1
|
Singh P, Singh DP, Patel MK, Binwal M, Kaushik A, Mall M, Sahu M, Khare P, Shanker K, Bawankule DU, Sundaresan V, Mani DN, Shukla AK. Vindoline is a key component of Catharanthus roseus leaf juice extract prepared through an Ayurveda-based method for ameliorating insulin-resistant type 2 diabetes. PROTOPLASMA 2025; 262:667-681. [PMID: 39794517 DOI: 10.1007/s00709-024-02026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025]
Abstract
Catharanthus roseus leaves have been traditionally described to possess potent antidiabetic activity and some leaf-specific alkaloids, including vindoline, have been studied for their antidiabetic potential. The aim of the present study was to validate the antidiabetic property of the plant with special reference to vindoline. An Ayurveda-based method was used to prepare the Swaras [leaf juice extract (LJE)] of three familial C. roseus genotypes differing in their vindoline content [CIM-Sushil (CS) > Dhawal (D) > Nirmal (N)]. In vivo experiments using LJE were performed in Charles Foster rats, whereby metformin (M100, 100 mg/kg BW) and vindoline (V20, 20 mg/kg BW) were used for comparison. OGTT-based screening for LJE doses (N100, N300, N500, D100, D200, D300, CS100, CS200, CS300 mg/kg BW) was carried out. Further analysis of the effective doses (D100, D200, D300, CS100, CS200, CS300) in streptozotocin-induced diabetic rats indicated highest blood glucose depletion in D300 (52.51%) and CS200 (64.55%) together with V20 (56.96%) on the 14th day. CS-LJE was found to be safe up to 2000 mg/kg BW. The role of LJE/vindoline in maintaining glucose homeostasis in liver was found to be mediated through the expression of insulin pathway genes (IRS-1, PI3K, AKT, GLUT2). TNF-α-induced insulin resistance in L6 skeletal muscle cells was used to analyze the effect of LJE/vindoline through glucose uptake assay and expression analysis of insulin pathway genes (IRS-1, PI3K, AKT, GLUT4). The results indicated that the antidiabetic effect of LJE/vindoline is mediated through activation of IRS/PI3K/AKT/GLUT signaling pathway.
Collapse
Affiliation(s)
- Pooja Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Dewasya P Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manish K Patel
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Monika Binwal
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amit Kaushik
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Mridula Sahu
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Puja Khare
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Dnyaneshwar U Bawankule
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Daya N Mani
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
B BB, Sivaperumal P, Ganapathy D, Kamala K. Evaluating the efficacy of doripenem against Staphylococcus aureus in vancomycin-resistant strains. Microb Pathog 2025; 202:107449. [PMID: 40043782 DOI: 10.1016/j.micpath.2025.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
Determination of antibiotic susceptibility is a crucial aspect of antimicrobial therapy. The objective of this study was to determine the specific susceptibility of Staphylococcus aureus (SA) to the antibiotic doripenem. A total of 180 clinical isolates from VRSA patients were tested against doripenem using minimum inhibitory concentration (MIC) and disk diffusion tests. The overall findings indicated that doripenem exhibited a high sensitivity level for SA isolates, with an MIC50 of 60 μg/mL and a MIC90 of 0.5 mg/mL. Additionally, the antimicrobial activity of doripenem, both alone and in combination with amoxiclav against VRSA showed consistent biofilm inhibition within 48 and 24 h, respectively. Furthermore, these results demonstrate that doripenem maintains its high efficacy against VRSA and the combination of amoxiclav with doripenem presents a potential option for managing these resistant infections.
Collapse
Affiliation(s)
- Boosan Balaji B
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - Pitchiah Sivaperumal
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, Tamil Nadu, India; Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - Kannan Kamala
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, Tamil Nadu, India; Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India.
| |
Collapse
|
3
|
Kopeć M, Beton-Mysur K, Surmacki J, Brożek-Płuska B. Hypoxic conditions by Raman microspectroscopy - Reprogramming of fatty acids and glucose metabolism during colon cancer progression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126275. [PMID: 40273771 DOI: 10.1016/j.saa.2025.126275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Cellular respiration is the primary metabolic process for producing the energy (ATP) needed for survival. Disruptions in this process can lead to various diseases, including colon cancer. This paper reviews the current understanding of how excess fatty acids (FAs) and glucose (Glc) alter metabolic pathways. We focused on the impact of unsaturated fatty acids (UFAs) (eicosapentaenoic acid (EPA), linoleic acid (LA)), saturated fatty acid (SFA) (palmitic acid (PA)), and glucose on healthy human colon cells (CCD-18 Co) and cancerous colon cells (Caco-2) using Raman microspectroscopy. Our study examined the metabolic abnormalities in mitochondria and lipid droplets caused by the external intake of FAs and glucose. The results indicate that the peaks at 750 cm-1, 1004 cm-1, 1256 cm-1, 1444 cm-1, and 1656 cm-1 can serve as Raman biomarkers for monitoring metabolic pathways in colon cancer. We proved that oxidative metabolism towards glycolysis allows maintaining redox homeostasis and enables the survival and proliferation of cancer cells in hypoxic conditions. Our findings show that comparing control cells with cells supplemented with UFAs, SFA, and glucose can help detect metabolic abnormalities. Specifically, supplementation with UFAs reduces the intensity of the bands at 750 cm-1 and 1004 cm-1, while SFA and glucose increase their intensity. For the bands at 1256 cm-1, 1444 cm-1, and 1656 cm-1, palmitic acid and glucose decrease the intensity, whereas linoleic acid increases it. This paper introduces new experimental techniques, such as Raman microspectroscopy and imaging, to track and understand the metabolic changes in colon cells caused by FAs and glucose under hypoxic conditions.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
4
|
Lin Y, Qu L, Zhang M, Zhang C, Qin Y, Yu H, Lin Q, Ge L. Comprehensive evaluation on nutritional characteristics and anti-hyperglycemic active ingredients of different varieties of Yam. Sci Rep 2025; 15:12609. [PMID: 40221498 PMCID: PMC11993657 DOI: 10.1038/s41598-025-95401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Yam is a versatile economic crop that serves both medicinal and dietary purposes. Dehua County, located in Fujian Province, China, is renowned as one of the major yam production areas, with a cultivation history spanning over 600 years. It has successfully cultivated Qingfeng yam and Ziyu yam, both of which have been recognized with China's "Geographical Indications for Agricultural Products." However, no comprehensive studies have been conducted to evaluate their quality. This study meticulously utilized the authentic medicinal material "Iron yam" as a benchmark, employing advanced techniques such as high-performance liquid chromatography (HPLC), ultraviolet spectrophotometry, and flame atomic absorption spectrometry to systematically analyze the nutritional and hypoglycemic active components of three distinct yam varieties. In order to interpret the data, descriptive statistics, correlation analysis, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), cluster analysis and multiple linear regression analysis were systematically applied. The results revealed significant variations in the concentrations of various indicators across the three yam types. Correlation analysis identified 65 pairs of indicators with exceptionally strong correlations and 39 pairs with statistically significant associations. Additionally, the principal component analysis demonstrated that Iron yam exhibited the most favorable overall quality. Notably, Ziyu yam, characterized by its high concentration of hypoglycemic active compounds, emerged as a promising raw material for the production of hypoglycemic products, showcasing significant potential in this field.
Collapse
Affiliation(s)
- Yuzheng Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Fujian Province Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Li Qu
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Mengting Zhang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Chenjun Zhang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yiyin Qin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Honghong Yu
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Qiaoli Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China.
| |
Collapse
|
5
|
Toyoda Y, Shigesawa R, Merriman TR, Matsuo H, Takada T. GLUT2/SLC2A2 is a bi-directional urate transporter. J Biol Chem 2025:108485. [PMID: 40209957 DOI: 10.1016/j.jbc.2025.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Recent genetic studies showed an association between solute carrier 2A2 (SLC2A2), which encodes glucose transporter 2 (GLUT2), and serum urate concentrations; however, urate transport activity of GLUT2 has not been studied contrary to its function as a sugar transporter. Here, we hypothesized that GLUT2 acts also as a urate transporter, which led us to conduct cell-based functional analyses using HEK-derived 293A cells. We found that radiolabeled [8-14C]-urate was incorporated into GLUT2-expressing cells more compared to control cells and this elevated cellular activity was almost completely inhibited by GLUT2 inhibitors, demonstrating that GLUT2 is a urate transporter. Regarding the concentration dependence of GLUT2-mediated urate transport, no saturable properties were observed within an experimentally achievable range (0-500 μM), suggesting that GLUT2 mediates the robust transport of urate. Moreover, the GLUT2-mediated urate transport was not inhibited by 10 mM glucose; GLUT2-mediated sugar transport was hardly affected by 500 μM urate. As these concentrations of urate and glucose were relevant to their maximum levels in healthy humans, our results suggest that GLUT2 maintains its urate transport ability under physiological conditions, Furthermore, using a cell-based urate efflux assay system, we successfully demonstrated that urate secretion was accelerated in GLUT2-expressing cells than in control cells. Therefore, GLUT2 may also function as a urate exporter. The present study revealed that GLUT2 is a bi-directional urate transporter. Our findings contribute to a deeper understanding of urate-handling systems in the body. To elucidate the physiological role of GLUT2 as a urate transporter, further studies are required.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan; Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryuichiro Shigesawa
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
6
|
Talebi G, Saffarian P, Hakemi-Vala M, Sadeghi A, Yadegar A. The effect of Helicobacter pylori-derived extracellular vesicles on glucose metabolism and induction of insulin resistance in HepG2 cells. Arch Physiol Biochem 2025; 131:316-327. [PMID: 39431628 DOI: 10.1080/13813455.2024.2418494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Helicobacter pylori infection has been associated with the development of insulin resistance (IR). This study aimed to examine the effect of H. pylori-derived extracellular vesicles (EVs) on IR induction. EVs were derived from two H. pylori strains, and characterised by transmission electron microscopy and dynamic light scattering. Different concentrations of insulin were added to HepG2 cells to induce IR model. HepG2 cells were exposed to various concentrations of H. pylori-derived EVs to assess IR development. The gene expression of IRS1, AKT2, GLUT2, IL-6, SOCS3, c-Jun and miR-140 was examined using RT-qPCR. Glucose uptake analysis revealed insulin at 5 × 10 -7 mol/l and EVs at 50 µg/ml induced IR model in HepG2 cells. H. pylori-derived EVs downregulated the expression level of IRS1, AKT2, and GLUT2, and upregulated IL-6, SOCS3, c-Jun, and miR-140 expression in HepG2 cells. In conclusion, our findings propose a novel mechanism by which H. pylori-derived EVs could potentially induce IR.
Collapse
Affiliation(s)
- Ghazaleh Talebi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhang Y, Cao Y, Wang F, Wang L, Xiong L, Shen X, Song H. Polysaccharide from Momordica charantia L. Alleviates Type 2 Diabetes Mellitus in Mice by Activating the IRS1/PI3K/Akt and AMPK Signaling Pathways and Regulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7298-7309. [PMID: 40085053 DOI: 10.1021/acs.jafc.4c12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Developing effective therapies for type 2 diabetes mellitus (T2DM) remains a critical global health priority. This study explored the novel antidiabetic potential of MCPS-3, a polysaccharide derived from Momordica charantia L., and its underlying mechanisms in a high-fat diet and streptozotocin-induced T2DM mouse model. Our results indicated that MCPS-3 treatment significantly reduced serum glucose levels, improved glucose tolerance, and enhanced insulin sensitivity, alongside increased glycogen storage and improved liver enzyme activities. It also alleviated diabetes-induced damage in the pancreas, liver, and kidneys and improved serum lipid profiles by lowering triglycerides and LDL-C while increasing HDL-C levels. Mechanistic studies revealed that MCPS-3 activated the IRS1/PI3K/AKT and AMPK pathways, essential for glucose and lipid regulation. Importantly, MCPS-3 treatment restored gut microbial balance by increasing microbial diversity and shifting the composition of harmful and beneficial bacteria. Metabolomic analysis further identified changes in 46 metabolites, implicating pathways related to steroid and lipid metabolism. These findings underscore the multifaceted nature of MCPS-3's antidiabetic effects, including its role as a modulator of gut microbiota and metabolic pathways, and support its potential as a therapeutic agent for improving metabolic health in T2DM.
Collapse
Affiliation(s)
- Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yubo Cao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
9
|
Caturano A, Erul E, Nilo R, Nilo D, Russo V, Rinaldi L, Acierno C, Gemelli M, Ricotta R, Sasso FC, Giordano A, Conte C, Ürün Y. Insulin resistance and cancer: molecular links and clinical perspectives. Mol Cell Biochem 2025:10.1007/s11010-025-05245-8. [PMID: 40089612 DOI: 10.1007/s11010-025-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
The association between insulin resistance (IR), type 2 diabetes mellitus (T2DM), and cancer is increasingly recognized and poses an escalating global health challenge, as the incidence of these conditions continues to rise. Studies indicate that individuals with T2DM have a 10-20% increased risk of developing various solid tumors, including colorectal, breast, pancreatic, and liver cancers. The relative risk (RR) varies depending on cancer type, with pancreatic and liver cancers showing a particularly strong association (RR 2.0-2.5), while colorectal and breast cancers demonstrate a moderate increase (RR 1.2-1.5). Understanding these epidemiological trends is crucial for developing integrated management strategies. Given the global rise in T2DM and cancer cases, exploring the complex relationship between these conditions is critical. IR contributes to hyperglycemia, chronic inflammation, and altered lipid metabolism. Together, these factors create a pro-tumorigenic environment conducive to cancer development and progression. In individuals with IR, hyperinsulinemia triggers the insulin-insulin-like growth factor (IGF1R) signaling pathway, activating cancer-associated pathways such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PIK3CA), which promote cell proliferation and survival, thereby supporting tumor growth. Both IR and T2DM are linked to increased morbidity and mortality in patients with cancer. By providing an in-depth analysis of the molecular links between insulin resistance and cancer, this review offers valuable insights into the role of metabolic dysfunction in tumor progression. Addressing insulin resistance as a co-morbidity may open new avenues for risk assessment, early intervention, and the development of integrated treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Enes Erul
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100, Potenza, Italy
| | - Maria Gemelli
- Medical Oncology Unit, IRCCS MultiMedica, Milan, Italy
| | | | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099, Milan, Italy
| | - Yüksel Ürün
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, 06620, Turkey.
| |
Collapse
|
10
|
Song J, Wang C, Zhao T, Zhang Y, Xing J, Zhao X, Zhang Y, Zhang Z. Multi-omics approaches for biomarker discovery and precision diagnosis of prediabetes. Front Endocrinol (Lausanne) 2025; 16:1520436. [PMID: 40162315 PMCID: PMC11949806 DOI: 10.3389/fendo.2025.1520436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Recent advancements in multi-omics technologies have provided unprecedented opportunities to identify biomarkers associated with prediabetes, offering novel insights into its diagnosis and management. This review synthesizes the latest findings on prediabetes from multiple omics domains, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and radiomics. We explore how these technologies elucidate the molecular and cellular mechanisms underlying prediabetes and analyze potential biomarkers with predictive value in disease progression. Integrating multi-omics data helps address the limitations of traditional diagnostic methods, enabling early detection, personalized interventions, and improved patient outcomes. However, challenges such as data integration, standardization, and clinical validation and translation remain to be resolved. Future research leveraging artificial intelligence and machine learning is expected to further enhance the predictive power of multi-omics technologies, contributing to the precision diagnosis and tailored management of prediabetes.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Chuanfu Wang
- Department of Encephalopathy, Liangping District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Tong Zhao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Yu Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Jixiang Xing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Xuelian Zhao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
| | - Yunsha Zhang
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- TCM Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Traditional Chinese Medicine Surgery, Tianjin, China
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Papamichail L, Koch LS, Veerman D, Broersen K, van der Meer AD. Organoids-on-a-chip: microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front Bioeng Biotechnol 2025; 13:1515340. [PMID: 40134772 PMCID: PMC11933005 DOI: 10.3389/fbioe.2025.1515340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Organoids are stem-cell derived tissue structures mimicking specific structural and functional characteristics of human organs. Despite significant advancements in the field over the last decade, challenges like limited long-term functional culture and lack of maturation are hampering the implementation of organoids in biomedical research. Culture of organoids in microfluidic chips is being used to tackle these challenges through dynamic and precise control over the organoid microenvironment. This review highlights the significant breakthroughs that have been made in the innovative field of "organoids-on-chip," demonstrating how these have contributed to advancing organoid models. We focus on the incorporation of organoids representative for various tissues into chips and discuss the latest findings in multi-organoids-on-chip approaches. Additionally, we examine current limitations and challenges of the field towards the development of reproducible organoids-on-chip systems. Finally, we discuss the potential of organoids-on-chip technology for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Lito Papamichail
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lena S. Koch
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| | - Devin Veerman
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| |
Collapse
|
12
|
Gaugel J, Jähnert M, Neumann A, Heyd F, Schürmann A, Vogel H. Alternative splicing landscape in mouse skeletal muscle and adipose tissue: Effects of intermittent fasting and exercise. J Nutr Biochem 2025; 137:109837. [PMID: 39725041 DOI: 10.1016/j.jnutbio.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS. Diet and exercise interventions triggered comparable levels of splicing changes, although the splicing profile of skeletal muscle appeared to be more flexible than that of adipose tissue, with 72-114 differential splicing events in muscle and less than 25 in adipose tissue. Splicing changes induced by time-restricted feeding, alternate-day fasting and exercise were generally mild, with a maximal percent spliced in (PSI) difference of 67%, indicating that alternative splicing plays a rather minor role in lifestyle-induced adaptations of muscle and adipose tissue in mice. However, intron retention contributed to the regulation of gene expression, influencing genes whose expression was directly linked to phenotypic parameters (e.g. Eno2 and Pan2). Alternate-day fasting promoted skipping of exon 7 in Mlxipl (coding for ChREBP), thereby affecting the glucose sensing module of this carbohydrate-responsive transcription factor. Both intermittent fasting and exercise training led to alternative splicing of known diabetes-related GWAS genes (e.g. Abcc8, Ifnar2, Smarcad1), highlighting the potential metabolic relevance of these changes.
Collapse
Affiliation(s)
- Jasmin Gaugel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Markus Jähnert
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Neumann
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Omiqa Bioinformatics, Berlin, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annette Schürmann
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Heike Vogel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany.
| |
Collapse
|
13
|
Odongo K, Ishinaka M, Abe A, Harada N, Yamaji R, Yamashita Y, Ashida H. Ashitaba Chalcone 4-Hydroxydericcin Promotes Glucagon-Like Peptide-1 Secretion and Prevents Postprandial Hyperglycemia in Mice. Mol Nutr Food Res 2025; 69:e202400690. [PMID: 39924833 DOI: 10.1002/mnfr.202400690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Certain polyphenols improve glucose tolerance by stimulating glucagon-like peptide-1 (GLP-1) secretion from intestinal L-cells. Ashitaba chalcones, 4-hydroxyderricin (4-HD), and xanthoangelol (XAG) have antihyperglycemic effects, but their molecular mechanism, including whether they promote GLP-1 secretion is unknown. This study investigates the 4-HD-induced GLP-1 secretory mechanisms and its anti-hyperglycemic effects. The secretory mechanisms were examined in STC-1 cells and antihyperglycemic effects in male ICR mice. In STC-1 cells, 4-HD, but not XAG, stimulated GLP-1 secretion through membrane depolarization and intracellular Ca2+ increase [Ca2+]i, via the L-type Ca2+ channel (VGCC). Verapamil and nifedipine, blockers of VGCC, and treatment in Ca2+-free buffer abolished 4-HD effects on [Ca2+]i and GLP-1 secretion. Moreover, 4-HD activated CaMKII and ERK1/2. Consistently, oral 4-HD suppressed postprandial hyperglycemia in mice and increased plasma GLP-1 and insulin levels, GLUT4 translocation, and activation of LKB-1 and Akt pathways in skeletal muscle. Furthermore, exendin 9-39, a GLP-1R antagonist, and compound C, an AMPK inhibitor, completely canceled the 4-HD-caused anti-hyperglycemic activities. 4-HD stimulated GLP-1 secretion through membrane depolarization coupled with [Ca2+]i increase via VGCC in L-cells and activated AMPK- and insulin-induced GLUT4 translocation in skeletal muscle. Thus, 4-HD possesses dual mechanisms for the prevention of hyperglycemia.
Collapse
Affiliation(s)
- Kevin Odongo
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Moe Ishinaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ayane Abe
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Ryoichi Yamaji
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Food and Nutrition, Faculty of Food and Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
14
|
Andrade N, Rodrigues I, Carmo F, Campanher G, Bracchi I, Lopes J, Patrício E, Guimarães JT, Barreto-Peixoto JA, Costa ASG, Santo LE, Machado M, Soares TF, Machado S, Oliveira MBPP, Alves RC, Martel F, Silva C. Sustainable Utilization of Coffee Pulp, a By-Product of Coffee Production: Effects on Metabolic Syndrome in Fructose-Fed Rats. Antioxidants (Basel) 2025; 14:266. [PMID: 40227203 PMCID: PMC11939298 DOI: 10.3390/antiox14030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that include insulin resistance, impaired glucose tolerance, dyslipidemia, hypertension, and abdominal obesity. Coffee production generates large quantities of waste products, which pose a serious threat to the environment. However, coffee by-products, such as coffee pulp (CP), possess an undeniable wealth of bioactive components. Based on this, we investigated whether a 10-week dietary intervention with 250 mg/kg/d of CP could prevent or ameliorate MetS in high-fructose-fed rats. Consumption of CP by rats fed a high-fructose diet reduced body weight gain, lowered systolic blood pressure (SBP), fasting plasma glucose and insulin levels, and improved insulin resistance compared to rats fed a high-fructose diet alone. At the hepatic level, CP attenuated the increase in lipid storage, reduced lipid peroxidation, and improved glutathione levels when combined with a high-fructose diet. CP also affected the expression of key genes related to glucose and lipid metabolism in hepatic and adipose tissues, in rats fed a fructose-rich diet. This study demonstrates that CP ameliorates several consequences of high-fructose-induced MetS in the rat (weight gain, hypertension, glucose intolerance, insulin resistance, changes in liver, and adipose tissue function). Hence, our data provide evidence that CP consumption in the context of a high-fructose diet can be used to improve MetS management.
Collapse
Affiliation(s)
- Nelson Andrade
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-465 Porto, Portugal
| | - Francisca Carmo
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-465 Porto, Portugal
| | - Gabriela Campanher
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
- School of Medical Sciences, University of Örebro, Campus USÖ, S-701 82 Örebro, Sweden
| | - Isabella Bracchi
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
| | - Joanne Lopes
- Department of Pathology, São João Hospital Centre, 4200-319 Porto, Portugal; (J.L.); (E.P.)
| | - Emília Patrício
- Department of Pathology, São João Hospital Centre, 4200-319 Porto, Portugal; (J.L.); (E.P.)
| | - João T. Guimarães
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal
| | - Juliana A. Barreto-Peixoto
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Anabela S. G. Costa
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Liliana Espírito Santo
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Marlene Machado
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Thiago F. Soares
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Susana Machado
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Maria Beatriz P. P. Oliveira
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Rita C. Alves
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-465 Porto, Portugal
| | - Cláudia Silva
- Laboratório Associado para a Química Verde—Tecnologias e Processos Limpos (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (N.A.); (J.A.B.-P.); (A.S.G.C.); (L.E.S.); (M.M.); (T.F.S.); (S.M.); (M.B.P.P.O.); (R.C.A.); (C.S.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-465 Porto, Portugal; (I.R.); (F.C.); (G.C.); (I.B.); (J.T.G.)
| |
Collapse
|
15
|
Chang YC, Jusko WJ. Comparing the Efficacy of Various Insulin Types: Pharmacokinetic and Pharmacodynamic Modeling of Glucose Clamp Effects in Healthy Volunteers. J Clin Pharmacol 2025. [PMID: 39982761 DOI: 10.1002/jcph.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
This study compares the pharmacokinetics and efficacy of various subcutaneously (SC) dosed insulin analogs, including rapid-acting, intermediate-acting, long-acting, and regular human insulin, using mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) models. These models were applied to data from euglycemic clamp studies in healthy volunteers, where insulin pharmacokinetics and its effects on glucose utilization were monitored. Data from published studies were digitized and modeled using MONOLIX (Version 2024). The PK model described insulin absorption via sequential first-order processes and linear elimination. The PD effects were captured using a model combination of biophase, indirect, and receptor down-regulation components. While PK parameters-especially absorption rates-varied between insulin types, a common set of nonlinear PD parameters was sought to account for dose-related differences in glucose utilization. The maximum glucose stimulation (S max ${{{\mathrm{S}}}_{{\mathrm{max}}}}$ ) was 163, and the insulin concentration for a half-maximal effect (S C 50 ${\mathrm{S}}{{{\mathrm{C}}}_{50}}$ ) were 1156 pmol/L for insulin lispro, regular human insulin, neutral protamine hagedorn (NPH) insulin, and insulin glargine; 674 pmol/L for insulin aspart; and 5335 pmol/L for insulin detemir. Insulin detemir showed similar overt effects as the other insulin types but with smaller clearances and lower potency. This mechanism-based glucose-insulin model demonstrated that most insulin analogs exhibit similar receptor- and transporter-related parameters. The model, with specific PK but unified PD parameters, may enable clinical optimization of insulin therapy by highlighting differences in pharmacokinetics and operating common intrinsic glucose utilization parameters.
Collapse
Affiliation(s)
- Yi Chien Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
16
|
Nguyen HP, An K, Ito Y, Kharbikar BN, Sheng R, Paredes B, Murray E, Pham K, Bruck M, Zhou X, Biellak C, Ushiki A, Nobuhara M, Fong SL, Bernards DA, Lynce F, Dillon DA, Magbanua MJM, Huppert LA, Hammerlindl H, Klein JA, Valdiviez L, Fiehn O, Esserman L, Desai TA, Yee SW, Rosenbluth JM, Ahituv N. Implantation of engineered adipocytes suppresses tumor progression in cancer models. Nat Biotechnol 2025:10.1038/s41587-024-02551-2. [PMID: 39905264 DOI: 10.1038/s41587-024-02551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
Tumors exhibit an increased ability to obtain and metabolize nutrients. Here, we implant engineered adipocytes that outcompete tumors for nutrients and show that they can substantially reduce cancer progression, a technology termed adipose manipulation transplantation (AMT). Adipocytes engineered to use increased amounts of glucose and fatty acids by upregulating UCP1 were placed alongside cancer cells or xenografts, leading to significant cancer suppression. Transplanting modulated adipose organoids in pancreatic or breast cancer genetic mouse models suppressed their growth and decreased angiogenesis and hypoxia. Co-culturing patient-derived engineered adipocytes with tumor organoids from dissected human breast cancers significantly suppressed cancer progression and proliferation. In addition, cancer growth was impaired by inducing engineered adipose organoids to outcompete tumors using tetracycline or placing them in an integrated cell-scaffold delivery platform and implanting them next to the tumor. Finally, we show that upregulating UPP1 in adipose organoids can outcompete a uridine-dependent pancreatic ductal adenocarcinoma for uridine and suppress its growth, demonstrating the potential customization of AMT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Kelly An
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Ito
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Breanna Paredes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly Pham
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Bruck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Biellak
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Daniel A Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark Jesus M Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jace Anton Klein
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Luis Valdiviez
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Oliver Fiehn
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- School of Engineering, Brown University, Providence, RI, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer M Rosenbluth
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Na YJ, Choi KJ, Jung WH, Park SB, Koh B, Hoe KL, Kim KY. Development of 3D Muscle Cell Culture-Based Screening System for Metabolic Syndrome Drug Research. Tissue Eng Part C Methods 2025; 31:53-64. [PMID: 39912898 DOI: 10.1089/ten.tec.2024.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Developing effective drug screening methods for type 2 diabetes requires physiologically relevant models. Traditional 2D cell cultures have limitations in replicating in vivo conditions, leading to challenges in assessing drug efficacy. To overcome these issues, we developed a 3D artificial muscle model that induces insulin resistance, a hallmark of type 2 diabetes. Using C2C12 myoblasts cultured in a scaffold of 1% alginate and 1 mg/mL collagen type 1, we optimized conditions for differentiation and structural stability. Insulin resistance was induced using palmitic acid (PA), and glucose uptake was assessed using the fluorescent glucose analog 2-NBDG. The 3D model demonstrated superior glucose uptake responses compared with 2D cultures, with a threefold increase in insulin-stimulated glucose uptake on days 4 and 8 of differentiation. Induced insulin resistance was observed with 0.1 mM PA, which maintained cell viability and differentiation capacity. The model was validated through comparative drug screening using rosiglitazone and metformin, as well as 165 candidate compounds provided by Korea Chemical Bank. Drug screening revealed that three out of five hit compounds identified in both 2D and 3D models exhibited greater efficacy in 3D cultures, with results consistent with ex vivo assays using mouse soleus muscle. This model closely mimics in vivo conditions, offering a robust platform for type 2 diabetes drug discovery while supporting ethical research practices.
Collapse
Affiliation(s)
- Yoon-Ju Na
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Kyoung Jin Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Won Hoon Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Sung Bum Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Byumseok Koh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Kwang-Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Ki Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| |
Collapse
|
18
|
Chanoine JP, Thompson DM, Lehman A. Diabetes Associated With Maternally Inherited Diabetes and Deafness (MIDD): From Pathogenic Variant to Phenotype. Diabetes 2025; 74:153-163. [PMID: 39556456 PMCID: PMC11755681 DOI: 10.2337/db24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
ARTICLE HIGHLIGHTS Maternally inherited diabetes and deafness (MIDD) is a mitochondrial disorder characterized primarily by hearing impairment and diabetes. m.3243A>G, the most common phenotypic variant, causes a complex rewiring of the cell with discontinuous remodeling of both mitochondrial and nuclear genome expressions. We propose that MIDD depends on a combination of insulin resistance and impaired β-cell function that occurs in the presence of high skeletal muscle heteroplasmy (approximately ≥60%) and more moderate cell heteroplasmy (∼25%-72%) for m.3243A>G. Understanding the complex mechanisms of MIDD is necessary to develop disease-specific management guidelines that are presently lacking.
Collapse
Affiliation(s)
- Jean-Pierre Chanoine
- Endocrinology and Diabetes Unit, Department of Pediatrics, BC Children’s Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| | - David M. Thompson
- Division of Endocrinology, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Santos HO, Penha-Silva N. Revisiting the concepts of de novo lipogenesis to understand the conversion of carbohydrates into fats: Stop overvaluing and extrapolating the renowned phrase "fat burns in the flame of carbohydrate". Nutrition 2025; 130:112617. [PMID: 39566326 DOI: 10.1016/j.nut.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Carbohydrates can be converted into fatty acids via de novo lipogenesis (DNL). Although DNL is considered inefficient, these endogenous fatty acids contribute substantially to the esterification pathway in adipose tissue, together with fatty acids of feeding. This article revisited the concepts of DNL and aimed to discuss the clinical magnitude of carbohydrate overfeeding and fat mass accumulation. Although fat storage resulting from fat intake is more favorable for fat mass accrual than carbohydrates due to molecule structure and metabolism (e.g., oxidation and thermic effect), carbohydrates can substantially participate in lipogenesis and esterification under excess carbohydrate intake over time. Regarding only monosaccharide overfeeding, glucose and fructose favor the subcutaneous and visceral adipose tissue, respectively. While fructose and sucrose are considered villains in nonalcoholic fatty liver disease, energy surplus from carbohydrates, regardless of sources, can be considered an underlying cause of obesity. Interestingly, some degree of DNL in adipocytes may be favorable to mitigate a high deposition of fatty acids in the liver, conferring a physiological role. Although "fat burns in the flame of carbohydrate" is a praiseworthy phrase that has helped describe basic concepts in biochemistry for many decades, it appears to be overvalued and extrapolated even nowadays. DNL cannot be neglected. It is time to consider DNL an efficient biochemical process in health and disease.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Uberlândia Federal University, Uberlândia, MG, Brazil.
| | - Nilson Penha-Silva
- Institute of Biotechnology, Uberlândia Federal University, Uberlândia, MG, Brazil
| |
Collapse
|
20
|
Tiwari K, Kumar B, Tiwari A, Dhamija P, Vardhan G, Dehade A, Kumar V. In Silico Analysis of Saroglitazar and Ferulic Acid Binding to Human Ketohexokinase: Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cureus 2025; 17:e79437. [PMID: 40130107 PMCID: PMC11931454 DOI: 10.7759/cureus.79437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and a global health issue that causes excessive liver fat deposition without alcohol usage. Basic fatty liver to non-alcoholic steatohepatitis can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Role of research is vital due to the multifaceted, complex pathophysiology and the increasing incidence of a sedentary lifestyle. Computational network pharmacology, docking and dynamics studies of saroglitazar and ferulic acid with human ketohexokinase (KHK) were conducted to propose potential MASLD management. METHOD Utilized computational methodologies were utilized to examine binding interactions of saroglitazar (compound identifier (CID): 60151560) and ferulic acid (CID: 445858) with human ketohexokinase (KHK: P50053, Protein Data Bank (PDB) ID: 6W0W). Active site analysis was done by using the Conserved Domain Database (CDD) server (Collaborative Drug Discovery, Burlingame, California) and BIOVIA Discovery Studio 2019 (Dassault Systèmes, Vélizy-Villacoublay, France). The best PDB complex was used for molecular dynamics simulation and trajectory analysis on 100 ns, and functional associations were checked based on network analysis using the Search Tool for Interactions of Chemicals (STITCH) server (STITCH Consortium (EMBL), Heidelberg, Germany). RESULTS Human ketohexokinase (KHK) protein (UniProt ID: P50053) was obtained. Additional KHK PDB Structure (6W0W) was retrieved for docking calculation. PubChem Database 2 Structure-Data File (SDF) files (National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine, Bethesda, Maryland), ferulic acid (CID: 445858) and saroglitazar (CID: 60151560) were used as ligands. Active site residues were identified using the CDD server and BIOVIA Discovery Studio 2019. Further, identified active site residues, i.e., Arg108, Trp225, Glu227, Gly229, Ala230, Pro246, Pro247, Val250, Thr253, Gly257, Cys282, Gly286, and Cys289 were used as potential active site for docking. D. E. Shaw Research Molecular Dynamics (DESMOND, Schrödinger, Inc., New York) was used for molecular dynamics simulation and trajectory analysis equilibrated after 40 ns in best-docked complex (saroglitazar (CID: 60151560) and KHK; binding energy: -21 kcal/mol). CONCLUSION The study shows that saroglitazar and ferulic acid are potent KHK inhibitors for metabolic diseases, including MASLD, suggesting multi-target treatments.
Collapse
Affiliation(s)
- Kalpana Tiwari
- Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Brijesh Kumar
- Pharmacology and Therapeutics, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Anurag Tiwari
- Gastroenterology, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Puneet Dhamija
- Clinical Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Gyan Vardhan
- Pharmacology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Amol Dehade
- Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| | - Vinay Kumar
- School of Biotechnology, Center for Bioinformatics, Institute of Medical Science, Banaras Hindu University, Varanasi, IND
| |
Collapse
|
21
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 1: yesterday. Expert Opin Pharmacother 2025; 26:313-324. [PMID: 39875200 DOI: 10.1080/14656566.2025.2454280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Type 1 diabetes is a unique autoimmune attack on the β cell of the pancreatic islet resulting in progressive destruction of these cells and as a result the ability of the body to maintain insulin production. The consequences of insulin deficiency are very severe, and the disease was fatal prior to the ability to extract insulin from animal pancreas in 1921. We review progress in the treatment of childhood type 1 diabetes over the past 100 years. AREAS COVERED We used PubMed and standard search engines to search for the evolution of diagnosis and treatment of type 1 diabetes. EXPERT OPINION Insulin replacement proved lifesaving for children afflicted with type 1 diabetes. However, it was observed that these children suffered from microvascular and large vessel disease. The Diabetes Control and Complications Trial (DCCT) with its extension Epidemiology of Diabetes Interventions and Complications Trial (EDIC) proved that control of blood glucose as close to normal as possible could prevent these diabetes-related conditions. Many formuations of insulin with varying onset and duration of action have been developed; yet normalization of glucose levels is difficult due to hypoglycemic events. There is continued progress toward that goal.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
22
|
Ye F, Jie H, Gan J, Liu K, Zhang Z, Xiang H, Liu W, Yin Q, Chen S, Yu H, Li H. Genome-wide association analysis of key genes for feed efficiency in Qingyuan Partridge chickens. Poult Sci 2025; 104:104632. [PMID: 39754929 PMCID: PMC11758409 DOI: 10.1016/j.psj.2024.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Qingyuan Partridge chickens represent a notable breed of high-quality, slow-growing chickens. The cost of feed constitutes 65-70 % of the total breeding expense for Qingyuan Partridge chickens. Enhancing feed utilization efficiency and reducing feed consumption are crucial for the advancement of Qingyuan Partridge chickens and the broader poultry industry. To investigate the key candidate genes associated with feed efficiency in Qingyuan Partridge chickens for genome selection, the genome-wide association study (GWAS) was performed in this study. Genetic parameters estimation results indiated that the heritability of 12-17 feed conversion ratio was 0.19, with the highest genetic correlation observed with 17 body weight (-0.96). Additionally, the heritability of 12-17 residual feed intake was 0.09, with the highest genetic correlation with 12-14 average daily feed intake (0.93). GWAS results revealed 28 significant SNPs associated with body weight, feed intake, metabolic weight, weight gain, feed conversion ratio, and residual feed intake. The multiple genes are significantly enriched in the aromatic compound biosynthetic process, heterocycle biosynthetic process, and nucleobase-containing compound biosynthetic process. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of four genes-exocyst complex component 4(EXOC4), fibrosin like 1(FBRSL1), methionine adenosyltransferase 2 non-catalytic beta subunit (MAT2B), and cytidine/uridine monophosphate kinase 1(CMPK1)-related to significant SNPs exhibited significant differences in the liver tissues of high residual feed intake group compared with low residual feed intake group. These findings contribute to a better understanding of the molecular mechanisms underlying chicken feed efficiency traits, enabling further genetic improvement of Qingyuan Partridge chickens, and improving industrial efficiency.
Collapse
Affiliation(s)
- Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hongwei Jie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiankang Gan
- Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Kunyu Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qiong Yin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Tinoo's Food Co., Ltd., Qingyuan, Guangdong 511500, China.
| |
Collapse
|
23
|
Deora N, Harishankar N, Satyavani M, Sunitha MM, Venkataraman K, Venkateshan V. Deciphering the ameliorative effect of Aloe vera (L.) burm. F. extract on histopathological alterations in Streptozotocin-induced WNIN/GR-ob rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118849. [PMID: 39322021 DOI: 10.1016/j.jep.2024.118849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products have emerged as a novel source in the management of non-communicable diseases, more so in diabetes mellitus and its comorbidities. Aloe vera is widely recognized for its anti-hyperglycemic and anti-hyperlipidemic properties and numerous researchers have identified component (s) from Aloe vera attributing to these therapeutic effects. AIM OF THE STUDY The current work was undertaken to gain insight into the protective effect of Aloe vera (L.) Burm. f. extract to study the cytoarchitecture/histopathological alterations in the target organs in mutant Obese WNIN/GR-Ob rats that were made frank diabetic with streptozotocin. MATERIALS AND METHODS Rats were divided into five groups. 1)WNIN-GR-Ob/control group 2)WNIN-GR-Ob treated with STZ 3)WNIN-GR-Ob + STZ + Sitagliptin 4)WNIN-GR-Ob + STZ + Aloe vera 5)WNIN-GR-Ob/control group + Aloe vera. Histopathological analysis of the pancreas, kidney, liver, and adipocytes was done after 4 weeks of treatment. RESULTS The histopathological examination of STZ-induced diabetic rats revealed significant changes in all the vital organs including cell infiltration, degeneration, and necrosis. Treatment with A. vera negated most of the histopathological changes seen in STZ induced rats. Sitagliptin-which served as a positive control in the present study-reversed the alterations seen in streptozotocin rats. CONCLUSION Considering the hypoglycaemic and hypolipidemic activities of Aloe vera that have been previously demonstrated by us, the present study further re-instates the therapeutic efficacy of Aloe vera towards vital organs. It was able to restore islet cells and reduce β-cell damage. In addition, it was also able to aid in kidney tubular regeneration and reverse the degenerative changes brought on by streptozotocin on liver. Further, Aloe vera treated group exhibited moderate hyperplasia with decreased size of adipocytes and reduced macrophage infiltration. Thus, our findings advocate its application as an important nutraceutical in the therapeutic management of diabetes mellitus and associated complications.
Collapse
Affiliation(s)
- Neha Deora
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India; School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, 560068, India
| | - N Harishankar
- Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, Telangana, 50000, India
| | - M Satyavani
- Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, Telangana, 50000, India
| | - M M Sunitha
- Stem Cell Research, National Institute of Nutrition, Hyderabad, Telangana, 500001, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | | |
Collapse
|
24
|
Lin SX, Li XY, Chen QC, Ni Q, Cai WF, Jiang CP, Yi YK, Liu L, Liu Q, Shen CY. Eriodictyol regulates white adipose tissue browning and hepatic lipid metabolism in high fat diet-induced obesity mice via activating AMPK/SIRT1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118761. [PMID: 39216775 DOI: 10.1016/j.jep.2024.118761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blossom of Citrus aurantium L. var. amara Engl. (CAVA) has been popularly consumed as folk medicine and dietary supplement owing to its various beneficial effects and especially anti-obesity potential. Our previous study predicted that eriodictyol was probably one of the key active compounds of the total flavonoids from blossom of CAVA. However, effects of eriodictyol in anti-obesity were still elusive. AIM OF THE STUDY This study was performed to explore the precise role of eriodictyol in white adipose tissue (WAT) browning and hepatic lipid metabolism, and simultaneously, to verify the impact of eriodictyol on the total flavonoids of CAVA in losing weight. MATERIALS AND METHODS The pancreas lipase assay was conducted and oleic acid-induced HepG2 cells were established to preliminarily detect the lipid-lowering potential of eriodictyol. Then, high fat diet-induced obesity (DIO) mouse model was established for in vivo studies. The biochemical indicators of mice were tested by commercial kits. The histopathological changes of WAT and liver in mice were tested by H&E staining, Oil Red O staining and Sirius Red staining. Immunohistochemical, Western blot assay, as well as RT-qPCR analysis were further performed. Additionally, molecular docking assay was used to simulate the binding of eriodictyol with potential target proteins. RESULTS In vitro studies showed that eriodictyol intervention potently inhibited pancreatic lipase activity and reversed hepatic steatosis in oleic acid-induced HepG2 cells. Consistently, long-term medication of eriodictyol also effectively prevented obesity and improved lipid and glucose metabolism in diet-induced obesity mice. Obesity-induced histopathological changes in iWAT, eWAT and BAT, and abnormal expression levels of IL-10, IL-6 and TNF-α in iWAT of DIO mice were also significantly reversed by eriodictyol treatment. Eriodictyol administration significantly and potently promoted browning of iWAT by increasing expression levels of thermogenic marker protein of UCP1, as well as brown adipocyte-specific genes of PGC-1α, SIRT1 and AMPKα1. Further assays revealed that eriodictyol enhanced mitochondrial function, as shown by an increase in compound IV activity and the expression of tricarboxylic acid cycle-related genes. Besides, eriodictyol addition markedly reversed hepatic damages and hepatic inflammation, and enhanced hepatic lipid metabolism in DIO mice, as evidenced by its regulation on p-ACC, CPT1-α, UCP1, PPARα, PGC-1α, SIRT1 and p-AMPKα expression. Molecular docking results further validated that AMPK/SIRT1 pathway was probably the underlying mechanisms by which eriodictyol acted. CONCLUSION Eriodictyol exhibited significant anti-obesity effect, which was comparable to that of the total flavonoids from blossom of CAVA. These findings furnished theoretical basis for the application of eriodictyol in weight loss.
Collapse
Affiliation(s)
- Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qi-Cong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qian Ni
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Wei-Feng Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| | - Yan-Kui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Tomasini S, Vigo P, Margiotta F, Scheele US, Panella R, Kauppinen S. The Role of microRNA-22 in Metabolism. Int J Mol Sci 2025; 26:782. [PMID: 39859495 PMCID: PMC11766054 DOI: 10.3390/ijms26020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
Collapse
Affiliation(s)
- Simone Tomasini
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Paolo Vigo
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
| | - Francesco Margiotta
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Ulrik Søberg Scheele
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Riccardo Panella
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| |
Collapse
|
26
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Vijay B, Devkumar P, Saha G, RamachandraRao SP. Urine exosome biomarkers of obesity after Lekhana Basti treatment - Report of a pilot study. J Ayurveda Integr Med 2025; 16:101043. [PMID: 39879695 PMCID: PMC11803157 DOI: 10.1016/j.jaim.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Obesity is a rising risk factor for various diseases including cardiovascular diseases and Cancer. The limitations of targeted obesity-treatment approaches employed in the clinic presently underscore the importance of developing integrative management strategies for identification of specific biomarkers of obesity. OBJECTIVES Given the specificity of exosome/extracellular vesicle (EV) biomarkers, we aimed here to identify the EV biomarkers of Ayurveda treatment - Lekhana Basti - for Obesity. METHODOLOGY A total of eighteen 24-h urine samples from 6 participants with BMI>30 kg/m2 were used in this study, collected over 3 time-points during the Lekhana basti (medicated enema for obesity) treatment. Urine EV were isolated using Polyethylene Glycol (PEG). The proteins were resolved by 1-d gel electrophoresis and identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quantified by label-free methods. Significant Protein-Protein Interactions, KEGG pathway analysis and enrichment, functional gene ontology (GO) annotation were identified and shortlisted in comparison to Obesity reference genes from DisGeNET. RESULTS With UniProt as a reference subsequent to LC-MS/MS-identification, a total of 210 exosome proteins were identified. Seventy-three proteins were overexpressed in pathway enrichment analysis. Further, GO functional annotation identified 15 common proteins involved. Finally, the 8 hub proteins associated with obesity were identified and their differential expression profile compared between three different time-points during Lekhana Basti treatment. Six protein markers overexpressed during obesity were downregulated post Lekhana Basti treatment, while 2 markers increased in abundance post-treatment. CONCLUSION To our knowledge, this is the first study to isolate and identify urine EV protein abundance profiles from obese female participants of India. The study results indicate significant changes in the differential expression profile of 8 hub proteins involved in obesity, after Lekhana Basti treatment. The biomarker signature of the pilot study indicates the role of Ayurveda treatment and the possible pathways involved in the treatment of Obesity. Further, this study underlines the specificity of urine exosomes/EV as diagnostic markers as well as the potential of Ayurveda treatment in effective management of obesity.
Collapse
Affiliation(s)
- Bhavya Vijay
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Poornima Devkumar
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Gargi Saha
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Satish P RamachandraRao
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India; Internal Medicine - Cardiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Huang Q, Chen J, Zhao Y, Huang J, Liu H. Advancements in electrochemical glucose sensors. Talanta 2025; 281:126897. [PMID: 39293246 DOI: 10.1016/j.talanta.2024.126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The development of electrochemical glucose sensors with high sensitivity, specificity, and stability, enabling real-time continuous monitoring, has posed a significant challenge. However, an opportunity exists to fabricate electrochemical glucose biosensors with optimal performance through innovative device structures and surface modification materials. This paper provides a comprehensive review of recent advances in electrochemical glucose sensors. Novel classes of nanomaterials-including metal nanoparticles, carbon-based nanomaterials, and metal-organic frameworks-with excellent electronic conductivity and high specific surface areas, have increased the availability of reactive sites to improved contact with glucose molecules. Furthermore, in line with the trend in electrochemical glucose sensor development, research progress concerning their utilisation with sweat, tears, saliva, and interstitial fluid is described. To facilitate the commercialisation of these sensors, further enhancements in biocompatibility and stability are required. Finally, the characteristics of the ideal electrochemical glucose sensor are described and the developmental trends in this field are outlines.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jingqiu Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Jing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Huan Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
| |
Collapse
|
29
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2025; 135:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
30
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
31
|
Xiang X, Shuya P, Jiamin Z, Zihan Z, Xumei Y, Jingjin L. 3-Phosphoinositide-Dependent Kinase 1 as a Therapeutic Target for Treating Diabetes. Curr Diabetes Rev 2025; 21:47-56. [PMID: 38468518 DOI: 10.2174/0115733998278669240226061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
The role of 3-phosphoinositide-dependent kinase 1 (PDK1) has been welldocumented in the development of diabetes. This review offers a thorough examination of its composition and associated routes, specifically focusing on insulin signaling and glucose processing. By examining the precise connection between PDK1 and diabetes, various strategies specifically targeting PDK1 were also investigated. Additionally, recent discoveries from mouse models were compiled where PDK1 was knocked out in certain tissues, which demonstrated encouraging outcomes for focused treatments despite the absence of any currently approved clinical PDK1 activators. Moreover, the dual nature of PDK1 activation was discussed, encompassing both anti-diabetic and pro-oncogenic effects. Hence, the development of a PDK1 modifier is of utmost importance, as it can activate anti-diabetic pathways while inhibiting pro-oncogenic pathways, thus aiding in the treatment of diabetes. In general, PDK1 presents a noteworthy opportunity for future therapeutic strategies in the treatment of diabetes.
Collapse
Affiliation(s)
- Xie Xiang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Pan Shuya
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Jiamin
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Zihan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Yang Xumei
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Liu Jingjin
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
32
|
Ahsin A, Kurbanova M, Ahmad S, Qamar A, Ashfaq M, Tahir MN, Dege N, Şahin O, Abuelizz HA, Al-Salahi R, El Bakri Y. Synthesis, structure, supramolecular assembly inspection by Hirshfeld surface analysis, DFT study and molecular docking inspection of 4,5-bis(2-chlorophenyl)-8a-phenylhexahydropyrimido[4,5-d]pyrimidine-2,7(1H,3H)-dithione. J Mol Struct 2025; 1319:139580. [DOI: 10.1016/j.molstruc.2024.139580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
|
33
|
Lin YL, Chen YP, Wang SY, Kao YF, Lumsangkul C, Chen YC. Utilization of edible poultry slaughter residues: A chicken-liver hydrolysate with glucose-lowering ability and upregulating glycogenesis in type II diabetes. Poult Sci 2025; 104:104517. [PMID: 39571203 PMCID: PMC11617675 DOI: 10.1016/j.psj.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024] Open
Abstract
Approximately 10,000 metric tons of broiler livers are yielded every year in Taiwan. However, due to unpleasant odor and health concern, these livers are typically discarded as waste in the slaughtering stream in most developed or developed countries. In alignment with global agrocycle policies, a biofunctional chicken-liver hydrolysate (CLH) has been developed. This study was to investigate the effects of CLHs on glucose homeostasis and complications in type II diabetes. Insulin resistance was induced in liver (FL83B) and muscle (C2C12) cells using 30 and 20 ng TNF-α/mL, respectively, resulting in decreased glucose uptake and lower expressions of IRβ, p-Akt/Akt, and p-GSK3/GSK. CLH supplementation significantly upregulated (p<0.05) glucose uptakes and these proteins. In db/db mice, CLH supplementation improved insulin resistance, as shown by OGTT assay, HOMA-IR value and serum glucose levels, while also reducing serum lipids and liver damage indices (p<0.05). Additionally, CLH ameliorated (p<0.05) decreased hindlimb-gastrocnemius weight, and liver lipid contents, oxidative stress (sera and liver) and inflammatory cytokines. Increased glycogen accumulation was visualized in PAS-stained liver and hindlimb tissues of db/db mice supplemented with CLHs, consistent with upregulated glycogenesis in TNF-α-induced liver and muscle cells through the IRβ-Akt-GSK3 pathway. These findings suggest CLH may offer a mitigation against hyperglycemia and associated complications in type II diabetes, while also highlighting a sustainable solution for utilizing poultry slaughter residues.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan; Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei City 116059, Taiwan
| | - Yu-Pei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan
| | - Yi-Feng Kao
- Seafood Technology Division, Fisheries Research Institute, Ministry of Agriculture, Keelung City 202008, Taiwan
| | - Chompunut Lumsangkul
- Department of Animal Science, National Chung-Hsing University, Taichung City 402202, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106037, Taiwan; Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei City 106319, Taiwan.
| |
Collapse
|
34
|
Zhang L, Liu X, Hu J, Quan H, Lee SK, Korivi M, Wang L, Li T, Li W. Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway. Nutr Metab (Lond) 2024; 21:113. [PMID: 39741281 DOI: 10.1186/s12986-024-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats. METHODS Sprague-Dawley rats fed a high-fat diet (HFD), and performed treadmill exercise training for 6-week. Oral glucose tolerance test was conducted to confirm the IR. Periodic Acid-Schiff (PAS) staining and anthrone colorimetry were used to assess the skeletal muscle glycogen. RT-qPCR, western blot, and immunofluorescence were used to detect the EGR-1/PTP1B pathway and associated signaling molecules. RESULTS We found that exercise training significantly decreased blood glucose, insulin, and homeostasis model assessment for IR (HOMA-IR) against HFD-induced elevation. Decreased muscle glycogen content due to HFD was significantly restored after exercise training. Exercise training promoted mRNA expressions of Irs1, Akt, and Glut4, while inhibited Gsk-3β expression against HFD. Next, the decreased IRS1 (phosphorylated/total), AKT (phosphorylated/total), and GLUT4, and increased GSK-3β proteins with HFD were significantly reversed by exercise. Furthermore, HFD-induced overexpression of EGR-1 and PTP1B evidenced by mRNA, protein, and immunofluorescence intensity, were substantially inhibited by exercise, which may contribute to promote insulin sensitivity and glycogen anabolism. CONCLUSIONS Aerobic exercise training promotes insulin sensitivity and skeletal muscle glycogen synthesis in HFD-fed rats. The beneficial effects of exercise might be mediated by EGR-1/PTP1B signaling pathway in skeletal muscle, however further studies are necessary to confirm this mechanism.
Collapse
Affiliation(s)
- Liangzhi Zhang
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Xiaojie Liu
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Jing Hu
- Department of Clinical Medicine, Medical College, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Helong Quan
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China
| | - Sang Ki Lee
- Department of Sport Science, College of Natural Science, Chungnam National University, Deajeon, Korea
| | - Mallikarjuna Korivi
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Lifeng Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China
| | - Ting Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
| | - Wei Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
| |
Collapse
|
35
|
Jeong Y, Lee SH, Shim SL, Jang KH, Kim JH. Efficacy and safety of red ginseng extract powder (KGC05pg) in achieving glycemic control in prediabetic Korean adults: A 12-week, single-center, randomized, double-blind, parallel-group, placebo-controlled study. Medicine (Baltimore) 2024; 103:e41130. [PMID: 39969290 PMCID: PMC11688016 DOI: 10.1097/md.0000000000041130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/11/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND This study was conducted to assess the efficacy and safety of Red Ginseng Extract Powder (RGEP) (KGC05pg; Korea Ginseng Corporation, Daejeon, Korea) in achieving glycemic control in prediabetic Korean adults. METHODS The patients of the RGEP group (n = 49) and those of the placebo group (n = 49) were orally given 2 tablets of RGEP and its matching placebo, respectively, at a dose of 500 mg/day twice daily in the morning and the evening within 30 min after meal during a 12-week treatment period. The patients were assessed for glycemic control parameters, such as fasting blood glucose levels, 30-, 60-, 90-, and 120-min blood glucose levels on an oral glucose tolerance test, Hb1Ac levels and glucose area under the curve, insulin resistance parameters, such as homeostasis model assessment of insulin resistance, c-peptide and insulinogenic index, and hormone parameters, such as glucagon, adiponectin and glucagon-like peptide-1. Moreover, the patients were also assessed for time-dependent changes in dipeptidyl peptidase-4 levels. Finally, the patients were also assessed for incidences of treatment-emergent adverse events and serious adverse events. RESULTS There were significant differences in changes in fasting blood glucose and 30-, 60-, 90-, and 120-min blood glucose levels on an oral glucose tolerance test, Hb1Ac levels, glucose area under the curve, homeostasis model assessment of insulin resistance, c-peptide levels and insulinogenic index, glucagon, adiponectin, and glucagon-like peptide-1 levels at 12 weeks from baseline between the 2 groups (P < .05). There was a significant time-dependent decrease in dipeptidyl peptidase-4 levels in the RGEP group (P = .001). There were no cases of treatment-emergent adverse events and serious adverse events in each treatment arm. CONCLUSION RGEP might be effective in achieving glycemic control in prediabetic Korean adults.
Collapse
Affiliation(s)
- Yoonseon Jeong
- Korea Ginseng Corporation Research Institute, Gwacheon, Gyeonggi, Republic of Korea
| | - Seung Ho Lee
- Korea Ginseng Corporation Research Institute, Gwacheon, Gyeonggi, Republic of Korea
| | - Sung Lye Shim
- Korea Ginseng Corporation Research Institute, Gwacheon, Gyeonggi, Republic of Korea
| | - Kyoung Hwa Jang
- Korea Ginseng Corporation Research Institute, Gwacheon, Gyeonggi, Republic of Korea
| | - Jong Han Kim
- Korea Ginseng Corporation Research Institute, Gwacheon, Gyeonggi, Republic of Korea
| |
Collapse
|
36
|
Sagliocchi S, Schiano E, Acampora L, Iannuzzo F, Cicatiello AG, Miro C, Nappi A, Restolfer F, Stornaiuolo M, Zarrilli S, Guerra F, Tenore GC, Dentice M, Novellino E. AbaComplex Enhances Mitochondrial Biogenesis and Adipose Tissue Browning: Implications for Obesity and Glucose Regulation. Foods 2024; 14:48. [PMID: 39796338 PMCID: PMC11720057 DOI: 10.3390/foods14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health. In this study, we investigated the effects of chronic supplementation with an infusion based on lyophilized, thin nectarines rich in abscisic acid (ABA), named AbaComplex, on promoting browning of WAT and activating BAT in mice. Over 30 days, C57BL/6 mice were treated with the ABA-rich infusion, and various metabolic and molecular parameters were assessed. The results showed that the AbaComplex significantly increased the expression of browning markers, such as UCP1 and PGC1-α, in both visceral and subcutaneous WAT. Additionally, mitochondrial biogenesis and function were enhanced, evidenced by elevated mitochondrial DNA content and activity. The treatment also reduced the weight of WAT (both visceral and subcutaneous) and BAT and significantly improved glucose uptake in WAT via upregulation of GLUT4, suggesting enhanced insulin sensitivity. Overall, the pronounced browning effect in WAT underscores the potential of AbaComplex as a natural approach for combating obesity and improving metabolic health.
Collapse
Affiliation(s)
- Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Lucia Acampora
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D’Annunzio, 66100 Chieti, Italy;
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Federica Restolfer
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Stefano Zarrilli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Fabrizia Guerra
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (S.S.); (L.A.); (A.G.C.); (C.M.); (A.N.); (F.R.); (S.Z.)
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
37
|
Wu CM, Li HY, Li WY, Hsu CN, Yang WS, Chuang GT, Che TPH, Lee TY, Lee HL, Hee SW, Lee JH, Liao D, Liao KCW, Liu YW, Hsuan CF, Chang YC, Chu SL. Protocol to measure glucose utilization in mouse tissues using radiolabeled 2-deoxy-D-glucose. STAR Protoc 2024; 5:103478. [PMID: 39644497 DOI: 10.1016/j.xpro.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024] Open
Abstract
2-deoxy-D-glucose (2DG) is a glucose analog converted to 2-deoxy-D-glucose-6-phosphate (2DG-6P) by hexokinase in glycolysis. While 2DG commonly measures glucose uptake, 2DG-6P detects glucose utilization. Here, we present a protocol to measure glucose utilization in various tissues after entering a mouse's body using radiolabeled 2DG. We describe steps for preparing mice and chemicals, extracting blood, adding chemicals, and dissolving tissue. We then detail procedures for calculating glucose utilization using the trapezoid rule.
Collapse
Affiliation(s)
- Cyun-Ming Wu
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hao-Yun Li
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Yi Li
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin 640, Taiwan
| | - Chih-Neng Hsu
- Cardiovascular Center, National Taiwan University Hospital, Yunlin Branch, Yunlin 640, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, HsinChu Branch, HsinChu 300, Taiwan
| | - Gwo-Tsang Chuang
- Division of Nephrology, Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tony Pan-Hou Che
- PhD Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei 100, Taiwan
| | - Tung-Yuan Lee
- PhD Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei 100, Taiwan
| | - Hsiao-Lin Lee
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100, Taiwan
| | - Siow-Wey Hee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jiin-Horng Lee
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100, Taiwan
| | - Daniel Liao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | - Ya-Wen Liu
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 807, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Yi-Cheng Chang
- PhD Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei 100, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taiwan 100, Taiwan.
| | - Shao-Lun Chu
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
38
|
Chen DQ, Wu YX, Zhang YX, Yang HL, Huang HH, Lv JY, Xiao Q. Sarcopenia-associated factors and their bone mineral density levels in middle-aged and elderly male type 2 diabetes patients. World J Diabetes 2024; 15:2285-2292. [PMID: 39676813 PMCID: PMC11580600 DOI: 10.4239/wjd.v15.i12.2285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Chronic hyperglycemia can damage the microcirculation, which impairs the function of various organs and tissues and predisposes individuals to chronic complications. Sarcopenia (SP) is the age-related decline in muscle mass and function that contributes to the sequelae of type 2 diabetes. In particular, diabetic patients are at higher risk of SP because of insulin resistance, chronic inflammation, and decreased physical activity. AIM To identify SP-associated factors in middle-aged and elderly male type 2 diabetes mellitus (T2DM) patients and their correlation with bone mineral density (BMD). METHODS A retrospective analysis was conducted on 196 middle-aged and elderly male T2DM inpatients in the First Affiliated Hospital of Chongqing Medical University between June 2021 and June 2023, with 60 concurrent healthy individuals as the control group. Differences in general information, blood biochemistry, glycosylated hemoglobin, muscle strength, and detection rate of SP were compared between groups. The BMD, appendicular skeletal muscle (ASM), and fat mass, as well as grip strength and gait speed, were determined for each patient, and the ASM index (ASMI) was counted. The quantitative data were subjected to correlation and logistic regression analyses to identify risk factors for SP. RESULTS Fifty-one of the 196 middle-aged and elderly male T2DM patients were diagnosed with SP, which accounted for 26.02%. The middle-aged and elderly T2DM patients with SP exhibited a longer diabetes mellitus (DM) course and a lower body mass index (BMI) and 25(OH)D3 compared with the non-SP patients. The T2DM + SP patients exhibited lower BMI, ASM, ASMI, left- and right-hand grip strength, gait speed, and muscle and fat mass of the upper and lower limbs compared with the diabetic non-SP patients. The femoral neck, total hip, and lumbar spine L1-4 BMD were markedly lower in T2DM + SP patients compared with those in the non-SP diabetics. Long-term DM course, low BMI, and low BMD of the femoral neck, lumbar spine L1-4, and total hip were identified as risk factors for the development of SP. CONCLUSION T2DM patients are at risk for SP; however, measures can be taken to prevent the related risk factors.
Collapse
Affiliation(s)
- De-Qing Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yong-Xin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ying-Xiao Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Hai-Ling Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Huan-Huan Huang
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jiang-Yan Lv
- Department of Endocrinology, The People's Hospital of Rongchang District, Chongqing 402460, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
39
|
Obaideen M, Önel T, Yıldırım E, Yaba A. The role of leptin in the male reproductive system. J Turk Ger Gynecol Assoc 2024; 25:247-258. [PMID: 39658934 PMCID: PMC11632632 DOI: 10.4274/jtgga.galenos.2024.2023-7-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/08/2024] [Indexed: 12/12/2024] Open
Abstract
Leptin is a hormone produced from adipose tissue, targeting the hypothalamus and regulating energy expenditure, adipose tissue mass, and reproductive function. Leptin concentration reflects body weight and the amount of energy stored, as well as the level of reproductive hormones and male fertility. In this review, the aim was to focus on leptin signaling mechanisms and the significant influence of leptin on the male reproductive system and to summarize the current knowledge of clinical and experimental studies. The PubMed database was searched for studies on leptin and the male reproductive system to summarize the mechanism of leptin in the male reproductive system. Studies have shown that obesity-related, high leptin levels or leptin resistance negatively affects male reproductive functions. Leptin directly affects the testis by binding to the hypothalamic-pituitary-gonadal axis and the receptors of testicular cells, and thus the location of leptin receptors plays a key role in the regulation of the male reproductive system with the negative feedback mechanism between adipose tissue and hypothalamus. Based on the current evidence, leptin may totally inhibit male reproduction, and investigation of this role of leptin has established a potential interaction between obesity and male infertility. The mechanism of leptin in the male reproductive system should be further investigated and possible treatments for subfertility should be evaluated, supported by better understanding of leptin and associated signaling mechanisms.
Collapse
Affiliation(s)
- Melek Obaideen
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Tuğçe Önel
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Ecem Yıldırım
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
40
|
Xu S, Hu Z, Wang Y, Zhang Q, Wang Z, Ma T, Wang S, Wang X, Wang L. Circ_0000284 Is Involved in Arsenite-Induced Hepatic Insulin Resistance Through Blocking the Plasma Membrane Translocation of GLUT4 in Hepatocytes via IGF2BP2/PPAR-γ. TOXICS 2024; 12:883. [PMID: 39771098 PMCID: PMC11679219 DOI: 10.3390/toxics12120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Arsenic exposure can induce liver insulin resistance (IR) and diabetes (DM), but the underlying mechanisms are not yet clear. Circular RNAs (circRNAs) are involved in the regulation of the onset of diabetes, especially in the progression of IR. This study aimed to investigate the role of circRNAs in arsenic-induced hepatic IR and its underlying mechanism. Male C57BL/6J mice were given drinking water containing sodium arsenite (0, 0.5, 5, or 50 ppm) for 12 months. The results show that sodium arsenite increased circ_0000284 expression, decreased insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and peroxisome proliferator-activated receptor-γ (PPAR-γ), and inhibited cell membrane protein levels of insulin-responsive glucose transporter protein 4 (GLUT4) in the mouse livers, indicating that arsenic exposure causes liver damage and disruptions to glucose metabolism. Furthermore, sodium arsenite reduced glucose consumption and glycogen levels, increased the expression of circ_0000284, reduced the protein levels of IGF2BP2 and PPAR-γ, and inhibited GLUT4 protein levels in the cell membranes of insulin-treated HepG2 cells. However, a circ_0000284 inhibitor reversed arsenic exposure-induced reductions in IGF2BP2, PPAR-γ, and GLUT4 levels in the plasma membrane. These results indicate that circ_0000284 is involved in arsenite-induced hepatic insulin resistance through blocking the plasma membrane translocation of GLUT4 in hepatocytes via IGF2BP2/PPAR-γ. This study provides a scientific basis for finding early biomarkers for the control of arsenic exposure and type 2 diabetes mellitus (T2DM), and discovering new prevention and control measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohui Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (S.X.); (Z.H.); (Y.W.); (Q.Z.); (Z.W.); (T.M.); (S.W.)
| | - Li Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (S.X.); (Z.H.); (Y.W.); (Q.Z.); (Z.W.); (T.M.); (S.W.)
| |
Collapse
|
41
|
Makanyane DM, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Anti-Amyloid Aggregation and Anti-Hyperglycemic Activities of Novel Ruthenium Uracil Schiff Base Compounds. ChemMedChem 2024; 19:e202400477. [PMID: 39136611 DOI: 10.1002/cmdc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Indexed: 11/10/2024]
Abstract
The formation and characterization of new diamagnetic ruthenium uracil mono-imine compounds: [(η6-p-cymene)RuII(L)Cl][BF4] (L=H2urpda=5-((pyridin-2-yl)methyleneamino)-6-aminouracil) for 1, urdpy=6-amino-1,3-dimethyl-5-((pyridin-2-ylmethylene)amino)uracil) for 2 or urqda=5-((quinolin-2-yl)methyleneamino)-6-aminouracil) for 3); cis-[Ru(bipy)2(urpy)](BF4)2 (4) (urpy=5-((pyridin-2-yl)methyleneamino)uracil) and cis-[Ru(bipy)2(dapd)] (5) (H2dadp=5,6-diaminouracil) are described. A ruthenium(IV) uracil Schiff base compound, trans-[Ru(urpda)(PPh3)Cl2] (6) was also formed. Various physicochemical techniques were utilized to characterize the novel ruthenium compounds. Similarly, the stabilities of 1-3 and 6 monitored in chloro-containing and the non-coordinating solvent, dichloromethane show that they are kinetically inert, whereas, in a high nucleophilic environment, the chloride co-ligands of these ruthenium complexes were rapidly substituted by DMSO. In contrast, the substitution of the labile co-ligands for these ruthenium complexes by DMSO molecules in a high chloride content was suppressed. Solution chemical reactivities of the different ruthenium complexes were rationalized by density functional theory computations. Furthermore, the binding affinities and strengths between BSA and the respective ruthenium complexes were monitored using fluorescence spectroscopy. In addition, the in vitro anti-diabetic activities of the novel metal complexes were assessed in selected skeletal muscle and liver cell lines.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
42
|
Ghasemzadeh Rahbardar M, Fazeli Kakhki H, Hosseinzadeh H. Ziziphus jujuba (Jujube) in Metabolic Syndrome: From Traditional Medicine to Scientific Validation. Curr Nutr Rep 2024; 13:845-866. [PMID: 39354208 DOI: 10.1007/s13668-024-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.
Collapse
Affiliation(s)
| | - Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Ningsih S, Kusumastuti SA, Nuralih N, Fajriawan AA, Permatasari D, Yunianto P, Ramadhan D, Wulandari MT, Firdausi N, Nurhadi N, Giarni R, Agustini K, Wibowo AE, Rosidah I, Rengganis TN, Ngatinem N, Subiantoro AH, Supriyono A. Andrographis paniculata (Burm. f.) Nees extract ameliorates insulin resistance in the insulin-resistant HepG2 cells via GLUT2/IRS-1 pathway. Arch Physiol Biochem 2024; 130:779-789. [PMID: 37878369 DOI: 10.1080/13813455.2023.2273221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Hyperglycaemia is one condition related to inflammation leading to insulin signalling impairment. This study was conducted to investigate the insulin sensitivity improvement of Sambiloto (Andrographis paniculata (Burm. f.)) Nees extract in insulin resistance-induced HepG2 (IR-HepG2) cells by stimulating insulin sensitivities and inhibiting inflammatory response. Sambiloto extract at 2 µg/mL revealed glucose uptake stimulation and up-regulating GLUT-2 and IRS-1 gene expression, and inhibited pro-inflammatory cytokine IL-6 gene expression in IR-HepG2 cells. Phytochemical analysis showed that the total phenolic level and andrografolide content of Sambiloto extract were 2.91 ± 0.04% and 1.95%, respectively. This result indicated that Sambiloto extract ameliorated insulin resistance in high glucose-induced IR-HepG2 cells via modulating the IRS-1/GLUT-2 pathway due to IL-6 inhibition. These findings suggested that Sambiloto extract had potency as an anti-inflammatory and insulin-resistance improvement in IR-HepG2 cells.
Collapse
Affiliation(s)
- Sri Ningsih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nuralih Nuralih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Adam Arditya Fajriawan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Devi Permatasari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Prasetyawan Yunianto
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Mayriska Tri Wulandari
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nisrina Firdausi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nurhadi Nurhadi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Reni Giarni
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agung Eru Wibowo
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Tiya Novlita Rengganis
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Ngatinem Ngatinem
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agus Himawan Subiantoro
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agus Supriyono
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| |
Collapse
|
44
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Alibrahim F, Batiha GE. New insight on the potential detrimental effect of metabolic syndrome on the Alzheimer disease neuropathology: Mechanistic role. J Cell Mol Med 2024; 28:e70118. [PMID: 39644152 PMCID: PMC11624485 DOI: 10.1111/jcmm.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 12/09/2024] Open
Abstract
The metabolic syndrome or syndrome X is a clustering of different components counting insulin resistance (IR), glucose intolerance, visceral obesity, hypertension and dyslipidemia. It has been shown that IR and dysregulation of insulin signalling play a critical role in the development of metabolic syndrome by initiating the pathophysiology of metabolic syndrome through induction of glucolipotoxicity, impairment of glucose disposal and triggering of pro-inflammatory response. Furthermore, metabolic syndrome unfavourably affects the cognitive function and the development of different neurodegenerative diseases such as Alzheimer disease (AD) by inducing oxidative stress, neuroinflammation and brain IR. These changes together with brain IR impair cerebrovascular reactivity leading to cognitive impairment. In addition, metabolic syndrome increases the risk for the development of AD. However, the central mechanisms by which metabolic syndrome amplify AD risk are not completely elucidated. Consequently, this narrative review aims to revise from published articles the association between metabolic syndrome and AD regarding cellular and subcellular pathways. In conclusion, metabolic syndrome is regarded as a potential risk factor for the induction of AD neuropathology by different signalling pathways such as initiation of brain IR, activation of inflammatory signalling pathways and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Fawaz Alibrahim
- Division of NeurologyKing Abdulaziz Medical City, Ministry of the National Guard Health AffairsRiyadhSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
45
|
Zhang L, Luo P, Li H, Pan Y, Zhang H, Si X, Chen W, Huang Y. Chicken GLUT4 function via enhancing mitochondrial oxidative phosphorylation and inhibiting ribosome pathway in skeletal muscle satellite cells. Poult Sci 2024; 103:104403. [PMID: 39515116 PMCID: PMC11584589 DOI: 10.1016/j.psj.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose Transporter 4 (GLUT4) is a crucial protein facilitating glucose uptake and metabolism across cell membranes in mammals. However, information on GLUT4 in birds has historically been limited. In this study, we investigated the dynamic expression profile of chicken GLUT4 using real-time quantitative PCR (RT-qPCR) and examined its potential effects and mechanisms via GLUT4 overexpression and RNA sequencing (RNA-seq) in chicken primary skeletal muscle satellite cells (CP-SMSCs). Our results demonstrated that chicken GLUT4 is differentially expressed across tissues, with predominant expression in skeletal muscles, and across developmental stages of CP-SMSCs, with notable upregulation during the phases of cell proliferation and early differentiation. Notably, 0.1 μM insulin for 60 min significantly elevated the expression of GLUT4 in CP-SMSCs (P < 0.05). GLUT4 overexpression in CP-SMSCs promoted cell proliferation, as evidenced by Cell Counting Kit-8 (CCK-8) (P < 0.05) and 5-Ethynyl-2'-Deoxyuridine (EDU) assays (P < 0.05), and enhanced glucose consumption following 0.1 μM insulin treatment (P < 0.05). However, it inhibited glucose consumption 12 h after the addition of 5 g/L glucose (P < 0.05). After overexpressing GLUT4, we identified 302 differentially expressed genes (DEGs) in CP-SMSCs, with 134 upregulated and 168 downregulated. These DEGs are primarily enriched in pathways such as oxidative phosphorylation, ribosome, cardiac muscle contraction, ATP metabolic processes, and mitochondrial protein complexes. Specifically, in the enriched oxidative phosphorylation pathway, the upregulated DEGs (12) encode mitochondrial proteins, while the downregulated DEGs (6) are nuclear genome-derived. The ribosomal pathway is predominantly inhibited, accompanying with the downregulation of the translocase of outer mitochondrial membrane 7 (TOMM7)/translocase of inner mitochondrial membrane 8 (TIMM8A) complex responsible for mitochondrial protein transport, and a reduction in 28S (LOC121106978) and 18S (LOC112533601) ribosomal rRNAs. In conclusion, chicken GLUT4 is dynamically modulated during development and acts as an insulin responder that significantly regulates cellular glucose uptake and cell proliferation. This regulation occurs mainly through enhancing the mitochondrial oxidative phosphorylation and inhibiting ribosomal pathway.
Collapse
Affiliation(s)
- Lin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Huihong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yuxian Pan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
46
|
Bin Pan, Xie Y, Shao W, Fang X, Han D, Li J, Hong X, Tu W, Shi J, Yang M, Tian F, Xia M, Hu J, Ren J, Kan H, Xu Y, Li W. Prenatal exposure to PM 2.5 disturbs the glucose metabolism of offspring fed with high-fat diet in a gender-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117404. [PMID: 39615301 DOI: 10.1016/j.ecoenv.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Studies have shown that maternal exposure to PM2.5 could potentially disrupt glucose and lipid metabolism in offspring supplied with high-fat diet, yet whether this effect is gender-dependent or not and the underlying biological mechanisms are not well understood. In our current research, female ICR mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) before and during pregnancy. The offspring mice were fed with control diet (CD) or high-fat diet (HFD) for 9 weeks, and their metabolic conditions were analyzed. Our findings reveal that maternal exposure to PM2.5 induced glucose intolerance and insulin resistance in female offspring fed with HFD but not in males. Specifically, hepatic insulin resistance as indicated by significantly decreased AKT phosphorylation (p-AKT) level, changed liver structure as indicated by increased ballooning and steatosis based on H&E staining images, and impaired liver function as indicated by up-regulated ALT activity were observed in HFD-fed female offspring from CAP-exposed mothers in comparison to those from FA-exposed ones. Further analysis indicated that these impacts of prenatal PM2.5 exposure on glucose metabolism in offspring may result from disturbed gluconeogenesis and induced inflammatory response in liver. Our research underscores that prenatal PM2.5 exposure induces glucose metabolism abnormalities in offspring fed with HFD in a gender-dependent manner, and the liver potentially serves as a key player in mediating these effects of maternal PM2.5 exposure.
Collapse
Affiliation(s)
- Bin Pan
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China; Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiaoqing Hong
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenyue Tu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiayi Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Jianke Ren
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of pharmacy, Fudan University, Shanghai 200237, China.
| |
Collapse
|
47
|
Nkemzi AQ, Okaiyeto K, Oyenihi O, Opuwari CS, Ekpo OE, Oguntibeju OO. Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of Helichrysum cymosum. 3 Biotech 2024; 14:291. [PMID: 39507059 PMCID: PMC11535088 DOI: 10.1007/s13205-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
The current research involved the synthesis of zinc oxide nanoparticles (ZnO-NPs) using an aqueous extract of Helichrysum cymosum shoots, and subsequent characterization via different analytical methods, such as UV-Vis spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Transmission electron microscope (TEM), and zeta potential. The biological effects of the ZnO-NPs were then tested against C3A hepatocyte cells and L6 myocyte cell lines via series of analysis, including cytotoxicity, antioxidant, anti-inflammatory, and antidiabetic effect via enzymatic inhibition. The UV-Vis analysis showed a maximum absorption spectrum at 360, and the TEM analysis reveals a spherical and hexagonal structures, with an average dimension of 28.05-58.3 nm, and the XRD reveals a crystalline hexagonal structure. The zeta potential evaluation indicated that the ZnO-NPs are relatively stable at - 20 mV, and the FTIR analysis identified some important functional group associated with phenolics, carboxylic acid, and amides that are responsible for reducing and stabilizing the ZnO-NPs. The synthesized ZnO-NPs demonstrated cytotoxic effects on the cell lines at higher concentrations (125 µg/mL and 250 µg/mL), complicating the interpretation of the results of the inflammatory and antioxidant assays. However, there was a significant (p < 0.05) increase in the inhibitions of pancreatic lipase, alpha-glucosidase, and alpha-amylase, indicating beneficial antidiabetic effects.
Collapse
Affiliation(s)
- Achasih Q. Nkemzi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Omolola Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Chinyerum S. Opuwari
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
| | - Okobi E. Ekpo
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Oluwafemi O. Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| |
Collapse
|
48
|
Xiao K, Jia X, Qiang W, Chang L, Liu W, Zhang D. Tryptophan supplements in high-carbohydrate diets by improving insulin response and glucose transport through PI3K-AKT-GLUT2 pathways in blunt snout bream (Megalobrama amblycephala). J Nutr Biochem 2024; 134:109715. [PMID: 39127308 DOI: 10.1016/j.jnutbio.2024.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The aim of this experiment was to elucidate the metabolic ramifications of tryptophan supplementation in the context of high-carbohydrate diet-feeding, which is important for improving feeding strategies in aquaculture in order to improve fish carbohydrate metabolism. Juvenile blunt snout bream with an initial mean body mass of 55.0±0.5 g were allocated to consume one of three experimental diets: CN, a normal diet with carbohydrate content of 30% (w/w); HC, a diet with high carbohydrate content of 43% (w/w); and HL, a high-carbohydrate diet to which 0.8% L-tryptophan (L-trp) had been added. These diets were fed for 8 weeks, and the effects of the carbohydrate and tryptophan contents of the diets were assessed. Histological analysis using Hematoxylin and Eosin (H&E) and Oil Red O staining revealed that high-carbohydrate intake was associated with abnormal hepatocyte morphology and excessive liver lipid accumulation, which were notably ameliorated by tryptophan supplementation. A significant increase in plasma glucose, glucagon, AGEs (advanced glycation end products), triglycerides, total cholesterol, and a significant decrease in insulin and hepatic glycogen after a high-carbohydrate diet in terms of plasma indices, compared to the control group. Almost all of them were restored to the normal level in the HL group. The present study might preliminarily suggest that tryptophan supplementation ameliorates the imbalance in glucose metabolism of this species induced by a high-carbohydrate diet. Transcriptomics showed that glucose metabolism under high carbohydrate was mainly regulated by the PI3K-AKT signaling pathway. The mRNA expression and protein levels of GLUT2 also varied with this pathway, which would suggest that sustained activation of this pathway with the addition of tryptophan accelerates glucose transport and insulin secretion under high-carbohydrate diet. Subsequent GTT and ITT experiments have also demonstrated that tryptophan improves glucose tolerance and insulin tolerance in blunt snout bream on a high-carbohydrate diet. In conclusion, these findings elucidate the positive regulatory effect of tryptophan on the PI3K-AKT-GLUT2 pathway under a high carbohydrate diet and provide a theoretical basis for the subsequent rational application of high carbohydrate diets in the future.
Collapse
Affiliation(s)
- Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Qiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Miao Y, Xie L, Chen S, Zhang X, Liu W, Xie P. Ketogenic diet in treating sepsis-related acquired weakness: is it friend or foe? Front Nutr 2024; 11:1484856. [PMID: 39668897 PMCID: PMC11636000 DOI: 10.3389/fnut.2024.1484856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background Sepsis is the body's extreme response to an infection leading to organ dysfunction. Sepsis-related acquired weakness (SAW), a critical illness closely related to metabolic disorders, is characterized by generalized sepsis-induced skeletal muscle weakness, mainly manifesting as symmetrical atrophy of respiratory and limb muscles. Muscle accounts for 40% of the body's total mass and is one of the major sites of glucose and energy absorption. Diet affects skeletal muscle metabolism, which further impacts physiology and signaling pathways. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has shown benefits in patients with a variety of neuromuscular disorders. Patients with SAW are in a hypermetabolic state and can consume approximately 1% of total body muscle mass in a day. Due to the decreased total body energy expenditure secondary to starvation, skeletal muscles enter a low metabolic state, with reduced gluconeogenesis and protein consumption and elevated levels of ketone bodies. The latest research suggests that KD may be a new strategy for SAW prevention and treatment, but its mechanism is still unclear. Objective Our article aims to explore the effect and mechanism of KD on SAW. And we hope that our review will inspire further research on the KD and foster the exploration of novel strategies for combating SAW. Methods Search medical databases and related academic websites, using keywords such as "Sepsis-related acquired weakness," "ketogenic diet," and "skeletal muscle," and select representative literature. Using the method of induction and summary, analyze the effect and mechanism of KD on SAW. Results Compared with early nutrition, KD has a more protective effect on SAW, but its mechanism is complex. Firstly, KD can alter energy metabolism substrates to affect SAW's energy metabolism; Secondly, KD can directly act as a signaling molecule to improve mitochondrial function in skeletal muscle and stimulate skeletal muscle regeneration signaling molecules; Thirdly, KD can affect the gut microbiota to exert anti-inflammatory effects, enhance immunity, and thus protect SAW. Conclusion KD has a protective effect on SAW, which includes improving energy metabolism, stimulating muscle regeneration signals, optimizing gut microbiota composition, and reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xiaoming Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
50
|
Guo B, Shen Y, Dai Z, Yimamu K, Sun J, Pei L. A nomogram to predict the risk of insulin resistance in Chinese women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1446827. [PMID: 39665024 PMCID: PMC11631621 DOI: 10.3389/fendo.2024.1446827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Insulin resistance (IR) is considered a major driver of the pathophysiology of polycystic ovary syndrome (PCOS), mediating the progression of hyperandrogenism and metabolic and reproductive dysfunction in patients with PCOS. Early detection of the risk of concurrent IR is essential for women with PCOS. To address this need, this study developed a predictive nomogram for assessing the risk of IR in women with PCOS, aiming to provide a tool for risk stratification and assist in clinical decision-making. Methods Patients with untreated PCOS-IR diagnosed in a single-center retrospective cohort study from January 2023 to December 2023 were included for nomogram construction and validation. The area under the ROC curve (AUC), calibration curve, Hosmer-Lemeshow (H-L) goodness-of-fit test, and decision curve analysis (DCA) were used to evaluate the nomogram's discrimination, calibration, and clinical decision performance. A risk stratification model based on the nomogram was then developed. Results A total of 571 patients were included in the study; 400 patients enrolled before September 2023 were divided into the training and validation sets, and 171 patients enrolled later were used as the external validation set. The variables identified by logistic regression and the random forest algorithm-body mass index (BMI, OR 1.43), triglycerides (TG, OR 1.22), alanine aminotransferase (ALT, OR 1.03), and fasting plasma glucose (FPG, OR 5.19)-were used to build the nomogram. In the training, internal validation, and external validation sets, the AUCs were 0.911 (95% CI 0.878-0.911), 0.842 (95% CI 0.771-0.842), and 0.901 (95% CI 0.856-0.901), respectively. The nomogram showed good agreement between predicted and observed outcomes, and patients were categorized into low-, medium-, and high-risk groups based on their scores. Conclusions Independent predictors of untreated PCOS-IR risk were incorporated into a nomogram that effectively classifies patients into risk groups, providing a practical tool for guiding clinical management and early intervention.
Collapse
Affiliation(s)
| | | | | | | | - Jianhua Sun
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Lixia Pei
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|