1
|
Saeed Issa B, Adhab AH, Salih Mahdi M, Kyada A, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Saadoun Abd N, Kariem M. Decoding the complex web: cellular and molecular interactions in the lung tumour microenvironment. J Drug Target 2025; 33:666-690. [PMID: 39707828 DOI: 10.1080/1061186x.2024.2445772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The lung tumour microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumour progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumour cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signalling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Martínez-Ríos J, López-Pacheco CP, García-Zepeda EA, Soldevila G. CCR9 shapes the immune microenvironment of colorectal cancer modulating the balance between intratumoral CD8+ T cell and FoxP3+ Helios+ Treg subpopulations. PLoS One 2025; 20:e0321930. [PMID: 40305493 PMCID: PMC12043142 DOI: 10.1371/journal.pone.0321930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/12/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and the second cause of death related to cancer. Regulatory T cell (Treg) infiltration is enriched in several tumor types including CRC and correlates with suppression of the anti-tumor immune response. In the large intestine, thymic Tregs (tTregs Helios+) and peripheral Tregs (pTregs Helios-) coexist and maintain intestinal homeostasis under steady state conditions. The recruitment of Treg cells to the intestine is orchestrated by the CCR9/CCL25 axis, which is potentiated under inflammatory conditions. Interestingly, the balance between cytotoxic CD8+ T cells and Tregs within the tumor microenvironment is critical for antitumor immunity and cancer progression. An elevated CD8+/Treg ratio has been associated with improved clinical outcomes in various cancers, including CRC. Therefore, here we investigate the potential role of chemokine receptor CCR9 on CD8+/Treg ratio and the effect of the recruitment of Treg subpopulations (Helios+ and Helios-) into the tumor microenvironment using the AOM/DSS induced colitis-associated colorectal cancer murine model. Our findings reveal that CCR9 deficiency leads to distinct alterations in the CRC microenvironment, characterized by decreased intratumoral Tregs Helios+. Also, the lack of the receptor leads to an improvement of the antitumor immune response, increasing the CD8+/Treg ratio within the tumor immune infiltrate. These results underscore the importance of CCR9 in shaping the immune microenvironment during CRC development.
Collapse
Affiliation(s)
- Jacobo Martínez-Ríos
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cynthia Paola López-Pacheco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Investigadora por México, Secretaría de Ciencia Tecnología y Humanidades (SECIHTI), Mexico City, Mexico
| | - Eduardo Alberto García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Liu L, Liu X, Gao C, Liu M, Peng M, Wang L. Hsa-miR-21 promoted the progression of lung adenocarcinoma by regulating LRIG1 expression. BMC Pulm Med 2025; 25:189. [PMID: 40269842 PMCID: PMC12016109 DOI: 10.1186/s12890-025-03620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Lung cancer is the foremost cause of cancer-related fatalities globally, and lung adenocarcinoma (LUAD) is one of the common types of lung cancer with significant molecular heterogeneity. Leucine rich repeats and immunoglobulin like domains 1 (LRIG1) has been demonstrated to be down-regulated in lung cancer and related to prognosis of patients. The purpose of this work is to explore the targeting miRNAs of LRIG1, and the related regulatory mechanisms in LUAD. The data of LUAD patients were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. The differential expression analysis and gene set enrichment analysis (GSEA) were performed using "limma" and "clusterProfiler" function package, respectively. The levels of hsa-miR-21 mRNA and LRIG1 mRNA and LRIG1 protein expressions were analyzed using RT-qPCR and western blot analysis. The infiltration of immune cells was determined using CIBERSORT software. In LUAD patients, hsa-miR-21 expression was observably related to LRIG1 expression. Hsa-miR-21 might negatively modulate the LRIG1 expression in LUAD. LUAD patients with hsa-miR-21 up-regulation exhibited inferior prognosis. In addition, those with LUAD who had high hsa-miR-21 expression but low LRIG1 expression had a worse prognosis, whereas those with low hsa-miR-21 expression but high LRIG1 expression had a better prognosis. Functional enrichment analysis indicated that metabolic related signaling pathways (EGFR tyrosine kinase inhibitor resistance) were significantly activated in LUAD patients with LRIG1 up-regulation. Finally, we found that relative content of naive B cells, plasma cells and resting CD4 + T cells were significantly increased and regulatory T cells and Macrophages M0 were decreased in LRIG1 high expression group and hsa-miR-21 low expression group. We firstly reported that hsa-miR-21 might regulate the LRIG1 expression in LUAD, thereby effecting the onset and progression of LUAD. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Li Liu
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Yuhang District, Hangzhou, 311121, Zhejiang Province, P. R. China
| | - Chengpeng Gao
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| | - Meijuan Liu
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China.
| | - Mengmeng Peng
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| | - Leqiang Wang
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| |
Collapse
|
4
|
Luan X, Peng X, Hou Q, Liu J. LINC00892 as a Prognostic Biomarker in Lung Adenocarcinoma: Role in Immune Infiltration and EMT Suppression. J Immunol Res 2025; 2025:4341348. [PMID: 40308809 PMCID: PMC12041620 DOI: 10.1155/jimr/4341348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent and aggressive form of lung cancer with poor prognosis, largely due to late-stage diagnosis and limited therapeutic options. Recent studies suggest that long noncoding RNAs (lncRNAs) play critical roles in cancer progression and immune modulation, emerging as potential therapeutic targets. In this study, we investigated the expression and functional role of LINC00892 in LUAD using RNA sequencing data from The Cancer Genome Atlas (TCGA) and functional assays in vitro and in vivo. We found that LINC00892 is significantly downregulated in LUAD tissues compared to normal tissues, and lower LINC00892 expression correlates with poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI), particularly in younger patients and those with early-stage disease. Bioinformatic analyses revealed that LINC00892 expression is positively correlated with immune cell infiltration, including CD4+ and CD8+ T cells, and negatively correlated with tumor-promoting Th2 cells, suggesting its role in shaping the tumor immune microenvironment. In vitro functional assays showed that LINC00892 overexpression inhibits LUAD cell proliferation, migration, and invasion while promoting apoptosis. Mechanistically, LINC00892 upregulation was found to suppress epithelial-mesenchymal transition (EMT) by increasing E-cadherin expression and decreasing levels of N-cadherin, vimentin, and slug. Additionally, in an in vivo mouse xenograft model, LINC00892 overexpression suppressed tumor growth and metastasis, accompanied by enhanced immune cell infiltration such as CD4+ and CD8+ T cells. Collectively, these findings suggest that LINC00892 acts as a tumor suppressor in LUAD by modulating immune infiltration and EMT, highlighting its potential as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xinyu Luan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuxing Peng
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qinghua Hou
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Kunitskaya A, Piret JM. Impacts of transient exposure of human T cells to low oxygen, temperature, pH and nutrient levels relevant to bioprocessing for cell therapy applications. Cytotherapy 2025; 27:522-533. [PMID: 39891634 DOI: 10.1016/j.jcyt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND T-cell therapy advances have stimulated the development of bioprocesses to address the specialized needs of cell therapy manufacturing. During concentrated cell washing, the cells are frequently exposed to transiently reduced oxygen, temperature, pH, and nutrient levels. Longer durations of these conditions can be caused by process deviations or, if they are not harmful, be used to ease the scheduling of process stages during experiments as well as manufacturing. METHODS To avoid unpredictable impacts on T-cell quality during bioprocessing, we measured the influences of such environmental exposures generated by settling 250 million activated human T cells per mL, for up to 6 h at temperatures from 4 to 37°C. RESULTS The measured glucose concentration decreased to as low as 0.5 mM and the pH to 6, while lactate increased up to 55 mM. The concentrated cell conditions at 37°C resulted in by far the greatest losses in viable cell numbers with, on average, only 58% and 41% of the cells recovered after 3 and 6 h, respectively. Likewise, their subsequent cell expansion cultures were substantially reduced even after only 3 h of exposure, and with decreased percentages of central memory T cells and increased percentages of effector memory and effector T cells. Although under similar environmental conditions at room temperatures, the negative impacts of high cell concentrations were greatly diminished for up to 3 h. At 4°C the transient conditions were less extreme, and the cells well maintained for 6 h. CONCLUSIONS Overall, when developing processes and devices for T-cell therapy manufacturing that involve concentrated cells, the results of this study indicate that more practically feasible room temperatures can be used for up to 3 h to obtain high viable cell recoveries whereas lower temperatures such as 4°C should be used if there is a need for more prolonged concentrated T-cell conditions.
Collapse
Affiliation(s)
- Alina Kunitskaya
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; The School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - James M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; The School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Fu Z, Lin S, Chen H, Guo H, Li J, Chen Y, Lu Y, Liu J, Huang W, Pang Y. Generating Self-Adjuvated Nanofiber Vaccines by Coating Bacterial Flagella with Antigens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415887. [PMID: 39981905 DOI: 10.1002/adma.202415887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Bacteria-based vaccines have received increasing attention given the ability to induce strong systemic immune responses. However, the application of bacteria as therapeutic agents inevitably suffers from infection-associated side effects due to the living characteristics. Here, the use of bacteria-derived flagella is described to construct self-adjuvated nanofiber vaccines. With the help of charge-reversal mediated by decoration with cationic polymers, the flagella can be coated with negatively charged antigens through electrostatic interaction. By virtue of the large aspect ratio, the resulting nanofiber vaccines show prolonged retention at the injection site and increased uptake by dendritic cells and macrophages. Thanks to the innate immunogenicity, self-adjuvated flagella robustly promote dendritic cell maturation and macrophage polarization, resulting in the elicitation of antigen-specific T-cell and B-cell immune responses. In ovalbumin-overexpressing melanoma-bearing mice, immunization with ovalbumin-carried vaccines not only exhibits a favorable tolerance, but also displays superior inhibition efficacies on tumor growth and metastasis separately under the therapeutic and prophylactic settings. The flexibility of this approach is further demonstrated for vaccine fabrication by coating with the SARS-CoV-2 Spike protein S1 subunit. Bacterial flagella-based self-adjuvated nanofiber platform proposes a versatile strategy to develop various vaccines for disease prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huan Chen
- Shanghai Frontiers Science Center of Drug Target ldentification and Delivery,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yue Lu
- Shanghai Frontiers Science Center of Drug Target ldentification and Delivery,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Xiangfu Laboratory, Jiaxing, Zhejiang, 314102, China
| | - Yan Pang
- Shanghai Frontiers Science Center of Drug Target ldentification and Delivery,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Fan J, Chen Y, Gong Y, Sun H, Hou R, Dou X, Zhang Y, Huo C. Single-cell RNA sequencing reveals potential therapeutic targets in the tumor microenvironment of lung squamous cell carcinoma. Sci Rep 2025; 15:10374. [PMID: 40140461 PMCID: PMC11947091 DOI: 10.1038/s41598-025-93916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Lung squamous cell carcinoma (LUSC), accounting for 30% of lung cancer cases, lacks adequate research due to limited understanding of its molecular abnormalities. Our study analyzed public LUSC datasets to explore the tumor microenvironment (TME) composition using scRNA-seq from two cohorts. Applying non-negative matrix factorization, we identified unique malignant cell phenotypes, or meta-programs (MPs), based on gene expression patterns. Survival analysis revealed the clinical relevance of these MPs. Findings illuminated a TME landscape enriched with immune cells-CD8 + T, exhausted T, CD4 + T, and naive T cells-and suggested roles for myeloid cells, like cDC1 and pDCs, in LUSC progression. Different MPs highlighted the heterogeneity of malignant cells and their clinical implications. Targeting MP-specific genes may enable personalized therapy, especially for early-stage LUSC. This study offers insights into immune cell function in tumor dynamics, identifies MPs, and paves the way for novel LUSC strategies, enhancing early intervention, personalized treatment, and prognosis, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junda Fan
- Department of Oncology, 242 Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China
| | - Yu Chen
- Jiamusi Central Hospital, Jiamusi, 154000, China
| | - Yue Gong
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Hongmei Sun
- Department of Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, 154000, China
| | - Rui Hou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Xiaoya Dou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Yanping Zhang
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Cheng Huo
- Departmen of Pathology, Sinopharm Tongmei General Hospital, Datong, 037003, China.
| |
Collapse
|
8
|
Erasha AM, EL-Gendy H, Aly AS, Fernández-Ortiz M, Sayed RKA. The Role of the Tumor Microenvironment (TME) in Advancing Cancer Therapies: Immune System Interactions, Tumor-Infiltrating Lymphocytes (TILs), and the Role of Exosomes and Inflammasomes. Int J Mol Sci 2025; 26:2716. [PMID: 40141358 PMCID: PMC11942452 DOI: 10.3390/ijms26062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix (ECM). Subsequently, effective cancer therapy relies on addressing TME alterations, known drivers of tumor progression, immune evasion, and metastasis. Immune cells and other cell types act differently under cancerous conditions, either driving or hindering cancer progression. For instance, tumor-infiltrating lymphocytes (TILs) include lymphocytes of B and T cell types that can invade malignancies, bringing in and enhancing the ability of immune system to recognize and destroy cancer cells. Therefore, TILs display a promising approach to tackling the TME alterations and have the capability to significantly hinder cancer progression. Similarly, exosomes and inflammasomes exhibit a dual effect, resulting in either tumor progression or inhibition depending on the origin of exosomes, type of inflammasome and tumor. This review will explore how cells function in the presence of a tumor, the communication between cancer cells and immune cells, and the role of TILs, exosomes and inflammasomes within the TME. The efforts in this review are aimed at garnering interest in safer and durable therapies for cancer, in addition to providing a promising avenue for advancing cancer therapy and consequently improving survival rates.
Collapse
Affiliation(s)
- Atef M. Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Hanem EL-Gendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Ahmed S. Aly
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Marisol Fernández-Ortiz
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
9
|
Zhou R, Xie Y, Wang Z, Liu Z, Lu W, Li X, Wei C, Li X, Wang F. Single-cell transcriptomic analysis reveals CD8 + T cell heterogeneity and identifies a prognostic signature in cervical cancer. BMC Cancer 2025; 25:498. [PMID: 40102789 PMCID: PMC11916872 DOI: 10.1186/s12885-025-13901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND In recent years, immunotherapy has made significant progress. However, the understanding of the heterogeneity and function of T cells, particularly CD8 + T cells, in cervical cancer (CESC) microenvironment remains insufficient. We aim to characterize the heterogeneity, developmental trajectory, regulatory network, and intercellular communication of CD8 + T cells in cervical squamous cell carcinoma and to construct a prognostic risk model based on the transcriptomic characteristics of CD8 + T cells. METHODS We integrated single-cell RNA sequencing data from CESC tumor samples with bulk transcriptome data from TCGA and GEO databases. We identified CD8 + T cell subsets in the CESC microenvironment, revealing significant interactions between CD8 + T cells and other cell types through intercellular communication analysis. Pseudotime trajectory analysis revealed dynamic transcriptional regulation during CD8 + T cell differentiation and functional acquisition processes. We constructed a transcriptional regulatory network for CESC CD8 + T cells, identifying key transcription factors. Based on CD8 + T cell-related genes, a prognostic risk model comprising eight core genes was developed and validated using machine learning. RESULTS We identified four distinct CD8 + T cell subsets, namely progenitor, intermediate, proliferative, and terminally differentiated, each exhibiting unique transcriptomic characteristics and functional properties. CD8 + T cell subsets interact with macrophages through different ligand-receptor networks, including the CCL-CCR signaling pathway and costimulatory molecules. Sorafenib was identified as a potential immunotherapeutic drug through drug screening. Experimental validation demonstrated that sorafenib enhances the cytotoxicity of CD8 + T cells by increasing the secretion of IFN-γ and TNF-α, thereby significantly inhibiting the invasiveness and survival of CESC cells. CONCLUSIONS Our study provides valuable insights into the heterogeneity and functional diversity of CD8 + T cells in CESC. We demonstrate that a CD8 + T cell-related prognostic signature may serve as a potential tool for risk stratification in patients with CESC. Additionally, our finding suggests that sorafenib could be a promising therapeutic candidate for improving antitumor immunity in this patient population.
Collapse
Affiliation(s)
- Rongbin Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuli Xie
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zuheng Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Zige Liu
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Wenhao Lu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao Li
- School of Life Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, No. 85, Wujin Road, Hongkou District, Shanghai, 200080, China.
| | - Fubo Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China.
- School of Life Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- , No. 22, Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
10
|
Wang P, Chen L, Xi H, Yang B, Liang P, Tang L, Yang L, Long B, Huang H. Correlation between HPV-16 integration status and cervical intraepithelial neoplasia and cervical cancer in patients infected with HIV. Bull Cancer 2025; 112:157-165. [PMID: 39690095 DOI: 10.1016/j.bulcan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND This study aimed to explore the mechanism by which HIV infection promotes cervical cancer and precancerous lesions. METHODS This was a retrospective observational study including 96 patients with high-risk HPV-16 infection who underwent cervical biopsy, cervical conization, or hysterectomy. Among them, 43 patients were diagnosed with both HIV and cervical cancer or precancerous lesions. High-risk HPV infection (HPV16+) positive samples were collected, and total RNA was extracted and amplified by fluorescence quantitative PCR. The expression of HPV E2 and E6 in cervical tissues of HIV-infected and non-HIV-infected patients with high-risk HPV was determined. RESULTS As the degree of cervical tissue lesions increased, the proportions of integrated HPV-16 increased significantly within both HIV-negative (P=0.008) and HIV-positive groups (P=0.027). In comparison to the HIV-positive group, although the HIV-negative group had a higher proportion of free type HPV-16 infection (64.3% vs. 35.7%) and a lower proportion of integrated type infection (41.7% vs. 58.3%), the differences were not statistically significant (P=0.117). The lower the CD4+ T lymphocyte level, the greater the possibility of HPV-16 integrated infection. CONCLUSIONS Patients with HIV and HPV-16 infection exhibit a significantly higher rate of integrated HPV-16 infection, which is closely linked to HIV-induced immunosuppression, particularly the depletion of CD4+ T lymphocytes. This integration accelerates the progression of cervical lesions, increasing the risk of developing high-grade cervical intraepithelial neoplasia or cervical cancer. These findings underscore the need for targeted screening and therapeutic strategies in HIV-positive women to prevent HPV-related malignancies.
Collapse
Affiliation(s)
- Peizhi Wang
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Lin Chen
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Huizi Xi
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Baojun Yang
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Peiyi Liang
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Lianhua Tang
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Lijie Yang
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China
| | - Bin Long
- Department of Gynecology, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China.
| | - Huang Huang
- Department of Intensive Care Unit, Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510030 Guangzhou, China.
| |
Collapse
|
11
|
Okazaki K, Furukawa K, Haruki K, Onda S, Shirai Y, Tsunematsu M, Taniai T, Matsumoto M, Hamura R, Akaoka M, Uwagawa T, Ikegami T. Prognostic significance of the hemoglobin, albumin, lymphocyte, platelet (HALP) score after hepatectomy for colorectal liver metastases. Surg Today 2025:10.1007/s00595-025-02993-4. [PMID: 39828751 DOI: 10.1007/s00595-025-02993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE Inflammatory, nutritional, and immune biomarkers are associated with the prognosis of patients with various tumors. Recently, a comprehensive predictive biomarker, the hemoglobin, albumin, lymphocyte, and platelet (HALP) score, was introduced to predict clinical outcomes. We investigated the prognostic impact of preoperative HALP scores in patients who underwent hepatectomy for colorectal liver metastasis (CRLM). METHOD The subjects of this study were 209 patients who underwent hepatectomy for CRLM between February, 2005 and September, 2023. The HALP score was defined as (albumin [mg/dL] × hemoglobin [g/L] × lymphocyte [count/L]) / platelet [count/L]. The cutoff value was calculated according to the receiver operating characteristic curve based on 3-year survival. RESULTS The cutoff value of the HALP score was 35, and a low HALP score was confirmed in 107 patients (51%). Multivariate analysis of disease-free survival identified lymph node metastasis (HR 1.53, p = 0.03), extrahepatic lesions (HR 2.48, p < 0.01), and a low HALP score (HR 2.0, p < 0.01) as independently poor prognostic factors. Multivariate analysis of overall survival identified extrahepatic lesions (HR 2.98, p < 0.01), a high CEA (HR 1.78, p = 0.02), and a low HALP score (HR 1.92, p = 0.02) as independently poor prognostic factors. CONCLUSIONS The HALP score is a useful prognostic factor for patients undergoing hepatectomy for CRLM.
Collapse
Affiliation(s)
- Kohei Okazaki
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Kenei Furukawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Shinji Onda
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yoshihiro Shirai
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masashi Tsunematsu
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Tomohiko Taniai
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Michinori Matsumoto
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Ryoga Hamura
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Munetoshi Akaoka
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Tadashi Uwagawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| |
Collapse
|
12
|
Zhao JY, Pang X, Peng J, Liu J, Deng Q, Jian S. The significance of CD4+ and CD8+ T lymphocyte infiltration in esophageal squamous cell carcinoma. INDIAN J PATHOL MICR 2025; 68:95-101. [PMID: 38904448 DOI: 10.4103/ijpm.ijpm_960_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE To investigate the relationship between the abundance of CD4+ and CD8+ T cells in the tumor microenvironment and the prognosis of patients with esophageal squamous cell carcinoma, and to analyze their correlation and explore its clinical value. MATERIALS AND METHODS In total, we enrolled 120 cases of esophageal squamous cell carcinoma diagnosed. The abundance of CD4+ and CD8+ T lymphocytes in the tissue specimens of esophageal cancer was examined by immunohistochemistry. We measured the correlation between the abundance of CD4+ and CD8+ T lymphocytes and the clinical and pathological characteristics and prognosis of esophageal squamous cell carcinoma. RESULTS The tissue abundance of CD4+ T lymphocytes was closely related to tumor prognosis ( P < 0.05). Similarly, there was a statistically significant relationship between the tissue abundance of CD8+ T lymphocytes and patients' prognosis ( P < 0.05), indicating that a high abundance of CD8+ T lymphocytes predicts better prognosis in esophageal squamous cell carcinoma. Surprisingly, we found that a higher CD4+/CD8+ ratio predicted a better prognosis of esophageal squamous cell carcinoma. CONCLUSIONS The tissue abundance of CD4+ and CD8+ T lymphocytes can serve as an important indicator for predicting the long-term survival of patients with esophageal squamous cell carcinoma. A high CD4+/CD8+ ratio may improve patients' prognosis through several pathways. The association of this ratio with clinical and pathological characteristics may explain the poor efficacy of immunotherapy in patients with esophageal cancer. These findings may help us find new targets for immunotherapy by exploring the immune microenvironment of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Jiang Y Zhao
- Department of Pathology, Mianyang Hospital of T. C. M., Mianyang, China
| | - Xiaojun Pang
- Department of Pathology, Mianyang Hospital of T. C. M., Mianyang, China
| | - Jiao Peng
- Department of Pathology, Mianyang Hospital of T. C. M., Mianyang, China
| | - Jingtao Liu
- Department of Thoracic Surgery, Mianyang Hospital of T. C. M., Mianyang, China
| | - Qiang Deng
- Department of Thoracic Surgery, Mianyang Hospital of T. C. M., Mianyang, China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| |
Collapse
|
13
|
Köşeci T, Seyyar M, Aydınalp Camadan Y, Çelik H, Mete B, Demirhindi H, Eser K, Ata S, Solmaz AA, Çil T. HALP Score in Predicting Response to Treatment in Patients with Early-Stage Gastric Cancer: A Multi-Centred Retrospective Cohort Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2087. [PMID: 39768966 PMCID: PMC11678702 DOI: 10.3390/medicina60122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: The HALP (Haemoglobin, Albumin, Lymphocyte and Platelet) score is used to predict the prognosis of different types of cancer. This study aimed to investigate the role of the HALP score in predicting pathological response in early-stage gastric cancer patients. Materials and Methods: This retrospective cohort study was conducted on 118 patients diagnosed with early-stage gastric cancer and subjected to perioperative (FLOT) treatment between 2018 and 2023. The role of the HALP score in predicting the pathological response to perioperative treatment in patients was investigated. Results: The mean age of the 118 patients included in the study was 61.3 ± 11.1 (min = 23; max = 86). In the ROC analysis, the optimum cut-off value for the HALP score in pathological response classification was found to be 28.9 (AUC = 0.710, sensitivity = 56.7%, specificity = 80%, PPV = 86.79%, NPV = 46.15%). The pathological response rate was 69% in all patients, 87% in patients with a HALP score ≥ 28.9, and 52% in patients with a HALP score < 28.9 (p < 0.001). The probability of pathological response is 6.5 times higher in patients with a HALP score ≥ 28.9. In the Fagan nomogram, when the HALP score was ≥28.9, our pathological response probability estimate (post-test response probability) was found to increase to 64.8% (Positive Likelihood Ratio = 3, Negative Likelihood Ratio = 0.53). In patients with HALP scores ≥ 28.9 and <28.9, progression rates were 16.7% and 47.8%, respectively (p < 0.001), and median survival times were 45.4 and 30.6 months (p < 0.001). Conclusions: The HALP score is a useful and easily accessible score for determining pathological responses in patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Tolga Köşeci
- Medical Oncology Department, Faculty of Medicine, Çukurova University, Adana 01330, Türkiye;
| | - Mustafa Seyyar
- Medical Oncology Department, Gaziantep City Hospital, Gaziantep 27470, Türkiye;
| | | | - Halil Çelik
- Medical Oncology Department, Faculty of Medicine, Mersin University, Mersin 33340, Türkiye; (H.Ç.); (K.E.)
| | - Burak Mete
- Public Health Department, Faculty of Medicine, Çukurova University, Adana 01330, Türkiye; (B.M.); (H.D.)
| | - Hakan Demirhindi
- Public Health Department, Faculty of Medicine, Çukurova University, Adana 01330, Türkiye; (B.M.); (H.D.)
| | - Kadir Eser
- Medical Oncology Department, Faculty of Medicine, Mersin University, Mersin 33340, Türkiye; (H.Ç.); (K.E.)
| | - Serdar Ata
- Medical Oncology Department, Afyon State Hospital, Afyon 03030, Türkiye;
| | - Ali Alper Solmaz
- Medical Oncology Department, Adana City Hospital, Adana 01370, Türkiye; (A.A.S.); (T.Ç.)
| | - Timuçin Çil
- Medical Oncology Department, Adana City Hospital, Adana 01370, Türkiye; (A.A.S.); (T.Ç.)
| |
Collapse
|
14
|
Sun J, Wang J, Jiang X, Xia J, Han Y, Chen M, Xu J, Deng S, Cheng C, Song H. LADS: a powerful vaccine platform for cancer immunotherapy and prevention. BMC Biol 2024; 22:291. [PMID: 39696249 DOI: 10.1186/s12915-024-02086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The intracellular bacterium Listeria monocytogenes is an attractive vector for cancer immunotherapy as it can effectively deliver tumor antigens to antigen-presenting cells, leading to a robust antitumor response. RESULTS In this study, we developed a novel vaccine platform called Listeria-based Live Attenuated Double Substitution (LADS), which involves introducing two amino acid substitutions (N478AV479A) into the virulence factor listeriolysin O (LLO). LADS is a safe vaccine platform, with an attenuation of nearly 7000-fold, while retaining complete immunogenicity due to the absence of deletion of any virulence factors. We developed two LADS-based vaccines, LADS-E7 and LADS-AH1, which deliver the human papillomavirus (HPV) type 16 E7 oncoprotein and murine colon carcinoma immunodominant antigen AH1, respectively. Treatment with LADS-E7 or LADS-AH1 significantly inhibited and regressed established tumors, while also dramatically increasing the populations of tumor-infiltrated antigen-specific CD8+ T cells. RNA-sequencing analysis of tumor tissue samples revealed that LADS-E7 altered the expression of genes related to the immune response. Moreover, intratumoral injection of LADS-based vaccines induced strong antitumor responses, generating systemic antitumor responses to control distant tumor growth. Encouragingly, LADS-E7 or LADS-AH1 immunization effectively prevented tumor formation and growth. CONCLUSIONS Our findings demonstrate that LADS-based vaccines represent a more powerful platform for the development of immunotherapeutic and preventive vaccines against cancers and infectious diseases.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xin Jiang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Xia
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yue Han
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Mianmian Chen
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jiali Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Simin Deng
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Changyong Cheng
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| |
Collapse
|
15
|
Shi Y, Guo Z, Wang Q, Deng H. Prognostic value of tumor-infiltrating lymphocyte subtypes and microorganisms in triple-negative breast cancer. J Cancer Res Ther 2024; 20:1983-1990. [PMID: 39792407 DOI: 10.4103/jcrt.jcrt_41_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/02/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results. Therefore, we reviewed the interactions between immune-infiltrating subtypes and tumor cells throughout the entire TME. By examining the antitumor or protumor effects of each TIL subtype, we aimed to better characterize the tumor immune landscape, offering more accurate and comprehensive insights for guiding triple-negative breast cancer (TNBC) treatment. In addition, this approach could lead to the development of new therapeutic targets, enabling tailored treatment strategies and precision medicine. Accumulating evidence suggests that the intestinal microbiome and its metabolites influence antitumor responses by modulating innate and adaptive immunity, with specific bacteria potentially serving as biomarkers for predicting clinical responses. Various studies have identified microorganisms in breast tissue, previously considered sterile, revealing differences in breast microbial composition between patients with breast cancer and controls, as well as associations between specific breast microorganisms and clinicopathologic features, including immune correlations. The aim of this review was to provide a more comprehensive set of prognostic markers for TNBC and to tap into potential-specific therapeutic targets.
Collapse
Affiliation(s)
- Yating Shi
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
16
|
Li Q, Li W, Wang J, Shi W, Wang T. Effect of ubiquitin-specific proteinase 43 on ovarian serous adenocarcinoma and its clinical significance. J OBSTET GYNAECOL 2024; 44:2361862. [PMID: 38916982 DOI: 10.1080/01443615.2024.2361862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ovarian cancer stands as a highly aggressive malignancy. The core aim of this investigation is to uncover genes pivotal to the progression and prognosis of ovarian cancer, while delving deep into the intricate mechanisms that govern their impact. METHODS The study entailed the retrieval of RNA-seq data and survival data from the XENA database. Outliers were meticulously excluded in accordance with TCGA guidelines and through principal components analysis. The R package 'deseq2' was harnessed to extract differentially expressed genes. WGCNA was employed to prioritise these genes, and Cox regression analysis and survival analysis based on disease-specific time were conducted to identify significant genes. Immunohistochemistry validation was undertaken to confirm the distinct expression of USP43. Furthermore, the influence of USP43 on the biological functions of ovarian cancer cells was explored using techniques such as RNA interference, western blotting, scratch assays, and matrigel invasion assays. The examination of immune infiltration was facilitated via CIBERSORT. RESULTS The study unearthed 5195 differentially expressed genes between ovarian cancer and normal tissue, comprising 3416 up-regulated and 1779 down-regulated genes. WGCNA pinpointed 204 genes most intimately tied to tumorigenesis. The previously undisclosed gene USP43 exhibited heightened expression in tumour tissues and exhibited associations with overall survival and disease-specific survival. USP43 emerged as a driver of cell migration (43.27 ± 3.91% vs 19.69 ± 1.94%) and invasion ability (314 ± 32 vs 131 ± 12) through the mechanism of epithelial mesenchymal transition, potentially mediated by the KRAS pathway. USP43 was also identified as a booster of CD4+ T memory resting cell infiltration, while concurrently reducing M1 macrophages within cancer, thereby fostering a milieu with relatively immune suppressive traits. Interestingly, USP43 demonstrated connections with epigenetically regulated-mRNAsi, although not with mRNAsi. CONCLUSION This study underscores the role of USP43 in facilitating tumour migration and invasion. It postulates USP43 as a novel therapeutic target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, Lixin County People's Hospital, Bozhou, China
| | - Wenhao Li
- First school of Clinical Medical, Anhui Medical University, Hefei, China
| | - Jiahao Wang
- First school of Clinical Medical, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Taorong Wang
- Experimental Center of Morphology, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Dusunceli I, Sargin ZG, Celik U, Sargin F. Can HALP (Hemoglobin, albumin, lymphocyte, and platelet) score distinguish malignant and benign causes of extrahepatic cholestasis in patients with extrahepatic bile duct obstruction? North Clin Istanb 2024; 11:555-559. [PMID: 39650317 PMCID: PMC11622744 DOI: 10.14744/nci.2024.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/21/2024] [Accepted: 10/23/2024] [Indexed: 12/11/2024] Open
Abstract
OBJECTIVE Cholestatic diseases are common and classified as benign or malignant based on their etiology. HALP is a unique nutritional immune marker that combines indicators of nutritional status, including hemoglobin and albumin, with immune function markers like lymphocyte and platelet counts. We investigated the HALP score's ability to differentiate between benign and malignant causes in extrahepatic cholestasis patients. METHODS This research was designed as cross-sectional and retrospective. Between 1 January 2020-1 January 2022, patients diagnosed with extrahepatic cholestasis were included. The diagnoses were confirmed using non-invasive imaging methods, ERCP (endoscopic retrograde cholangiopancreatography), and tissue biopsy results. Based on the type of extrahepatic biliary obstruction, either benign or malignant, the patients were divided into two groups. The HALP score was calculated by multiplying the patient's albumin (g/L), hemoglobin (g/L), and lymphocyte count (/L) and dividing by the platelet count (/L). RESULTS In 121 of 216 patients, extrahepatic cholestasis was caused by benign factors, mostly choledocholithiasis, while malignant causes, predominantly pancreatic head cancer, were responsible for extrahepatic cholestasis in 95 patients. The malignant cholestasis group had significantly higher bilirubin levels (p<0.001), lower hemoglobin levels (p=0.005), lower albumin levels (p<0.001), higher lymphocyte counts (p<0.001), and higher platelet levels (p=0.001) compared to the benign cholestasis group. There was no considerable difference in the HALP score between the two groups, as indicated by a p-value of 0.741. CONCLUSION The HALP score could not distinguish between benign and malignant causes of extrahepatic cholestasis.
Collapse
Affiliation(s)
- Ibrahimhalil Dusunceli
- Department of Gastroenterology and Hepatology, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkiye
| | - Zeynep Gok Sargin
- Department of Gastroenterology and Hepatology, Kirikkale University Faculty of Medicine, Kirikkale, Turkiye
| | - Umut Celik
- Department of Gastroenterology and Hepatology, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkiye
| | - Fatih Sargin
- Department of Intensive Care, Pamukkale University Faculty of Medicine, Denizli, Turkiye
| |
Collapse
|
18
|
Deldadeh N, Shahbazi S, Ghiasvand S, Shahriari F, Javidi MA. COVID-19 vaccination anti-cancer impact on the PI3K/AKT signaling pathway in MC4L2 mice models. Microb Pathog 2024; 196:106955. [PMID: 39303961 DOI: 10.1016/j.micpath.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The most promising method of containing the COVID-19 pandemic is considered to be vaccination against SARS-CoV-2 infection. However, research on the relationship between vaccination against COVID-19 and cancer has primarily examined induced immunity rather than the disease itself. Considering that breast cancer is the most common cancer among women, the main goal of this study was to examine the impact of the Sinopharm and AstraZeneca vaccination on tumor characteristics such as tumor size, important tumor markers, tumor-infiltrating lymphocytes, metastasis to vital organs, and investigation of the PI3K/AKT signaling pathway, and the expression levels of relevant genes (PTEN, mTOR, AKT, PI3K, GSK3, and FoxO1) of the luminal B (MC4L2) mouse model. The tumor size of the mice was measured and monitored every two days, and after thirty days, the mice were euthanized. Remarkably, after vaccination, all vaccinated mice showed a decrease in the size of their tumor and an increase in the number of lymphocytes that had invaded the tumors. Tumor marker levels (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, metastasis to vital organs, hormone receptors (ER, PR, and HER-2), and expression of genes related to the advancement of the PI3K/AKT signaling pathway were lower in vaccinated mice. Our research showed that the COVID-19 vaccine can have an anti-cancer effect by slowing the tumor progression and metastasis.
Collapse
Affiliation(s)
- Negar Deldadeh
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sahba Shahbazi
- Protein Biotechnology Research Lab (PBRL), Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Science, Malayer University, Malayer, Iran.
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Xu J, Lin Y, Yang J, Xing Y, Xing X. Pretreatment systemic immune-inflammation index and lymphocyte-to-monocyte ratio as prognostic factors in oral cavity cancer: A meta-analysis. Medicine (Baltimore) 2024; 103:e40182. [PMID: 39496022 PMCID: PMC11537607 DOI: 10.1097/md.0000000000040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The predictive implications of the pretreatment systemic immune-inflammation index (SII) and lymphocyte-to-monocyte ratio (LMR) in oral cavity cancer have been investigated extensively, however, the findings are conflicting. METHODS To assess the predictive importance of SII and LMR in patients with oral cavity cancer, a comprehensive Meta-analysis of the literature was conducted using the databases from PubMed, Embase, and the Cochrane Library. To determine the link between SII and LMR and overall survival (OS) and disease-free survival (DFS), hazard ratio (HR) and 95% confidence interval (CI) were retrieved. RESULTS The analysis comprised a total of 18 papers, covering 19 trials (SII = 5, LMR = 12, SII + prognostic nutritional index (PNI) = 2). According to pooled data, increased SII predicted poor OS (HR: 1.61, 95% CI: 1.38-1.87, P < .001) and DFS (HR: 1.90, 95% CI: 1.11-3.27, P = .02) while high LMR was linked with improved OS (HR: 0.64, 95% CI: 0.54-0.77, P < .001) and DFS (HR: 0.69, 95% CI: 0.61-0.79, P < .001). In addition, subgroup analysis indicated that high SII and low LMR negatively correlated with OS regardless of country, cutoff value, sample size, or types of Cox regression analysis. CONCLUSIONS High SII and low LMR may predict worse survival in patients with oral cavity cancer. SII and LMR may therefore represent effective indicators of prognosis in oral cavity cancer.
Collapse
Affiliation(s)
- Jianghan Xu
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yanjun Lin
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingbo Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yifeng Xing
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojie Xing
- Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Wen H, Mi Y, Li F, Xue X, Sun X, Zheng P, Liu S. Identifying the signature of NAD+ metabolism-related genes for immunotherapy of gastric cancer. Heliyon 2024; 10:e38823. [PMID: 39640811 PMCID: PMC11620085 DOI: 10.1016/j.heliyon.2024.e38823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) -related metabolic reprogramming in tumor cells involves multiple vital cellular processes. However, the role of NAD metabolism in immunity and the prognosis of gastric cancer (GC) remains not elucidated. Here we identified and clustered 33 NAD + metabolism-related genes (NMRGs) based on 808 GC samples from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Survival analysis between different groups found a poor prognosis in the GC patients with high NMRGs expression. Gene SGCE, APOD, and PPP1R14A were identified and performed high expression in GC samples, while the qRT-PCR results further confirmed that their expression levels in GC cell lines were significantly higher than those from normal human gastric mucosa epithelial cells. Based on the single-cell analysis, Gene SGCE, APOD, and PPP1R14A can potentially be novel biomarkers of tumor-associated fibroblasts (CAFs). In parallel, the proliferation and migration of GC cells were significantly hampered following the knockdown of SGCE, APOD, and PPP1R14A, particularly APOD, we confirmed that APOD knockdown can inhibit β-catenin and N-cadherin expression, while promote E-cadherin expression. This study unveils a novel NMRGs-related gene signature, highlighting APOD as a prognostic biomarker linked to the tumor microenvironment. APOD drives GC cell proliferation and metastasis through the Wnt/β-catenin/EMT signaling pathway, establishing it as a promising therapeutic target for GC patients.
Collapse
Affiliation(s)
- Huijuan Wen
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Simeng Liu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
21
|
Hai L, Bai XY, Luo X, Liu SW, Ma ZM, Ma LN, Ding XC. Prognostic modeling of hepatocellular carcinoma based on T-cell proliferation regulators: a bioinformatics approach. Front Immunol 2024; 15:1444091. [PMID: 39445019 PMCID: PMC11496079 DOI: 10.3389/fimmu.2024.1444091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prognostic value and immune significance of T-cell proliferation regulators (TCRs) in hepatocellular carcinoma (HCC) have not been previously reported. This study aimed to develop a new prognostic model based on TCRs in patients with HCC. Method This study used The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and International Cancer Genome Consortium-Liver Cancer-Riken, Japan (ICGC-LIRI-JP) datasets along with TCRs. Differentially expressed TCRs (DE-TCRs) were identified by intersecting TCRs and differentially expressed genes between HCC and non-cancerous samples. Prognostic genes were determined using Cox regression analysis and were used to construct a risk model for HCC. Kaplan-Meier survival analysis was performed to assess the difference in survival between high-risk and low-risk groups. Receiver operating characteristic curve was used to assess the validity of risk model, as well as for testing in the ICGC-LIRI-JP dataset. Additionally, independent prognostic factors were identified using multivariate Cox regression analysis and proportional hazards assumption, and they were used to construct a nomogram model. TCGA-LIHC dataset was subjected to tumor microenvironment analysis, drug sensitivity analysis, gene set variation analysis, and immune correlation analysis. The prognostic genes were analyzed using consensus clustering analysis, mutation analysis, copy number variation analysis, gene set enrichment analysis, and molecular prediction analysis. Results Among the 18 DE-TCRs, six genes (DCLRE1B, RAN, HOMER1, ADA, CDK1, and IL1RN) could predict the prognosis of HCC. A risk model that can accurately predict HCC prognosis was established based on these genes. An efficient nomogram model was also developed using clinical traits and risk scores. Immune-related analyses revealed that 39 immune checkpoints exhibited differential expression between the high-risk and low-risk groups. The rate of immunotherapy response was low in patients belonging to the high-risk group. Patients with HCC were further divided into cluster 1 and cluster 2 based on prognostic genes. Mutation analysis revealed that HOMER1 and CDK1 harbored missense mutations. DCLRE1B exhibited an increased copy number, whereas RAN exhibited a decreased copy number. The prognostic genes were significantly enriched in tryptophan metabolism pathways. Conclusions This bioinformatics analysis identified six TCR genes associated with HCC prognosis that can serve as diagnostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Long Hai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiao-Yang Bai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai-Wei Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zi-Min Ma
- Weiluo Microbial Pathogens Monitoring Technology Co., Ltd. of Beijing, Beijing, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Tropical Disease & Infectious Disease, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
22
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
23
|
Bumbasirevic U, Petrovic M, Coric V, Lisicic N, Obucina D, Zekovic M, Milojevic B, Vasilic N, Vasic V, Zivkovic M, Bojanic N, Janicic A. The Utility of Immuno-Nutritional Scores in Patients with Testicular Germ Cell Tumors. Diagnostics (Basel) 2024; 14:2196. [PMID: 39410600 PMCID: PMC11476221 DOI: 10.3390/diagnostics14192196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Hemoglobin, Albumin, Lymphocyte, and Platelet Score (HALP) is an accessible score that is easily reproducible from routine laboratory testing while also reflecting patients' immune-nutritional status. Along with other immuno-nutritional scores, such as the Prognostic Nutrition Index (PNI), HALP has been associated with a number of clinical and pathological features. The goal of our study was to evaluate the prognostic utility of HALP and PNI scores in testicular germ cell cancer (GCT) patients. METHODS This case-only study included 203 testicular GCT patients who were classified according to the disease stage and HALP and PNI cut-offs. Complete blood count and albumin concentration were routinely determined. RESULTS The values of HALP and PNI significantly differed among different clinical stages (p < 0.05). Moreover, they clearly exposed a significantly higher risk of advanced clinical stage development for those testicular GCT patients with lower values of HALP and PNI (p < 0.05). Finally, lower score levels were associated with larger tumor size (p < 0.05). CONCLUSION Our investigation could provide evidence that specific immune-nutritional scores can help distinguish individuals diagnosed with testicular GCT who are more likely to be identified with advanced disease stages.
Collapse
Affiliation(s)
- Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Petrovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Center of Excellence for Redox Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nikola Lisicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
| | - David Obucina
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad Vasilic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
| | - Vladimir Vasic
- Department of Urology, University Medical Center Zvezdara, 11000 Belgrade, Serbia;
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
| | - Nebojsa Bojanic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.P.); (N.L.); (D.O.); (B.M.); (N.V.); (M.Z.); (N.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Silva ACR, Antunes-Correa LDM, Juliani FL, Carrilho LAO, Costa FO, Martinez CAR, Mendes MCS, Carvalheira JBC. Assessing the role of prognostic nutritional index in predicting outcomes for rectal cancer surgery. Clin Nutr ESPEN 2024; 63:644-650. [PMID: 39094853 DOI: 10.1016/j.clnesp.2024.07.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/18/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS The association of Prognostic Nutritional Index (PNI) with prognosis has been established for various cancer types, including rectal cancer. However, the precise relationship between PNI and body composition characteristics in patients with non-metastatic rectal cancer remain unclear. This study aimed to investigate the impact of PNI on overall survival and disease-free survival in non-metastatic rectal cancer patients undergoing total surgical resection. Additionally, it sought to assess the inflammatory status and body composition in patients across different PNI levels. METHODS Patients with non-metastatic rectal cancer who underwent total surgical resection, were consecutively enrolled. PNI was calculated using the formula: PNI = (10 × serum albumin [g/dl]) + (0.005 × lymphocytes/μL). Body composition was assessed using CT-derived measurements and laboratory tests performed at diagnosis were used to calculate inflammatory indices. Univariate and multivariate logistic regression analyses as well as Kaplan-Meier curves were used to determine prognostic values. RESULTS A total of 298 patients were included. Patients with low PNI demonstrated significantly reduced overall survival and disease-free survival compared to those with high PNI (Hazard ratio [HR] 1.85; Confidence interval [CI] 1.30-2 0.62; p = 0.001). Moreover, patients with low PNI exhibited heightened systemic inflammatory status and reduced skeletal muscle index, increased muscle radiodensity, as well as a decrease in subcutaneous adipose tissue area, subcutaneous fat index, and low attenuation of both subcutaneous and visceral adipose tissue. CONCLUSION The PNI, assessed prior to treatment initiation, serves as a prognostic biomarker for non-metastatic rectal cancer patients undergoing total surgical resection and is linked with both inflammation and alterations in body composition.
Collapse
Affiliation(s)
- Amanda Cristina Ribeiro Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Lígia de Moraes Antunes-Correa
- Universidade Estadual de Campinas (UNICAMP), Escola de Educação Física, Érico Veríssimo Avenue, 701 - Barão Geraldo, 13083-851, Campinas, SP, Brazil
| | - Fabiana Lascala Juliani
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Larissa Ariel Oliveira Carrilho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Felipe Osório Costa
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Carlos Augusto Real Martinez
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Maria Carolina Santos Mendes
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - José Barreto Campello Carvalheira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil.
| |
Collapse
|
25
|
Lee H, Bae AN, Yang H, Lee JH, Park JH. Modulation of PRC1 Promotes Anticancer Effects in Pancreatic Cancer. Cancers (Basel) 2024; 16:3310. [PMID: 39409930 PMCID: PMC11475828 DOI: 10.3390/cancers16193310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Pancreatic cancer, while relatively uncommon, is extrapolated to become the second leading cause of cancer-related deaths worldwide. Despite identifying well-known markers like the KRAS gene, the exact regulation of pancreatic cancer progression remains elusive. Methods: Clinical value of PRC1 was analyzed using bioinformatics database. The role of PRC1 was further evaluated through cell-based assays, including viability, wound healing, and sensitivity with the drug. Results: We demonstrate that PRC1 was significantly overexpressed in pancreatic cancer compared to pancreases without cancer, as revealed through human databases and cell lines analysis. Furthermore, high PRC1 expression had a negative correlation with CD4+ T cells, which are crucial for the immune response against cancers. Additionally, PRC1 showed a positive correlation with established pancreatic cancer markers. Silencing PRC1 expression using siRNA significantly inhibited cancer cell proliferation and viability and increased chemotherapeutic drug sensitivity. Conclusions: These findings suggest that targeting PRC1 in pancreatic cancer may enhance immune cell infiltration and inhibit cancer cell proliferation, offering a promising avenue for developing anticancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jong Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
26
|
Liu R, Yu Y, Wang Q, Zhao Q, Yao Y, Sun M, Zhuang J, Sun C, Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal 2024; 22:432. [PMID: 39252010 PMCID: PMC11382420 DOI: 10.1186/s12964-024-01812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer ranks as one of the most common malignancies among women, with its prognosis and therapeutic efficacy heavily influenced by factors associated with the tumor cell biology, particularly the tumor microenvironment (TME). The diverse elements of the TME are engaged in dynamic bidirectional signaling interactions with various pathways, which together dictate the growth, invasiveness, and metastatic potential of breast cancer. The Hedgehog (Hh) signaling pathway, first identified in Drosophila, has been established as playing a critical role in human development and disease. Notably, the dysregulation of the Hh pathway is recognized as a major driver in the initiation, progression, and metastasis of breast cancer. Consequently, elucidating the mechanisms by which the Hh pathway interacts with the distinct components of the breast cancer TME is essential for comprehensively evaluating the link between Hh pathway activation and breast cancer risk. This understanding is also imperative for devising novel targeted therapeutic strategies and preventive measures against breast cancer. In this review, we delineate the current understanding of the impact of Hh pathway perturbations on the breast cancer TME, including the intricate and complex network of intersecting signaling cascades. Additionally, we focus on the therapeutic promise and clinical challenges of Hh pathway inhibitors that target the TME, providing insights into their potential clinical utility and the obstacles that must be overcome to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qianxiang Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
27
|
Xia W, Wang Y, Tao M, Li T, Fu X. Effect of Licorice polysaccharides before and after honey-processing on improving chronic fatigue syndrome and its mechanism. Int J Biol Macromol 2024; 276:133968. [PMID: 39029844 DOI: 10.1016/j.ijbiomac.2024.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Honey-processed Licorice, a type of Glycyrrhizae Radix et Rhizome processed with honey, is renowned for its superior effectiveness in tonifying the spleen and invigorating Qi compared to the raw product. Our previous research showed that flavonoids and saponins in licorice changed after processing. Therefore, the purpose of this study was to investigate the changes of chemical composition and biological activity of polysaccharides after processing. The weight-average molecular weight (Mw) measured by HPGPC showed that the Mw distribution range of raw licorice polysaccharides (RLP) was 1.34 × 103-1.36 × 106 Da, and the Mw distribution range of honey-processed licorice polysaccharides (HPLP) was 1.15 × 103-1.17 × 106 Da, the Mw distribution range of the two were basically the same. The analysis of monosaccharide composition showed that the types of monosaccharide in RLP and HPLP were consistent, and the contents of mannose, rhamnose, glucuronic acid, galacturonic acid and glucose in HPLP were significantly higher than those in RLP. Furthermore, the impact of these polysaccharides on chronic fatigue syndrome (CFS) showed that the high-dose group of HPLP had significantly better improvement of IL-2, IFN-γ and IgA than RLP. Multi-omics analysis showed that both of them could affect the immune system by regulating immunoglobulin, B-cell signaling pathway and T cell phenotypic differentiation. Interestingly, the HPLP could affect the natural killer cells mediated cytotoxicity on this basis. The above results indicated the effects of honey processing on the chemical composition and biological activities of licorice polysaccharides and elucidated the underlying mechanism of the superior biological activities of HPLP over RLP.
Collapse
Affiliation(s)
- Wenxin Xia
- School of pharmacy, Ningxia Medical University, Yinchuan 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yushu Wang
- School of pharmacy, Ningxia Medical University, Yinchuan 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Mengxin Tao
- School of pharmacy, Ningxia Medical University, Yinchuan 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Tingting Li
- School of pharmacy, Ningxia Medical University, Yinchuan 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence in Ningxia Hui Autonomous Region, 750004 Yinchuan, China
| | - Xueyan Fu
- School of pharmacy, Ningxia Medical University, Yinchuan 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence in Ningxia Hui Autonomous Region, 750004 Yinchuan, China.
| |
Collapse
|
28
|
Li Q, Huang X, Zhao Y. Prediction of Prognosis and Immunotherapy Response with a Novel Natural Killer Cell Marker Genes Signature in Osteosarcoma. Cancer Biother Radiopharm 2024; 39:502-516. [PMID: 37889617 DOI: 10.1089/cbr.2023.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Background: Natural killer (NK) cells are characterized by their antitumor efficacy without previous sensitization, which have attracted attention in tumor immunotherapy. The heterogeneity of osteosarcoma (OS) has hindered therapeutic application of NK cell-based immunotherapy. The authors aimed to construct a novel NK cell-based signature to identify certain OS patients more responsive to immunotherapy. Materials and Methods: A total of eight publicly available datasets derived from patients with OS were enrolled in this study. Single-cell RNA sequencing data obtained from the Gene Expression Omnibus (GEO) database were analyzed to screen NK cell marker genes. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was used to construct an NK cell-based prognostic signature in the TARGET-OS dataset. The differences in immune cell infiltration, immune system-related metagenes, and immunotherapy response were evaluated among risk subgroups. Furthermore, this prognostic signature was experimentally validated by reverse transcription-quantitative real-time PCR (RT-qPCR). Results: With differentially expressed NK cell marker genes screened out, a five-gene NK cell-based prognostic signature was constructed. The prognostic predictive accuracy of the signature was validated through internal clinical subgroups and external GEO datasets. Low-risk OS patients contained higher abundances of infiltrated immune cells, especially CD8 T cells and naive CD4 T cells, indicating that T cell exhaustion states were present in the high-risk OS patients. As indicated from correlation analysis, immune system-related metagenes displayed a negative correlation with risk scores, suggesting the existence of immunosuppressive microenvironment in OS. In addition, based on responses to immune checkpoint inhibitor therapy in two immunotherapy datasets, the signature helped predict the response of OS patients to anti-programmed cell death protein 1 (PD-1) or anti-programmed cell death ligand 1 (PD-L1) therapy. RT-qPCR results demonstrated the roughly consistent relationship of these five gene expressions with predicting outcomes. Conclusions: The NK cell-based signature is likely to be available for the survival prediction and the evaluation of immunotherapy response of OS patients, which may shed light on subsequent immunotherapy choices for OS patients. In addition, the authors revealed a potential link between immunosuppressive microenvironment and OS.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Xiaoyan Huang
- Department of Geriatrics, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Youfang Zhao
- Department of Geriatrics, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| |
Collapse
|
29
|
Sachanas S, Stefanaki C, Marinos L, Yiakoumis X, Moschogiannis M, Koulieris E, Efstathopoulou M, Pangalis GA. A Rapidly Developing Nodule in a Patient With Hairy Cell Leukemia in Remission: Merkel Cell Carcinoma: A Case Report. In Vivo 2024; 38:2540-2544. [PMID: 39187345 PMCID: PMC11363770 DOI: 10.21873/invivo.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Hairy cell leukemia (HCL) is a well-known lymphoproliferative disease with very effective treatment approaches primarily relying on purine analogues. However, these treatments are associated with profound and prolonged immunosuppression. Merkel cell carcinoma (MCC) is a rare and extremely aggressive skin tumor with an increased incidence in immunocompromised patients. CASE REPORT We report a case of a patient with HCL who was diagnosed with MCC, while in remission following retreatment with pentostatin, which induced a profound decrease in CD4 (+) T-cells. CONCLUSION Our case provides further evidence supporting the hypothesis of a significant association between immunosuppression and MCC pathogenesis.
Collapse
Affiliation(s)
- Sotirios Sachanas
- Department of Hematology, Athens Medical Center-Psychikon Branch, Athens, Greece;
| | | | - Leonidas Marinos
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Xanthi Yiakoumis
- Department of Hematology, Athens Medical Center-Psychikon Branch, Athens, Greece
| | - Maria Moschogiannis
- Department of Hematology, Athens Medical Center-Psychikon Branch, Athens, Greece
| | - Efstathios Koulieris
- Department of Hematology, Athens Medical Center-Psychikon Branch, Athens, Greece
| | - Maria Efstathopoulou
- Department of Hematology, Athens Medical Center-Psychikon Branch, Athens, Greece
| | | |
Collapse
|
30
|
Jiang J, Liu Y, Qin J, Chen J, Wu J, Pizzi MP, Lazcano R, Yamashita K, Xu Z, Pei G, Cho KS, Chu Y, Sinjab A, Peng F, Yan X, Han G, Wang R, Dai E, Dai Y, Czerniak BA, Futreal A, Maitra A, Lazar A, Kadara H, Jazaeri AA, Cheng X, Ajani J, Gao J, Hu J, Wang L. METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics. Nat Commun 2024; 15:7312. [PMID: 39181865 PMCID: PMC11344794 DOI: 10.1038/s41467-024-51708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Recent advances in spatial transcriptomics (ST) techniques provide valuable insights into cellular interactions within the tumor microenvironment (TME). However, most analytical tools lack consideration of histological features and rely on matched single-cell RNA sequencing data, limiting their effectiveness in TME studies. To address this, we introduce the Morphology-Enhanced Spatial Transcriptome Analysis Integrator (METI), an end-to-end framework that maps cancer cells and TME components, stratifies cell types and states, and analyzes cell co-localization. By integrating spatial transcriptomics, cell morphology, and curated gene signatures, METI enhances our understanding of the molecular landscape and cellular interactions within the tissue. We evaluate the performance of METI on ST data generated from various tumor tissues, including gastric, lung, and bladder cancers, as well as premalignant tissues. We also conduct a quantitative comparison of METI with existing clustering and cell deconvolution tools, demonstrating METI's robust and consistent performance.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiangjiang Qin
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa P Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiyuan Xu
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Bogdan A Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangdong Cheng
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jaffer Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| |
Collapse
|
31
|
Deng K, Yuan L, Xu Z, Qin F, Zheng Z, Huang L, Jiang W, Qin J, Sun Y, Zheng T, Ou X, Zheng L, Li S. Study of LY9 as a potential biomarker for prognosis and prediction of immunotherapy efficacy in lung adenocarcinoma. PeerJ 2024; 12:e17816. [PMID: 39193519 PMCID: PMC11348898 DOI: 10.7717/peerj.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Background Lymphocyte antigen 9 (LY9) participates in the development of several tumors and diseases but has not been reported yet in lung adenocarcinoma (LUAD). Methods First, we analyzed the expression and prognostic value of LY9 in pan-cancer, including LUAD. Additionally, we conducted a correlation analysis of LY9 expression in LUAD with immune cell infiltration using the TIMER database and the CIBERSORT algorithm, and with immune checkpoints using the GEPIA database. Also, we constructed a potential ceRNA network for LY9. Furthermore, we explored LY9-related pathways by Gene Set Enrichment Analysis (GSEA). Finally, validation of differential expression at the mRNA level was obtained from the GEO database. We collected LUAD tissues for Quantitative Real-time PCR (qRT-PCR) to verify the expression of LY9, CD8, and CD4 and calculated the correlation between them. We also conducted immunohistochemistry (IHC) to verify the protein expression of LY9. Results Results showed that LY9 was highly expressed in various tumors, including LUAD. Besides, patients with high LY9 expression presented longer overall survival (OS) and more multiple lymphocyte infiltrations. The expression of LY9 in LUAD strongly and positively correlates with multiple immune cell infiltration and immune checkpoints. The functional enrichment analysis indicated that LY9 was involved in multiple immune-related pathways and non-small cell lung cancer. Moreover, a ceRNA regulatory network of LINC00943-hsa-miR-141-3p-LY9 might be involved. Finally, GSE68465 dataset confirmed differential expression of LY9 mRNA levels in LUAD and the qRT-PCR results verified LY9 had a strong and positive correlation with CD4 and CD8 T cells. Unfortunately, IHC did not detect the expression of LY9 protein level in tumor tissues and WB experiments validated the protein expression of LY9 in the OCI-AML-2 cell line. Conclusions Therefore, we hypothesized that LY9 could serve as a potential, novel prognostic biomarker for LUAD and could predict immunotherapy efficacy at the mRNA level.
Collapse
Affiliation(s)
- Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, People’s Hospital of Deyang, Deyang, Sichuan, China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Scientific Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinhuai Ou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Catheterization Laboratory of Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
32
|
Hackner D, Merkel S, Weiß A, Krautz C, Weber GF, Grützmann R, Brunner M. Neutrophil-to-Lymphocyte Ratio and Prognostic Nutritional Index Are Predictors for Overall Survival after Primary Pancreatic Resection of Pancreatic Ductal Adenocarcinoma: A Single Centre Evaluation. Cancers (Basel) 2024; 16:2911. [PMID: 39199682 PMCID: PMC11353046 DOI: 10.3390/cancers16162911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE Prognostic inflammation-based parameters have been reported as useful tools in various oncologic diseases. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high mortality rate, making reliable prognostic markers highly desirable. However, there is still inconsistency in the literature regarding the efficacy of the different available scores. METHODS A total of 207 patients, who underwent primary resection of PDAC from January 2000 to December 2018 at the University Hospital of Erlangen, were included in this retrospective single-center study. Different biomarkers, including the preoperative neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), the c-reactive protein (CRP)-albumin ratio (CAR), the lymphocyte-CRP ratio (LCR), the prognostic nutritional index (PNI) and the modified Glasgow prognostic score (mGPS) were analyzed for their ability to predict overall survival (OS). RESULTS In our cohort, the median overall survival was 20.7 months. Among the investigated biomarkers, NLR and PNI were identified as independent prognostic markers (Hazard Ratio (HR) 1.6 (1.0-2.5), p = 0.048 and HR 0.6 (0.4-0.9), p = 0.018), whereas PLR, CAR, LCR and mGPS did not reach significance in the multivariate analysis. Subgroup analysis revealed that the prognostic value of NLR and PNI is particularly evident in locally advanced tumor stages (pT3/4 and pN+). CONCLUSIONS The NLR and PNI could serve as valuable tools for estimating prognosis in patients with PDAC undergoing pancreatic resection in curative intention, especially in locally advanced tumor stages. However, conflicting results in the current literature highlight the need for further prospective studies to validate these findings.
Collapse
Affiliation(s)
- Danilo Hackner
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Susanne Merkel
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
| | - Andreas Weiß
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
| | - Georg F. Weber
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
| | - Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (S.M.); (A.W.); (C.K.); (G.F.W.); (R.G.); (M.B.)
| |
Collapse
|
33
|
Cai S, Yang G, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Spatial cell interplay networks of regulatory T cells predict recurrence in patients with operable non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:189. [PMID: 39093404 PMCID: PMC11297009 DOI: 10.1007/s00262-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The interplay between regulatory T cells (Tregs) and neighboring cells, which is pivotal for anti-tumor immunity and closely linked to patient prognosis, remains to be fully elucidated. METHODS Tissue microarrays of 261 operable NSCLC patients were stained by multiplex immunofluorescence (mIF) assay, and the interaction between Tregs and neighboring cells in the tumor microenvironment (TME) was evaluated. Employing various machine learning algorithms, we developed a spatial immune signature to predict the prognosis of NSCLC patients. Additionally, we explored the interplay between programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interactions and their relationship with Tregs. RESULTS Survival analysis indicated that the interplay between Tregs and neighboring cells in the invasive margin (IM) and tumor center was associated with recurrence in NSCLC patients. We integrated the intersection of the three algorithms to identify four crucial spatial immune features [P(CD8+Treg to CK) in IM, P(CD8+Treg to CD4) in IM, N(CD4+Treg to CK) in IM, N(CD4+Tcon to CK) in IM] and employed these characteristics to establish SIS, an independent prognosticator of recurrence in NSCLC patients [HR = 2.34, 95% CI (1.53, 3.58), P < 0.001]. Furthermore, analysis of cell interactions demonstrated that a higher number of Tregs contributed to higher PD-L1+ cells surrounded by PD-1+ cells (P < 0.001) with shorter distances (P = 0.004). CONCLUSION We dissected the cell interplay network within the TME, uncovering the spatial architecture and intricate interactions between Tregs and neighboring cells, along with their impact on the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
34
|
Shi RY, Zhou N, Xuan L, Jiang ZH, Xia J, Zhu JM, Chen KM, Zhou GL, Yu GP, Zhang J, Huang C, Liang AB, Liang KW, Zhang H, Chen JF, Zhang D, Zhong Y, Liu QF, Chen GQ, Duan CW. Trafficking circuit of CD8 + T cells between the intestine and bone marrow governs antitumour immunity. Nat Cell Biol 2024; 26:1346-1358. [PMID: 39039181 DOI: 10.1038/s41556-024-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8+CD44+CD62L+ central memory T cells into CD8+CD44-CD62L- T cells, designated as inter-organ migratory T cells (TIM cells). TIM cells move from the BM to the intestine by upregulating integrin β7 and downregulating C-X-C motif chemokine receptor 3 during leukaemogenesis. Upon immunogenic chemotherapy, these BM-derived TIM cells return from the intestine to the BM through integrin α4-vascular cell adhesion molecule 1 interaction. Blocking C-X-C motif chemokine receptor 3 function boosts the immune response against leukaemia by enhancing T cell trafficking. This phenomenon can also be observed in patients with leukaemia. In summary, we identify an unrecognized intestine-BM trafficking circuit of T cells that contributes to the antitumour effects of immunogenic chemotherapy.
Collapse
Affiliation(s)
- Rong-Yi Shi
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Neng Zhou
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Fujian Branch of Shanghai Children's Medical Center, SJTU-SM and Fujian Children's Hospital, Fujian, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-Hui Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xia
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jian-Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Kai-Ming Chen
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Li Zhou
- Shanghai Immune Therapy Institute, Renji Hospital, SJTU-SM, Shanghai, China
| | - Guo-Pan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Faculty of Basic Medicine, SJTU-SM, Shanghai, China
| | - Ai-Bin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai-Wei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, SJTU-SM, Shanghai, China
| | - Jian-Feng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, SJTU-SM, Shanghai, China
| | - Yi Zhong
- Shanghai Immune Therapy Institute, Renji Hospital, SJTU-SM, Shanghai, China.
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Guo-Qiang Chen
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
- State Key Laboratory of Systems Medicine for Cancer and Research Unit 2019RU043, Chinese Academy of Medical Sciences, Renji Hospital, SJTU-SM, Shanghai, China.
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
- Fujian Branch of Shanghai Children's Medical Center, SJTU-SM and Fujian Children's Hospital, Fujian, China.
| |
Collapse
|
35
|
Armstrong D, Chang CY, Hong MJ, Green L, Hudson W, Shen Y, Song LZ, Jammi S, Casal B, Creighton CJ, Carisey A, Zhang XHF, McKenna NJ, Kang SW, Lee HS, Corry DB, Kheradmand F. MAGE-A4-Responsive Plasma Cells Promote Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602985. [PMID: 39071307 PMCID: PMC11275715 DOI: 10.1101/2024.07.10.602985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Adaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN , a tumor suppressor, in human NSCLC. Here we show that constitutive expression of human MAGE-A4 combined with the loss of Pten in mouse airway epithelial cells results in metastatic adenocarcinoma enriched in CD138 + CXCR4 + plasma cells, predominantly expressing IgA. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138 + IgA + plasma cell density surrounding tumors. The abrogation of MAGE-A4-responsive plasma cells (MARPs) decreased tumor burden, increased T cell infiltration and activation, and reduced CD163 + CD206 + macrophages in mouse lungs. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA + MARPs in the lungs.
Collapse
|
36
|
Maulana TI, Teufel C, Cipriano M, Roosz J, Lazarevski L, van den Hil FE, Scheller L, Orlova V, Koch A, Hudecek M, Alb M, Loskill P. Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells. Cell Stem Cell 2024; 31:989-1002.e9. [PMID: 38754430 DOI: 10.1016/j.stem.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Physiologically relevant human models that recapitulate the challenges of solid tumors and the tumor microenvironment (TME) are highly desired in the chimeric antigen receptor (CAR)-T cell field. We developed a breast cancer-on-chip model with an integrated endothelial barrier that enables the transmigration of perfused immune cells, their infiltration into the tumor, and concomitant monitoring of cytokine release during perfused culture over a period of up to 8 days. Here, we exemplified its use for investigating CAR-T cell efficacy and the ability to control the immune reaction with a pharmacological on/off switch. Additionally, we integrated primary breast cancer organoids to study patient-specific CAR-T cell efficacy. The modular architecture of our tumor-on-chip paves the way for studying the role of other cell types in the TME and thus provides the potential for broad application in bench-to-bedside translation as well as acceleration of the preclinical development of CAR-T cell products.
Collapse
Affiliation(s)
- Tengku Ibrahim Maulana
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Claudia Teufel
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany
| | - Madalena Cipriano
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany; 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074 Tübingen, Germany
| | - Julia Roosz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Lisa Lazarevski
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lukas Scheller
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97078 Würzburg, Germany
| | - Valeria Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - André Koch
- Department of Women's Health Tübingen, Eberhard Karls University-Tübingen, 72076 Tübingen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97078 Würzburg, Germany; Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Außenstelle Würzburg Zelluläre Immuntherapie, 97082 Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97078 Würzburg, Germany.
| | - Peter Loskill
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074 Tübingen, Germany.
| |
Collapse
|
37
|
Zhang C, Zhang G, Xue L, Zhang Z, Zeng Q, Wu P, Wang L, Yang Z, Zheng B, Tan F, Xue Q, Gao S, Sun N, He J. Patterns and prognostic values of programmed cell death-ligand 1 expression and CD8 + T-cell infiltration in small cell carcinoma of the esophagus: a retrospective analysis of 34 years of National Cancer Center data in China. Int J Surg 2024; 110:4297-4309. [PMID: 36974732 PMCID: PMC11254267 DOI: 10.1097/js9.0000000000000064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/12/2022] [Indexed: 03/29/2023]
Abstract
BACKGROUND Small cell carcinoma of the esophagus (SCCE) is an extremely rare and highly aggressive neuroendocrine malignancy with a strikingly poor prognosis. Given the great clinical successes of checkpoint immunotherapies, we explored the expression profile and clinical significance of programmed cell death-ligand 1 (PD-L1) and CD8 + T cell in SCCE for the first time. MATERIALS AND METHODS Tumor-infiltrating immune cells (TIICs) and tumor cells in postoperative, whole tumor sections from 147 SCCE patients were stained for PD-LI expression. We also evaluated each patient's Combined Positive Score (CPS). Multiplex immunofluorescence staining (CD3, CD20, CD68, and PD-L1) was introduced to clarify the location of PD-L1. CD8 density was analyzed by digital imaging and analysis of entire slides. Clinical outcomes were tested for correlations with both PD-L1 expression and CD8 density. RESULTS No patients had PD-L1 expressed in their tumor cells. PD-L1 + expression in TIICs was detected in 65 patients (44.2%) and 42 (28.6%) exhibited CPS positivity. Multiplex immunofluorescence staining demonstrated that most of the PD-L1 was expressed on the CD68 + monocytes/macrophages. PD-L1 expression in the TIICs and CPS was found to be correlated with paraffin block age, tumor length, macroscopic type, T stage, and increased overall survival (OS). Expression of PD-L1 in TIICs showed significantly prolonged relapse-free survival (RFS). Increasing CD8 densities were associated with increased PD-L1 expression ( Ptrend <0.0001). Multivariate regression confirmed that PD-L1 in TIICs and CD8 states were independent predictors of OS, and CD8 status were found to be independently predictive of RFS. A stratification based on PD-L1 and CD8 status was also significantly associated with both OS and RFS. CONCLUSION Expression of PD-L1 was only detected in TIICs from approximately half of the patients with SCCEs. In SCCEs, PD-L1 and CD8 status are novel prognostic biomarkers and may inform the implementation of risk-related therapeutic strategies. SCCEs with higher CD8 infiltration also had higher expression of PD-L1, suggesting the development of resistance against adaptive immunity. These findings support the assertion that PD-L1/programmed cell death 1 inhibitors should be investigated in this rare malignancy.
Collapse
Affiliation(s)
- Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Lide Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
38
|
Gursoy V, Sadri S, Kucukelyas HD, Hunutlu FC, Pinar IE, Yegen ZS, Alkış N, Ersal T, Ali R, Ozkocaman V, Ozkalemkas F. HALP score as a novel prognostic factor for patients with myelodysplastic syndromes. Sci Rep 2024; 14:13843. [PMID: 38879594 PMCID: PMC11180126 DOI: 10.1038/s41598-024-64166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/05/2024] [Indexed: 06/19/2024] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous spectrum of clonal hematopoietic disorders with varying degrees of cytopenia and morphologic dysplasia. The hemoglobin, albumin, lymphocyte, and platelet (HALP) score is a prognostic marker in several types of malignant tumors. Prognostic value of HALP score remains unclear for MDS. To determine the prognostic value of baseline HALP score in MDS. We retrospectively analyzed data from 130 newly diagnosed MDS patients evaluated and classified under HALP score. By the receiver operating characteristic (ROC) analysis, the optimal cut-off value of HALP was > 67.5 in predicting mortality. Patients were divided into two groups: with low and high HALP scores, and the characteristics were compared between both groups. Patients' median age was 68 (19-84) years, and 79 (60.8%) were male. Higher HALP score was detected in MDS patients with intermediate-risk under IPSS score, and at high and very high risks under IPSS-R score, and those receiving azacitidine (AZA) treatment. The survival rates of those with a HALP score > 67.5 were significantly lower than those with low HALP score at 17.77 ± 3.98 (median ± SE) (p < 0.001). The 3-, 5- and 10-years survival rates of individuals with HALP scores > 67.5 were found as 25, 18, and 11%, respectively. Median overall survival (OS) was also determined as 33.10 (95% CI 16.34-49.88) months by the Kaplan-Meier method. HALP score has shown an ability to be a useful prognostic biomarker in various cancers, including MDS. The meaningful cut-off value of HALP is disease-specific and largely study-specific. High HALP score is associated with unfavorable clinicopathological characteristics. Also, it may be useful in predicting OS and mortality of MDS.
Collapse
Affiliation(s)
- Vildan Gursoy
- Department of Hematology, Bursa City Hospital, Bursa, Turkey.
| | - Sevil Sadri
- Department of Hematology, Bursa City Hospital, Bursa, Turkey
| | | | | | | | | | - Nihan Alkış
- Department of Hematology, Bursa City Hospital, Bursa, Turkey
| | - Tuba Ersal
- Department of Hematology, Uludag University Medical Faculty, Bursa, Turkey
| | - Ridvan Ali
- Department of Hematology, Uludag University Medical Faculty, Bursa, Turkey
| | - Vildan Ozkocaman
- Department of Hematology, Uludag University Medical Faculty, Bursa, Turkey
| | - Fahir Ozkalemkas
- Department of Hematology, Uludag University Medical Faculty, Bursa, Turkey
| |
Collapse
|
39
|
Zhao Z, Yan M, Pang H, Chen L, Tang X, Chen Z, Chen X, Sun H. Significance of Nutritional-Inflammatory Index as Predictors for Total Neoadjuvant Therapy-Induced Tumor Regression in Locally Advanced Rectal Cancer Patients. J Inflamm Res 2024; 17:3865-3878. [PMID: 38895140 PMCID: PMC11185252 DOI: 10.2147/jir.s462985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose To evaluate the predictive capacity of the nutritional-inflammatory index and clinicopathological characteristics in patients with locally advanced rectal cancer (LARC) receiving total neoadjuvant therapy (TNT). Methods Data from 127 patients with LARC receiving TNT from January 2017 to January 2021 were retrospectively analyzed. Clinicopathological characteristics with different TNT-induced responses were compared. The Chi-square test and the Mann-Whitney test were used to analyze the association between pre-TNT factors and TNT-induced responses. Multivariable logistic regression analysis was used to construct a predictive model. Results In the cohort of 127 patients with LARC who underwent total neoadjuvant therapy (TNT), the mean age was 54.1 ± 11.4 years; 88 (69.3%) were male. Seventy patients (55.1%) exhibited a favorable response to TNT, while 57 patients (44.9%) demonstrated a poor response. Tumor characteristics, including diameter, distance from the anal verge, pre-TNT lymphocyte, pre-TNT hemoglobin, CA199, PLR, and HALP, exhibit correlations with TNT-induced tumor regression. Multivariate logistic regression analysis identified large tumor diameters (> 5.0 cm; p = 0.005, HR 2.958; 95% CI 1.382-6.335) and low HALP (≤ 40; p = 0.002, HR 0.261; 95% CI 0.111-0.612) as predictors of TNT-induced poor responses. Additionally, low levels of HALP were associated with an increased risk of recurrence in patients with LARC with TNT, but this was not statistically significant (p = 0.087, HR 2.008, 95% CI 0.906-4.447). Conclusion A large tumor diameter and low HALP predict poor tumor regression induced by the CAPOX-based TNT regimen in patients with LARC.
Collapse
Affiliation(s)
- Zhou Zhao
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Menghua Yan
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Huayang Pang
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Lihui Chen
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Xi Tang
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Zhixiong Chen
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Xiufeng Chen
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| |
Collapse
|
40
|
Song Y, Yuan H, Yang X, Yang Z, Ren Z, Qi S, He H, Zhang XX, Jiang T, Yuan ZG. The opposing effect of acute and chronic Toxoplasma gondii infection on tumor development. Parasit Vectors 2024; 17:247. [PMID: 38835064 DOI: 10.1186/s13071-024-06240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.
Collapse
Affiliation(s)
- Yining Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xiaoying Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaowen Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shuting Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Houjing He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xiu-Xiang Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China.
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California, La Jolla, San Diego, CA, USA.
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Lisiecka U, Brodzki P, Śmiech A, Michalak K, Winiarczyk S, Żylińska B, Adaszek Ł. The diagnostic value of selected immune parameters in peripheral blood of dogs with malignant mammary tumours - a preliminary study. J Vet Res 2024; 68:271-278. [PMID: 38947156 PMCID: PMC11210351 DOI: 10.2478/jvetres-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The main adaptive immune cells are T and B lymphocytes and they play key roles in the induction of immune responses against canine mammary tumours. Investigating these cell subpopulations may lead to more precise diagnosis of these malignancies. Material and Methods The percentages of CD3+, CD4+ and CD8+ T cells and of CD21+ B cells in the peripheral blood of bitches with malignant mammary tumours were compared with those in the blood of healthy animals. The phenotypic features of peripheral blood leukocytes were evaluated by flow cytometry. Results There was a significant difference in the mean percentages of CD3+ lymphocytes between healthy (66.7%) and metastatic dogs (46.1%), and between tumour-bearing non-metastatic (66.6%) and metastatic dogs. There was also a significant difference in CD4+ T helper cell percentages between healthy dogs (40.4%) and dogs with metastases (23.2%), and between the latter and dogs without them (35.5%). In the case of CD21+ lymphocyte subsets, a significant difference was noted between healthy animals (10.9%) and those with metastases (20.1%), and between the latter and patients without metastases (8.5%). There were also significant differences in CD3+/CD21+ ratios between the group with metastases (3.0), the healthy group (7.8), and the group without metastases (8.5). Similarly, a significant difference was noted in CD4+/CD8+ ratios between animals with metastases (1.4), bitches in the control group (2.2), and dogs without metastases (1.9). Conclusion Peripheral blood leukocyte phenotypic characteristics are putative novel biomarkers. These findings may be useful in future studies improving mammary tumour diagnostic procedures, especially in metastasis detection.
Collapse
Affiliation(s)
- Urszula Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Anna Śmiech
- Department of Pathological Anatomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Beata Żylińska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
42
|
Majumder M, Janakiraman H, Chakraborty P, Vijayakumar A, Mayhue S, Yu H, Dincman T, Martin R, O’Quinn E, Mehrotra S, Palanisamy V. RNA-binding protein HuR reprograms immune T cells and promotes oral squamous cell carcinoma. ORAL ONCOLOGY REPORTS 2024; 10:100296. [PMID: 38681116 PMCID: PMC11044901 DOI: 10.1016/j.oor.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Hu Antigen R, also known as ELAVL1 (HuR), is a key posttranscriptional regulator in eukaryotic cells. HuR overexpression promotes several malignancies, including head and neck squamous cell carcinoma (HNSCC). However, its immune dysfunction-associated tumorigenesis pathways remain unknown. We examined HuR's effects on oral malignancies and immune cell function in vitro and in vivo using oral carcinoma cells and transgenic HuR knockout (KO) mice. CRISPR/Cas9-mediated HuR deletion in mice syngeneic oral cancer cells eliminated colony formation and tumor development. HuR-KO tumors had a lower tumor volume, fewer CD4+CD25+FoxP3+ regulatory T cells, and more CD8+ T cells, suggesting that HuR may suppress the immune response during oral cancer progression. In contrast, HuR KO oral epithelial tissues are resistant to 4NQO-induced oral malignancies compared to control tumor-bearing mice. HuR KO mice showed fewer Tregs and greater IFN levels than WT tumor-bearing mice, suggesting anticancer activity. Finally, the HuR inhibitor pyrvinium pamoate lowers tumor burden by enhancing CD8+ infiltration at the expense of CD4+, suggesting anticancer benefits. Thus, HuR-dependent oral neoplasia relies on immunological dysfunction, suggesting that decreasing HuR may boost antitumor potential and offer a novel HNSCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sari Mayhue
- Department of Biochemistry and Molecular Biology, USA
| | - Hong Yu
- Oral Health Sciences, College of Dental Medicine, USA
| | - Toros Dincman
- Department of Haematology and Oncology, College of Medicine, USA
| | - Romeo Martin
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth O’Quinn
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, USA
- Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
43
|
Chen Y, Fan W, Zhao Y, Liu M, Hu L, Zhang W. Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine. Molecules 2024; 29:2374. [PMID: 38792234 PMCID: PMC11124165 DOI: 10.3390/molecules29102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.
Collapse
Affiliation(s)
- Yuqian Chen
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Wenshuang Fan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
| | - Yanyan Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Linlin Hu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| |
Collapse
|
44
|
Ende K, Santos F, Guasch J, Kemkemer R. Migration of human T cells can be differentially directed by electric fields depending on the extracellular microenvironment. iScience 2024; 27:109746. [PMID: 38706849 PMCID: PMC11067362 DOI: 10.1016/j.isci.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.
Collapse
Affiliation(s)
- Karen Ende
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Fabião Santos
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Judith Guasch
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ralf Kemkemer
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Wang P, Chen J, Zhong R, Xia Y, Wu Z, Zhang C, Yao H. Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. Eur J Pharm Biopharm 2024; 198:114246. [PMID: 38479562 DOI: 10.1016/j.ejpb.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Immunotherapy has revolutionized cancer treatment by boosting the immune system and preventing disease escape mechanisms. Despite its potential, challenges like limited response rates and adverse immune effects impede its widespread clinical adoption. Ultrasound (US), known for its safety and effectiveness in tumor diagnosis and therapy, has been shown to significantly enhance immunotherapy when used with nanosystems. High-intensity focused ultrasound (HIFU) can obliterate tumor cells and elicit immune reactions through the creation of immunogenic debris. Low-intensity focused ultrasound (LIFU) bolsters tumor immunosuppression and mitigates metastasis risk by concentrating dendritic cells. Ultrasonic cavitation (UC) produces microbubbles that can transport immune enhancers directly, thus strengthening the immune response and therapeutic impact. Sonodynamic therapy (SDT) merges nanotechnology with immunotherapy, using specialized sonosensitizers to kill cancer cells and stimulate immune responses, increasing treatment success. This review discusses the integration of ultrasound-responsive nanosystems in tumor immunotherapy, exploring future opportunities and current hurdles.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Ji Chen
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Runming Zhong
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Yuanyuan Xia
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Zhina Wu
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Chunye Zhang
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Hai Yao
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China.
| |
Collapse
|
46
|
Yu X, Feng B, Wu J, Li M. A novel anoikis-related gene signature can predict the prognosis of hepatocarcinoma patients. Transl Cancer Res 2024; 13:1834-1847. [PMID: 38737687 PMCID: PMC11082671 DOI: 10.21037/tcr-23-2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major health problem with more than 850,000 cases per year worldwide. This cancer is now the third leading cause of cancer-related deaths worldwide, and the number is rising. Cancer cells develop anoikis resistance which is a vital step during cancer progression and metastatic colonization. However, there is not much research that specifically addresses the role of anoikis in HCC, especially in terms of prognosis. METHODS This study obtained gene expression data and clinical information from 371 HCC patients through The Cancer Genome Atlas (TCGA) Program and The Gene Expression Omnibus (GEO) databases. A total of 516 anoikis-related genes (ANRGs) were retrieved from GeneCard database and Harmonizome portal. Differential expression analysis identified 219 differentially expressed genes (DEGs), and univariate Cox regression analysis was utilized to select 99 ANRGs associated with the prognosis of HCC patients. A risk scoring model with seven genes was established using the least absolute shrinkage and selection operator (LASSO) regression model, and internal validation of the model was performed. RESULTS The identified 99 ANRGs are closely associated with the prognosis of HCC patients. The risk scoring model based on seven characteristic genes demonstrates excellent predictive performance, further validated by receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves. The study reveals significant differences in immune cell infiltration, gene expression, and survival status among different risk groups. CONCLUSIONS The prognosis of HCC patients can be predicted using a unique prognostic model built on ANRGs in HCC.
Collapse
Affiliation(s)
- Xiaohan Yu
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| | - Bo Feng
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| | - Jinge Wu
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| | - Meng Li
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, China
| |
Collapse
|
47
|
Raoul P, De Gaetano V, Sciaraffia G, Ormea G, Cintoni M, Pozzo C, Strippoli A, Gasbarrini A, Mele MC, Rinninella E. Gastric Cancer, Immunotherapy, and Nutrition: The Role of Microbiota. Pathogens 2024; 13:357. [PMID: 38787209 PMCID: PMC11124250 DOI: 10.3390/pathogens13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the treatment of gastric cancer (GC), which still represents the third leading cause of cancer-related death in Western countries. However, ICI treatment outcomes vary between individuals and need to be optimized. Recent studies have shown that gut microbiota could represent a key influencer of immunotherapy responses. At the same time, the nutritional status and diet of GC patients are also predictive of immunotherapy treatment response and survival outcomes. The objective of this narrative review is to gather recent findings about the complex relationships between the oral, gastric, and gut bacterial communities, dietary factors/nutritional parameters, and immunotherapy responses. Perigastric/gut microbiota compositions/functions and their metabolites could be predictive of response to immunotherapy in GC patients and even overall survival. At the same time, the strong influence of diet on the composition of the microbiota could have consequences on immunotherapy responses through the impact of muscle mass in GC patients during immunotherapy. Future studies are needed to define more precisely the dietary factors, such as adequate daily intake of prebiotics, that could counteract the dysbiosis of the GC microbiota and the impaired nutritional status, improving the clinical outcomes of GC patients during immunotherapy.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
| | - Valeria De Gaetano
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Gianmario Sciaraffia
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Ginevra Ormea
- Degree Course in Pharmacy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmelo Pozzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonia Strippoli
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
48
|
Long Q, Li Z, Yang W, Huang K, Du G. Necroptosis-related lncRNA-based novel signature to predict the prognosis and immune landscape in soft tissue sarcomas. J Cancer Res Clin Oncol 2024; 150:203. [PMID: 38635069 PMCID: PMC11026213 DOI: 10.1007/s00432-024-05682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Necroptosis-related long noncoding RNAs (lncRNAs) play crucial roles in cancer initiation and progression. Nevertheless, the role and mechanism of necroptosis-related lncRNAs in soft tissue sarcomas (STS) is so far unknown and needs to be explored further. METHODS Clinical and genomic data were obtained from the UCSC Xena database. All STS patients' subclusters were performed by unsupervised consensus clustering method based on the prognosis-specific lncRNAs, and then assessed their survival advantage and immune infiltrates. In addition, we explored the pathways and biological processes in subclusters through gene set enrichment analysis. At last, we established the necroptosis-related lncRNA-based risk signature (NRLncSig) using the least absolute shrinkage and selection operator (LASSO) method, and explored the prediction performance and immune microenvironment of this signature in STS. RESULTS A total of 911 normal soft tissue samples and 259 STS patients were included in current study. 39 prognosis-specific necroptosis-related lncRNAs were selected. Cluster 2 had a worse survival than the cluster 1 and characterized by different immune landscape in STS. A worse outcome in the high-risk group was observed by survival analysis and indicated an immunosuppressive microenvironment. The ROC curve analyses illustrated that the NRLncSig performing competitively in prediction of prognosis for STS patients. In addition, the nomogram presents excellent performance in predicting prognosis, which may be more beneficial towards STS patients' treatment. CONCLUSIONS Our result indicated that the NRLncSig could be a good independent predictor of prognosis, and significantly connected with immune microenvironment, thereby providing new insights into the roles of necroptosis-related lncRNAs in STS.
Collapse
Affiliation(s)
- Qiuzhong Long
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhengtian Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenkang Yang
- Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Huang
- Wuming Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
49
|
Thome CD, Tausche P, Hohenberger K, Yang Z, Krammer S, Trufa DI, Sirbu H, Schmidt J, Finotto S. Short-chain fatty acids induced lung tumor cell death and increased peripheral blood CD4+ T cells in NSCLC and control patients ex vivo. Front Immunol 2024; 15:1328263. [PMID: 38650948 PMCID: PMC11033355 DOI: 10.3389/fimmu.2024.1328263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Background Despite therapy advances, one of the leading causes of cancer deaths still remains lung cancer. To improve current treatments or prevent non-small cell lung cancer (NSCLC), the role of the nutrition in cancer onset and progression needs to be understood in more detail. While in colorectal cancer, the influence of local microbiota derived SCFAs have been well investigated, the influence of SCFA on lung cancer cells via peripheral blood immune system should be investigated more deeply. In this respect, nutrients absorbed via the gut might affect the tumor microenvironment (TME) and thus play an important role in tumor cell growth. Objective This study focuses on the impact of the short-chain fatty acid (SCFA) Sodium Butyrate (SB), on lung cancer cell survival. We previously described a pro-tumoral role of glucose on A549 lung adenocarcinoma cell line. In this study, we wanted to know if SB would counteract the effect of glucose and thus cultured A549 and H520 in vitro with and without SB in the presence or absence of glucose and investigated how the treatment with SB affects the survival of lung cancer cells and its influence on immune cells fighting against lung cancer. Methods In this study, we performed cell culture experiments with A549, H520 and NSCLC-patient-derived epithelial cells under different SB levels. To investigate the influence on the immune system, we performed in vitro culture of peripheral mononuclear blood cells (PBMC) from control, smoker and lung cancer patients with increasing SB concentrations. Results To investigate the effect of SB on lung tumor cells, we first analyzed the effect of 6 different concentrations of SB on A549 cells at 48 and 72 hours cell culture. Here we found that, SB treatment reduced lung cancer cell survival in a concentration dependent manner. We next focused our deeper analysis on the two concentrations, which caused the maximal reduction in cell survival. Here, we observed that SB led to cell cycle arrest and induced early apoptosis in A549 lung cancer cells. The expression of cell cycle regulatory proteins and A549 lung cancer stem cell markers (CD90) was induced. Additionally, this study explored the role of interferon-gamma (IFN-γ) and its receptor (IFN-γ-R1) in combination with SB treatment, revealing that, although IFN-γ-R1 expression was increased, IFN-γ did not affect the efficacy of SB in reducing tumor cell viability. Furthermore, we examined the effects of SB on immune cells, specifically CD8+ T cells and natural killer (NK) cells from healthy individuals, smokers, and NSCLC patients. SB treatment resulted in a decreased production of IFN-γ and granzyme B in CD8+ T cells and NK cells. Moreover, SB induced IFN-γ-R1 in NK cells and CD4+ T cells in the absence of glucose both in PBMCs from controls and NSCLC subjects. Conclusion Overall, this study highlights the potential of SB in inhibiting lung cancer cell growth, triggering apoptosis, inducing cell cycle arrest, and modulating immune responses by activating peripheral blood CD4+ T cells while selectively inducing IFN-γ-R1 in NK cells in peripheral blood and inhibiting peripheral blood CD8+ T cells and NK cells. Thus, understanding the mechanisms of action of SB in the TME and its influence on the immune system provide valuable insights of potentially considering SB as a candidate for adjunctive therapies in NSCLC.
Collapse
Affiliation(s)
- Carolin D. Thome
- Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany
| | - Patrick Tausche
- Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany
| | - Katja Hohenberger
- Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, University Medical School Hospital Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, University Medical School Hospital Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Joachim Schmidt
- Department of Anesthesiology, University Medical School Hospital Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, University Medical School Hospital Erlangen (UKER) Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
50
|
Xin Q, Wang D, Wang S, Zhang L, Liang Q, Yan X, Fan K, Jiang B. Tackling Esophageal Squamous Cell Carcinoma with ITFn-Pt(IV): A Novel Fusion of PD-L1 Blockade, Chemotherapy, and T-cell Activation. Adv Healthc Mater 2024; 13:e2303623. [PMID: 38142309 DOI: 10.1002/adhm.202303623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Indexed: 12/25/2023]
Abstract
PD-1/PD-L1 blockade immunotherapy has gained approval for the treatment of a diverse range of tumors; however, its efficacy is constrained by the insufficient infiltration of T lymphocytes into the tumor microenvironment, resulting in suboptimal patient responses. Here, a pioneering immunotherapy ferritin nanodrug delivery system denoted as ITFn-Pt(IV) is introduced. This system orchestrates a synergistic fusion of PD-L1 blockade, chemotherapy, and T-cell activation, aiming to augment the efficacy of tumor immunotherapy. Leveraging genetic engineering approach and temperature-regulated channel-based drug loading techniques, the architecture of this intelligent responsive system is refined. It is adept at facilitating the precise release of T-cell activating peptide Tα1 in the tumor milieu, leading to an elevation in T-cell proliferation and activation. The integration of PD-L1 nanobody KN035 ensures targeted engagement with tumor cells and mediates the intracellular delivery of the encapsulated Pt(IV) drugs, culminating in immunogenic cell death and the subsequent dendritic cell maturation. Employing esophageal squamous cell carcinoma (ESCC) as tumor model, the potent antitumor efficacy of ITFn-Pt(IV) is elucidated, underscored by augmented T-cell infiltration devoid of systemic adverse effects. These findings accentuate the potential of ITFn-Pt(IV) for ESCC treatment and its applicability to other malignancies resistant to established PD-1/PD-L1 blockade therapies.
Collapse
Affiliation(s)
- Qi Xin
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Daji Wang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shenghui Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450001, China
| | - Qian Liang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| |
Collapse
|