the effects of leptin deficiency on reproduction are well recognized, the effect of excess leptin on male reproductive function is not clear. The aim of this study was to evaluate fertility and sperm parameters of male rats exposed to exogenous leptin. A group of adult male rats received exogenous leptin intraperitoneally (30 μg/kg/day) for 42 days, and a control group received only the vehicle during the same period. After the treatment, animals were evaluated for sperm count, sperm motility, and fertility after intrauterine artificial insemination. There was no statistically significant difference between the groups related to sperm production, sperm concentration, and sperm motility. However, fertility evaluation after artificial insemination showed a quantitative decrease in the uterus plus fetuses weight, number of implantation sites, and number of live fetuses. The fertility potential showed a reduction of about 40%, whereas the preimplantation loss rate increased more than 2-fold in leptin-treated animals. In conclusion, leptin administration to nonobese male rats impairs ability of treated animals to generate offspring, since the occurrence of implantation was diminished. So leptin can impair sperm quality, affecting the reproductive capacity.
Collapse
Affiliation(s)
- Carla D B Fernandez
- 1 Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, UNESP-Univ Estadual Paulista, Botucatu, Brazil.,2 Pró-Reitoria de Pesquisa e Pós-Graduação, Central de Laboratórios de Ciências e Tecnologia Ambiental-Laboratório de Toxicologia Experimental, Universidade Sagrado Coração, SP, Brazil
| | - Glaura S A Fernandes
- 1 Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, UNESP-Univ Estadual Paulista, Botucatu, Brazil
| | - Ana Paula A Favareto
- 1 Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, UNESP-Univ Estadual Paulista, Botucatu, Brazil
| | - Juliana E Perobelli
- 1 Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, UNESP-Univ Estadual Paulista, Botucatu, Brazil
| | - Marciana Sanabria
- 1 Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, UNESP-Univ Estadual Paulista, Botucatu, Brazil
| | - Wilma D G Kempinas
- 1 Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, UNESP-Univ Estadual Paulista, Botucatu, Brazil
| |
Collapse
|
40
|
Dinner fat intake and sleep duration and self-reported sleep parameters over five years: Findings from the Jiangsu Nutrition Study of Chinese adults. Nutrition 2016; 32:970-4. [DOI: 10.1016/j.nut.2016.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
|
41
|
Associations between Macronutrient Intake and Obstructive Sleep Apnoea as Well as Self-Reported Sleep Symptoms: Results from a Cohort of Community Dwelling Australian Men. Nutrients 2016; 8:207. [PMID: 27070639 PMCID: PMC4848676 DOI: 10.3390/nu8040207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background: macronutrient intake has been found to affect sleep parameters including obstructive sleep apnoea (OSA) in experimental studies, but there is uncertainty at the population level in adults. Methods: cross-sectional analysis was conducted of participants in the Men Androgen Inflammation Lifestyle Environment and Stress cohort (n = 784, age 35–80 years). Dietary intake was measured by a validated food frequency questionnaire. Self-reported poor sleep quality and daytime sleepiness were measured by questionnaires. Overnight in-home polysomnography (PSG) was conducted among participants with without previously diagnosed OSA. Results: after adjusting for demographic, lifestyle factors, and chronic diseases, the highest quartile of fat intake was positively associated with excessive daytime sleepiness (relative risk ratio (RRR) = 1.78, 95% CI 1.10, 2.89) and apnoea-hypopnoea index (AHI) ≥20, (RRR = 2.98, 95% CI 1.20–7.38). Body mass index mediated the association between fat intake and AHI (30%), but not daytime sleepiness. There were no associations between other intake of macronutrient and sleep outcomes. Conclusion: high fat is associated with daytime sleepiness and AHI. Sleep outcomes are generally not assessed in studies investigating the effects of varying macronutrient diets on weight loss. The current result highlights the potential public health significance of doing so.
Collapse
|
42
|
Blanco AM, Bertucci JI, Delgado MJ, Valenciano AI, Unniappan S. Tissue-specific expression of ghrelinergic and NUCB2/nesfatin-1 systems in goldfish (Carassius auratus) is modulated by macronutrient composition of diets. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:1-9. [PMID: 26805937 DOI: 10.1016/j.cbpa.2016.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
The macronutrient composition of diets is a very important factor in the regulation of body weight and metabolism. Several lines of research in mammals have shown that macronutrients differentially regulate metabolic hormones, including ghrelin and nesfatin-1 that have opposing effects on energy balance. This study aimed to determine whether macronutrients modulate the expression of ghrelin and the nucleobindin-2 (NUCB2) encoded nesfatin-1 in goldfish (Carassius auratus). Fish were fed once daily on control, high-carbohydrate, high-protein, high-fat and very high-fat diets for 7 (short-term) or 28 (long-term) days. The expression of preproghrelin, ghrelin O-acyl transferase (goat), growth hormone secretagogue receptor 1 (ghs-r1) and nucb2/nesfatin-1 mRNAs was quantified in the hypothalamus, pituitary, gut and liver. Short-term feeding with fat-enriched diets significantly increased nucb2 mRNA levels in hypothalamus and liver, preproghrelin, goat and ghs-r1 expression in pituitary, and ghs-r1 expression in gut. Fish fed on a high-protein diet exhibited a significant reduction in preproghrelin and ghs-r1 mRNAs in the liver. After long-term feeding, fish fed on high-carbohydrate and very high-fat diets had significantly increased preproghrelin, goat and ghs-r1 expression in pituitary. Feeding on a high-carbohydrate diet also upregulated goat and ghs-r1 transcripts in gut, while feeding on a high-fat diet elicited the same effect only for ghs-r1 in liver. Nucb2 expression increased in pituitary, while it decreased in gut after long-term feeding of a high-protein diet. Collectively, these results show for the first time in fish that macronutrients differentially regulate the expression of ghrelinergic and NUCB2/nesfatin-1 systems in central and peripheral tissues of goldfish.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan I Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), 7130 Chascomús, Buenos Aires, Argentina
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
43
|
Mifune H, Tajiri Y, Nishi Y, Hara K, Iwata S, Tokubuchi I, Mitsuzono R, Yamada K, Kojima M. Voluntary exercise contributed to an amelioration of abnormal feeding behavior, locomotor activity and ghrelin production concomitantly with a weight reduction in high fat diet-induced obese rats. Peptides 2015; 71:49-55. [PMID: 26122892 DOI: 10.1016/j.peptides.2015.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 01/17/2023]
Abstract
In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity.
Collapse
Affiliation(s)
- Hiroharu Mifune
- Institute of Animal Experimentation, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | - Yoshihiro Nishi
- Department of Physiology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kento Hara
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Shimpei Iwata
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ichiro Tokubuchi
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ryouichi Mitsuzono
- Department of Exercise Physiology, Institute of Health and Sports Science, Kurume University, Kurume 839-8502, Japan
| | - Kentaro Yamada
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masayasu Kojima
- Molecular Genetics, Life Science Institute, Kurume University, Kurume 839-0864, Japan
| |
Collapse
|
44
|
Díaz-Rúa R, García-Ruiz E, Caimari A, Palou A, Oliver P. Sustained exposure to diets with an unbalanced macronutrient proportion alters key genes involved in energy homeostasis and obesity-related metabolic parameters in rats. Food Funct 2015; 5:3117-31. [PMID: 25266916 DOI: 10.1039/c4fo00429a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the effects of long term intake of two unbalanced diets (rich in fat -HF- or protein -HP-) administered under isocaloric conditions to a control balanced diet (pair-feeding) to adult rats. Isocaloric intake of a HF diet did not affect the body weight but increased adiposity, liver-fat deposition, and induced insulin resistance. Gene expression changes in the liver and adipose tissue (increased lipolytic and decreased lipogenic gene expression) could try to compensate for increased adiposity. The HP diet decreased caloric intake, the body weight, the size of subcutaneous adipocytes, and circulating cholesterol. Higher insulin levels apparently not related to insulin resistance were observed. Changes at the gene expression level reflected an adaptation to lower diet carbohydrate content and to the use of amino acids as the energy source. The kidney size increased in HP-fed animals but serum creatinine was not affected. Circulating TNF-alpha levels were higher in both dietary models. Thus, a long-term increase in dietary fat proportion produces alterations related to metabolic syndrome even in the absence of increased body weight, whereas an increase in diet protein content reduces the body weight but alters metabolic parameters and kidney size which could be linked to an increased risk of suffering from different pathologies.
Collapse
Affiliation(s)
- Rubén Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
45
|
Wauquier F, Léotoing L, Philippe C, Spilmont M, Coxam V, Wittrant Y. Pros and cons of fatty acids in bone biology. Prog Lipid Res 2015; 58:121-45. [PMID: 25835096 DOI: 10.1016/j.plipres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022]
Abstract
Despite the growing interest in deciphering the causes and consequences of obesity-related disorders, the mechanisms linking fat intake to bone behaviour remain unclear. Since bone fractures are widely associated with increased morbidity and mortality, most notably in elderly and obese people, bone health has become a major social and economic issue. Consistently, public health system guidelines have encouraged low-fat diets in order to reduce associated complications. However, from a bone point of view, mechanisms linking fat intake to bone alteration remain quite controversial. Thus, after more than a decade of dedicated studies, this timely review offers a comprehensive overview of the relationships between bone and fatty acids. Using clinical evidences as a starting-point to more complex molecular elucidation, this work highlights the complexity of the system and reveals that bone alteration that cannot be solved simply by taking ω-3 pills. Fatty acid effects on bone metabolism can be both direct and indirect and require integrated investigations. Furthermore, even at the level of a single cell, one fatty acid is able to trigger several different independent pathways (receptors, metabolites…) which may all have a say in the final cellular metabolic response.
Collapse
Affiliation(s)
- Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Laurent Léotoing
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Claire Philippe
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Mélanie Spilmont
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Véronique Coxam
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France.
| |
Collapse
|
46
|
The Resin from Protium heptaphyllum Prevents High-Fat Diet-Induced Obesity in Mice: Scientific Evidence and Potential Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:106157. [PMID: 25709707 PMCID: PMC4325975 DOI: 10.1155/2015/106157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/10/2023]
Abstract
Herbal compounds rich in triterpenes are well known to regulate glucose and lipid metabolism and to have beneficial effects on metabolic disorders. The present study investigated the antiobesity properties of resin from Protium heptaphyllum (RPH) and the possible mechanisms in mice fed a high-fat diet (HFD) for 15 weeks. Mice treated with RPH showed decreases in body weight, net energy intake, abdominal fat accumulation, plasma glucose, amylase, lipase, triglycerides, and total cholesterol relative to their respective controls, which were RPH unfed. Additionally, RPH treatment, while significantly elevating the plasma level of ghrelin hormone, decreased the levels of insulin, leptin, and resistin. Besides, HFD-induced increases in plasma levels of proinflammatory mediators TNF-α, IL-6, and MCP-1 were significantly lowered by RPH. Furthermore, in vitro studies revealed that RPH could significantly inhibit the lipid accumulation in 3T3-L1 adipocytes (measured by Oil-Red O staining) at concentrations up to 50 μg/mL. These findings suggest that the antiobese potential of RPH is largely due to its modulatory effects on various hormonal and enzymatic secretions related to fat and carbohydrate metabolism and to the regulation of obesity-associated inflammation.
Collapse
|
47
|
Kent BA, Beynon AL, Hornsby AKE, Bekinschtein P, Bussey TJ, Davies JS, Saksida LM. The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation. Psychoneuroendocrinology 2015; 51:431-9. [PMID: 25462915 PMCID: PMC4275579 DOI: 10.1016/j.psyneuen.2014.10.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
An important link exists between intact metabolic processes and normal cognitive functioning; however, the underlying mechanisms remain unknown. There is accumulating evidence that the gut hormone ghrelin, an orexigenic peptide that is elevated during calorie restriction (CR) and known primarily for stimulating growth hormone release, has important extra-hypothalamic functions, such as enhancing synaptic plasticity and hippocampal neurogenesis. The present study was designed to evaluate the long-term effects of elevating acyl-ghrelin levels, albeit within the physiological range, on the number of new adult born neurons in the dentate gyrus (DG) and performance on the Spontaneous Location Recognition (SLR) task, previously shown to be DG-dependent and sensitive to manipulations of plasticity mechanisms and cell proliferation. The results revealed that peripheral treatment of rats with acyl-ghrelin enhanced both adult hippocampal neurogenesis and performance on SLR when measured 8-10 days after the end of acyl-ghrelin treatment. Our data show that systemic administration of physiological levels of acyl-ghrelin can produce long-lasting improvements in spatial memory that persist following the end of treatment. As ghrelin is potentially involved in regulating the relationship between metabolic and cognitive dysfunction in ageing and neurodegenerative disease, elucidating the underlying mechanisms holds promise for identifying novel therapeutic targets and modifiable lifestyle factors that may have beneficial effects on the brain.
Collapse
Affiliation(s)
- Brianne A Kent
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Amy L Beynon
- Molecular Neurobiology, Institute of Life Science, College of Medicine, Swansea University, UK
| | - Amanda K E Hornsby
- Molecular Neurobiology, Institute of Life Science, College of Medicine, Swansea University, UK
| | | | - Timothy J Bussey
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Science, College of Medicine, Swansea University, UK.
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.
| |
Collapse
|
48
|
Saravanan G, Ponmurugan P, Deepa MA, Senthilkumar B. Anti-obesity action of gingerol: effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2972-2977. [PMID: 24615565 DOI: 10.1002/jsfa.6642] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 01/15/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Obesity represents a rapidly growing threat to the health of populations and diet intervention has been proposed as one of the strategies for weight loss. Ginger and its constituents have been used for their anti-flatulent, expectorant and appetising properties and they are reported to possess gastro-protective and cholesterol-lowering properties. The present study investigated the effects of gingerol on the changes in body weight, serum glucose, insulin, insulin resistance and lipid profile in plasma and liver as well as on the activity of amylase, lipase and leptin in high-fat diet (HFD)-induced obese rats. RESULTS HFD-induced obese rats were treated orally with gingerol (25, 50 and 75 mg kg(-1) ) once daily for 30 days. A lorcaserin-treated group (10 mg kg(-1) ) was included for comparison. The levels of body weight, glucose, lipid profile and insulin, insulin resistance, leptin, amylase and lipase were increased significantly (P < 0.05) in HFD rats. Rats treated with gingerol and fed a HFD showed significantly (P < 0.05) decreased glucose level, body weight, leptin, insulin, amylase, lipase plasma and tissue lipids when compared to normal control. The effect at a dose of 75 mg kg(-1) of gingerol was more pronounced than that of the dose 25 mg kg(-1) and 50 mg kg(-1) . The lorcaserin-treated group also manifested similar effects to those of gingerol. CONCLUSION These findings suggested that ginger supplementation suppresses obesity induced by a high fat diet and it might be a promising adjuvant therapy for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Ganapathy Saravanan
- Department of Biochemistry, Centre for Biological Science, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | | | | | | |
Collapse
|
49
|
Yan SL, Yang HT, Lee YJ, Lin CC, Chang MH, Yin MC. Asiatic acid ameliorates hepatic lipid accumulation and insulin resistance in mice consuming a high-fat diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4625-4631. [PMID: 24779966 DOI: 10.1021/jf501165z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Effects of asiatic acid (AA) at 10 or 20 mg/kg/day upon hepatic steatosis in mice consuming a high-fat diet (HFD) were examined. AA intake decreased body weight, water intake, feed intake, epididymal fat, and plasma and hepatic triglyceride levels in HFD-treated mice (P < 0.05). HFD enhanced 2.85-fold acetyl coenzyme A carboxylase (ACC1), 3.34-fold fatty acid synthase (FAS), 3.71-fold stearoyl CoA desaturase (SCD)-1, 3.62-fold 3-hydroxy-3-methylglutaryl coenzyme A reductase, 2.91-fold sterol regulatory element-binding protein (SREBP)-1c, and 2.75-fold SREBP-2 expression in liver (P < 0.05). Compared with HFD groups, AA intake at two doses reduced 18.9-45.7% ACC1, 25.1-49.8% FAS, 24.7-57.1% SCD-1, and 21.8-53.3% SREBP-1c protein expression (P < 0.05). Histological results indicated AA intake at two doses reduced hepatic lipid accumulation and inflammatory infiltrate. HFD increased hepatic production of reactive oxygen species, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, as well as decreased hepatic glutathione content and glutathione peroxidase and catalase activities (P < 0.05). AA intake at two doses reversed these alterations (P < 0.05). AA intake suppressed 32.4-58.8% nuclear factor kappa (NF-κ)B p65 and 24.2-56.7% p-p38 expression (P < 0.05) and at high dose down-regulated 29.1% NF-κB p50 and 40.7% p-JNK expression in livers from HFD-treated mice. AA intake at two doses lowered plasma insulin secretion and HOMR-IR (P < 0.05). These results suggest that AA is a potent hepatic protective agent against HFD-induced hepatic injury.
Collapse
Affiliation(s)
- Sheng-Lei Yan
- Division of Gastroenterology, Department of Internal Medicine, Chang Bing Show-Chwan Memorial Hospital , Changhua County, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|