1
|
González-Lodeiro LG, Barrios Roque P, Gómez Hernández N, Medina-Carrasco D, García de Castro LE, Huerta Galindo V. Differential Serotype Specificity in the IgG Subclass Profile of the Anti-Domain III Response Elicited by Dengue Virus Infection. J Med Virol 2025; 97:e70255. [PMID: 39992018 DOI: 10.1002/jmv.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Dengue is a potentially fatal disease caused by any of the four serotypes of dengue virus complex (DENV1-4). Domain III (DIII) of the envelope protein mediates early virus:cell interactions and is target of potent neutralizing antibodies. Little data is available on the dynamic of IgG subclasses in anti-DIII response elicited during viral infection. Fifty-eight human sera were used to characterize the IgG subclass profile of the anti-DIII antibody response in terms of abundance and serotype-specificity. Immunodominant epitopes were also determined using 70 Ala-mutants of a recombinant DIII protein that spans residues with more than 15% of the exposed area in the virion. IgG1 and IgG3 were found as the subclasses that react to control primary infections while a significant response was detected for all IgG subclasses in response to secondary infections. Anti-DIII IgG1 exhibits a distinctive pattern of serotype-specificity with respect to the other IgG subclasses in the recognition of recombinant DIII proteins corresponding to the four DENV serotypes. The dominant epitope of IgG1 is located in the FG-loop, which is characterized by high variability in its amino acid sequence. In contrast, the dominant epitopes of IgG2, IgG3, and IgG4 were defined as regions enriched in complex- and subcomplex conserved residues such as the A-strand and the AB-loop of DIII. IgG1 plays a prominent role in neutralizing circulating DENV during infection. A balanced and timely response of the different IgG subclasses is critical in the evolution of dengue disease.
Collapse
Affiliation(s)
- Luis Gabriel González-Lodeiro
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Patricia Barrios Roque
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nivaldo Gómez Hernández
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Danya Medina-Carrasco
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lisandra E García de Castro
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vivian Huerta Galindo
- Department of System Biology, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
2
|
Yan K, Mao L, Lan J, Xiao Z. Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates. J Microbiol 2025; 63:e2410018. [PMID: 40044132 DOI: 10.71150/jm.2410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 05/13/2025]
Abstract
Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and atten-tion to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsen-ing dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.
Collapse
Affiliation(s)
- Kai Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lingjing Mao
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
3
|
Anumanthan G, Sahay B, Mergia A. Current Dengue Virus Vaccine Developments and Future Directions. Viruses 2025; 17:212. [PMID: 40006967 PMCID: PMC11861685 DOI: 10.3390/v17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue fever (DF), a leading arboviral disease globally, is caused by the Dengue virus (DENV) and represents a significant public health concern, with an estimated 390 million cases reported annually. Due to the complexity of the various dengue variants and the severity of the disease, vaccination emerges as the essential strategy for combating this widespread infectious disease. The absence of specific antiviral medications underscores the critical need for developing a Dengue vaccine. This review aims to present the current status and future prospects of Dengue vaccine development. Further, this review elaborates on the various strategies employed in vaccine development, including attenuated, inactivated, subunit, and viral vector vaccines. Each approach is evaluated based on its immunogenicity, safety, and efficacy, drawing on data from preclinical and clinical studies to highlight the strengths and limitations of each candidate vaccine. The current study sheds light on future directions and research priorities in developing Dengue vaccines. In conclusion, the development of a Dengue vaccine holds significant potential for reducing the global burden of DF. However, challenges remain in terms of vaccine safety, efficacy, delivery, and availability. Overcoming these challenges, coupled with advancements in vaccine technology, could lead to better control and prevention of Dengue, thereby enhancing public health and quality of life.
Collapse
Affiliation(s)
| | | | - Ayalew Mergia
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA (B.S.)
| |
Collapse
|
4
|
Sobczak JM, Barkovska I, Balke I, Rothen DA, Mohsen MO, Skrastina D, Ogrina A, Martina B, Jansons J, Bogans J, Vogel M, Bachmann MF, Zeltins A. Identifying Key Drivers of Efficient B Cell Responses: On the Role of T Help, Antigen-Organization, and Toll-like Receptor Stimulation for Generating a Neutralizing Anti-Dengue Virus Response. Vaccines (Basel) 2024; 12:661. [PMID: 38932390 PMCID: PMC11209419 DOI: 10.3390/vaccines12060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.
Collapse
Affiliation(s)
- Jan M. Sobczak
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Irena Barkovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Dominik A. Rothen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Mona O. Mohsen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Anete Ogrina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Byron Martina
- Artemis Bioservices, 2629 JD Delft, The Netherlands;
- Protinhi Therapeutics, 6534 AT Nijmegen, The Netherlands
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| |
Collapse
|
5
|
Valle C, Shrestha S, Godeke GJ, Hoogerwerf MN, Reimerink J, Eggink D, Reusken C. Multiplex Serology for Sensitive and Specific Flavivirus IgG Detection: Addition of Envelope Protein Domain III to NS1 Increases Sensitivity for Tick-Borne Encephalitis Virus IgG Detection. Viruses 2024; 16:286. [PMID: 38400061 PMCID: PMC10892675 DOI: 10.3390/v16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Tick-borne encephalitis is a vaccine-preventable disease of concern for public health in large parts of Europe, with EU notification rates increasing since 2018. It is caused by the orthoflavivirus tick-borne encephalitis virus (TBEV) and a diagnosis of infection is mainly based on serology due to its short viremic phase, often before symptom onset. The interpretation of TBEV serology is hampered by a history of orthoflavivirus vaccination and by previous infections with related orthoflaviviruses. Here, we sought to improve TBEV sero-diagnostics using an antigen combination of in-house expressed NS1 and EDIII in a multiplex, low-specimen-volume set-up for the detection of immune responses to TBEV and other clinically important orthoflaviviruses (i.e., West Nile virus, dengue virus, Japanese encephalitis virus, Usutu virus and Zika virus). We show that the combined use of NS1 and EDIII results in both a specific and sensitive test for the detection of TBEV IgG for patient diagnostics, vaccination responses and in seroprevalence studies. This novel approach potentially allows for a low volume-based, simultaneous analysis of IgG responses to a range of orthoflaviviruses with overlapping geographic circulations and clinical manifestations.
Collapse
Affiliation(s)
- Coralie Valle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
- Unité des Virus Emergents (UVE), Aix-Marseille Université, IRD 190, Inserm 1207, 13005 Marseille, France
| | - Sandhya Shrestha
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Marieke N. Hoogerwerf
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Johan Reimerink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Dirk Eggink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands (M.N.H.); (J.R.)
| |
Collapse
|
6
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
7
|
Su H, van Eerde A, Rimstad E, Bock R, Branza-Nichita N, Yakovlev IA, Clarke JL. Plant-made vaccines against viral diseases in humans and farm animals. FRONTIERS IN PLANT SCIENCE 2023; 14:1170815. [PMID: 37056490 PMCID: PMC10086147 DOI: 10.3389/fpls.2023.1170815] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Plants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens. Plant cells perform many post-translational modifications that are present in humans and animals and can be essential for biological activity of produced recombinant proteins. Stimulated by progress in plant transformation technologies, substantial efforts have been made in both the public and the private sectors to develop plant-based vaccine production platforms. Recent promising examples include plant-made vaccines against COVID-19 and Ebola. The COVIFENZ® COVID-19 vaccine produced in Nicotiana benthamiana has been approved in Canada, and several plant-made influenza vaccines have undergone clinical trials. In this review, we discuss the status of vaccine production in plants and the state of the art in downstream processing according to good manufacturing practice (GMP). We discuss different production approaches, including stable transgenic plants and transient expression technologies, and review selected applications in the area of human and veterinary vaccines. We also highlight specific challenges associated with viral vaccine production for different target organisms, including lower vertebrates (e.g., farmed fish), and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
8
|
Martina CE, Crowe JE, Meiler J. Glycan masking in vaccine design: Targets, immunogens and applications. Front Immunol 2023; 14:1126034. [PMID: 37033915 PMCID: PMC10076883 DOI: 10.3389/fimmu.2023.1126034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Glycan masking is a novel technique in reverse vaccinology in which sugar chains (glycans) are added on the surface of immunogen candidates to hide regions of low interest and thus focus the immune system on highly therapeutic epitopes. This shielding strategy is inspired by viruses such as influenza and HIV, which are able to escape the immune system by incorporating additional glycosylation and preventing the binding of therapeutic antibodies. Interestingly, the glycan masking technique is mainly used in vaccine design to fight the same viruses that naturally use glycans to evade the immune system. In this review we report the major successes obtained with the glycan masking technique in epitope-focused vaccine design. We focus on the choice of the target antigen, the strategy for immunogen design and the relevance of the carrier vector to induce a strong immune response. Moreover, we will elucidate the different applications that can be accomplished with glycan masking, such as shifting the immune response from hyper-variable epitopes to more conserved ones, focusing the response on known therapeutic epitopes, broadening the response to different viral strains/sub-types and altering the antigen immunogenicity to elicit higher or lower immune response, as desired.
Collapse
Affiliation(s)
- Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| |
Collapse
|
9
|
Huang HJ, Yang M, Chen HW, Wang S, Chang CP, Ho TS, Kao YS, Tien SM, Lin HH, Chang PC, Lai YC, Hsiao YP, Liu YL, Chao CH, Anderson R, Yeh TM, Lin YS, Wan SW. A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein. Vaccine 2022; 40:2299-2310. [DOI: 10.1016/j.vaccine.2022.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
10
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
11
|
Yang R, Liu Q, Pang W, Gao F, Liang H, Zhang W, Lin Y, Li M, Liu Z, Gao GF, Zhang L, Xiao H, Zheng Y, Huang Z, Jin X. Two immunogenic recombinant protein vaccine candidates showed disparate protective efficacy against Zika virus infection in rhesus macaques. Vaccine 2021; 39:915-925. [PMID: 33451779 DOI: 10.1016/j.vaccine.2020.12.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) infection has caused major public health problems recently. To develop subunit vaccines for ZIKV, we have previously constructed recombinant ZIKV envelope protein domain III (EDIII), and the entire ectodomain (E80, which comprises EDI, EDII and EDIII), as vaccine candidates and showed both of them being immunogenic and protective in murine models. In this follow-up study, we compared these vaccine candidates in non-human primates. Both of them elicited neutralizing antibody responses, but only E80 immunization inhibited ZIKV infection in both peripheral blood and monkey tissues, whereas EDIII increased blood ZIKV RNA through possibly antibody-dependent enhancement. Further investigations revealed that the virion-binding antibody response in E80 immunized monkeys persisted longer and stronger than in EDIII immunized monkeys. These results demonstrate that E80 is superior to EDIII as a vaccine candidate, and that the magnitude, quality and durability of virion-binding neutralizing antibodies are correlates of protection.
Collapse
Affiliation(s)
- Ruoheng Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qingwei Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huabin Liang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yalong Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - George F Gao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hui Xiao
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Redoni M, Yacoub S, Rivino L, Giacobbe DR, Luzzati R, Di Bella S. Dengue: Status of current and under-development vaccines. Rev Med Virol 2020; 30:e2101. [PMID: 32101634 DOI: 10.1002/rmv.2101] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 01/02/2023]
Abstract
Dengue is an emerging mosquito-borne viral infection with increasing reports of outbreaks. The clinical picture ranges from a benign febrile illness through to severe and potentially fatal manifestations. No specific anti-viral treatment exists, and therapy only consists of supportive care. During the last three decades, several attempts to develop an effective vaccine have been made. The first dengue vaccine to obtain licensure was Dengvaxia, which was authorized in 2015 and is currently available in over 20 countries. Its use has been approved with strict limitations regarding age and serostatus of the recipients, highlighting the necessity for a more safe and efficacious vaccine. At present several vaccine, candidates are undergoing clinical and pre-clinical trials. The most advanced candidates are TDV and TDV 003/005, two live-attenuated vaccines, but another 15 vaccines are under development, introducing novel immunization strategies to the traditional dengue vaccine scenario. This work reviews the current research status on dengue vaccines.
Collapse
Affiliation(s)
- Marianna Redoni
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| | - Sophie Yacoub
- Department of Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global health, University of Oxford, Oxford, UK
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Roberto Luzzati
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| | - Stefano Di Bella
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Chen MY, Chai KM, Chiang CY, Wu CC, Yu GY, Liu SJ, Chen HW. Recombinant lipidated Zika virus envelope protein domain III elicits durable neutralizing antibody responses against Zika virus in mice. J Biomed Sci 2020; 27:51. [PMID: 32290844 PMCID: PMC7158147 DOI: 10.1186/s12929-020-00646-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Background The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain III that possesses an intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant lipidated ZV envelope protein domain III (rLZE3) and evaluate its potential as a vaccine candidate against ZV. Methods Recombinant ZV envelope protein domain III (rZE3) and rLZE3 were prepared with an Escherichia coli-based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were examined after ZV challenge. Results rLZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV challenge. Conclusion These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should be evaluated in further preclinical studies.
Collapse
Affiliation(s)
- Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Lin TH, Chen HW, Hsiao YJ, Yan JY, Chiang CY, Chen MY, Hu HM, Wu SH, Pan CH. Immunodomination of Serotype-Specific CD4+ T-Cell Epitopes Contributed to the Biased Immune Responses Induced by a Tetravalent Measles-Vectored Dengue Vaccine. Front Immunol 2020; 11:546. [PMID: 32300346 PMCID: PMC7145397 DOI: 10.3389/fimmu.2020.00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue is an emerging mosquito-borne disease, and the use of prophylactic vaccines is still limited. We previously developed a tetravalent dengue vaccine (rMV-TDV) by a recombinant measles virus (MV) vector expressing envelope protein domain III (ED3). In this study, we used dengue-susceptible AG129 mice to evaluate the protective and/or pathogenic immune responses induced by rMV-TDV. Consistent with the previous study, rMV-TDV-immunized mice developed a significant neutralizing antibody response against all serotypes of DENV, as well as a significant IFN-γ response biased to DENV-3, compared to the vector controls. We further demonstrated that this DENV-3-specific IFN-γ response was dominated by one CD4+ T-cell epitope located in E349-363. After DENV-2 challenge, rMV-TDV-immunized mice showed a significantly lower viremia and no inflammatory cytokine increase compared to the vector controls, which had an ~100 times higher viremia and a significant increase in IFN-γ and TNF-α. As a correlate of protection, a robust memory IFN-γ response specific to DENV-2 was boosted in rMV-TDV-immunized mice after challenge. This result suggested that pre-existing DENV-3-dominated T-cell responses did not cross-react, but a DENV-2-specific IFN-γ response, which was undetectable during immunization, was recalled. Interestingly, this recalled T-cell response recognized the epitope in the same position as the E349-363 but in the DENV-2 serotype. This result suggested that immunodomination occurred in the CD4+ T-cell epitopes between dengue serotypes after rMV-TDV vaccination and resulted in a DENV-3-dominated CD4+ T-cell response. Although the significant increase in IgG against both DENV-2 and -3 suggested that cross-reactive antibody responses were boosted, the increased neutralizing antibodies and IgG avidity still remained DENV-2 specific, consistent with the serotype-specific T cell response post challenge. Our data reveal that immunodomination caused a biased T-cell response to one of the dengue serotypes after tetravalent dengue vaccination and highlight the roles of cross-reactive T cells in dengue protection.
Collapse
Affiliation(s)
- Tsung-Han Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ju Hsiao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Ying Yan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Mei Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Hsien Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Deng SQ, Yang X, Wei Y, Chen JT, Wang XJ, Peng HJ. A Review on Dengue Vaccine Development. Vaccines (Basel) 2020; 8:E63. [PMID: 32024238 PMCID: PMC7159032 DOI: 10.3390/vaccines8010063] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) has become a global health threat with about half of the world's population at risk of infection. Although the disease caused by DENV is self-limiting in the first infection, the antibody-dependent enhancement (ADE) effect increases the mortality in the second infection with a heterotypic virus. Since there is no specific efficient medicine in treatment, it is urgent to develop vaccines to prevent infection and disease progression. Currently, only a live attenuated vaccine, chimeric yellow fever 17D-tetravalent dengue vaccine (CYD-TDV), has been licensed for clinical use in some countries, and many candidate vaccines are still under research and development. This review discusses the progress, strengths, and weaknesses of the five types of vaccines including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral vectored vaccine, and DNA vaccine.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Xian Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Yong Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Jia-Ting Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Xiao-Jun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| |
Collapse
|
16
|
Lin HH, Yang SP, Tsai MJ, Lin GC, Wu HC, Wu SC. Dengue and Zika Virus Domain III-Flagellin Fusion and Glycan-Masking E Antigen for Prime-Boost Immunization. Theranostics 2019; 9:4811-4826. [PMID: 31367259 PMCID: PMC6643441 DOI: 10.7150/thno.35919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
The viral E proteins of dengue virus (DENV) and Zika virus (ZIKV) are the major viral proteins involved in receptor binding and fusion, and for the induction of protective antibodies against viral infections. DIII of the E proteins is an independent domain and stretches out on the virion surface that can elicit type-specific neutralizing antibodies. For recombinant DIII vaccine development, prime-boost immunizations can provide an advantage of eliciting more type-specific neutralizing antibodies by recalling DIII antigens after DIII booster to improve protection. Methods: The DIII of the E genes of DENV and ZIKV were fused with bacterial fliC gene for the expression of flagellin-DIII (FliC-DIII) fusion proteins. Prime-boost immunization strategies by the second-dose booster of four DENV serotype or ZIKV FliC-DIII fusion proteins were used to investigate the induction of neutralizing antibodies and protection against viral infections. Cross-reactive non-neutralizing antibodies in each group of antisera were also examined using in vitro antibody-dependent enhancement (ADE) assay. A series of glycan-masking E antigens were finally constructed for prime-boost immunizations to abolish the elicitation of cross-reactive non-neutralizing antibodies for ADE activity. Results: We showed that inclusion of a bivalent live-attenuated vaccine with a FliC-DIII booster is superior in eliciting neutralization titers and protection in vivo against all four-serotype DENVs. We also demonstrated that recombinant adenovirus vectors encoding four-serotype DENV prMEs with a FliC-DIII prime-boost scheme is capable of eliciting good antibody responses. In contract, recombinant adenovirus vector of ZIKV prME gene priming, followed by ZIKV FliC-DIII booster did not improve vaccine efficacy. The glycan-masking mutation on the ZIKV E protein ij loop (E-248NHT), but not on DENV2 E protein ij loop (E-242NHT), resulted in abolishing the elicitation of cross-reactive antibodies for DENV and ZIKV infection enhancements. Conclusions: Our findings can provide useful information for designing novel immunogens and vaccination strategies in an attempt to develop a safe and efficacious DENV or ZIKV vaccine.
Collapse
|
17
|
Shen WF, Galula JU, Liu JH, Liao MY, Huang CH, Wang YC, Wu HC, Liang JJ, Lin YL, Whitney MT, Chang GJJ, Chen SR, Wu SR, Chao DY. Epitope resurfacing on dengue virus-like particle vaccine preparation to induce broad neutralizing antibody. eLife 2018; 7:38970. [PMID: 30334522 PMCID: PMC6234032 DOI: 10.7554/elife.38970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein VLP derived from DENV serotype-2 were engineered becoming highly matured (mD2VLP) and showed variable size distribution with diameter of ~31 nm forming the major population under cryo-electron microscopy examination. Furthermore, mD2VLP particles of 31 nm diameter possess a T = 1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes. Mice vaccinated with mD2VLP generated higher cross-reactive (CR) neutralization antibodies (NtAbs) and were fully protected against all 4 serotypes of DENV. Our results highlight the potential of ‘epitope-resurfaced’ mature-form D2VLPs in inducing quaternary structure-recognizing broad CR NtAbs to guide future dengue vaccine design.
Collapse
Affiliation(s)
- Wen-Fan Shen
- Microbial Genomics Ph.D. Program, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, College of Life Science, National Chung-Hsing University, Taichung City, Taiwan
| | - Mei-Ying Liao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Cheng-Hao Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Yu-Chun Wang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Matthew T Whitney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States
| | - Sheng-Ren Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| |
Collapse
|
18
|
Bal J, Jung HY, Nguyen LN, Park J, Jang YS, Kim DH. Evaluation of cell-surface displayed synthetic consensus dengue EDIII cells as a potent oral vaccine candidate. Microb Cell Fact 2018; 17:146. [PMID: 30217208 PMCID: PMC6138890 DOI: 10.1186/s12934-018-0994-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dengue is a rapidly spreading mosquito borne tropical viral disease affecting hundreds of millions of people across the globe annually. The dengue virus (DENV) includes four genetically distinct serotypes that cause serious life-threatening infections, including dengue hemorrhagic fever/dengue shock syndrome. Dengue vaccine development is complicated by the possibility of vaccine-enhanced severe dengue disease due to antibody-dependent enhancement by pre-existing cross-reactivity, as well as homotypic antibodies. Thus, the development of an efficacious dengue vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes has not yet been developed despite years of research. For mass immunization in deeply affected resource-limited countries, oral vaccination is considered more beneficial than conventional approaches. Therefore, in a continuing effort towards designing economical and potent vaccine candidates, the current study applied yeast surface display technology to develop an oral dengue vaccine candidate using whole recombinant yeast cells displaying the recombinant fusion protein of M cell targeting ligand Co1 fused to the synthetic consensus dengue envelope domain III (scEDIII). Female Balb/c mice were orally fed with recombinant yeast cells and immunogenicity in terms of systemic and mucosal immune responses was monitored. RESULTS Immunofluorescence microscopy with dengue specific antibody and fluorescein isothiocyanate-conjugated anti-mouse IgG antibody clearly showed that recombinant protein Co1-scEDIII-AGA was localized on the cell surface of the respective clones in comparison with scEDIII-Co1 and Mock cells with no fluorescence. Oral dosage applications of surface displayed Co1-scEDIII-AGA stimulated a systemic humoral immune response in the form of dengue-specific serum IgG, as well as a mucosal immune response in the form of secretory immunoglobulin A (sIgA). Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further supported an elevated mucosal immune response. In addition, surface displayed Co1-scEDIII-AGA feeding elicited strong immune responses in comparison with scEDIII-Co1 and Mock following intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS Surface displayed preparations of Co1-scEDIII-AGA induced strong immunogenicity compared with non-displayed scEDIII-Co1. Prior studies have supported the neutralization potential of scEDIII constructs against all four serotypes. Thus, the oral administration of genetically engineered yeast whole cells displaying biologically active Co1-scEDIII fusion protein without any further processing shows prospective as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Hee-Young Jung
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Luong Ngoc Nguyen
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Yong-Suk Jang
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
19
|
Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol 2018; 9:1919. [PMID: 30190720 PMCID: PMC6115509 DOI: 10.3389/fimmu.2018.01919] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Recombinant proteins are gaining enormous importance these days due to their wide application as biopharmaceutical products and proven safety record. Various recombinant proteins of therapeutic and prophylactic importance have been successfully produced in microbial and higher expression host systems. Since there is no specific antiviral therapy available against dengue, the prevention by vaccination is the mainstay in reducing the disease burden. Therefore, efficacious vaccines are needed to control the spread of dengue worldwide. Dengue is an emerging viral disease caused by any of dengue virus 1-4 serotypes that affects the human population around the globe. Dengue virus is a single stranded RNA virus encoding three structural proteins (capsid protein, pre-membrane protein, and envelope protein) and seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). As the only licensed dengue vaccine (Dengvaxia) is unable to confer balanced protection against all the serotypes, therefore various approaches for development of dengue vaccines including tetravalent live attenuated, inactivated, plasmid DNA, virus-vectored, virus-like particles, and recombinant subunit vaccines are being explored. These candidates are at different stages of vaccine development and have their own merits and demerits. The promising subunit vaccines are mainly based on envelope or its domain and non-structural proteins of dengue virus. These proteins have been produced in different hosts and are being investigated for development of a successful dengue vaccine. Novel immunogens have been designed employing various strategies like protein engineering and fusion of antigen with various immunostimulatory motif to work as self-adjuvant. Moreover, recombinant proteins can be formulated with novel adjuvants to enhance the immunogenicity and thus conferring better protection to the vaccinees. With the advent of newer and safer host systems, these recombinant proteins can be produced in a cost effective manner at large scale for vaccine studies. In this review, we summarize recent developments in recombinant protein based dengue vaccines that could lead to a good number of efficacious vaccine candidates for future human use and ultimately alternative dengue vaccine candidates.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
20
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
21
|
Elaboration of tetravalent antibody responses against dengue viruses using a subunit vaccine comprised of a single consensus dengue envelope sequence. Vaccine 2017; 35:6308-6320. [PMID: 28987441 DOI: 10.1016/j.vaccine.2017.09.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/01/2023]
Abstract
Dengue viruses (DENVs) are re-emerging pathogens transmitted by mosquitoes mainly in tropical and subtropical regions. Each year, they are estimated to infect 390 million people globally. The major challenge confronting dengue vaccine development is the need to induce balanced, long lasting tetravalent immune responses against four co-circulating virus serotypes (DENV-I, -II, -III, -IV), because primary infection by any one of which may predispose infected individuals to more severe diseases during a heterotypic secondary infection. Another difficulty is to select representative strains in vaccine design to provide cross-protection against most circulating virus strains. In this study, aimed at developing a tetravalent subunit vaccine with a representative single protein, we designed two vaccines (named cE80(D4) and cE80(max)) based on the consensus sequences of the ectodomain of envelope protein of 3127 DENV strains, and then expressed them in the baculovirus expression system. Both vaccines were capable of eliciting specific antibodies against all four DENV serotypes, and the predominant IgG subtype elicited by the two vaccines was IgG1. Moreover, these vaccines activated both type I and type II antigen-specific helper T cells that secreted IFN-γ and IL-4, respectively. This proof-of-concept study has set foundation for further optimization of a single protein-based tetravalent DENV vaccine.
Collapse
|
22
|
The tetravalent formulation of domain III-capsid proteins recalls memory B- and T-cell responses induced in monkeys by an experimental dengue virus infection. Clin Transl Immunology 2017; 6:e148. [PMID: 28748091 PMCID: PMC5518957 DOI: 10.1038/cti.2017.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/12/2017] [Indexed: 12/03/2022] Open
Abstract
Tetra DIIIC is a vaccine candidate against dengue virus (DENV) composed by four chimeric proteins that fuse the domain III of the envelope protein of each virus to the corresponding capsid protein. Containing B- and T-cell epitopes, these proteins form aggregates after the incubation with an immunostimulatory oligodeoxynucleotide, and their tetravalent formulation induces neutralizing antibodies and cellular immune response in mice and monkeys. Also, Tetra DIIIC protects mice after challenge with each DENV, and the monovalent formulation obtained from DENV-2 protects monkeys upon homologous viral challenge. However, in the last years, new evidences have arisen regarding domain III of DENV envelope protein as irrelevant target for neutralizing antibodies in humans. Nevertheless, vaccination with domain III induces a neutralizing antibody response that confers protection against re-infection. In addition, it has been demonstrated that the induction of a cellular immune response is essential to protect during the infection. This response can also avoid severe manifestations of dengue disease, associated to the antibody-dependent enhancement of the infection. In this study, we observed that Tetra DIIIC was able to boost the antiviral and neutralizing antibody responses previously generated in monkeys during an experimental DENV infection, demonstrating that domain III is targeted by B cells during the viral infection. Additionally, Tetra DIIIC successfully boosted the cellular immune response generated by the viruses, probably against T-cells epitopes in the capsid proteins. These results highlight the functionality of Tetra DIIIC as a vaccine candidate against DENV.
Collapse
|
23
|
Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection. Clin Immunol 2016; 171:41-49. [DOI: 10.1016/j.clim.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
|
24
|
Chiang CY, Pan CH, Chen MY, Hsieh CH, Tsai JP, Liu HH, Liu SJ, Chong P, Leng CH, Chen HW. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice. Sci Rep 2016; 6:30648. [PMID: 27470096 PMCID: PMC4965760 DOI: 10.1038/srep30648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan, Republic of China
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
25
|
Chen J, Wen K, Li XQ, Yi HS, Ding XX, Huang YF, Pan YX, Hu DM, Di B, Che XY, Fu N. Functional properties of DENV EDIII‑reactive antibodies in human DENV‑1‑infected sera and rabbit antiserum to EDIII. Mol Med Rep 2016; 14:1799-808. [PMID: 27357403 DOI: 10.3892/mmr.2016.5454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 03/14/2016] [Indexed: 11/06/2022] Open
Abstract
The envelope domain III (EDIII) of the dengue virus (DENV) has been confirmed to be involved in receptor binding. It is the target of specific neutralizing antibodies, and is considered to be a promising subunit dengue vaccine candidate. However, several recent studies have shown that anti‑EDIII antibodies contribute little to the neutralizing or enhancing ability of human DENV‑infected serum. The present study involved an analysis of the neutralization and antibody‑dependent enhancement (ADE) activities of EDIII‑reactive antibodies in human convalescent sera from patients with primary DENV‑1 infection and rabbit antiserum immunized with recombinant DENV‑1 EDIII protein. The results indicated that serum neutralization was not associated with titres of EDIII‑binding antibodies in the human DENV‑1‑infected sera. The depletion of anti‑EDIII antibodies from these serum samples revealed that the anti‑EDIII antibodies of the patients contributed little to neutralization and ADE. However, the EDIII‑reactive antibodies from the rabbit antiserum exhibited protective abilities of neutralization at a high dilution (~1:50,000) and ADE at a low dilution (~1:5,000) for the homotypic DENV infection. Notably, the rabbit antiserum displayed ADE activity only at a dilution of 1:40 for the heterotypic virus infection, which suggests that EDIII‑reactive antibodies may be safe in secondary infection with heterotypic viruses. These results suggest that DENV EDIII is not the predominant antigen of the DENV infection process; however, purified or recombinant DENV EDIII may be used as a subunit vaccine to provoke an effective and safe antibody response.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Kun Wen
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xiao-Quan Li
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Hai-Su Yi
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xi-Xia Ding
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yan-Fen Huang
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yu-Xian Pan
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Dong-Mei Hu
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, P.R. China
| | - Xiao-Yan Che
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Ning Fu
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
26
|
McBurney SP, Sunshine JE, Gabriel S, Huynh JP, Sutton WF, Fuller DH, Haigwood NL, Messer WB. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates. Vaccine 2016; 34:3500-7. [PMID: 27085173 DOI: 10.1016/j.vaccine.2016.03.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 11/26/2022]
Abstract
We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further development of a tetravalent EDIII-E2 dengue vaccine.
Collapse
Affiliation(s)
- Sean P McBurney
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Justine E Sunshine
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Sarah Gabriel
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Jeremy P Huynh
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, WA 98195, USA
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA; Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
| |
Collapse
|
27
|
Pang EL, Loh HS. Current perspectives on dengue episode in Malaysia. ASIAN PAC J TROP MED 2016; 9:395-401. [PMID: 27086160 DOI: 10.1016/j.apjtm.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/20/2016] [Indexed: 11/29/2022] Open
Abstract
Prevalence of dengue transmission has been alarmed by an estimate of 390 million infections per annum. Urban encroachment, ecological disruption and poor sanitation are all contributory factors of increased epidemiology. Complication however arises from the fact that dengue virus inherently exists as four different serotypes. Secondary infection is often manifested in the more severe form, such that antibody-dependent enhancement (ADE) could aggravate ailment by allowing pre-existing antibodies to form complexes with infecting viruses as means of intrusion. Consequently, increased viraemic titter and suppression of antiviral response are observed. Deep concerns are thus expressed in regards to escalating trend of hospitalisation and mortality rates. In Malaysia, situation is exacerbated by improper clinical management and pending vector control operations. As a preparedness strategy against the potential deadly dengue pandemic, the call for development of a durable and cost-effective dengue vaccine against all infecting serotypes is intensified. Even though several vaccine candidates are currently being evaluated in clinical trials, uncertainties in regards to serotypes interference, incomplete protection and dose adequacy have been raised. Instead of sole reliance on outsourcing, production of local vaccine should be considered in coherent to government's efforts to combat against dengue.
Collapse
Affiliation(s)
- Ee Leen Pang
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
28
|
Abstract
Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of medicine, Imperial College London, London, UK; Oxford University Clinical research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Juthathip Mongkolsapaya
- Department of medicine, Imperial College London, London, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gavin Screaton
- Department of medicine, Imperial College London, London, UK
| |
Collapse
|
29
|
Chiang CY, Liu SJ, Hsieh CH, Chen MY, Tsai JP, Liu HH, Chen IH, Chong P, Leng CH, Chen HW. Recombinant lipidated dengue-3 envelope protein domain III stimulates broad immune responses in mice. Vaccine 2016; 34:1054-61. [PMID: 26776472 DOI: 10.1016/j.vaccine.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022]
Abstract
The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - I-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
30
|
The Immunodominance Change and Protection of CD4+ T-Cell Responses Elicited by an Envelope Protein Domain III-Based Tetravalent Dengue Vaccine in Mice. PLoS One 2015; 10:e0145717. [PMID: 26714037 PMCID: PMC4695087 DOI: 10.1371/journal.pone.0145717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.
Collapse
|
31
|
Enhanced performance of an innovative dengue IgG/IgM rapid diagnostic test using an anti-dengue EDI monoclonal antibody and dengue virus antigen. Sci Rep 2015; 5:18077. [PMID: 26655854 PMCID: PMC4676027 DOI: 10.1038/srep18077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022] Open
Abstract
High levels of anti-dengue IgM or IgG can be detected using numerous rapid diagnostic tests (RDTs). However, the sensitivity and specificity of these tests are reduced by changes in envelope glycoprotein antigenicity that inevitably occur in limited expression systems. A novel RDT was designed to enhance diagnostic sensitivity. Dengue viruses cultured in animal cells were used as antigens to retain the native viral coat protein. Monoclonal antibodies (mAbs) were then developed, for the first time, against domain I of envelope glycoprotein (EDI). The anti-dengue EDI mAb was employed as a capturer, and EDII and EDIII, which are mainly involved in the induction of neutralizing antibodies in patients, were fully available to bind to anti-dengue IgM or IgG in patients. A one-way automatic blood separation device prevented reverse migration of plasma and maximize the capture of anti-dengue antibodies at the test lines. A clinical evaluation in the field proved that the novel RDT (sensitivities of 96.5% and 96.7% for anti-dengue IgM and IgG) is more effective in detecting anti-dengue antibodies than two major commercial tests (sensitivities of 54.8% and 82% for SD BIOLINE; 50.4% and 75.3% for PanBio). The innovative format of RDT can be applied to other infectious viral diseases.
Collapse
|
32
|
Lam JH, Ong LC, Alonso S. Key concepts, strategies, and challenges in dengue vaccine development: an opportunity for sub-unit candidates? Expert Rev Vaccines 2015; 15:483-95. [PMID: 26508565 DOI: 10.1586/14760584.2016.1106318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite 70 years of research that has intensified in the past decade, a safe and efficacious dengue vaccine has yet to be available. In addition to the expected challenges such as identifying immune correlates of protection, the dengue vaccine field has faced additional hurdles including the necessity to design a tetravalent formulation and the risk of antibody-mediated disease enhancement. Nevertheless, tetravalent live attenuated vaccine candidates have reached efficacy trials and demonstrated some benefit, despite imbalanced immunogenicity and incomplete protection against the four serotypes. Meanwhile, the development of sub-unit dengue vaccines has gained momentum. As the target of most of the neutralizing antibodies so far reported, the virus envelope E protein has been the focus of much effort and represents the leading dengue sub-unit vaccine candidate. However, its notorious poor immunogenicity has prompted the development of innovative approaches to make E-derived constructs part of the second generation dengue vaccines portfolio.
Collapse
Affiliation(s)
- Jian Hang Lam
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Li Ching Ong
- b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| | - Sylvie Alonso
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| |
Collapse
|
33
|
Vannice KS, Roehrig JT, Hombach J. Next generation dengue vaccines: A review of the preclinical development pipeline. Vaccine 2015; 33:7091-9. [PMID: 26424602 DOI: 10.1016/j.vaccine.2015.09.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
Dengue represents a significant and growing public health problem across the globe, with approximately half of the world's population at risk. The increasing and expanding burden of dengue has highlighted the need for new tools to prevent dengue, including development of dengue vaccines. Recently, the first dengue vaccine candidate was evaluated in Phase 3 clinical trials, and other vaccine candidates are under clinical evaluation. There are also a number of candidates in preclinical development, based on diverse technologies, with promising results in animal models and likely to move into clinical trials and could eventually be next-generation dengue vaccines. This review provides an overview of the various technological approaches to dengue vaccine development with specific focus on candidates in preclinical development and with evaluation in non-human primates.
Collapse
Affiliation(s)
- Kirsten S Vannice
- Initiative for Vaccine Research, Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - John T Roehrig
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Joachim Hombach
- Initiative for Vaccine Research, Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
34
|
Kim MY, Reljic R, Kilbourne J, Ceballos-Olvera I, Yang MS, Reyes-del Valle J, Mason HS. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform. Vaccine 2015; 33:1830-8. [PMID: 25728317 DOI: 10.1016/j.vaccine.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 11/27/2022]
Abstract
Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens.
Collapse
Affiliation(s)
- Mi-Young Kim
- Center of Infectious Diseases and Vaccinology, Biodesign Institute, Tempe, AZ 85287, USA; Institute for Infection and Immunity, St George's University of London, London, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jacquelyn Kilbourne
- Center of Infectious Diseases and Vaccinology, Biodesign Institute, Tempe, AZ 85287, USA
| | | | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju-si, South Korea
| | | | - Hugh S Mason
- Center of Infectious Diseases and Vaccinology, Biodesign Institute, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
35
|
Lisova O, Belkadi L, Bedouelle H. Direct and indirect interactions in the recognition between a cross-neutralizing antibody and the four serotypes of dengue virus. J Mol Recognit 2014; 27:205-14. [PMID: 24591178 DOI: 10.1002/jmr.2352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/11/2022]
Abstract
Dengue fever is the most important vector-borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue. Monoclonal antibody mAb4E11 neutralizes the four serotypes of DENV with varying efficacies by recognizing an epitope located within domain-III (ED3) of the viral envelope (E) protein. To better understand the cross-reactivities between mAb4E11 and the four serotypes of DENV, we constructed mutations in both Fab4E11 fragment and ED3, and we searched for indirect interactions in the crystal structures of the four complexes. According to the serotype, 7 to 12 interactions are mediated by one water molecule, 1 to 10 by two water molecules, and several of these interactions are conserved between serotypes. Most interfacial water molecules make hydrogen bonds with both antibody and antigen. Some residues or atomic groups are engaged in both direct and water-mediated interactions. The doubly-indirect interactions are more numerous in the complex of lowest affinity. The third complementarity determining region of the light chain (L-CDR3) of mAb4E11 does not contact ED3. The structures and double-mutant thermodynamic cycles showed that the effects of (hyper)-mutations in L-CDR3 on affinity were caused by conformational changes and indirect interactions with ED3 through other CDRs. Exchanges of residues between ED3 serotypes showed that their effects on affinity were context dependent. Thus, conformational changes, structural context, and indirect interactions should be included when studying cross-reactivity between antibodies and different serotypes of viral antigens for a better design of diagnostics, vaccine, and therapeutic tools against DENV and other Flaviviruses.
Collapse
Affiliation(s)
- Olesia Lisova
- Institut Pasteur, Unit of Molecular Prevention and Therapy of Human Diseases, Department of Infection and Epidemiology, rue du Dr. Roux, F-75015, Paris, France; CNRS, URA3012, rue du Dr. Roux, F-75015, Paris, France
| | | | | |
Collapse
|
36
|
Sariol CA, White LJ. Utility, limitations, and future of non-human primates for dengue research and vaccine development. Front Immunol 2014; 5:452. [PMID: 25309540 PMCID: PMC4174039 DOI: 10.3389/fimmu.2014.00452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Dengue is considered the most important emerging, human arboviruses, with worldwide distribution in the tropics. Unfortunately, there are no licensed dengue vaccines available or specific anti-viral drugs. The development of a dengue vaccine faces unique challenges. The four serotypes co-circulate in endemic areas, and pre-existing immunity to one serotype does not protect against infection with other serotypes, and actually may enhance severity of disease. One foremost constraint to test the efficacy of a dengue vaccine is the lack of an animal model that adequately recapitulates the clinical manifestations of a dengue infection in humans. In spite of this limitation, non-human primates (NHP) are considered the best available animal model to evaluate dengue vaccine candidates due to their genetic relatedness to humans and their ability to develop a viremia upon infection and a robust immune response similar to that in humans. Therefore, most dengue vaccines candidates are tested in primates before going into clinical trials. In this article, we present a comprehensive review of published studies on dengue vaccine evaluations using the NHP model, and discuss critical parameters affecting the usefulness of the model. In the light of recent clinical data, we assess the ability of the NHP model to predict immunological parameters of vaccine performances in humans and discuss parameters that should be further examined as potential correlates of protection. Finally, we propose some guidelines toward a more standardized use of the model to maximize its usefulness and to better compare the performance of vaccine candidates from different research groups.
Collapse
Affiliation(s)
- Carlos A Sariol
- Department of Microbiology and Medical Zoology, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA ; Department of Internal Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus , San Juan, PR , USA
| | - Laura J White
- Global Vaccine Incorporation , Research Triangle Park, NC , USA
| |
Collapse
|
37
|
Long-term immunogenicity studies of formalin-inactivated enterovirus 71 whole-virion vaccine in macaques. PLoS One 2014; 9:e106756. [PMID: 25197967 PMCID: PMC4157806 DOI: 10.1371/journal.pone.0106756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/31/2014] [Indexed: 01/28/2023] Open
Abstract
Enterovirus 71 (EV71) has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac) based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt) was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines.
Collapse
|
38
|
Lazo L, Izquierdo A, Suzarte E, Gil L, Valdés I, Marcos E, Álvarez M, Romero Y, Guzmán MG, Guillén G, Hermida Cruz L. Evaluation in mice of the immunogenicity and protective efficacy of a tetravalent subunit vaccine candidate against dengue virus. Microbiol Immunol 2014; 58:219-26. [DOI: 10.1111/1348-0421.12140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/16/2014] [Accepted: 01/25/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Laura Lazo
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Alienys Izquierdo
- Virology Department; Tropical Medicine Institute “Pedro Kourí,” Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and its Vector; P.O. Box Marianao 13 Havana 11 600 Cuba
| | - Edith Suzarte
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Lázaro Gil
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Iris Valdés
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Ernesto Marcos
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Mayling Álvarez
- Virology Department; Tropical Medicine Institute “Pedro Kourí,” Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and its Vector; P.O. Box Marianao 13 Havana 11 600 Cuba
| | - Yaremis Romero
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - María Guadalupe Guzmán
- Virology Department; Tropical Medicine Institute “Pedro Kourí,” Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and its Vector; P.O. Box Marianao 13 Havana 11 600 Cuba
| | - Gerardo Guillén
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| | - Lisset Hermida Cruz
- Vaccines Division; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Playa Havana 11 600 Cuba
| |
Collapse
|
39
|
Chiang CY, Hsieh CH, Chen MY, Tsai JP, Liu HH, Liu SJ, Chong P, Leng CH, Chen HW. Recombinant lipidated dengue-4 envelope protein domain III elicits protective immunity. Vaccine 2014; 32:1346-53. [PMID: 24486311 DOI: 10.1016/j.vaccine.2014.01.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The combination of recombinant protein antigens with an immunostimulator has the potential to greatly increase the immunogenicity of recombinant protein antigens. In the present study, we selected the dengue-4 envelope protein domain III as a dengue vaccine candidate and expressed the protein in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-4 envelope protein domain III folded into the proper conformation and competed with the dengue-4 virus for cellular binding sites. Mice immunized with lipidated dengue-4 envelope protein domain III without exogenous adjuvant had higher frequencies of dengue-4 envelope protein domain III-specific B cells secreting antibodies than mice immunized with the nonlipidated form. Importantly, lipidated dengue-4 envelope protein domain III-immunized mice demonstrated a durable neutralizing antibody response and had reduced viremia levels after challenge. The study demonstrates that lipidated dengue-4 envelope protein domain III is immunogenic and may be a potential dengue vaccine candidate. Furthermore, the lipidation strategy can be applied to other serotypes of dengue virus.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Jy-Ping Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Hsueh-Hung Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Miaoli, Taiwan, ROC; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
40
|
Induction of neutralizing antibodies against four serotypes of dengue viruses by MixBiEDIII, a tetravalent dengue vaccine. PLoS One 2014; 9:e86573. [PMID: 24466156 PMCID: PMC3897746 DOI: 10.1371/journal.pone.0086573] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023] Open
Abstract
The worldwide expansion of four serotypes of dengue virus (DENV) poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII) was proposed. Tandem EDIIIs of two serotypes (type 1-2 and type 3-4) of DENV connected by a Gly-Ser linker ((Gly4Ser)3) were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future.
Collapse
|
41
|
García-Machorro J, López-González M, Barrios-Rojas O, Fernández-Pomares C, Sandoval-Montes C, Santos-Argumedo L, Villegas-Sepúlveda N, Gutiérrez-Castañeda B, Cedillo-Barrón L. DENV-2 subunit proteins fused to CR2 receptor-binding domain (P28)-induces specific and neutralizing antibodies to the Dengue virus in mice. Hum Vaccin Immunother 2013; 9:2326-35. [PMID: 23880886 DOI: 10.4161/hv.25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Domain III (DIII) of the dengue virus (DENV) envelope (E) protein induces strong neutralizing type-specific antibodies. In addition, a region near the fusion loop in domain II (DII) induces the production of cross-reactive antibodies with neutralizing potential. Thus, this study aimed to generate DENV-2 recombinant fusion proteins (i.e., rEII*EIII and rEII*EIII/NS1*) either alone or fused to 3 copies of P28, the minimum CR2-binding domain of the complement protein C3d. The 4 recombinant proteins were generated in a Drosophila melanogaster Schneider 2 (S2) cell system. The expression and secretion of the recombinant proteins were confirmed in vitro using immunofluorescence (IF) and western blot (WB) analyses. Human dengue immune serum samples recognized recombinant proteins. The immunogenicity of the 4 proteins in BALB/c mice was analyzed using ELISA, and the results revealed that the induced specific antibody response was higher in the groups of mice immunized with the P28 fusion proteins. Interestingly, although the 4 recombinant proteins were able to elicit high levels of neutralizing antibodies in BALB/c mice; no adjuvant effect was observed in terms of neutralizing antibodies in the groups immunized with proteins containing P28. Thus, ELISA and PRNT50 assays may evaluate different epitopes and responses, where ELISA showed a wider response that did not always correlate with neutralization. Furthermore, the elicited antibodies were able to recognize the immobilized E glycoprotein of DENV. All mice vaccinated with the DENV-2 recombinant proteins showed induction of higher levels of IgG1 antibodies than of IgG2a antibodies.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Department of Molecular Biomedicine Centre for Research and Advanced Studies (CINVESTAV-IPN) Av. IPN # 2508 Col.; San Pedro Zacatenco, D.F. Mexico, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Induction of robust immunity by the emulsification of recombinant lipidated dengue-1 envelope protein domain III. Microbes Infect 2013; 15:719-28. [PMID: 23774693 DOI: 10.1016/j.micinf.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/15/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022]
Abstract
Many attempts have focused on the use of either immunomodulators or antigen delivery systems to obtain an efficacious vaccine. Here, we report a novel approach that combined an immunomodulator and delivery system to enhance antigen association and induce robust immunity. We expressed a recombinant lipidated dengue-1 envelope protein domain III (LD1ED III) and its non-lipidated form, D1ED III, in an Escherichia coli system. The LD1ED III contains a bacterial lipid moiety, which is a potent immunomodulator. We demonstrated that LD1ED III possesses an inherent immunostimulation ability that can activate RAW 264.7 macrophage cells by up-regulating their expression of CD40, CD80, CD83, CD86 and MHC II, whereas D1ED III could not induce the up-regulation of these molecules. Moreover, combining LD1ED III with a multiphase emulsion system (called PELC) increased the antigen association more than either combining D1ED III with PELC or the antigen alone. Enhanced antigen association has been shown to correlate with stronger T cell responses, greater antibody avidity and improved neutralizing capacity. Our results demonstrate that combining recombinant lipoproteins with PELC improved both the intensity and the quality of the immune response. This approach is a promising strategy for the development of subunit vaccines that induce robust immunity.
Collapse
|
43
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|