1
|
Weng J, Chen Y, Zeng Y, Jin W, Ji Y, Zhang W, Wang S, Li H, Yi M, Niu X, Deng X, Huang J, Su X, Chen L. A novel hydrogel loaded with plant exosomes and stem cell exosomes as a new strategy for treating diabetic wounds. Mater Today Bio 2025; 32:101810. [PMID: 40391025 PMCID: PMC12088786 DOI: 10.1016/j.mtbio.2025.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/26/2025] [Indexed: 05/21/2025] Open
Abstract
Diabetic wound healing is constrained by various factors, including chronic inflammation, sustained oxidative stress, impaired angiogenesis, and abnormal wound microenvironments. Exosomes derived from mesenchymal stem cells (MSC-exo) contain a wealth of bioactive substances that play a positive role in promoting diabetic wound healing. Plant-derived exosomes, as a novel therapeutic approach, are continuously being explored. Momordica charantia (MC) has been shown to possess blood glucose-lowering effects, and its exosomes are of significant relevance for treating diabetic wounds. However, direct application of exosomes to wounds faces challenges such as poor stability and short retention time, limiting their therapeutic effectiveness and clinical applicability. Encapsulating exosomes in hydrogels is an effective strategy to preserve their bioactivity. In this study, we fabricated a hydrogel loaded with MSC-exo and MC exosomes (MC-exo) by photopolymerization of methacrylated gelatin (GelMA) and dopamine (MEMC-Gel). The resulting MEMC-Gel exhibited favorable mechanical properties, adhesion, degradability, absorbency, and biocompatibility. In vitro, MEMC-Gel demonstrated the ability to resist inflammation, counter oxidative stress, promote fibroblast migration, support endothelial cell angiogenesis, and regulate macrophage polarization. In a diabetic mouse wound model, MEMC-Gel accelerated wound healing by inhibiting inflammation and oxidative stress, modulating macrophage immune responses and hyperglycemia within the microenvironment, promoting angiogenesis, and enhancing epithelialization. In conclusion, MEMC-Gel is an outstanding hydrogel dressing that synergistically promotes repair by loading MSC-exo and MC-exo, significantly accelerating diabetic wound healing through multiple mechanisms. This multifunctional hydrogel, based on exosomes from two different sources, provides an innovative therapeutic strategy for diabetic wound repair with broad clinical application potential.
Collapse
Affiliation(s)
- Jialu Weng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yizhang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yuhan Zeng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wenzhang Jin
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Ying Ji
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Wa Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Shunfu Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Haobing Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Meilin Yi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xiaoying Niu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xuchen Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Jiancheng Huang
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Xiang Su
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Lulu Chen
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| |
Collapse
|
2
|
Sjöberg M, Olsén E, Mapar M, Parkkila P, Niederkofler S, Mohammadi S, Jing Y, Emilsson G, Lindfors L, Agnarsson B, Höök F. Multiparametric functional characterization of individual lipid nanoparticles using surface-sensitive light-scattering microscopy. Proc Natl Acad Sci U S A 2025; 122:e2426601122. [PMID: 40402247 DOI: 10.1073/pnas.2426601122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
The most efficient lipid nanoparticles (LNPs) for gene therapeutics rely on specific lipids that protect the oligonucleotide cargo and aid cellular uptake and subsequent endosomal escape. Yet, the efficacy of current state-of-the-art LNP formulations remains low, a few percent at best. A deeper understanding of how LNP cargo, lipid composition, stoichiometry, size, structure, and pH-induced conformational changes influence their efficiency is therefore necessary for improved design. Given the variability of these properties, preferred screening methods should offer single-particle-resolved multiparametric characterization. In this work, we employ combined surface-sensitive fluorescence and label-free scattering microscopy with single LNP resolution, which when integrated with microfluidics for liquid exchange between media of varying refractive index, enables quantification of LNP size, refractive index, and cargo content. We investigate two LNP formulations that, while similar in size and mRNA content, exhibit differences in functional mRNA delivery. Correlating size with the content of Cy5-labeled mRNA revealed that the cargo scaled with LNP volume for both types of LNPs, while the refractive index varied marginally across LNP size. While this multiparametric fingerprinting alone could not distinguish the two LNP formulations, we use the same experimental platform to show that their difference in fusogenicity to a supporting lipid bilayer under early endosomal conditions (drop in pH from 7.4 to 6.0) correlates with observed differences in in vitro cellular data. This highlights a limitation of the current state-of-the-art toolbox for in situ LNP characterization, which generally focuses on structural properties of suspended LNPs, which may not adequately capture functional performance.
Collapse
Affiliation(s)
- Mattias Sjöberg
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Nanolyze, Gothenburg 431 83, Sweden
| | - Erik Olsén
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Mokhtar Mapar
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Petteri Parkkila
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Simon Niederkofler
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Sara Mohammadi
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Yujia Jing
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Gustav Emilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Björn Agnarsson
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Fredrik Höök
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
3
|
Noboa-Velástegui J, León JC, Castro J, Fletes A, Madrigal P, Álvarez I, Navarro R. Comparison of Methods for Isolating Exosomes from Plasma Subjects with Normal and High Fat Percentages. Life (Basel) 2025; 15:410. [PMID: 40141758 PMCID: PMC11943918 DOI: 10.3390/life15030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Adipose tissue is responsible for fat storage and is an important producer of extracellular vesicles (EVs). The biological content of exosomes, one kind of EV, provides information on aspects such as immunometabolic alterations. This study aimed to compare three plasma exosome isolation methods-using a commercial kit (CK), size exclusion chromatography (SEC), and differential centrifugation (DC)-and select the best one. Individuals categorized by normal and high body fat percentages were used. The DC and CK were proven to be the most advantageous out of the exosome isolation methods, so we suggest these methods for further protein and molecular analyses, respectively. Still, we emphasize the importance of selecting an appropriate methodology depending on the specific research objectives. At the same time, no statistical differences in exosome quality, morphology, total protein, or microRNA concentration were observed between individuals categorized by body fat percentage, so we suggest that the exosomal cargo varies in individuals with normal and high fat percentages.
Collapse
Affiliation(s)
- Jacqueline Noboa-Velástegui
- Doctorado en Ciencias Biomédicas, Secretaría Académica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada No. 950, Colonia Independencia, Guadalajara C.P. 44340, Mexico;
- Departamento de Biología Celular, Fisiología e Inmnunología, Institut de Biotecnologia i Biomedicina, Campus de Bellaterra, Bellatera, 08193 Barcelona, Spain
| | - Juan Carlos León
- Laboratorio de Microscopia Electrónica, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Sección XVI/Belisario Domínguez, Alcaldía Tlalpan C.P. 14080, Mexico;
| | - Jorge Castro
- Departamento de Ciencias de la Salud y Ecología Humana, División de Desarrollo Regional, Centro Universitario de la Costa Sur, Autlán de Navarro C.P. 48900, Mexico;
| | - Ana Fletes
- Instituto de Investigación en Enfermería y Salud Traslacional, Departamento de Enfermería Aplicada, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico;
| | - Perla Madrigal
- UDG-CA-701, Inmunometabolismo en Enfermedades Complejas y Envejecimiento, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44100, Mexico;
| | - Iñaki Álvarez
- Departamento de Biología Celular, Fisiología e Inmnunología, Institut de Biotecnologia i Biomedicina, Campus de Bellaterra, Bellatera, 08193 Barcelona, Spain
| | - Rosa Navarro
- Doctorado en Ciencias Biomédicas, Secretaría Académica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada No. 950, Colonia Independencia, Guadalajara C.P. 44340, Mexico;
- UDG-CA-701, Inmunometabolismo en Enfermedades Complejas y Envejecimiento, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44100, Mexico;
| |
Collapse
|
4
|
Thongsit A, Oontawee S, Siriarchavatana P, Rodprasert W, Somparn P, Na Nan D, Osathanon T, Egusa H, Sawangmake C. Scalable production of anti-inflammatory exosomes from three-dimensional cultures of canine adipose-derived mesenchymal stem cells: production, stability, bioactivity, and safety assessment. BMC Vet Res 2025; 21:81. [PMID: 39979916 PMCID: PMC11841348 DOI: 10.1186/s12917-025-04517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The therapeutic potential of exosomes derived from mesenchymal stem cells (MSCs) is increasingly recognized in veterinary medicine. This study explored the feasibility of a microcarrier-based three-dimensional (3D) culture system for producing the exosomes (cEXO). Investigations were conducted to enhance production efficiency, ensure stability, and evaluate the therapeutic potential of cEXO for anti-inflammatory applications while assessing their safety profile. RESULTS The microcarrier-based 3D culture system improved efficient production of cEXO, yielding exosomes with acceptable profiles, including a size of approximately 81.22 nm, negative surface charge, and high particle concentration (1.32 × 109 particles/mL). Confocal imaging proved dynamic changes in cell viability across culture phases, highlighting the challenges of maintaining cell viability during repeated exosome collection cycles. Characterization via transmission electron microscopy, nanoparticle tracking analysis, and zeta-potential measurements confirmed the stability and functionality of cEXO, particularly when stored at -20 °C. Functional assays showed that cEXO exerted significant anti-inflammatory activity in RAW264.7 macrophages in an inverse dose-dependent manner, with no observed cytotoxicity to fibroblasts or macrophages. Acute toxicity testing in rats revealed no adverse effects on clinical parameters, organ health, or body weight, supporting the safety of cEXO for therapeutic use. CONCLUSIONS This study highlights the potential of a microcarrier-based 3D culture system for scalable cEXO production with robust anti-inflammatory activity, stability, and safety profiles. These findings advance the development of cEXO-based therapies and support their application in veterinary regenerative medicine.
Collapse
Affiliation(s)
- Anatcha Thongsit
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saranyou Oontawee
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parkpoom Siriarchavatana
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Daneeya Na Nan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Center for Advanced Stem Cell and Regenerative Research, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Akinduro O, Kumar S, Chen Y, Thomas B, Hassan Q, Sims B. Human breast milk-derived exosomes attenuate lipopolysaccharide-induced activation in microglia. J Neuroinflammation 2025; 22:41. [PMID: 39955566 PMCID: PMC11830176 DOI: 10.1186/s12974-025-03345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
Microglia mediate the immune response in the central nervous system to many insults, including lipopolysaccharide (LPS), a bacterial endotoxin that initiates neuroinflammation in the neonatal population, especially preterm infants. The synthesis of the proinflammatory proteins CD40 and NLRP3 depends on the canonical NF-κB cascade as the genes encoding CD40 and NLRP3 are transcribed by the phosphorylated NF-κB p50/p65 heterodimer in LPS-induced microglia. Exosomes, which are nanosized vesicles (40-150 nm) involved in intercellular communication, are implicated in many pathophysiological processes. Human breast milk, which is rich in exosomes, plays a vital role in neonatal immune system maturation and adaptation. Activated microglia may cause brain-associated injuries or disorders; therefore, we hypothesize that human breast milk-derived exosomes (HBME) attenuate LPS-induced activation of CD40 and NLRP3 by decreasing p38 MAPK and NF-κB p50/p65 activation/phosphorylation downstream of TLR4 in murine microglia (BV2). Human microglia (HMC3) showed a significant decrease in p65 phosphorylation. We isolated purified HBME and characterized them using nanoparticle tracking analysis, transmission electron microscopy, fluorescence-activated cell sorting, and western blots. Analysis of microglia exposed to LPS and HBME indicated that HBME modulated the expression of signaling molecules in the canonical NF-κB pathway, including MyD88, IκBα, p38 MAPK, NF-κB p65, and their products CD40, NLRP3, and cytokines IL-1β and IL-10. Thus, HBMEs have great potential for attenuating the microglial response to LPS.
Collapse
Affiliation(s)
- Oluwatomi Akinduro
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Yuechuan Chen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL, 35294, USA
| | - Barbara Thomas
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Quamarul Hassan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, 1919 7th Avenue South, Birmingham, AL, 35294, USA.
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama at Birmingham, 1700 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Sha A, Luo Y, Xiao W, He J, Chen X, Xiong Z, Peng L, Zou L, Liu B, Li Q. Plant-Derived Exosome-like Nanoparticles: A Comprehensive Overview of Their Composition, Biogenesis, Isolation, and Biological Applications. Int J Mol Sci 2024; 25:12092. [PMID: 39596159 PMCID: PMC11593521 DOI: 10.3390/ijms252212092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are a type of membranous vesicle isolated from plant tissues. They contain proteins, lipids, nucleic acids, and other components. PELNs are involved in the defensive response to pathogen attacks by exerting anti-inflammatory, antiviral, antifibrotic, and antitumor effects through the substances they contain. Most PELNs are edible and can be used as carriers for delivering specific drugs without toxicity and side effects, making them a hot topic of research. Sources of PELNs are abundantly, and they can be produced in high yields, with a low risk of developing immunogenicity in vivo. This paper summarizes the formation, isolation, and purification methods; physical properties; and composition of PELNs through a comprehensive literature search. It also analyzes the biomedical applications of PELNs, as well as future research directions. This paper provides new ideas and methods for future research on PELNs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (A.S.); (Y.L.); (W.X.); (J.H.); (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (A.S.); (Y.L.); (W.X.); (J.H.); (X.C.); (Z.X.); (L.P.); (L.Z.)
| |
Collapse
|
7
|
Leščić Ašler I, Radman K, Jelić Matošević Z, Bertoša B, Weiss VU, Marchetti-Deschmann M. Exploring the manganese-dependent interaction between a transcription factor and its corresponding DNA: insights from gas-phase electrophoresis on a nES GEMMA instrument. Anal Bioanal Chem 2024; 416:5377-5386. [PMID: 39172237 PMCID: PMC11416365 DOI: 10.1007/s00216-024-05473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g. via electrophoretic mobility shift assays (EMSA). Formation of specific biocomplexes leads to differences in the migration pattern upon gel electrophoresis. Focusing on electrophoresis in the gas-phase, applying a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) also known as nES differential mobility analyzer (nES DMA), and on transcription factors (MntR proteins) from Bacillus subtilis and Mycobacterium tuberculosis, we took interest in the gas-phase electrophoresis of the corresponding biospecific complexes. We compared nES GEMMA, separating analytes in the nanometer regime (a few to several hundred nm in diameter) in the gas-phase in their native state according to particle size, to EMSA data. Indeed we were able to demonstrate manganese-mediated attachment of MntR to target genomic sequences with both analytical techniques. Despite some inherent pitfalls of the nES GEMMA method like analyte/instrument surface interactions, we were able to detect the target complexes. Moreover, we were able to calculate the molecular weight (MW) of the obtained species by application of a correlation function based on nES GEMMA obtained data. As gas-phase electrophoresis also offers the possibility of offline hyphenation to orthogonal analysis techniques, we are confident that nES GEMMA measurements are not just complementary to EMSA, but will offer the possibility of further in-depth characterization of biocomplexes in the future.
Collapse
Affiliation(s)
- Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Radman
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9-164 CTA, 1060, Vienna, Austria.
| | | |
Collapse
|
8
|
Yadav J, Chaudhary A, Tripathi T, Janjua D, Joshi U, Aggarwal N, Chhokar A, Keshavam CC, Senrung A, Bharti AC. Exosomal transcript cargo and functional correlation with HNSCC patients' survival. BMC Cancer 2024; 24:1144. [PMID: 39272022 PMCID: PMC11395213 DOI: 10.1186/s12885-024-12759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND HPV status in a subset of HNSCC is linked with distinct treatment outcomes. Present investigation aims to elucidate the distinct clinicopathological features of HPV-positive and HPV-negative HNSCC and investigate their association with the HNSCC patient survival. MATERIALS AND METHODS The total RNA of exosomes from HPV-positive (93VU147T) and HPV-negative (OCT-1) HNSCC cells was isolated, and the transcripts were estimated using Illumina HiSeq X. The expression of altered transcripts and their clinical relevance were further analyzed using publicly available cancer transcriptome data from The Cancer Genome Atlas (TCGA). RESULTS Transcriptomic analyses identified 3785 differentially exported transcripts (DETs) in HPV-positive exosomes compared to HPV-negative exosomes. DETs that regulate the protein machinery, cellular redox potential, and various neurological disorder-related pathways were over-represented in HPV-positive exosomes. TCGA database revealed the clinical relevance of altered transcripts. Among commonly exported abundant transcripts, SGK1 and MAD1L1 showed high expression, which has been correlated with poor survival in HNSCC patients. In the top 20 DETs of HPV-negative exosomes, high expression of FADS3, SGK3, and TESK2 correlated with poor survival of the HNSCC patients in the TCGA database. CONCLUSION Overall, our study demonstrates that HPV-positive and HPV-negative cells' exosomes carried differential transcripts cargo that may be related to pathways associated with neurological disorders. Additionally, the altered transcripts identified have clinical relevance, correlating with patient survival in HNSCC, thereby highlighting their potential as biomarkers and as therapeutic targets.
Collapse
Affiliation(s)
- Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Tanya Tripathi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Chetkar Chandra Keshavam
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India.
| |
Collapse
|
9
|
Ellakany AR, El Baz H, Shoheib ZS, Elzallat M, Ashour DS, Yassen NA. Stem cell-derived exosomes as a potential therapy for schistosomal hepatic fibrosis in experimental animals. Pathog Glob Health 2024; 118:429-449. [PMID: 37519008 PMCID: PMC11338202 DOI: 10.1080/20477724.2023.2240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease. Egg-induced granuloma formation and tissue fibrosis are the main causes of the high morbidity and mortality of schistosomiasis. Mesenchymal stem cells (MSCs)-derived exosomes play an important role with a superior safety profile than MSCs in the treatment of liver fibrosis. Therefore, the aim of this study was to investigate the potential therapeutic effect of MSCs-derived exosomes on schistosomal hepatic fibrosis. Exosomes were isolated from bone marrow MSCs and characterized. A total of 85 mice were divided into four groups: group I (control group), group II (PZQ group) infected and treated with PZQ, group III (EXO group) infected and treated with MSCs-derived exosomes and group IV (PZQ+EXO group) infected and treated with both PZQ and MSCs-derived exosomes. Assessment of treatment efficacy was evaluated by histopathological and immunohistochemical examination of liver sections by proliferating cell nuclear antigen (PCNA) and nuclear factor-κB (NF-κB). The results showed significant reduction of the number and diameter of hepatic granulomas, hepatic fibrosis, upregulation of PCNA expression and reduction of NF-κB expression in EXO and PZQ+EXO groups as compared to other groups at all durations post infection. Additionally, more improvement was observed in PZQ+EXO group. In conclusion, MSCs-derived exosomes are a promising agent for the treatment of schistosomal hepatic fibrosis, and their combination with PZQ shows a synergistic action including antifibrotic and anti-inflammatory effects. However, further studies are required to establish their functional components and their mechanisms of action.
Collapse
Affiliation(s)
- Asmaa R. Ellakany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanan El Baz
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab S. Shoheib
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nabila A. Yassen
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Aghajanloo B, Hadady H, Ejeian F, Inglis DW, Hughes MP, Tehrani AF, Nasr-Esfahani MH. Biomechanics of circulating cellular and subcellular bioparticles: beyond separation. Cell Commun Signal 2024; 22:331. [PMID: 38886776 PMCID: PMC11181607 DOI: 10.1186/s12964-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients' medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 μm for platelets to 25 μm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles.
Collapse
Affiliation(s)
- Behrouz Aghajanloo
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Science, Research and Technology (DISAT), Politecnico di Torino, Turin, Italy
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hanieh Hadady
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
11
|
Kanannejad Z, Arab S, Soleimanian S, Mazare A, Kheshtchin N. Exosomes in asthma: Underappreciated contributors to the pathogenesis and novel therapeutic tools. Immun Inflamm Dis 2024; 12:e1325. [PMID: 38934401 PMCID: PMC11209551 DOI: 10.1002/iid3.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools. METHODS A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma. The retrieved articles were analyzed to extract relevant information on the role of exosomes in maintaining lung microenvironment homeostasis, regulating inflammatory responses, and their diagnostic and therapeutic potential for asthma. RESULTS Exosomes secreted by various cell types, have emerged as crucial mediators of intercellular communication in healthy and diseased conditions. Evidence suggest that exosomes play a significant role in maintaining lung microenvironment homeostasis and contribute to asthma pathogenesis by regulating inflammatory responses. Differential exosomal content between healthy individuals and asthmatics holds promise for the development of novel asthma biomarkers. Furthermore, exosomes secreted by immune and nonimmune cells, as well as those detected in biofluids, demonstrate potential in promoting or regulating immune responses, making them attractive candidates for designing new treatment strategies for inflammatory conditions such as asthma. CONCLUSION Exosomes, with their ability to modulate immune responses and deliver therapeutic cargo, offer potential as targeted therapeutic tools in asthma management. Further research and clinical trials are required to fully understand the mechanisms underlying exosome-mediated effects and translate these findings into effective diagnostic and therapeutic strategies for asthma patients.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research CenterShiraz University of Medical SciencesShirazIran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Amirhossein Mazare
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasim Kheshtchin
- Allergy Research CenterShiraz University of Medical SciencesShirazIran
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
12
|
Deng S, Wu Y, Huang S, Yang X. Novel insights into the roles of migrasome in cancer. Discov Oncol 2024; 15:166. [PMID: 38748047 PMCID: PMC11096295 DOI: 10.1007/s12672-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Collapse
Affiliation(s)
- Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Sheng Huang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
14
|
Saneh H, Wanczyk H, Walker J, Finck C. Effectiveness of extracellular vesicles derived from hiPSCs in repairing hyperoxia-induced injury in a fetal murine lung explant model. Stem Cell Res Ther 2024; 15:80. [PMID: 38486338 PMCID: PMC10941466 DOI: 10.1186/s13287-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
15
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 1148] [Impact Index Per Article: 1148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
16
|
YUSTINASARI LR, KURATOMI M, KAGAWA S, GONDO A, ARAMAKI N, IMAI H, KUSAKABE KT. Specific expression and blood kinetics for relaxin 2, lipocalin 2, and tissue factor pathway inhibitor 2 at the canine placenta and pregnant bloods. J Vet Med Sci 2024; 86:77-86. [PMID: 38057091 PMCID: PMC10849861 DOI: 10.1292/jvms.23-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
In general, humoral factors released from the placenta influence pregnancy progression, but the involvement of the canine placenta is often unidentified. We investigated specific genes in canine placentas and analyzed the blood dynamics of the translated proteins. Furthermore, RNAs are known to be released from placentas embedding in exosomes, a type of extracellular vesicles. Here, the presence of cell-free RNAs in pregnant serums was also confirmed. RNA specimens were purified from the normal healthy dog placentas and applied to RNA-Seq analysis. Expressions of frequent genes were confirmed by RT-PCR using placentas from other individuals and breeds. Relaxin (RLN) 2, lipocalin (LCN) 2, and tissue factor pathway inhibitor (TFPI) 2 were selected as high-expressed and placenta-specific genes. By western blot, the three factors were clearly detected in the pregnant serums. Quantitative analysis revealed that the amount of RLN2 increased significantly from non-pregnancy to day 41 of pregnancy. Regarding LCN2 and TFPI2, the protein serum levels elevated during pregnancy, but the statistical differences were not detected. Exosomes were found in all pregnant serums; however, the percentage was less than 6% in total extracellular vesicles. The cell-free RNA related to RLN2 was detected, but no elevation was confirmed during pregnancy. We found specific genes in the canine placenta and the transition of their translated protein into the blood. These factors may become useful tools for research on canine pregnancy and monitoring of reproductive management. Exosomes and cell-free RNA could not be found to be valid in canine reproduction.
Collapse
Affiliation(s)
- Lita Rakhma YUSTINASARI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria KURATOMI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Seizaburo KAGAWA
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ai GONDO
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Nobuaki ARAMAKI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki IMAI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
17
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Yıldırım MR, Kırbaş OK, Abdik H, Şahin F, Avşar Abdik E. The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis. Med Oncol 2023; 41:30. [PMID: 38148465 DOI: 10.1007/s12032-023-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Breast cancer is one of the most occurring cancer types in women worldwide and metastasizes to several organs such as bone, lungs, liver, brain, and ovaries. Extracellular vesicles (EVs) mediate intercellular signaling which has a profound effect on tumor development and metastasis. Recent developments in the field of EVs provide an opportunity to investigate the roles of EVs released from tumor cells in metastasis. In this study, we compared the effects of metastatic breast cancer-derived EVs on both nonluteinized granulosa HGrC1 and ovarian cancer OVCAR-3 cells in terms of proliferation, invasion, apoptosis, and gene expression levels. EVs were isolated from the culture medium of metastatic breast cancer cell line MDA-MB-231 by ultracentrifugation. Cell proliferation, apoptosis, cell cycle, invasion, and cellular uptake analysis were performed to clarify the roles of tumor-derived EVs in both cells. 6.85 × 108 nanoparticles of BCD-EVs were markedly increased cell proliferation as well as invasion capacity. Exposing the cells with BCD-EVs for 24 h, resulted in an accumulation of both cells in G2/M phase as determined by flow cytometry. The apoptosis assay results were consistent with cell proliferation and cell cycle results. The uptake of the BCD-EVs was efficiently internalized by both cells. In addition, marked variations in fatty acid composition between cells were observed. BCD-EVs appeared new fatty acids in HGrC1. Besides, BCD-EVs upregulated epithelial-mesenchymal transition (EMT) and proliferation-related genes. In conclusion, an environment of tumor-derived EVs changes the cellular phenotype of cancer and noncancerous cells and may lead to tumor progression and metastasis.
Collapse
Affiliation(s)
- Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, 34303, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, 34134, Istanbul, Turkey.
| |
Collapse
|
19
|
Chernyshev VS, Yashchenok A, Ivanov M, Silachev DN. Filtration-based technologies for isolation, purification and analysis of extracellular vesicles. Phys Chem Chem Phys 2023; 25:23344-23357. [PMID: 37646109 DOI: 10.1039/d3cp03129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The involvement of extracellular vesicles (EVs) in cellular communication with multifactorial and multifaceted biological activity has generated significant interest, highlighting their potential diagnostic and therapeutic applications. EVs are found in nearly all biological fluids creating a broad spectrum of where potential disease markers can be found for liquid biopsy development and what subtypes can be used for treatment of diseases. Complexity of biological fluids has generated a variety of different approaches for EV isolation and identification that may in one way or another be most optimal for research studies or clinical use. Each approach has its own advantages and disadvantages, significance of which can be evaluated depending on the end goal of the study. One of the methods is based on filtration which has received attention in the past years due its versatility, low cost and other advantages. Introduction of different approaches for EV capture and analysis that are based on filtration gave rise to new subcategories of filtration techniques which are presented in this overview. Miniaturization and combination of filtration-based approaches with microfluidics is also highlighted due its future prospects in healthcare, especially point-of-need technologies.
Collapse
Affiliation(s)
- Vasiliy S Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, 117997, Moscow, Russia.
| | - Alexey Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205, Moscow, Russia
| | - Mikhail Ivanov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, 117997, Moscow, Russia.
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: Further exploration of biomedical function and application potential. Acta Pharm Sin B 2023; 13:3300-3320. [PMID: 37655320 PMCID: PMC10465964 DOI: 10.1016/j.apsb.2022.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 03/09/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles actively secreted by cells, that contain a variety of functional nucleic acids, proteins, and lipids, and are important mediums of intercellular communication. Based on their natural properties, EVs can not only retain the pharmacological effects of their source cells but also serve as natural delivery carriers. Among them, plant-derived nanovesicles (PNVs) are characterized as natural disease therapeutics with many advantages such as simplicity, safety, eco-friendliness, low cost, and low toxicity due to their abundant resources, large yield, and low risk of immunogenicity in vivo. This review systematically introduces the biogenesis, isolation methods, physical characterization, and components of PNVs, and describes their administration and cellular uptake as therapeutic agents. We highlight the therapeutic potential of PNVs as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, wound healing, regeneration, and antiaging properties as well as their potential use in the treatment of liver disease and COVID-19. Finally, the toxicity and immunogenicity, the current clinical application, and the possible challenges in the future development of PNVs were analyzed. We expect the functions of PNVs to be further explored to promote clinical translation, thereby facilitating the development of a new framework for the treatment of human diseases.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongmei Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fu Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Nanjing 210009, China
- Jiangsu Institute of Cancer Research, Nanjing 210009, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
21
|
Skouras P, Gargalionis AN, Piperi C. Exosomes as Novel Diagnostic Biomarkers and Therapeutic Tools in Gliomas. Int J Mol Sci 2023; 24:10162. [PMID: 37373314 DOI: 10.3390/ijms241210162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes constitute small extracellular vesicles that contain lipids, proteins, nucleic acids, and glycoconjugates from the secreted cells and are capable of transmitting signals between cells and coordinating cellular communication. By this means, they are ultimately involved in physiology and disease, including development, homeostasis, and immune system regulation, as well as contributing to tumor progression and neurodegenerative diseases pathology. Recent studies have shown that gliomas secrete a panel of exosomes which have been associated with cell invasion and migration, tumor immune tolerance, potential for malignant transformation, neovascularization, and resistance to treatment. Exosomes have therefore emerged as intercellular communicators, which mediate the tumor-microenvironment interactions and exosome-regulated glioma cell stemness and angiogenesis. They may induce tumor proliferation and malignancy in normal cells by carrying pro-migratory modulators from cancer cells as well as many different molecular cancer modifiers, such as oncogenic transcripts, miRNAs, mutant oncoproteins, etc., which promote the communication of cancer cells with the surrounding stromal cells and provide valuable information on the molecular profile of the existing tumor. Moreover, engineered exosomes can provide an alternative system for drug delivery and enable efficient treatment. In the present review, we discuss the latest findings regarding the role of exosomes in glioma pathogenesis, their utility in non-invasive diagnosis, and potential applications to treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Neurosurgery, 'Evangelismos' Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
22
|
Zoratto S, Heuser T, Friedbacher G, Pletzenauer R, Graninger M, Marchetti-Deschmann M, Weiss VU. Adeno-Associated Virus-like Particles' Response to pH Changes as Revealed by nES-DMA. Viruses 2023; 15:1361. [PMID: 37376661 DOI: 10.3390/v15061361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Gas-phase electrophoresis on a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) separates single-charged, native analytes according to the surface-dry particle size. A volatile electrolyte, often ammonium acetate, is a prerequisite for electrospraying. Over the years, nES GEMMA has demonstrated its unique capability to investigate (bio-)nanoparticle containing samples in respect to composition, analyte size, size distribution, and particle numbers. Virus-like particles (VLPs), being non-infectious vectors, are often employed for gene therapy applications. Focusing on adeno-associated virus 8 (AAV8) based VLPs, we investigated the response of these bionanoparticles to pH changes via nES GEMMA as ammonium acetate is known to exhibit these changes upon electrospraying. Indeed, slight yet significant differences in VLP diameters in relation to pH changes are found between empty and DNA-cargo-filled assemblies. Additionally, filled VLPs exhibit aggregation in dependence on the applied electrolyte's pH, as corroborated by atomic force microscopy. In contrast, cryogenic transmission electron microscopy did not relate to changes in the overall particle size but in the substantial particle's shape based on cargo conditions. Overall, we conclude that for VLP characterization, the pH of the applied electrolyte solution has to be closely monitored, as variations in pH might account for drastic changes in particles and VLP behavior. Likewise, extrapolation of VLP behavior from empty to filled particles has to be carried out with caution.
Collapse
Affiliation(s)
- Samuele Zoratto
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Thomas Heuser
- Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, A-1030 Vienna, Austria
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Robert Pletzenauer
- Pharmaceutical Sciences, Baxalta Innovations GmbH (Part of Takeda), A-1221 Vienna, Austria
| | - Michael Graninger
- Pharmaceutical Sciences, Baxalta Innovations GmbH (Part of Takeda), A-1221 Vienna, Austria
| | | | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| |
Collapse
|
23
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
24
|
Brezgin S, Kostyusheva A, Ponomareva N, Bayurova E, Kondrashova A, Frolova A, Slatinskaya O, Fatkhutdinova L, Maksimov G, Zyuzin M, Gordeychuk I, Lukashev A, Makarov S, Ivanov A, Zamyatnin AA, Chulanov V, Parodi A, Kostyushev D. Hydroxychloroquine Enhances Cytotoxic Properties of Extracellular Vesicles and Extracellular Vesicle-Mimetic Nanovesicles Loaded with Chemotherapeutics. Pharmaceutics 2023; 15:534. [PMID: 36839856 PMCID: PMC9962585 DOI: 10.3390/pharmaceutics15020534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin. EMNVs and EVs exhibit similar properties, but EMNVs are more effectively internalized, while EVs show higher intracellular doxorubicin release activity. In addition, these nanotherapeutics were investigated in combination with the FDA-approved drug hydroxychloroquine (HCQ). We demonstrate that HCQ-induced lysosome destabilization and could significantly increase nanoparticle internalization, doxorubicin release, and cytotoxicity. Altogether, these data demonstrate that, from the delivery standpoint in vitro, the internalization of EMNVs and EVs and their payload release were slightly different and both nanotherapeutics had comparable cytotoxic performance. However, the synthesis of EMNVs was significantly faster and cost-effective. In addition, we highlight the benefits of combining biological nanoparticles with the lysosome-destabilizing agent HCQ that increased both the internalization and the cytotoxic properties of the particles.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - Anastasia Frolova
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Olga Slatinskaya
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Georgy Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail Zyuzin
- School of Physics, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Sergey Makarov
- School of Physics, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
25
|
Sausset R, Krupova Z, Guédon E, Peron S, Grangier A, Petit M, De Sordi L, De Paepe M. Comparison of interferometric light microscopy with nanoparticle tracking analysis for the study of extracellular vesicles and bacteriophages. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e75. [PMID: 38938523 PMCID: PMC11080698 DOI: 10.1002/jex2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/29/2024]
Abstract
Research on extracellular vesicles (EVs) and bacteriophages (phages) has been steadily expanding over the past decades as many of their roles in medicine, biology, and ecosystems have been unveiled. Such interest has brought about the need for new tools to quantify and determine the sizes of these biological nanoparticles. A new device based on interferometric light microscopy (ILM), the Videodrop, was recently developed for this purpose. Here, we compared this new device to two nanoparticle tracking analysis (NTA) devices, the NanoSight and the ZetaView, for the analysis of EVs and phages. We used EVs isolated from bacteria, fecal samples, bovine milk and human cells, and phages of various sizes and shape, ranging from 30 to 120 nm of diameter. While NTA instruments correctly enumerated most phages, the Videodrop detected only the largest one, indicating a lower sensitivity threshold compared to the NTA devices. Nevertheless, the performance of the Videodrop compared favourably to that of the NTA devices for the determination of the concentration of eukaryotic EV samples. The NanoSight instrument provided the most precise size distributions but the Videodrop was by far the most time-saving device, making it worthy of consideration for studies conducted on a large number of samples composed of nanoparticles larger than 90 nm.
Collapse
Affiliation(s)
- Romain Sausset
- Micalis Institute, INRAE, AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
- Myriade68 boulevard de Port RoyalParisFrance
- Centre de Recherche Saint AntoineSorbonne Université, INSERMParisFrance
| | - Zuzana Krupova
- Excilone, Departement R&D6 rue Blaise Pascal, Parc Euclide, Bat. AElancourtFrance
| | | | | | - Alice Grangier
- Laboratoire MSC Matière et Systèmes ComplexesCNRS UMR 7057Université Paris CitéParisFrance
| | - Marie‐Agnès Petit
- Micalis Institute, INRAE, AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Luisa De Sordi
- Centre de Recherche Saint AntoineSorbonne Université, INSERMParisFrance
| | - Marianne De Paepe
- Micalis Institute, INRAE, AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| |
Collapse
|
26
|
Pallares-Rusiñol A, Moura SL, Martí M, Pividori MI. Electrochemical Genosensing of Overexpressed GAPDH Transcripts in Breast Cancer Exosomes. Anal Chem 2023; 95:2487-2495. [PMID: 36683335 PMCID: PMC9893220 DOI: 10.1021/acs.analchem.2c04773] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Exosomes are receiving highlighted attention as new biomarkers for the detection of cancer since they are profusely released by tumor cells in different biological fluids. In this paper, the exosomes are preconcentrated from the serum by immunomagnetic separation (IMS) based on a CD326 receptor as a specific epithelial cancer-related biomarker and detected by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts. Following the lysis of the captured exosomes, the released GAPDH transcripts are amplified by reverse transcription polymerase chain reaction (RT-PCR) with a double-tagging set of primers on poly(dT)-modified-MPs to increase the sensitivity. The double-tagged amplicon is then quantified by electrochemical genosensing. The IMS/double-tagging RT-PCR/electrochemical genosensing approach is first demonstrated for the sensitive detection of exosomes derived from MCF7 breast cancer cells and compared with CTCs in terms of the analytical performance, showing an LOD of 4 × 102 exosomes μL-1. The genosensor was applied to human samples by immunocapturing the exosomes directly from serum from breast cancer patients and showed a higher electrochemical signal (3.3-fold, p < 0.05), when compared with healthy controls, suggesting an overexpression of GAPDH on serum-derived exosomes from breast cancer patients. The detection of GAPDH transcripts is performed from only 1.0 mL of human serum using specific magnetic particles, improving the analytical simplification and avoiding ultracentrifugation steps, demonstrating to be a promising strategy for minimal invasive liquid biopsy.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Silio Lima Moura
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mercè Martí
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Isabel Pividori
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
27
|
Sridharan B, Lim HG. Exosomes and ultrasound: The future of theranostic applications. Mater Today Bio 2023; 19:100556. [PMID: 36756211 PMCID: PMC9900624 DOI: 10.1016/j.mtbio.2023.100556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Biomaterials and pertaining formulations have been very successful in various diagnostic and therapeutic applications because of its ability to overcome pharmacological limitations. Some of them have gained significant focus in the recent decade for their theranostic properties. Exosomes can be grouped as biomaterials, since they consist of various biological micro/macromolecules and possess all the properties of a stable biomaterial with size in nano range. Significant research has gone into isolation and exploitation of exosomes as potential theranostic agent. However, the limitations in terms of yield, efficacy, and target specificity are continuously being addressed. On the other hand, several nano/microformulations are responsive to physical or chemical alterations and were successfully stimulated by tweaking the physical characteristics of the surrounding environment they are in. Some of them are termed as photodynamic, sonodynamic or thermodynamic therapeutic systems. In this regard, ultrasound and acoustic systems were extensively studied for its ability towards altering the properties of the systems to which they were applied on. In this review, we have detailed about the diagnostic and therapeutic applications of exosomes and ultrasound separately, consisting of their conventional applications, drawbacks, and developments for addressing the challenges. The information were categorized into various sections that provide complete overview of the isolation strategies and theranostic applications of exosomes in various diseases. Then the ultrasound-based disease diagnosis and therapy were elaborated, with special interest towards the use of ultrasound in enhancing the efficacy of nanomedicines and nanodrug delivery systems, Finally, we discussed about the ability of ultrasound in enhancing the diagnostic and therapeutic properties of exosomes, which could be the future of theranostics.
Collapse
Affiliation(s)
| | - Hae Gyun Lim
- Corresponding author. Biomedical Ultrasound Lab, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
28
|
Salehpour A, Balmagambetova S, Mussin N, Kaliyev A, Rahmanifar F. Mesenchymal stromal/stem cell-derived exosomes and genitourinary cancers: A mini review. Front Cell Dev Biol 2023; 10:1115786. [PMID: 36684446 PMCID: PMC9845763 DOI: 10.3389/fcell.2022.1115786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stromal/stem cell- (MSC-) derived exosomes are gaining popularity for their involvement in tissue repair and repressing various tumors through extensive patterns. Nevertheless, the impact of extracellular vesicles produced by stem cells on tumor formation and progression is controversial and seems to depend on several factors. The utilization of MSCs' various capabilities in urogenital neoplasms is widely regarded as a potential future therapeutic as well. These genitourinary neoplasms include prostatic neoplasms, ovarian neoplasms, cervical neoplasms, endometrial neoplasms, bladder neoplasms, and renal cell neoplasms. The present study has concentrated on the most recent information on genitourinary neoplasms employing MSCs derived exosomes' many capabilities, such as delivering effective RNAs, extensive tissue compatibility, and specificity with tumor identification without inherent limitations of cell therapy.
Collapse
Affiliation(s)
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nadiar Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
29
|
Zhang K, Li P, Jia Y, Liu M, Jiang J. Concise review: Current understanding of extracellular vesicles to treat neuropathic pain. Front Aging Neurosci 2023; 15:1131536. [PMID: 36936505 PMCID: PMC10020214 DOI: 10.3389/fnagi.2023.1131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Extracellular vesicles (EVs) including exosomes are vesicular vesicles with phospholipid bilayer implicated in many cellular interactions and have the ability to transfer multiple types of cargo to cells. It has been found that EVs can package various molecules including proteins and nucleic acids (DNA, mRNA, and noncoding RNA). The discovery of EVs as carriers of proteins and various forms of RNA, such as microRNAs (miRNA) and long noncoding RNAs (lncRNA), has raised great interest in the field of drug delivery. Despite the underlying mechanisms of neuropathic pain being unclear, it has been shown that uncontrolled glial cell activation and the neuroinflammation response to noxious stimulation are important in the emergence and maintenance of neuropathic pain. Many studies have demonstrated a role for noncoding RNAs in the pathogenesis of neuropathic pain and EVs may offer possibilities as carriers of noncoding RNAs for potential in neuropathic pain treatment. In this article, the origins and clinical application of EVs and the mechanism of neuropathic pain development are briefly introduced. Furthermore, we demonstrate the therapeutic roles of EVs in neuropathic pain and that this involve vesicular regulation of glial cell activation and neuroinflammation.
Collapse
|
30
|
Harvey B, Fu X, Li L, Neupane KR, Anand N, Kolesar JM, Richards CI. Dendritic Cell Membrane-Derived Nanovesicles for Targeted T Cell Activation. ACS OMEGA 2022; 7:46222-46233. [PMID: 36570199 PMCID: PMC9773342 DOI: 10.1021/acsomega.2c04420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
T cells play an integral role in the generation of an effective immune response and are responsible for clearing foreign microbes that have bypassed innate immune system defenses and possess cognate antigens. The immune response can be directed toward a desired target through the selective priming and activation of T cells. Due to their ability to activate a T cell response, dendritic cells and endogenous vesicles from dendritic cells are being developed for cancer immunotherapy treatment. However, current platforms, such as exosomes and synthetic nanoparticles, are limited by their production methods and application constraints. Here, we engineer nanovesicles derived from dendritic cell membranes with similar properties as dendritic cell exosomes via nitrogen cavitation. These cell-derived nanovesicles are capable of activating antigen-specific T cells through direct and indirect mechanisms. Additionally, these nanovesicles can be produced in large yields, overcoming production constraints that limit clinical application of alternative immunomodulatory vesicle or nanoparticle-based methods. Thus, dendritic cell-derived nanovesicles generated by nitrogen cavitation show potential as an immunotherapy platform to stimulate and direct T cell response.
Collapse
Affiliation(s)
- Brock
T. Harvey
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xu Fu
- Light
Microscopy Facility, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lan Li
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaga R. Neupane
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Namrata Anand
- Department
of Pharmacy and Practice, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jill M. Kolesar
- Department
of Pharmacy and Practice, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher I. Richards
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
31
|
Hao Y, Zhang W, Qin J, Tan L, Luo Y, Chen H. Biological Cardiac Patch Based on Extracellular Vesicles and Extracellular Matrix for Regulating Injury-Related Microenvironment and Promoting Cardiac Tissue Recovery. ACS APPLIED BIO MATERIALS 2022; 5:5218-5230. [PMID: 36265007 DOI: 10.1021/acsabm.2c00659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac patches are widely investigated to repair or regenerate diseased and aging cardiac tissues. While numerous studies looked into engineering the biochemical/biomechanical/cellular microenvironment and components in the heart tissue, the changes induced by cardiac patches and how they should be controlled to promote cardiac tissue repair/regeneration remains an important yet untapped direction, especially immunological responses. In this study, we designed and fabricated a bilaminated cardiac patch based on extracellular matrix (ECM) materials loaded with the extracellular vesicles (EVs) derived from mesenchymal stromal cells. The function of the biological material to modulate the injury-related microenvironment in a cardiac infarction model in mice was investigated. The study showed that the treatment of EV-ECM patches to the infarcted area increased the level of immunomodulatory major histocompatibility complex class IIlo macrophages in the early stage of myocardial injury to mitigate excessive inflammatory responses due to injury. The intensity of the acquired proinflammatory immune response in systemic immune organs was reduced. Further analyses indicated that the EV-ECM patches exhibited proangiogenic functions and decreased the infarct size with improved cardiac recovery in mice. The study provided insights into shaping the injury-related microenvironment through the incorporation of extracellular vesicles into cardiac patches, and the EV-ECM material is a promising design paradigm to improve the function of cardiac patches to treat myocardial injuries and diseases.
Collapse
Affiliation(s)
- Yaoyao Hao
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Wei Zhang
- Guangzhou Keyue Biotech Co., Ltd., 6 Xin-Rui Road, Luogang District, Guangzhou 510535, China
| | - Jiahang Qin
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Lindan Tan
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
32
|
Steinberger S, Karuthedom George S, Lauková L, Weiss R, Tripisciano C, Marchetti-Deschmann M, Weber V, Allmaier G, Weiss VU. Targeting the Structural Integrity of Extracellular Vesicles via Nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analysis (nES GEMMA). MEMBRANES 2022; 12:872. [PMID: 36135891 PMCID: PMC9501092 DOI: 10.3390/membranes12090872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are in the scientific spotlight due to their potential application in the medical field, ranging from medical diagnosis to therapy. These applications rely on EV stability during isolation and purification-ideally, these steps should not impact vesicle integrity. In this context, we investigated EV stability and particle numbers via nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) and nanoparticle tracking analysis (NTA). In nES GEMMA, native, surface-dry analytes are separated in the gas-phase according to the particle size. Besides information on size and particle heterogeneity, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU, 18 October 2011). Likewise, and in contrast to NTA, nES GEMMA enables detection of co-purified proteins. On the other hand, NTA, yielding data on hydrodynamic size distributions, is able to relate particle concentrations, omitting electrolyte exchange (and resulting EV loss), which is prerequisite for nES GEMMA. Focusing on EVs of different origin, we compared vesicles concentrations and stability, especially after electrolyte exchange and size exclusion chromatography (SEC). Co-isolated proteins were detected in most samples, and the vesicle amount varied in dependence on the EV source. We found that depletion of co-purified proteins was achievable via SEC, but was associated with a loss of EVs and-most importantly-with decreased vesicle stability, as detected via a reduced nES GEMMA measurement repeatability. Ultimately, we propose the repeatability of nES GEMMA to yield information on EV stability, and, as a result, we propose that nES GEMMA can yield additional valuable information in EV research.
Collapse
Affiliation(s)
| | - Sobha Karuthedom George
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | - Carla Tripisciano
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | | | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria
| | - Victor U. Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
33
|
Życieńska K, Pszczółkowska B, Brzozowska B, Kamiński M, Lorenc T, Olejarz W, Sęk S, Ginter J. Brownian Motion Influence on AFM Exosomes' Size Measurements. Int J Mol Sci 2022; 23:10074. [PMID: 36077470 PMCID: PMC9456267 DOI: 10.3390/ijms231710074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles are evaluated by nanoparticle tracking analysis (NTA), providing information on their hydrodynamic diameters, and by atomic force microscopy (AFM) to calculate their geometric diameters. The aim of this study is to explore the influence of Brownian movements in a sample drop and preparation time on imaging-based measurements and to determine the relationship between the geometric and hydrodynamic sizes of the extracellular vesicles measured by the AFM and the NTA, respectively. Exosomes derived from the human prostate cancer cell line PC3 were evaluated by NTA and AFM, and those results were compared with Monte Carlo simulations. The mean size, evaluated by AFM shortly after application on the mica substrate, is less than its real value. It obtains the correct value faster for a thinner sample drop. Fitting the log-normal distribution to the geometric and hydrodynamic diameters leads to the conclusion that the latter could arise from the former by linear scaling by a factor that could be used to characterize the analyzed extracellular vesicles. The size of the vesicles attached to the mica substrate depends on time. The effect of Brownian motion and stretch of the lipid bilayer should be considered in the context of exosome AFM studies.
Collapse
Affiliation(s)
- Katarzyna Życieńska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Beata Pszczółkowska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Maciej Kamiński
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Sławomir Sęk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Józef Ginter
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| |
Collapse
|
34
|
Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes in the visual system: New avenues in ocular diseases. Tumour Biol 2022; 44:129-152. [PMID: 35964221 DOI: 10.3233/tub-211543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exosomes are a subgroup of membrane-bound extracellular vesicles secreted by all cell types and present virtually in all biological fluids. The composition of exosomes in the same cell type varies in healthy and disease conditions. Hence, exosomes research is a prime focus area for clinical research in cancer and numerous age-related metabolic syndromes. Functions of exosomes include crucial cell-to-cell communication that mediates complex cellular processes, such as antigen presentation, stem cell differentiation, and angiogenesis. However, very few studies reported the presence and role of exosomes in normal physiological and pathological conditions of specialized ocular tissues of the eye and ocular cancers. The eye being a protected sense organ with unique connectivity with the rest of the body through the blood and natural passages, we believe that the role of exosomes in ocular tissues will significantly improve our understanding of ocular diseases and their interactions with the rest of the body. We present a review that highlights the existence and function of exosomes in various ocular tissues, their role in the progression of some of the neoplastic and non-neoplastic conditions of the eyes.
Collapse
Affiliation(s)
- Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jyothi Attem
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
35
|
Chernyshev VS, Chuprov‐Netochin RN, Tsydenzhapova E, Svirshchevskaya EV, Poltavtseva RA, Merdalimova A, Yashchenok A, Keshelava A, Sorokin K, Keshelava V, Sukhikh GT, Gorin D, Leonov S, Skliar M. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J Extracell Vesicles 2022; 11:e12256. [PMID: 35942823 PMCID: PMC9451526 DOI: 10.1002/jev2.12256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations. We further demonstrate the method's versatility by applying it to isolate EVs from different biofluids (plasma, urine, and cell culture growth medium). The DF workflow is simple, fast, and inexpensive. Only standard laboratory equipment is required for its implementation, making DF suitable for low-resource and point-of-use locations. The method may be used for EV isolation from small biological samples in diagnostic and treatment guidance applications. It can also be scaled up to harvest therapeutic EVs from large volumes of cell culture medium.
Collapse
Affiliation(s)
- Vasiliy S. Chernyshev
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Roman N. Chuprov‐Netochin
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Ekaterina Tsydenzhapova
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | | | - Rimma A. Poltavtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | | | - Alexey Yashchenok
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | | | | | - Varlam Keshelava
- Institute for Biological Instrumentation RASPushchinoRussian Federation
| | - Gennadiy T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | - Dmitry Gorin
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | - Sergey Leonov
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Mikhail Skliar
- Department of Chemical EngineeringUniversity of UtahSalt Lake CityUTUSA
- The Nano Institute of UtahUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
36
|
Chernyshev VS, Chuprov-Netochin RN, Tsydenzhapova E, Van Devener B, Leonov S, Gorin D, Skliar M. Dynamic surface tension probe for measuring the concentration of extracellular vesicles. Biochem Biophys Res Commun 2022; 609:189-194. [PMID: 35452960 DOI: 10.1016/j.bbrc.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
The concentration of extracellular vesicles (EVs) is an essential attribute of biofluids and EV preparations. EV concentration in body fluids was correlated with health status. The abundance of EV secreted by cultured cells into growth medium is vital in signaling studies, tissue and disease models, and biomanufacturing of acellular therapeutic secretome. A limited number of physical principles sensitive to EV concertation have been discovered so far. Particle-by-particle counting methods enumerate individual particles scattering light, modulating the Coulter current, or appearing in EM images. The available ensemble techniques in current use rely on the concentration-dependent signal intensity, as in the case of ELISA. In this study, we propose for the first-time the ensemble-based characterization of EV concentration by dynamic surface tension (DST) probe and demonstrate its implementation. We show that DST measurements agree with the widely used NTA measurements of EV concertation. The proposed method is low-cost and requires only basic laboratory equipment for implementation.
Collapse
Affiliation(s)
- Vasiliy S Chernyshev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky per. 9/7, Dolgoprudny, Moscow Region, 141700, Russian Federation.
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky per. 9/7, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - Ekaterina Tsydenzhapova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky per. 9/7, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - Brian Van Devener
- Utah Nanofab, Nano-Scale Imaging and Surface Analysis Lab, University of Utah, 36 S. Wasatch Dr, Salt Lake City, UT, 84112, USA
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky per. 9/7, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russian Federation
| | - Mikhail Skliar
- The Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr, Salt Lake City, UT, 84112, USA; Department of Chemical Engineering, University of Utah, 50 S. Central Campus Dr, Salt Lake City, UT, 84112, USA
| |
Collapse
|
37
|
Chernyshev VS, Skliar M. Quantification of Desiccated Extracellular Vesicles by Quartz Crystal Microbalance. BIOSENSORS 2022; 12:bios12060371. [PMID: 35735519 PMCID: PMC9221410 DOI: 10.3390/bios12060371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Extracellular vesicle (EV) quantification is a procedure through which the biomedical potential of EVs can be used and their biological function can be understood. The number of EVs isolated from cell culture media depends on the cell status and is especially important in studies on cell-to-cell signaling, disease modeling, drug development, etc. Currently, the methods that can be used to quantify isolated EVs are sparse, and each have limitations. In this report, we introduce the application of a quartz crystal microbalance (QCM) as a biosensor for quantifying EVs in a small drop of volatile solvent after it evaporates and leaves desiccated EVs on the surface of the quartz crystal. The shifts in the crystal’s resonant frequency were found to obey Sauerbrey’s relation for EV quantities up to 6 × 107, and it was determined that the biosensors could resolve samples that differ by at least 2.7 × 105 EVs. A ring-shaped pattern enriched in EVs after the samples had dried on the quartz crystal is also reported and discussed. QCM technology is highly sensitive and only requires small sample volumes and is significantly less costly compared with the approaches that are currently used for EV quantification.
Collapse
Affiliation(s)
- Vasiliy S. Chernyshev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky per. 9/7, Dolgoprudny, 141700 Moscow, Russia
- Correspondence:
| | - Mikhail Skliar
- The Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr, Salt Lake City, UT 84112, USA;
- Department of Chemical Engineering, University of Utah, 50 S. Central Campus Dr, Salt Lake City, UT 84112, USA
| |
Collapse
|
38
|
Ran Z, Wu S, Ma Z, Chen X, Liu J, Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med 2022; 11:4966-4978. [PMID: 35578572 PMCID: PMC9761094 DOI: 10.1002/cam4.4828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.
Collapse
Affiliation(s)
- Zihan Ran
- Department of ResearchShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina,Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Shaobo Wu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Zijng Ma
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Xiuwen Chen
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Jing Liu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC)ShanghaiChina,State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer CenterFudan UniversityShanghaiChina,Greater Bay Area Institute of Precision MedicineGuangzhouChina
| |
Collapse
|
39
|
Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT, Le MT. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2022; 80:340-355. [PMID: 32977006 DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
As cancer poses a significant threat to the well-being of humans on a global scale, many researchers have embarked on the search for effective anticancer therapeutic agents. In recent years, many drugs have been shown to have extraordinary anticancer effects. However, in a lot of cases the treatment is accompanied by undesirable side effects due to some intrinsic properties linked to the therapeutic agents, such as poor targeting selectivity and short half-life in the circulation. In this regard, extracellular vesicles (EVs), a diverse family of natural cell-derived vesicles, steal the show as potential anticancer immunotherapy or delivery vectors of anticancer agents since they are an innate mechanism of intercellular communication. Here, we describe some of the most hotly-debated issues regarding the use of EVs as anticancer therapeutics. First, we review the biology of EVs providing the most up-to-date definition of EVs as well as highlighting their circulation kinetics and homing properties. Next, we share our views on popular methods reported for EV isolation, characterization, and functional analysis. Pioneering and innovative reports along with emerging challenges in the field of EV imaging and EV drug loading strategies are then discussed. Finally, we examine in detail the therapeutic application of EVs in cancer treatment, including their role in cancer immunotherapy and as natural delivery systems for anticancer agents including natural compounds such as paclitaxel and doxorubicin. We consider standardised protocols and proper analytical approaches to be crucial in improving the reproducibility and rigor in EV research and ensuring the successful translation of EVs as anticancer therapeutics.
Collapse
Affiliation(s)
- Marco Pirisinu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China
| | - Tin Chanh Pham
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China
| | - Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tran Nguyen Hong
- Department of Pharmacology and Biochemistry, Vietnam Institute of Medicinal Materials, Hanoi, Vietnam
| | - Lap Thi Nguyen
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China.
| |
Collapse
|
40
|
Yeung CYC, Dondelinger F, Schoof EM, Georg B, Lu Y, Zheng Z, Zhang J, Hannibal J, Fahrenkrug J, Kjaer M. Circadian regulation of protein cargo in extracellular vesicles. SCIENCE ADVANCES 2022; 8:eabc9061. [PMID: 35394844 PMCID: PMC8993114 DOI: 10.1126/sciadv.abc9061] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/17/2022] [Indexed: 05/19/2023]
Abstract
The circadian clock controls many aspects of physiology, but it remains undescribed whether extracellular vesicles (EVs), including exosomes, involved in cell-cell communications between tissues are regulated in a circadian pattern. We demonstrate a 24-hour rhythmic abundance of individual proteins in small EVs using liquid chromatography-mass spectrometry in circadian-synchronized tendon fibroblasts. Furthermore, the release of small EVs enriched in RNA binding proteins was temporally separated from those enriched in cytoskeletal and matrix proteins, which peaked during the end of the light phase. Last, we targeted the protein sorting mechanism in the exosome biogenesis pathway and established (by knockdown of circadian-regulated flotillin-1) that matrix metalloproteinase 14 abundance in tendon fibroblast small EVs is under flotillin-1 regulation. In conclusion, we have identified proteomic time signatures for small EVs released by tendon fibroblasts, which supports the view that the circadian clock regulates protein cargo in EVs involved in cell-cell cross-talk.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| | - Frank Dondelinger
- Centre for Health Informatics, Computation and Statistics, Lancaster University, Lancaster, UK
| | - Erwin M. Schoof
- Proteomics Core, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhiyong Zheng
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Nanomechanical characterization of exosomes and concomitant nanoparticles from blood plasma by PeakForce AFM in liquid. Biochim Biophys Acta Gen Subj 2022; 1866:130139. [DOI: 10.1016/j.bbagen.2022.130139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022]
|
42
|
Chen Y, Dong B, Huang L, Zhou J, Huang H. Research progress on the role and mechanism of action of exosomes in autoimmune thyroid disease. Int Rev Immunol 2022; 42:334-346. [PMID: 35353670 DOI: 10.1080/08830185.2022.2057482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 11/09/2022]
Abstract
Exosomes are widely distributed extracellular vesicles (EVs), which are currently a major research hotspot for researchers based on their wide range of sources, stable membrane structure, low immunogenicity, and containing a variety of biomolecules. A large number of literatures have shown that exosomes and exosome cargoes (especially microRNAs) play an important role in the activation of inflammation, development of tumor, differentiation of cells, regulation of immunity and so on. Studies have found that exosomes can stimulate the immune response of the body and participate in the occurrence and development of various diseases, including autoimmune diseases. Furthermore, the potential of exosomes as therapeutic tools in various diseases has also attracted much attention. Autoimmune thyroid disease (AITD) is one of the most common autoimmune diseases, mainly composed of Graves' disease (GD) and Hashimoto's thyroiditis (HT), which affects the health of many people and has a genetic predisposition, but its pathogenesis is still being explored. Starting from the relevant biological characteristics of exosomes, this review summarizes the current research status of exosomes and the association between exosomes and some diseases, with a focus on the situation of AITD and the potential role of exosomes (including substances in their vesicles) in AITD in combination with the current published literature, aiming to provide new directions for the pathogenesis, diagnosis or therapy of AITD.Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Bingtian Dong
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lichun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jingxiong Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
43
|
DiStefano TJ, Vaso K, Danias G, Chionuma HN, Weiser JR, Iatridis JC. Extracellular Vesicles as an Emerging Treatment Option for Intervertebral Disc Degeneration: Therapeutic Potential, Translational Pathways, and Regulatory Considerations. Adv Healthc Mater 2022; 11:e2100596. [PMID: 34297485 PMCID: PMC8783929 DOI: 10.1002/adhm.202100596] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Emergent approaches in regenerative medicine look toward the use of extracellular vesicles (EVs) as a next-generation treatment strategy for intervertebral disc (IVD) degeneration (IVDD) because of their ability to attenuate chronic inflammation, reduce apoptosis, and stimulate proliferation in a number of tissue systems. Yet, there are no Food and Drug Administration (FDA)-approved EV therapeutics in the market with an indication for IVDD, which motivates this article to review the current state of the field and provide an IVD-specific framework to assess its efficacy. In this systematic review, 29 preclinical studies that investigate EVs in relation to the IVD are identified, and additionally, the regulatory approval process is reviewed in an effort to accelerate emerging EV-based therapeutics toward FDA submission and timeline-to-market. The majority of studies focus on nucleus pulposus responses to EV treatment, where the main findings show that stem cell-derived EVs can decelerate the progression of IVDD on the molecular, cellular, and organ level. The findings also highlight the importance of the EV parent cell's pathophysiological and differentiation state, which affects downstream treatment responses and therapeutic outcomes. This systematic review substantiates the use of EVs as a promising cell-free strategy to treat IVDD and enhance endogenous repair.
Collapse
Affiliation(s)
- Tyler J. DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Keti Vaso
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Henry N. Chionuma
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
44
|
Jakaria MG, Sorkhdini P, Yang D, Zhou Y, Meenach SA. Lung cell membrane-coated nanoparticles capable of enhanced internalization and translocation in pulmonary epithelial cells. Int J Pharm 2022; 613:121418. [PMID: 34954003 PMCID: PMC8792290 DOI: 10.1016/j.ijpharm.2021.121418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Cell membrane-coated nanoparticles (CMCNP), which involve coating a core nanoparticle (NP) with cell membranes, have been gaining attention due to their ability to mimic the properties of the cells, allowing for enhanced delivery and efficacy of therapeutics. Two CMCNP systems comprised of an acetalated dextran-based NP core loaded with curcumin (CUR) coated with cell membranes derived from pulmonary epithelial cells were developed. The NP were approximately 200 nm and their surface charges varied based on their coating, where CMCNP systems exhibited negative surface charge like natural cell membranes. The NP were smooth, spherical, and homogeneous with distinct coatings on their cores. Minimal in vitro toxicity was observed for the NP and controlled release of CUR was observed. The CMCNP internalized into and translocated across an in vitro pulmonary epithelial monolayer significantly more than the control NP. Blocking endocytosis pathways reduced the transcytosis of NP, indicating a relationship between endocytosis and transcytosis. These newly developed CMCNP have the potential to be used in pulmonary drug delivery applications to potentially enhance NP internalization and transport into and across the pulmonary epithelium.
Collapse
Affiliation(s)
- Md Golam Jakaria
- Department of Chemical Engineering, 2 East Alumni Drive, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Sidney Frank Hall, Room 258, Box G-B5, 185 Meeting Street, Brown University, Providence, Rhode Island 02912, USA.
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Sidney Frank Hall, Room 258, Box G-B5, 185 Meeting Street, Brown University, Providence, Rhode Island 02912, USA.
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Sidney Frank Hall, Room 258, Box G-B5, 185 Meeting Street, Brown University, Providence, Rhode Island 02912, USA.
| | - Samantha A Meenach
- Department of Chemical Engineering, 2 East Alumni Drive, University of Rhode Island, Kingston, Rhode Island 02881, USA; Department of Biomedical and Pharmaceutical Sciences, 6 Greenhouse Road, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| |
Collapse
|
45
|
Balantič K, Weiss VU, Allmaier G, Kramar P. Calcium ion effect on phospholipid bilayers as cell membrane analogues. Bioelectrochemistry 2022; 143:107988. [PMID: 34763170 DOI: 10.1016/j.bioelechem.2021.107988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
Ion attachment can modify stability and structure of phospholipid bilayers. Of particular importance is the interaction of phospholipids with divalent cations, such as calcium ions playing an important role in numerous cellular processes. The aim of our study was to determine effects of calcium ions on phospholipid membranes employing two cell membrane analogues, liposomes and planar lipid bilayers, and for the first time the combination of two instrumental setups: gas-phase electrophoresis (nES GEMMA instrumentation) and electrical (capacitance and resistance) measurements. Liposomes and planar lipid bilayers consisted of phosphatidylcholine, cholesterol and phosphatidylethanolamine. Liposomes were prepared from dried lipid films via hydration while planar lipid bilayers were formed using a Mueller-Rudin method. Calcium ions were added to membranes from higher concentrated stock solutions. Changes in phospholipid bilayer properties due to calcium presence were observed for both studied cell membrane analogues. Changes in liposome size were observed, which might either be related to tighter packing of phospholipids in the bilayer or local distortions of the membrane. Likewise, a measurable change in planar lipid bilayer resistance and capacitance was observed in the presence of calcium ions, which can be due to an increased rigidity and tighter packing of the lipid molecules in the bilayer.
Collapse
Affiliation(s)
- Katja Balantič
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Peter Kramar
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia.
| |
Collapse
|
46
|
Bathini S, Pakkiriswami S, Ouellette RJ, Ghosh A, Packirisamy M. Magnetic particle based liquid biopsy chip for isolation of extracellular vesicles and characterization by gene amplification. Biosens Bioelectron 2021; 194:113585. [PMID: 34517262 DOI: 10.1016/j.bios.2021.113585] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are the cell-derived vesicles which play a critical role in cell-to-cell communication, and disease progression. These vesicles contain a myriad of substances like RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. The existing methods for the isolation of EVs are time-consuming, lack yield and purity, and expensive. In this work, we present a magnetic particle based liquid biopsy chip for the isolation of EVs by using a synthetic peptide, Vn96. To ensure capture efficiency, a 3D mixer is integrated in the chip, along with a sedimentation unit, which allows EV-captured magnetic particles to settle in it based on gravity assisted sedimentation. The captured EVs are then isolated for their elution and validation. The EVs are characterized by the scanning electron microscopy (SEM) measurements and the ability of capture and isolation of EVs is validated by the nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM). The DNA content of the EVs is further characterized by the absolute quantification of a housekeeping gene (RNase P) copies using droplet digital PCR (ddPCR). The results show that the chip can capture and isolate the EVs, without affecting their morphology. Thus, the liquid biopsy chip can be considered as a potential point of care device for diagnostics in a clinical setting.
Collapse
Affiliation(s)
- Srinivas Bathini
- Optical Bio-Microsystems Laboratory, Department of Mechanical Engineering, Concordia University, Montreal, Canada
| | - Shanmugasundaram Pakkiriswami
- Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | | | - Anirban Ghosh
- Optical Bio-Microsystems Laboratory, Department of Mechanical Engineering, Concordia University, Montreal, Canada
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystems Laboratory, Department of Mechanical Engineering, Concordia University, Montreal, Canada.
| |
Collapse
|
47
|
Holcar M, Kandušer M, Lenassi M. Blood Nanoparticles - Influence on Extracellular Vesicle Isolation and Characterization. Front Pharmacol 2021; 12:773844. [PMID: 34867406 PMCID: PMC8635996 DOI: 10.3389/fphar.2021.773844] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Blood is a rich source of disease biomarkers, which include extracellular vesicles (EVs). EVs are nanometer-to micrometer-sized spherical particles that are enclosed by a phospholipid bilayer and are secreted by most cell types. EVs reflect the physiological cell of origin in terms of their molecular composition and biophysical characteristics, and they accumulate in blood even when released from remote organs or tissues, while protecting their cargo from degradation. The molecular components (e.g., proteins, miRNAs) and biophysical characteristics (e.g., size, concentration) of blood EVs have been studied as biomarkers of cancers and neurodegenerative, autoimmune, and cardiovascular diseases. However, most biomarker studies do not address the problem of contaminants in EV isolates from blood plasma, and how these might affect downstream EV analysis. Indeed, nonphysiological EVs, protein aggregates, lipoproteins and viruses share many molecular and/or biophysical characteristics with EVs, and can therefore co-isolate with EVs from blood plasma. Consequently, isolation and downstream analysis of EVs from blood plasma remain a unique challenge, with important impacts on the outcomes of biomarker studies. To help improve rigor, reproducibility, and reliability of EV biomarker studies, we describe here the major contaminants of EV isolates from blood plasma, and we report on how different EV isolation methods affect their levels, and how contaminants that remain can affect the interpretation of downstream EV analysis.
Collapse
Affiliation(s)
- Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
48
|
A possible role of gas-phase electrophoretic mobility molecular analysis (nES GEMMA) in extracellular vesicle research. Anal Bioanal Chem 2021; 413:7341-7352. [PMID: 34622320 PMCID: PMC8626398 DOI: 10.1007/s00216-021-03692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022]
Abstract
The emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible.
Collapse
|
49
|
Zaborowska M, Vazirisani F, Shah FA, Firdaus R, Omar O, Ekström K, Trobos M, Thomsen P. Immunomodulatory effects exerted by extracellular vesicles from Staphylococcus epidermidis and Staphylococcus aureus isolated from bone-anchored prostheses. Biomaterials 2021; 278:121158. [PMID: 34619562 DOI: 10.1016/j.biomaterials.2021.121158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the bacteria that most frequently cause osteomyelitis. This study aimed to determine whether staphylococci isolated from osteomyelitis associated with septic loosening of orthopedic prostheses release extracellular vesicles (EVs) and, if so, to determine tentative immunomodulatory effects on the human monocytic cell line THP-1. EVs were isolated from bacterial cultures using filtration and ultracentrifugation and characterized by scanning electron microscopy, nanoparticle tracking analysis and Western Blot. The cytotoxic effect of EVs was analyzed by NucleoCounter and lactate dehydrogenase (LDH) analyses. Confocal laser scanning microscopy was employed to visualize the uptake of EVs by THP-1 cells. Activation of the transcription factor nuclear factor-κB (NF-κB) was determined in THP1-Blue™ NF-κB cells, and the gene expression and secretion of cytokines were determined by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. All investigated strains, irrespective of their biofilm formation ability, were able to secrete EVs in vitro. The S. aureus strains produced significantly more EVs than the S. epidermidis strains. Both S. aureus-derived EVs and S. epidermidis-derived EVs were internalized by THP-1 cells, upregulated Toll-like receptor 3 (TLR3) gene expression, activated NF-κB, and promoted the gene expression and secretion of interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, matrix metallopeptidase (MMP)-9 and IL-10. Whereas EVs from both staphylococcal species upregulated the proapoptotic DNA damage-inducible transcript 4 (DDIT4) gene and downregulated the antiapoptotic B-cell lymphoma 2 (Bcl-2) gene, cytolysis was preferentially induced in S. aureus EV-stimulated cells, possibly related to the expression of cytolytic proteins predominantly in S. aureus EVs. In conclusion, staphylococcal EVs possess potent cytolytic and immunomodulatory properties.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
50
|
Rodríguez-Nogales C, Desmaële D, Sebastián V, Couvreur P, Blanco-Prieto MJ. Decoration of Squalenoyl-Gemcitabine Nanoparticles with Squalenyl-Hydroxybisphosphonate for the Treatment of Bone Tumors. ChemMedChem 2021; 16:3730-3738. [PMID: 34581019 PMCID: PMC9298071 DOI: 10.1002/cmdc.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Therapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene‐based nanomedicine with bone affinity and retention capacity. A squalenyl‐hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1‐hydroxyl‐1,1‐bisphosphonate moiety to the squalene chain. This amphiphilic compound was inserted onto squalenoyl‐gemcitabine nanoparticles using the nanoprecipitation method. The co‐assembly led to nanoconstructs of 75 nm, with different morphology and colloidal properties. The presence of squalenyl‐hydroxybisphosphonate enhanced the nanoparticles binding affinity for hydroxyapatite, a mineral present in the bone. Moreover, the in vitro anticancer activity was preserved when tested in commercial and patient‐treated derived pediatric osteosarcoma cells. Further in vivo studies will shed light on the potential of these nanomedicines for the treatment of bone sarcomas.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Navarra-IdisNA, Irunlarrea 1, 31008, Pamplona, Spain
| | - Didier Desmaële
- Institut Galien Paris-Sud UMR CNRS 8612, Université Paris-Saclay, Jean Baptiste Clément 5, 92290, Châtenay-Malabry Cedex, France
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor López, 50008, Zaragoza, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612, Université Paris-Saclay, Jean Baptiste Clément 5, 92290, Châtenay-Malabry Cedex, France
| | - María J Blanco-Prieto
- Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Navarra-IdisNA, Irunlarrea 1, 31008, Pamplona, Spain
| |
Collapse
|