1
|
Koumba Mavoungou DS, Bohou Kombila L, Longo Pendy NM, Koumba Moukouama SE, Lekana-Douki SE, Maganga GD, Leroy EM, Aghokeng AF, N’dilimabaka N. Prevalence and Genetic Diversity of Bat Hepatitis B Viruses in Bat Species Living in Gabon. Viruses 2024; 16:1015. [PMID: 39066178 PMCID: PMC11281422 DOI: 10.3390/v16071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection leads to around 800,000 deaths yearly and is considered to be a major public health problem worldwide. However, HBV origins remain poorly understood. Here, we looked for bat HBV (BtHBV) in different bat species in Gabon to investigate the role of these animals as carriers of ancestral hepadnaviruses because these viruses are much more diverse in bats than in other host species. DNA was extracted from 859 bat livers belonging to 11 species collected in caves and villages in the southeast of Gabon and analyzed using PCRs targeting the surface gene. Positive samples were sequenced using the Sanger method. BtHBV DNA was detected in 64 (7.4%) individuals belonging to eight species mainly collected in caves. Thirty-six (36) sequences among the 37 obtained after sequencing were phylogenetically close to the RBHBV strain recently isolated in Gabonese bats, while the remaining sequence was close to a rodent HBV strain isolated in America. The generalized linear mixed model showed that the variable species best explained the occurrence of BtHBV infection in bats. The discovery of a BtHBV strain homologous to a rodent strain in bats raises the possibility that these animals may be carriers of ancestral hepadnaviruses.
Collapse
Affiliation(s)
- Danielle S. Koumba Mavoungou
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Linda Bohou Kombila
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Neil M. Longo Pendy
- Unité Ecologie des Systèmes Vectoriels, Département de parasitologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Schedy E. Koumba Moukouama
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Sonia Etenna Lekana-Douki
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
| | - Gaël D. Maganga
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
- Institut National Supérieur d’Agronomie et de Biotechnologies (INSAB), Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
| | - Eric M. Leroy
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), (Université de Montpellier-IRD 224-CNRS5290), 34394 Montpellier, France; (E.M.L.); (A.F.A.)
| | - Avelin F. Aghokeng
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), (Université de Montpellier-IRD 224-CNRS5290), 34394 Montpellier, France; (E.M.L.); (A.F.A.)
| | - Nadine N’dilimabaka
- Unité Emergence des Maladies Virales, Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (D.S.K.M.); (L.B.K.); (S.E.K.M.); (S.E.L.-D.); (G.D.M.)
- Département de Biologie, Faculté des Sciences, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 901, Gabon
| |
Collapse
|
2
|
Kemenesi G, Tóth GE, Mayora-Neto M, Scott S, Temperton N, Wright E, Mühlberger E, Hume AJ, Suder EL, Zana B, Boldogh SA, Görföl T, Estók P, Szentiványi T, Lanszki Z, Somogyi BA, Nagy Á, Pereszlényi CI, Dudás G, Földes F, Kurucz K, Madai M, Zeghbib S, Maes P, Vanmechelen B, Jakab F. Isolation of infectious Lloviu virus from Schreiber's bats in Hungary. Nat Commun 2022; 13:1706. [PMID: 35361761 PMCID: PMC8971391 DOI: 10.1038/s41467-022-29298-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Some filoviruses can be transmitted to humans by zoonotic spillover events from their natural host and filovirus outbreaks have occured with increasing frequency in the last years. The filovirus Lloviu virus (LLOV), was identified in 2002 in Schreiber's bats (Miniopterus schreibersii) in Spain and was subsequently detected in bats in Hungary. Here we isolate infectious LLOV from the blood of a live sampled Schreiber's bat in Hungary. The isolate is subsequently sequenced and cultured in the Miniopterus sp. kidney cell line SuBK12-08. It is furthermore able to infect monkey and human cells, suggesting that LLOV might have spillover potential. A multi-year surveillance of LLOV in bats in Hungary detects LLOV RNA in both deceased and live animals as well as in coupled ectoparasites from the families Nycteribiidae and Ixodidae. This correlates with LLOV seropositivity in sampled Schreiber's bats. Our data support the role of bats, specifically Miniopterus schreibersii as hosts for LLOV in Europe. We suggest that bat-associated parasites might play a role in the natural ecology of filoviruses in temperate climate regions compared to filoviruses in the tropics.
Collapse
Affiliation(s)
- Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | | | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Estók
- Department of Zoology, Eszterházy Károly University, Eger, Hungary
| | - Tamara Szentiványi
- Institute of Ecology and Botany, ÖK Centre for Ecological Research, Vácrátót, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Balázs A Somogyi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágnes Nagy
- Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | | | - Gábor Dudás
- Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Fanni Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Piet Maes
- Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Bert Vanmechelen
- Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
de Souza AJS, Malheiros AP, Chagas AACD, Paiva VLGDS, Lauri LS, Scheffer KC, Mori E, Gomes-Gouvêa MS, Pinho JRR, Sá LRMD. Orthohepadnavirus infection in a neotropical bat (Platyrrhinus lineatus). Comp Immunol Microbiol Infect Dis 2021; 79:101713. [PMID: 34634750 DOI: 10.1016/j.cimid.2021.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Hepatitis B virus (HBV) is the prototype of the Orthohepadnavirus genus and represents an important cause of chronic hepatitis, liver cirrhosis, and hepatic cancer in humans worldwide. To verify the occurrence and genetic variability of orthohepadnavirus among neotropical bats, we tested 81 liver samples of New World bats from São Paulo State, Southeastern Brazil, collected during 2012. PCR, sequencing, and phylogenetic analysis of Surface/Polymerase and Core viral genes confirmed the occurrence of the first isolate of bat orthohepadnavirus detected in South America. These results may contribute to subsequent studies of the origin, variability, host species, and evolution of bat orthohepadnaviruses in South America.
Collapse
Affiliation(s)
- Alex Junior Souza de Souza
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil.
| | | | | | - Vera Lisa Generosa da Silva Paiva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil
| | - Liura Sanchez Lauri
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil
| | | | - Enio Mori
- Pasteur Institute, São Paulo, SP, Brazil
| | - Michele Soares Gomes-Gouvêa
- São Paulo Institute of Tropical Medicine (LIM-07) and Department of Gastroenterology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - João Renato Rebello Pinho
- São Paulo Institute of Tropical Medicine (LIM-07) and Department of Gastroenterology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lilian Rose Marques de Sá
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Orlando Marques de Paiva, 87, CEP 05508-270 São Paulo, SP, Brazil
| |
Collapse
|
4
|
Anpuanandam K, Selvarajah GT, Choy MMK, Ng SW, Kumar K, Ali RM, Rajendran SK, Ho KL, Tan WS. Molecular detection and characterisation of Domestic Cat Hepadnavirus (DCH) from blood and liver tissues of cats in Malaysia. BMC Vet Res 2021; 17:9. [PMID: 33407487 PMCID: PMC7788742 DOI: 10.1186/s12917-020-02700-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A new domestic cat hepadnavirus (DCH, family Hepadnaviridae) was first reported from whole blood samples of domestic cats in Australia in 2018, and from cat serum samples in Italy in 2019. The pathogenesis of DCH is unknown, but it was reported in cats with viraemia (6.5-10.8%), chronic hepatitis (43%) and hepatocellular carcinoma (28%). Recent reports suggest that DCH resembles the human hepatitis B virus (HBV) and its related hepatopathies. This study aims to detect and characterize DCH among domestic cats in Malaysia. A cross-sectional study was performed on 253 cats, of which 87 had paired blood and liver samples, entailing whole-genome sequencing and phylogenetic analysis of DCH from a liver tissue sample. RESULTS Among the 253 cats included in this study, 12.3% of the whole blood samples tested positive for DCH. The detection rate was significantly higher in pet cats (16.6%, n = 24/145) compared to shelter cats (6.5%, n = 7/108). Liver tissues showed higher a DCH detection rate (14.9%, n = 13/87) compared to blood; 5 out of these 13 cats tested positive for DCH in their paired liver and blood samples. Serum alanine transaminase (ALT) was elevated (> 95 units/L) in 12 out of the 23 DCH-positive cats (52.2%, p = 0.012). Whole-genome sequence analysis revealed that the Malaysian DCH strain, with a genome size of 3184 bp, had 98.3% and 97.5% nucleotide identities to the Australian and Italian strains, respectively. The phylogenetic analysis demonstrated that the Malaysian DCH genome was clustered closely to the Australian strain, suggesting that they belong to the same geographically-determined genetic pool (Australasia). CONCLUSIONS This study provided insights into a Malaysian DCH strain that was detected from a liver tissue. Interestingly, pet cats or cats with elevated ALT were significantly more likely to be DCH positive. Cats with positive DCH detection from liver tissues may not necessarily have viraemia. The impact of this virus on inducing liver diseases in felines warrants further investigation.
Collapse
Affiliation(s)
- Khanmani Anpuanandam
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, 43400 UPM, Serdang, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, 43400 UPM, Serdang, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mandy Mun Kei Choy
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, 43400 UPM, Serdang, Malaysia
| | - Shing Wei Ng
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, 43400 UPM, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Razana Mohd Ali
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sujey Kumar Rajendran
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, 43400 UPM, Serdang, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Wang Q, Qin Y, Zhang J, Jia L, Fu S, Wang Y, Li J, Tong S. Tracing the evolutionary history of hepadnaviruses in terms of e antigen and middle envelope protein expression or processing. Virus Res 2019; 276:197825. [PMID: 31785305 DOI: 10.1016/j.virusres.2019.197825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) is the prototype of hepadnaviruses, which can be subgrouped into orthohepadnaviruses infecting mammals, avihehepadnaviruses of birds, metahepadnaviruses of fish, and herpetohepadnaviruses of amphibians and reptiles. The middle (M) envelope protein and e antigen are new additions in the evolution of hepadnaviruses. They are alternative translation products of the transcripts for small (S) envelope and core proteins, respectively. For HBV, e antigen is converted from precore/core protein by removal of N-terminal signal peptide followed by furin-mediated cleavage of the basic C-terminus. This study compared old and newly discovered hepadnaviruses for their envelope protein and e antigen expression or processing. The S protein of bat hepatitis B virus (BHBV) and two metahepadnaviruses is probably myristoylated, in addition to two avihepadnaviruses. While most orthohepadnaviruses express a functional M protein with N-linked glycosylation near the amino-terminus, most metahepadnaviruses and herpetohepadnaviruses probably do not. These viruses and one orthohepadnavirus, the shrew hepatitis B virus, lack an open precore region required for e antigen expression. Potential furin cleavage sites (RXXR sequence) can be found in e antigen precursors of orthohepadnaviruses and avihepadnaviruses. Despite much larger precore/core proteins of avihepadnaviruses and their limited sequence homology with those of orthohepadnaviruses, their proximal RXXR motif can be aligned with a distal RXXR motif for orthohepadnaviruses. Thus, furin or another basic endopeptidase is probably the shared enzyme for hepadnaviral e antigen maturation. A precore-derived cysteine residue is involved in forming intramolecular disulfide bond of HBV e antigen to prevent particle formation, and such a cysteine residue is conserved for both orthohepadnaviruses and avihepadnaviruses. All orthohepadnaviruses have an X gene, while all avihepadnaviruses can express the e antigen. M protein expression appears to be the most recent event in the evolution of hepadnaviruses.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lucy Jia
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shuwen Fu
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Lei SC, Xiao X, Liu JW, Han HJ, Gong XQ, Zhao M, Wang LJ, Qin XR, Yu XJ. High prevalence and genetic diversity of hepatitis B viruses in insectivorous bats from China. Acta Trop 2019; 199:105130. [PMID: 31400300 PMCID: PMC7092808 DOI: 10.1016/j.actatropica.2019.105130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
We found that 6.6% (13/197) bats from Shandong and Hubei provinces of China carried hepatis B virus (HBVs). HBVs from bats in the two places were phylogenetically in the same cluster, but distinct from bat HBVs from other places. HBVs were highly prevalent and genetic diversified in bats, supporting the hypothesis that bats may be the origin of primate hepadnaviruses.
Bats have been identified as the hosts of hepatitis B virus (HBV) in recent years and bats HBV can infect human hepatocyte. We investigated the prevalence and genetic diversity of HBV in bats in China. In this study, a total of 197 insectivorous bats belonging to 10 bat species were captured from karst caves in Mengyin County, Shandong Province and Xianning City, Hubei Province, China. PCR amplification indicated that in total 6.6% (13/197) bats were positive to HBVs. The HBV positive rate in bats was 7.1% (9/127) and 5.7% (4/70) in Shandong Province and Hubei Province, respectively. Phylogenetic analysis indicated that HBV from the two places were in the same cluster with 90.5%–99.5% homology, but distinct from bat HBVs from other places in China and other countries. We concluded that HBV was prevalent and genetic diversified in bats, supporting the hypothesis that bats may be the origin of primate hepadnaviruses.
Collapse
|
7
|
Beena V, Saikumar G. Emerging horizon for bat borne viral zoonoses. Virusdisease 2019; 30:321-328. [PMID: 31803797 PMCID: PMC6864002 DOI: 10.1007/s13337-019-00548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023] Open
Abstract
Bats are the only flying placental mammals that constitute the second largest order of mammals and present all around the world except in Arctic, Antarctica and a few oceanic islands. Sixty percent of emerging infectious diseases originating from animals are zoonotic and more than two-thirds of them originate in wildlife. Bats were evolved as a super-mammal for harboring many of the newly identified deadly diseases without any signs and lesions. Their unique ability to fly, particular diet, roosting behavior, long life span, ability to echolocate and critical susceptibility to pathogens make them suitable host to harbor numerous zoonotic pathogens like virus, bacteria and parasite. Many factors are responsible for the emergence of bat borne zoonoses but the most precipitating factor is human intrusions. Deforestation declined the natural habitat and forced the bats and other wild life to move out of their niche. These stressed bats, having lost foraging and behavioral pattern invade in proximity of human habitation. Either directly or indirectly they transmit the viruses to humans and animals. Development of fast detection modern techniques for viruses from the diseased and environmental samples and the lessons learned in the past helped in preventing the severity during the latest outbreaks.
Collapse
Affiliation(s)
- V Beena
- 1Present Address: CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001 India.,2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| | - G Saikumar
- 2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| |
Collapse
|
8
|
Fujiwara K, Matsuura K, Matsunami K, Iio E, Nagura Y, Nojiri S, Kataoka H. Novel Genetic Rearrangements Termed "Structural Variation Polymorphisms" Contribute to the Genetic Diversity of Orthohepadnaviruses. Viruses 2019; 11:871. [PMID: 31533314 PMCID: PMC6783994 DOI: 10.3390/v11090871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
The genetic diversity of orthohepadnaviruses is not yet fully understood. This study was conducted to investigate the role of structural variations (SVs) in their diversity. Genetic sequences of orthohepadnaviruses were retrieved from databases. The positions of sequence gaps were investigated, since they were found to be related to SVs, and they were further used to search for SVs. Then, a combination of pair-wise and multiple alignment analyses was performed to analyze the genomic structure. Unique patterns of SVs were observed; genetic sequences at certain genomic positions could be separated into multiple patterns, such as no SV, SV pattern 1, SV pattern 2, and SV pattern 3, which were observed as polymorphic changes. We provisionally referred to these genetic changes as SV polymorphisms. Our data showed that higher frequency of sequence gaps and lower genetic identity were observed in the pre-S1-S2 region of various types of HBVs. Detailed examination of the genetic structure in the pre-S region by a combination of pair-wise and multiple alignment analyses showed that the genetic diversity of orthohepadnaviruses in the pre-S1 region could have been also induced by SV polymorphisms. Our data showed that novel genetic rearrangements provisionally termed SV polymorphisms were observed in various orthohepadnaviruses.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Kayoko Matsunami
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Etsuko Iio
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Yoshihito Nagura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.
| |
Collapse
|
9
|
A Novel Orthohepadnavirus Identified in a Dead Maxwell's Duiker ( Philantomba maxwellii) in Taï National Park, Côte d'Ivoire. Viruses 2019; 11:v11030279. [PMID: 30893858 PMCID: PMC6466360 DOI: 10.3390/v11030279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022] Open
Abstract
New technologies enable viral discovery in a diversity of hosts, providing insights into viral evolution. We used one such approach, the virome capture sequencing for vertebrate viruses (VirCapSeq-VERT) platform, on 21 samples originating from six dead Maxwell’s duikers (Philantomba maxwellii) from Taï National Park, Côte d’Ivoire. We detected the presence of an orthohepadnavirus in one animal and characterized its 3128 bp genome. The highest viral copy numbers were detected in the spleen, followed by the lung, blood, and liver, with the lowest copy numbers in the kidney and heart; the virus was not detected in the jejunum. Viral copy numbers in the blood were in the range known from humans with active chronic infections leading to liver histolytic damage, suggesting this virus could be pathogenic in duikers, though many orthohepadnaviruses appear to be apathogenic in other hosts, precluding a formal test of this hypothesis. The virus was not detected in 29 other dead duiker samples from the Côte d’Ivoire and Central African Republic, suggesting either a spillover event or a low prevalence in these populations. Phylogenetic analysis placed the virus as a divergent member of the mammalian clade of orthohepadnaviruses, though its relationship to other orthohepadnaviruses remains uncertain. This represents the first orthohepadnavirus described in an artiodactyl. We have tentatively named this new member of the genus Orthohepadnavirus (family Hepadnaviridae), Taï Forest hepadnavirus. Further studies are needed to determine whether it, or some close relatives, are present in a broader range of artiodactyls, including livestock.
Collapse
|
10
|
Nie FY, Tian JH, Lin XD, Yu B, Xing JG, Cao JH, Holmes EC, Ma RZ, Zhang YZ. Discovery of a highly divergent hepadnavirus in shrews from China. Virology 2019; 531:162-170. [PMID: 30884426 PMCID: PMC7172195 DOI: 10.1016/j.virol.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Limited sampling means that relatively little is known about the diversity and evolutionary history of mammalian members of the Hepadnaviridae (genus Orthohepadnavirus). An important case in point are shrews, the fourth largest group of mammals, but for which there is limited knowledge on the role they play in viral evolution and emergence. Here, we report the discovery of a novel shrew hepadnavirus. The newly discovered virus, denoted shrew hepatitis B virus (SHBV), is divergent to be considered a new species of Orthohepadnavirus. Phylogenetic analysis revealed that these viruses were usually most closely related to TBHBV (tent-making bat hepatitis B virus), known to be able to infect human hepatocytes, and had a similar genome structure, although SHBV fell in a more basal position in the surface protein phylogeny. In sum, these data suggest that shrews are natural hosts for hepadnaviruses and may have played an important role in their long-term evolution. A highly divergent hepadnavirus was identified in shrews in China. The shrew virus represents a novel species of mammalian orthohepadnaviruses. The shrew virus grouped with TBHBV in some genes, previously shown to be able to infect human hepatocytes. Cross-species virus transmission occurred among the three shrew species.
Collapse
Affiliation(s)
- Fang-Yuan Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory for Infectious Disease Prevention and Control; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang Province, China
| | - Bin Yu
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Jian-Guang Xing
- Wencheng Center for Disease Control and Prevention, Wencheng, Zhejiang Province, China
| | - Jian-Hai Cao
- Longwan Center for Disease Control and Prevention, Longwan District, Wenzhou, Zhejiang Province, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Hiller T, Rasche A, Brändel SD, König A, Jeworowski L, Teague O'Mara M, Cottontail V, Page RA, Glebe D, Drexler JF, Tschapka M. Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. ECOHEALTH 2019; 16:82-94. [PMID: 30564998 PMCID: PMC7088011 DOI: 10.1007/s10393-018-1387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/07/2023]
Abstract
The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters' tent-making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection possibility. These results underline the necessity of multidisciplinary studies for a better understanding of mechanisms in pathogen-host relationships and for predictions in disease ecology.
Collapse
Affiliation(s)
- Thomas Hiller
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama.
| | - Andrea Rasche
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Alexander König
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Lara Jeworowski
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - M Teague O'Mara
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Veronika Cottontail
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jan Felix Drexler
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
12
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
13
|
Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. J Virol 2019; 93:JVI.01738-18. [PMID: 30541833 DOI: 10.1128/jvi.01738-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.
Collapse
|
14
|
Yang L, Wu J, Hu T, Qin S, Deng B, Liu J, Zhang F, He B, Tu C. Genetic diversity of bat orthohepadnaviruses in China and a proposed new nomenclature. INFECTION GENETICS AND EVOLUTION 2018; 63:135-143. [PMID: 29842981 PMCID: PMC7173211 DOI: 10.1016/j.meegid.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023]
Abstract
The orthohepadnaviruses, which include the major human pathogen hepatitis B virus, exist in a wide range of hosts. Since 2013, a large group of orthohepadnaviruses has been identified in bats worldwide and classified as 4 species within the genus Orthohepadnavirus. To further investigate orthohepadnaviruses in the Chinese bat population, 554 archived bat samples from 20 colonies covering 3 southern provinces were screened with results showing that 9 (1.6%) were positive. A systematic phylogenetic analysis has indicated the need for a new nomenclature for bat hepatitis B virus-like viruses: BtHBV, with the addition of 3 new species, one being divided into 6 genotypes. Viruses identified here shared 9.0–19.2% full genome divergence and classified into 3 different genotypes. This study illustrates the genetic diversity of orthohepadnaviruses in the Chinese bat population, and emphasizes need for further investigation of their public health significance. Three new orthohepadnaviral lineages were identified in Chinese bats. A new nomenclature was proposed for bat hepatitis B virus-like viruses. This study indicates genetic diversity of orthohepadnaviruses in Chinese bats.
Collapse
Affiliation(s)
- Ling'en Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Fujian A&F University, College of Animal Science, Fuzhou, Fujian Province, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Tingsong Hu
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Shaomin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Bo Deng
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Jinfeng Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Fuqiang Zhang
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Fujian A&F University, College of Animal Science, Fuzhou, Fujian Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
15
|
Li W, Wang B, Li B, Zhang W, Zhu Y, Shi ZL, Yang XL. Genomic Characterization of a Novel Hepatovirus from Great Roundleaf Bats in China. Virol Sin 2018; 33:108-110. [PMID: 29460117 PMCID: PMC6178082 DOI: 10.1007/s12250-018-0013-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wen Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
16
|
Extensive diversity and evolution of hepadnaviruses in bats in China. Virology 2017; 514:88-97. [PMID: 29153861 PMCID: PMC7172093 DOI: 10.1016/j.virol.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses. Diverse hepadnaviruses are identified in a broad range of bat species in China. Some of them were closely related to those previously identified in China. The viruses from Jiyuan were most closely related to Gabon bat hepadnaviruses. Newly discovered viruses did not clustered by bat species or geographic location. Frequent cross-species transmission among different bat species was observed.
Collapse
|
17
|
Wang B, Yang XL, Li W, Zhu Y, Ge XY, Zhang LB, Zhang YZ, Bock CT, Shi ZL. Detection and genome characterization of four novel bat hepadnaviruses and a hepevirus in China. Virol J 2017; 14:40. [PMID: 28222808 PMCID: PMC5320732 DOI: 10.1186/s12985-017-0706-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/04/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In recent years, novel hepadnaviruses, hepeviruses, hepatoviruses, and hepaciviruses have been discovered in various species of bat around the world, indicating that bats may act as natural reservoirs for these hepatitis viruses. In order to further assess the distribution of hepatitis viruses in bat populations in China, we tested the presence of these hepatitis viruses in our archived bat liver samples that originated from several bat species and various geographical regions in China. METHODS A total of 78 bat liver samples (involving two families, five genera, and 17 species of bat) were examined using nested or heminested reverse transcription PCR (RT-PCR) with degenerate primers. Full-length genomic sequences of two virus strains were sequenced followed by phylogenetic analyses. RESULTS Four samples were positive for hepadnavirus, only one was positive for hepevirus, and none of the samples were positive for hepatovirus or hepacivirus. The hepadnaviruses were discovered in the horseshoe bats, Rhinolophus sinicus and Rhinolophus affinis, and the hepevirus was found in the whiskered bat Myotis davidii. The full-length genomic sequences were determined for one of the two hepadnaviruses identified in R. sinicus (designated BtHBVRs3364) and the hepevirus (designated BtHEVMd2350). A sequence identity analysis indicated that BtHBVRs3364 had the highest degree of identity with a previously reported hepadnavirus from the roundleaf bat, Hipposideros pomona, from China, and BtHEVMd2350 had the highest degree of identity with a hepevirus found in the serotine bat, Eptesicus serotinus, from Germany, but it exhibited high levels of divergence at both the nucleotide and the amino acid levels. CONCLUSIONS This is the first study to report that the Chinese horseshoe bat and the Chinese whiskered bat have been found to carry novel hepadnaviruses and a novel hepevirus, respectively. The discovery of BtHBVRs3364 further supports the significance of host switches evolution while opposing the co-evolutionary theory associated with hepadnaviruses. According to the latest criterion of the International Committee on Taxonomy of Viruses (ICTV), we hypothesize that BtHEVMd2350 represents an independent genotype within the species Orthohepevirus D of the family Hepeviridae.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen Li
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xing-Yi Ge
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Li-Biao Zhang
- Guangdong Institute of Applied Biological Resource, Guangzhou, 510260, China
| | - Yun-Zhi Zhang
- Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Claus-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
18
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016; 50:489-509. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/02/2025]
|
19
|
Rasche A, Souza BFDCD, Drexler JF. Bat hepadnaviruses and the origins of primate hepatitis B viruses. Curr Opin Virol 2016; 16:86-94. [PMID: 26897577 DOI: 10.1016/j.coviro.2016.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
The origin of primate HBV (family Hepadnaviridae) is unknown. Hepadnaviruses are ancient pathogens and may have been associated with old mammalian lineages like bats for prolonged time. Indeed, the genetic diversity of bat hepadnaviruses exceeds that of extant hepadnaviruses in other host orders, suggesting a long evolution of hepadnaviruses in bats. Strikingly, a recently detected New World bat hepadnavirus is antigenically related to HBV and can infect human hepatocytes. Together with genetically diverse hepadnaviruses from New World rodents and a non-human primate, these viruses argue for a New World origin of ancestral orthohepadnaviruses. Multiple host switches of bat and primate viruses are evident and bats are likely sources of ancestral hepadnaviruses acquired by primates.
Collapse
Affiliation(s)
- Andrea Rasche
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Breno Frederico de Carvalho Dominguez Souza
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; Infectious Diseases Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Germany.
| |
Collapse
|
20
|
Characterization of a Novel Hepadnavirus in the White Sucker (Catostomus commersonii) from the Great Lakes Region of the United States. J Virol 2015; 89:11801-11. [PMID: 26378165 PMCID: PMC4645335 DOI: 10.1128/jvi.01278-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023] Open
Abstract
The white sucker Catostomus commersonii is a freshwater teleost often utilized as a resident sentinel. Here, we sequenced the full genome of a hepatitis B-like virus that infects white suckers from the Great Lakes Region of the United States. Dideoxy sequencing confirmed that the white sucker hepatitis B virus (WSHBV) has a circular genome (3,542 bp) with the prototypical codon organization of hepadnaviruses. Electron microscopy demonstrated that complete virions of approximately 40 nm were present in the plasma of infected fish. Compared to avi- and orthohepadnaviruses, sequence conservation of the core, polymerase, and surface proteins was low and ranged from 16 to 27% at the amino acid level. An X protein homologue common to the orthohepadnaviruses was not present. The WSHBV genome included an atypical, presumptively noncoding region absent in previously described hepadnaviruses. Phylogenetic analyses confirmed WSHBV as distinct from previously documented hepadnaviruses. The level of divergence in protein sequences between WSHBV and other hepadnaviruses and the identification of an HBV-like sequence in an African cichlid provide evidence that a novel genus of the family Hepadnaviridae may need to be established that includes these hepatitis B-like viruses in fishes. Viral transcription was observed in 9.5% (16 of 169) of white suckers evaluated. The prevalence of hepatic tumors in these fish was 4.9%, and only 2.4% of fish were positive for both virus and hepatic tumors. These results are not sufficient to draw inferences regarding the association of WSHBV and carcinogenesis in white sucker. IMPORTANCE We report the first full-length genome of a hepadnavirus from fishes. Phylogenetic analysis of this genome indicates divergence from genomes of previously described hepadnaviruses from mammalian and avian hosts and supports the creation of a novel genus. The discovery of this novel virus may better our understanding of the evolutionary history of hepatitis B-like viruses of other hosts. In fishes, knowledge of this virus may provide insight regarding possible risk factors associated with hepatic neoplasia in the white sucker. This may also offer another model system for mechanistic research.
Collapse
|
21
|
Hu T, Qiu W, He B, Zhang Y, Yu J, Liang X, Zhang W, Chen G, Zhang Y, Wang Y, Zheng Y, Feng Z, Hu Y, Zhou W, Tu C, Fan Q, Zhang F. Characterization of a novel orthoreovirus isolated from fruit bat, China. BMC Microbiol 2014; 14:293. [PMID: 25433675 PMCID: PMC4264558 DOI: 10.1186/s12866-014-0293-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 01/25/2023] Open
Abstract
Background In recent years novel human respiratory disease agents have been described for Southeast Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with a strong phylogenetic relationship to orthoreoviruses of bat origin. Results In this report, we isolated a novel Melaka-like reovirus (named “Cangyuan virus”) from intestinal content samples of one fruit bat residing in China’s Yunnan province. Phylogenetic analysis of the whole Cangyuan virus genome sequences of segments L, M and S demonstrated the genetic diversity of the Cangyuan virus. In contrast to the L and M segments, the phylogenetic trees for the S segments of Cangyuan virus demonstrated a greater degree of heterogeneity. Conclusions Phylogenetic analysis indicated that the Cangyuan virus was a novel orthoreovirus and substantially different from currently known members of Pteropine orthoreovirus (PRV) species group. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0293-4) contains supplementary material, which is available to authorized users.
Collapse
|