1
|
Ma S, Chen G, Cai Q, Ji C, Zhu B, Tang Z, Hu S, Fang J. Mycorrhizal dominance influences tree species richness and richness-biomass relationship in China's forests. Ecology 2025; 106:e4501. [PMID: 39690731 DOI: 10.1002/ecy.4501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
Mycorrhizal associations drive plant community diversity and ecosystem functions. Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are two widespread mycorrhizal types and are thought to differentially affect plant diversity and productivity by nutrient acquisition and plant-soil feedback. However, it remains unclear how the mixture of two mycorrhizal types influences tree diversity, forest biomass, and their relationship at large spatial scales. Here, we explored these issues using data from 1247 plots (600 m2 for each) across China's natural forests located mostly in temperate and subtropical regions. Both AM-dominated and EcM-dominated forests show relatively lower tree species richness and stand biomass, whereas forests with the mixture of mycorrhizal strategies sustain more tree species and higher biomass. Interestingly, the positive effect of tree diversity on biomass is stronger in forests with low (≤50%) than high AM tree proportion (>50%), reflecting a shift from the complementarity effect to functional redundancy with increasing AM trees. Our findings suggest that mycorrhizal dominance influences tree diversity and richness-biomass relationship in forest ecosystems.
Collapse
Affiliation(s)
- Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Guoping Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qiong Cai
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Zhang X, Xiao W, Song C, Zhang J, Liu X, Mao R. Nutrient responses of vascular plants to N 2-fixing tree Alnus hirsuta encroachment in a boreal peatland. Oecologia 2024; 206:1-10. [PMID: 39133236 DOI: 10.1007/s00442-024-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
Collapse
Affiliation(s)
- Xinhou Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wen Xiao
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210046, China
| | - Xueyan Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rong Mao
- Key Laboratory of State Forestry and Grassland Administration On Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Road, Nanchang, 330045, China.
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
3
|
Choi WJ, Park HJ, Baek N, In Yang H, Kwak JH, Lee SI, Park SW, Shin ES, Lim SS. Patterns of δ 15N in forest soils and tree foliage and rings between climate zones in relation to atmospheric nitrogen deposition: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165866. [PMID: 37516182 DOI: 10.1016/j.scitotenv.2023.165866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The stable nitrogen (N) isotope ratio (δ15N) of forest samples (soils, tree foliage, and tree rings) has been used as a powerful indicator to explore the responses of forest N cycling to atmospheric N deposition. This review investigated the patterns of δ15N in forest samples between climate zones in relation to N deposition. Forest samples exhibited distinctive δ15N patterns between climate zones due to differences in site conditions (i.e., N availability and retention capacity) and the atmospheric N deposition characteristics (i.e., N deposition rate, N species, and δ15N of deposited N). For example, the δ15N of soil and foliage was higher for tropical forests than for other forests by >1.2 ‰ and 4 ‰, respectively due to the site conditions favoring N losses coupled with relatively low N deposition for tropical forests. This was further supported by the unchanged or increased δ15N of tree rings in tropical forests, which contrasts with other climate zones that exhibited a decreased wood δ15N since the 1920s. Subtropical forests under a high deposition of reduced N (NHy) had a lower δ15N by 2-5 ‰ in the organic layer compared with the other forests, reflecting high retention of 15N-depleted NHy deposition. At severely polluted sites in East Asia, the decreased δ15N in wood also reflected the consistent deposition of 15N-depleted NHy. Though our data analysis represents only a subset of global forest sites where atmospheric N deposition is of interest, the results suggest that the direction and magnitude of the changes in the δ15N of forest samples are related to both atmospheric N and site conditions particularly for tropical vs. subtropical forests. Site-specific information on the atmospheric N deposition characteristics would allow more accurate assessment of the variations in the δ15N of forest samples in relation to N deposition.
Collapse
Affiliation(s)
- Woo-Jung Choi
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea; AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hyun-Jin Park
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju, Jeollabukdo 55365, Republic of Korea
| | - Nuri Baek
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye In Yang
- Max Planck Institute for Biogeochemistry, Jena 07745, Germany
| | - Jin-Hyeob Kwak
- Department of Rural Construction Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Sun-Il Lee
- Climate Change Assessment Division, National Institute of Agricultural Science, Rural Development Administration, Wanju, Jeollabukdo 55365, Republic of Korea
| | - Seo-Woo Park
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Seo Shin
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Sun Lim
- Bio R&D Center, CJ Cheiljedang, Suwon, Gyeonggi-do 16495, Republic of Korea
| |
Collapse
|
4
|
Scartazza A, Sbrana C, D'Andrea E, Matteucci G, Rezaie N, Lauteri M. Above- and belowground interplay: Canopy CO 2 uptake, carbon and nitrogen allocation and isotope fractionation along the plant-ectomycorrhiza continuum. PLANT, CELL & ENVIRONMENT 2023; 46:889-900. [PMID: 36541420 DOI: 10.1111/pce.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In forests, mycorrhizal fungi regulate carbon (C) and nitrogen (N) dynamics. We evaluated the interplay among ectomycorrhizas (ECM), ecosystem C fluxes, tree productivity, C and N exchange and isotopic fractionation along the soil-ECM-plant continuum in a Mediterranean beech forest. From bud break to leaf shedding, we monitored: net ecosystem exchange (NEE, a measure of the net exchange of C between an ecosystem and the atmosphere), leaf area index, stem growth, N concentration, δ13 C and δ15 N in rhizosphere soil, ectomycorrhizal fine root tips (ERT), ECM-free fine root portions (NCR) and leaves. Seasonal changes in ERT relative biomass were strictly related to NEE and mimicked those detected in the radial growth. The analysis of δ13 C in ERT, leaves and NCR highlighted the impact of canopy photosynthesis on ERT development and an asynchronous seasonal C allocation strategy between ERT and NCR at the root tips level. Concerning N, δ15 N of leaves was negatively related to that of ERT and dependent on seasonal 15 N differences between ERT and NCR. Our results unravel a synchronous C allocation towards ERT and tree stem driven by the increasing NEE in spring-early summer. Moreover, they highlighted a phenology-dependent 15 N fractionation during N transfer from ECM to their hosts. This evidence, obtained in mature beech trees under natural conditions, may improve the knowledge of Mediterranean forests functionality.
Collapse
Affiliation(s)
- Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Pisa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR-IBBA), Pisa, Italy
| | - Ettore D'Andrea
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute for BioEconomy, National Research Council of Italy (CNR-IBE), Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Napoli, Italy
| | - Marco Lauteri
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| |
Collapse
|
5
|
Razgulin SM. Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Zhang X, Qiu Y, Gilliam FS, Gillespie CJ, Tu C, Reberg-Horton SC, Hu S. Arbuscular Mycorrhizae Shift Community Composition of N-Cycling Microbes and Suppress Soil N 2O Emission. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13461-13472. [PMID: 36041174 DOI: 10.1021/acs.est.2c03816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mycorrhizae are ubiquitous symbiotic associations between arbuscular mycorrhizal fungi (AMF) and terrestrial plants, in which AMF receive photosynthates from and acquire soil nutrients for their host plants. Plant uptake of soil nitrogen (N) reduces N substrate for microbial processes that generate nitrous oxide (N2O), a potent greenhouse gas. However, the underlying microbial mechanisms remain poorly understood, particularly in agroecosystems with high reactive N inputs. We examined how plant roots and AMF affect N2O emissions, N2O-producing (nirK and nirS) and N2O-consuming (nosZ) microbes under normal and high N inputs in conventional (CONV) and organically managed (OM) soils. Here, we show that high N input increased soil N2O emissions and the ratio of nirK to nirS microbes. Roots and AMF did not affect the (nirK + nirS)/nosZ ratio but significantly reduced N2O emissions and the nirK/nirS ratio. They reduced the nirK/nirS ratio by reducing nirK-Rhodobacterales but increasing nirS-Rhodocyclales in the CONV soil while decreasing nirK-Burkholderiales but increasing nirS-Rhizobiales in the OM soil. Our results indicate that plant roots and AMF reduced N2O emission directly by reducing soil N and indirectly through shifting the community composition of N2O-producing microbes in N-enriched agroecosystems, suggesting that harnessing the rhizosphere microbiome through agricultural management might offer additional potential for N2O emission mitigation.
Collapse
Affiliation(s)
- Xuelin Zhang
- College of Agronomy, Henan Agricultural University, State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Frank S Gilliam
- Department of Biology, University of West Florida, Pensacola, Florida 32514, United States
| | - Christopher J Gillespie
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Cong Tu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - S Chris Reberg-Horton
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Chen Q, Chen J, Andersen MN, Cheng X. Elevational shifts in foliar-soil δ 15 N in the Hengduan Mountains and different potential mechanisms. GLOBAL CHANGE BIOLOGY 2022; 28:5480-5491. [PMID: 35713965 DOI: 10.1111/gcb.16306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The natural abundance of stable nitrogen isotopes (δ15 N) provides insights into the N dynamics of terrestrial ecosystems, the determination of which is considered an effective approach for gaining a better understanding ecosystem N cycling. However, there is currently little information available regarding the patterns and mechanisms underlying the variation in foliar-soil δ15 N among mountain ecosystems. In this study, we examined the determinants of foliar-soil δ15 N in association with N transportation rates along an elevational gradient in the Hengduan Mountains. Despite the relatively high levels of available N produced from high N fixation and mineralization, we detected the lowest levels of foliar δ15 N at 3500 m a.s.l., reflecting the stronger vegetation N limitation at medium high elevations. The enhanced vegetation N limitation was driven by the combined effects of higher microbial immobilization and inherent plant dynamic (the shifts of δ15 N in vegetation preference, including vegetation community) with changing climate along the elevational gradient. Unexpectedly, we established that soil δ15 N was characterized by an undulating rise and uncoupled correlation with foliar δ15 N with increasing elevation, thereby indicating that litter input might not be a prominent driver of soil δ15 N. Conversely, soil nitrification and denitrification were found to make a more pronounced contribution to the pattern of soil δ15 N along the elevational gradient. Collectively, our results serve to highlight the importance of microbial immobilization in soil N dynamics and provide novel insights that will contribute to enhancing our understanding of N cycling as indicated by foliar-soil δ15 N along elevational gradients.
Collapse
Affiliation(s)
- Qiong Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
| |
Collapse
|
8
|
Luo L, Guo M, Wang E, Yin C, Wang Y, He H, Zhao C. Effects of mycorrhiza and hyphae on the response of soil microbial community to warming in eastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155498. [PMID: 35523342 DOI: 10.1016/j.scitotenv.2022.155498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The effects of mycorrhiza and its external hyphae on the response of soil microbes to global warming remain unclear. This study investigates the role of mycorrhiza and its hyphae in regulating soil microbial community under warming by examining the microbial biomass and composition in the ingrowth cores of arbuscular mycorrhiza (AM) plant, Fargesia nitida, and ectomycorrhiza (ECM) plant, Picea asperata, with/without mycorrhiza/hyphae and experimental warming. The results showed that warming significantly increased the biomass of all soil microbes (by 19.89%-137.48%) and altered the microbial composition in both plant plots without mycorrhiza/hyphae. However, this effect was weakened in the presence of mycorrhiza or hyphae. In F. nitida plots, warming did not significantly affect biomass and composition of most soil microbial groups when mycorrhiza or hyphae were present. In P. asperata plots, warming significantly increased the total and ECM fungi (ECMF) biomass in the presence of hyphae (p < 0.05) and the total, Gn, and AM fungi (AMF) biomass in the presence of mycorrhiza (p < 0.05). Meanwhile, the response of enzyme activities to warming was also altered with mycorrhiza or hyphae. Additionally, soil microbial community composition was mainly influenced by soil available phosphorus (avaP), while enzyme activities depended on soil avaP, dissolved organic carbon (DOC), and nitrate concentrations. Our results indicate that mycorrhiza and its hyphae are essential in regulating the response of microbes to warming.
Collapse
Affiliation(s)
- Lin Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Min Guo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico 11340, Mexico
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Yanjie Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Heliang He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; College of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644007, China
| | - Chunzhang Zhao
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| |
Collapse
|
9
|
Braghiere RK, Fisher JB, Allen K, Brzostek E, Shi M, Yang X, Ricciuto DM, Fisher RA, Zhu Q, Phillips RP. Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2022; 14:e2022MS003204. [PMID: 36245670 PMCID: PMC9539603 DOI: 10.1029/2022ms003204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023]
Abstract
Most Earth system models (ESMs) do not explicitly represent the carbon (C) costs of plant nutrient acquisition, which leads to uncertainty in predictions of the current and future constraints to the land C sink. We integrate a plant productivity-optimizing nitrogen (N) and phosphorus (P) acquisition model (fixation & uptake of nutrients, FUN) into the energy exascale Earth system (E3SM) land model (ELM). Global plant N and P uptake are dynamically simulated by ELM-FUN based on the C costs of nutrient acquisition from mycorrhizae, direct root uptake, retranslocation from senescing leaves, and biological N fixation. We benchmarked ELM-FUN with three classes of products: ILAMB, a remotely sensed nutrient limitation product, and CMIP6 models; we found significant improvements in C cycle variables, although the lack of more observed nutrient data prevents a comprehensive level of benchmarking. Overall, we found N and P co-limitation for 80% of land area, with the remaining 20% being either predominantly N or P limited. Globally, the new model predicts that plants invested 4.1 Pg C yr-1 to acquire 841.8 Tg N yr-1 and 48.1 Tg P yr-1 (1994-2005), leading to significant downregulation of global net primary production (NPP). Global NPP is reduced by 20% with C costs of N and 50% with C costs of NP. Modeled and observed nutrient limitation agreement increases when N and P are considered together (r 2 from 0.73 to 0.83).
Collapse
Affiliation(s)
- R. K. Braghiere
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Joint Institute for Regional Earth System Science and EngineeringUniversity of California Los AngelesLos AngelesCAUSA
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - J. B. Fisher
- Schmid College of Science and TechnologyChapman UniversityOrangeCAUSA
| | - K. Allen
- Manaaki Whenua—Landcare ResearchLincolnNew Zealand
| | - E. Brzostek
- Department of BiologyWest Virginia UniversityMorgantownWVUSA
| | - M. Shi
- Pacific Northwest National LaboratoryRichlandWAUSA
| | - X. Yang
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - D. M. Ricciuto
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - R. A. Fisher
- Center for International Climate ResearchOsloNorway
- Laboratoire Évolution & Diversité BiologiqueCNRS:UMRUniversité Paul SabatierToulouseFrance
| | - Q. Zhu
- Climate and Ecosystem Sciences DivisionClimate Sciences DepartmentLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | | |
Collapse
|
10
|
Hewitt RE, Alexander HD, Izbicki B, Loranty MM, Natali SM, Walker XJ, Mack MC. Increasing tree density accelerates stand‐level nitrogen cycling at the taiga–tundra ecotone in northeastern Siberia. Ecosphere 2022. [DOI: 10.1002/ecs2.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Rebecca E. Hewitt
- Center for Ecosystem Science and Society, Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Department of Environmental Studies Amherst College Amherst Massachusetts USA
| | | | - Brian Izbicki
- Center for Ecosystem Science and Society, Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| | | | | | - Xanthe J. Walker
- Center for Ecosystem Science and Society, Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| | - Michelle C. Mack
- Center for Ecosystem Science and Society, Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
11
|
Guisande‐Collazo A, González L, Souza‐Alonso P. Origin makes a difference: Alternative responses of an AM-dependent plant to mycorrhizal inoculum from invaded and native soils under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:417-429. [PMID: 35220660 PMCID: PMC9303955 DOI: 10.1111/plb.13402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/21/2022] [Indexed: 05/30/2023]
Abstract
The presence of invasive alien plants (IAPs) alters the composition of soil arbuscular mycorrhizal (AM) fungal communities. Although fundamental for plant development, plant responses to AM from invaded soils have not been widely explored, especially under environmental stress. We compared plant growth, P accumulation, root colonization and the photosynthetic responses of the native AM-dependent Plantago lanceolata growing in contact with AM fungi from communities invaded by Acacia dealbata Link (AMinv) or non-invaded communities (AMnat) exposed to water and light restriction (shade). Under optimal growing conditions, plants in contact with AMnat produced higher leaf biomass and accumulated more P. However, plant responses to different AM inocula varied as the level of stress increased. Inoculation with AMinv promoted plant growth and root length under light restriction. When plants grew in contact with AMnat under drought, leaf P increased under severe water restriction, and leaf and root P increased under intermediate water irrigation. Growing in contact with the AMnat inoculum promoted root P content in both full light and light restriction. Colonization rates of P. lanceolata roots were comparable between treatments, and plants maintained photosynthetic activity within similar ranges, regardless of the level of stress applied. Our results suggest that origin of the inoculum (native soils versus invaded soils) did not affect the ability of AM species therein to establish effective mutualistic associations with P. lanceolata roots but did influence plant responses depending on the type and level of the abiotic stress.
Collapse
Affiliation(s)
- A. Guisande‐Collazo
- Plant Ecophysiology GroupDepartment of Plant Biology and Soil ScienceUniversity of VigoVigoSpain
- CITACAAgri‐Food Research and Transfer ClusterCampus da AugaUniversity of VigoOurenseSpain
| | - L. González
- Plant Ecophysiology GroupDepartment of Plant Biology and Soil ScienceUniversity of VigoVigoSpain
- CITACAAgri‐Food Research and Transfer ClusterCampus da AugaUniversity of VigoOurenseSpain
| | - P. Souza‐Alonso
- Department of Soil Science and Agricultural ChemistryUniversity of Santiago de CompostelaLugoSpain
- Department of Environmental ChemistryUniversidad Católica de Concepción UCSCConcepciónChile
| |
Collapse
|
12
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Vesala R, Kiheri H, Hobbie EA, van Dijk N, Dise N, Larmola T. Atmospheric nitrogen enrichment changes nutrient stoichiometry and reduces fungal N supply to peatland ericoid mycorrhizal shrubs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148737. [PMID: 34323746 DOI: 10.1016/j.scitotenv.2021.148737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Peatlands store one third of global soil carbon (C) and up to 15% of global soil nitrogen (N) but often have low plant nutrient availability owing to slow organic matter decomposition under acidic and waterlogged conditions. In rainwater-fed ombrotrophic peatlands, elevated atmospheric N deposition has increased N availability with potential consequences to ecosystem nutrient cycling. Here, we studied how 14 years of continuous N addition with either nitrate or ammonium had affected ericoid mycorrhizal (ERM) shrubs at Whim Bog, Scotland. We examined whether enrichment has influenced foliar nutrient stoichiometry and assessed using N stable isotopes whether potential changes in plant nutrient constraints are linked with plant N uptake through ERM fungi versus direct plant uptake. High doses of ammonium alleviated N deficiency in Calluna vulgaris and Erica tetralix, whereas low doses of ammonium and nitrate improved plant phosphorus (P) nutrition, indicated by the lowered foliar N:P ratios. Root acid phosphatase activities correlated positively with foliar N:P ratios, suggesting enhanced P uptake as a result of improved N nutrition. Elevated foliar δ15N of fertilized shrubs suggested that ERM fungi were less important for N supply with N fertilization. Increases in N availability in peat porewater and in direct nonmycorrhizal N uptake likely have reduced plant nitrogen uptake via mycorrhizal pathways. As the mycorrhizal N uptake correlates with the reciprocal C supply from host plants to the soil, such reduction in ERM activity may affect peat microbial communities and even accelerate C loss via decreased ERM activity and enhanced saprotrophic activity. Our results thus introduce a previously unrecognized mechanism for how anthropogenic N pollution may affect nutrient and carbon cycling within peatland ecosystems.
Collapse
Affiliation(s)
- Risto Vesala
- Natural Resources Institute Finland (Luke), Finland.
| | - Heikki Kiheri
- Natural Resources Institute Finland (Luke), Finland; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, United States
| | - Netty van Dijk
- UK Centre for Ecology & Hydrology (UKCEH), Edinburgh, UK
| | - Nancy Dise
- UK Centre for Ecology & Hydrology (UKCEH), Edinburgh, UK
| | | |
Collapse
|
14
|
Wang W, Sun J, Zhong Z, Xiao L, Wang Y, Wang H. Relating macrofungal diversity and forest characteristics in boreal forests in China: Conservation effects, inter-forest-type variations, and association decoupling. Ecol Evol 2021; 11:13268-13282. [PMID: 34646468 PMCID: PMC8495802 DOI: 10.1002/ece3.8049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
QUESTION How conservation and forest type affect macrofungal compositional diversity is not well understood. Even less is known about macrofungal associations with plants, soils, and geoclimatic conditions. LOCATION Southern edge of boreal forest distribution in China, named as Huzhong Nature Reserve. METHODS We surveyed a total of 72 plots for recording macrofungi, plants, and topography in 2015 and measured soil organic carbon, nitrogen, and bulk density. Effects of conservation and forest types on macrofungi and plants were compared, and their associations were decoupled by structural equation modeling (SEM) and redundancy ordination (RDA). RESULTS Conservation and forest type largely shaped macrofungal diversity. Most of the macrofungal traits declined with the conservation intensities or peaked at the middle conservation region. Similarly, 91% of macrofungal traits declined or peaked in the middle succession stage of birch-larch forests. Forest conservation resulted in the observation of sparse, larch-dominant, larger tree forests. Moreover, the soil outside the Reserve had more water, higher fertility, and lower bulk density, showing miscellaneous wood forest preference. There is a complex association between conservation site characteristics, soils, plants, and macrofungi. Variation partitioning showed that soil N was the top-one factor explaining the macrofungal variations (10%). As shown in SEM coefficients, conservation effect to macrofungi (1.1-1.2, p < .05) was like those from soils (1.2-1.6, p < .05), but much larger than the effect from plants (0.01-0.14, p > .10). For all tested macrofungal traits, 89%-97% of their variations were from soils, and 5%-21% were from conservation measures, while plants compensated 1%-10% of these effects. Our survey found a total of 207 macrofungal species, and 65 of them are new updates in this Reserve, indicating data shortage for the macrofungi list here. CONCLUSION Our findings provide new data for the joint conservation of macrofungi and plant communities, highlighting the crucial importance of soil matrix for macrofungal conservation in boreal forests.
Collapse
Affiliation(s)
- Wenjie Wang
- Urban Forests and Wetlands groupNortheast Institute of Geography and AgroecologyChinese Academy of ScienceChangchunChina
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Jingxue Sun
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Zhaoliang Zhong
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Lu Xiao
- Urban Forests and Wetlands groupNortheast Institute of Geography and AgroecologyChinese Academy of ScienceChangchunChina
| | - Yuanyuan Wang
- Urban Forests and Wetlands groupNortheast Institute of Geography and AgroecologyChinese Academy of ScienceChangchunChina
| | - Huimei Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| |
Collapse
|
15
|
Perkowski EA, Waring EF, Smith NG. Root mass carbon costs to acquire nitrogen are determined by nitrogen and light availability in two species with different nitrogen acquisition strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5766-5776. [PMID: 34114621 DOI: 10.1093/jxb/erab253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Plant nitrogen acquisition requires carbon to be allocated belowground to build roots and sustain microbial associations. This carbon cost to acquire nitrogen varies by nitrogen acquisition strategy; however, the degree to which these costs vary due to nitrogen availability or demand has not been well tested under controlled conditions. We grew a species capable of forming associations with nitrogen-fixing bacteria (Glycine max) and a species not capable of forming such associations (Gossypium hirsutum) under four soil nitrogen levels to manipulate nitrogen availability and four light levels to manipulate nitrogen demand in a full-factorial greenhouse experiment. We quantified carbon costs to acquire nitrogen as the ratio of total root carbon to whole-plant nitrogen within each treatment combination. In both species, light availability increased carbon costs due to a larger increase in root carbon than whole-plant nitrogen, while nitrogen fertilization generally decreased carbon costs due to a larger increase in whole-plant nitrogen than root carbon. Nodulation data indicated that G. max shifted relative carbon allocation from nitrogen fixation to direct uptake with increased nitrogen fertilization. These findings suggest that carbon costs to acquire nitrogen are modified by changes in light and nitrogen availability in species with and without associations with nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
16
|
Choi WJ, Chang SX, Kwak JH. Comment on Inorganic N addition replaces N supplied to switchgrass (Panicum virgatum) by arbuscular mycorrhizal fungi. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2270. [PMID: 33278835 DOI: 10.1002/eap.2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Woo-Jung Choi
- Department of Rural and Bio-Systems Engineering, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju, 61186, Korea
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Jin-Hyeob Kwak
- Department of Rural Construction Engineering, Jeonbuk National University, Jeonju, Jeollabukdo, 57896, Korea
| |
Collapse
|
17
|
Eastman BA, Adams MB, Brzostek ER, Burnham MB, Carrara JE, Kelly C, McNeil BE, Walter CA, Peterjohn WT. Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. THE NEW PHYTOLOGIST 2021; 230:1435-1448. [PMID: 33544877 DOI: 10.1111/nph.17256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Decades of atmospheric nitrogen (N) deposition in the northeastern USA have enhanced this globally important forest carbon (C) sink by relieving N limitation. While many N fertilization experiments found increased forest C storage, the mechanisms driving this response at the ecosystem scale remain uncertain. Following the optimal allocation theory, augmented N availability may reduce belowground C investment by trees to roots and soil symbionts. To test this prediction and its implications on soil biogeochemistry, we constructed C and N budgets for a long-term, whole-watershed N fertilization study at the Fernow Experimental Forest, WV, USA. Nitrogen fertilization increased C storage by shifting C partitioning away from belowground components and towards aboveground woody biomass production. Fertilization also reduced the C cost of N acquisition, allowing for greater C sequestration in vegetation. Despite equal fine litter inputs, the C and N stocks and C : N ratio of the upper mineral soil were greater in the fertilized watershed, likely due to reduced decomposition of plant litter. By combining aboveground and belowground data at the watershed scale, this study demonstrates how plant C allocation responses to N additions may result in greater C storage in both vegetation and soil.
Collapse
Affiliation(s)
- Brooke A Eastman
- Department of Biology, West Virginia University, Life Sciences Building, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Mary B Adams
- USDA Forest Service, 180 Canfield Street, Morgantown, WV, 26506, USA
| | - Edward R Brzostek
- Department of Biology, West Virginia University, Life Sciences Building, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Mark B Burnham
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, 1200 IGB, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Joseph E Carrara
- Department of Biology, West Virginia University, Life Sciences Building, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Charlene Kelly
- Division of Forestry and Natural Resources, West Virginia University, 337 Percival Hall, Morgantown, WV, 26506, USA
| | - Brenden E McNeil
- Department of Geology and Geography, West Virginia University, Brooks Hall, 98 Beechurst Ave., Morgantown, WV, 26506, USA
| | - Christopher A Walter
- Department of Biology, West Virginia University, Life Sciences Building, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - William T Peterjohn
- Department of Biology, West Virginia University, Life Sciences Building, 53 Campus Drive, Morgantown, WV, 26506, USA
| |
Collapse
|
18
|
Pellitier PT, Zak DR, Argiroff WA, Upchurch RA. Coupled Shifts in Ectomycorrhizal Communities and Plant Uptake of Organic Nitrogen Along a Soil Gradient: An Isotopic Perspective. Ecosystems 2021. [DOI: 10.1007/s10021-021-00628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Makarov MI, Onipchenko VG, Malysheva TI, Zuev AG, Tiunov AV. Symbiotic Nitrogen Fixation by Legumes in Alpine Ecosystems: a Vegetation Experiment. RUSS J ECOL+ 2021. [DOI: 10.1134/s1067413621010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Sonti NF, Hallett RA, Griffin KL, Trammell TLE, Sullivan JH. Chlorophyll fluorescence parameters, leaf traits and foliar chemistry of white oak and red maple trees in urban forest patches. TREE PHYSIOLOGY 2021; 41:269-279. [PMID: 33313756 DOI: 10.1093/treephys/tpaa121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
The provisioning of critical ecosystem services to cities of the eastern USA depends on the health and physiological function of trees in urban areas. Although we know that the urban environment may be stressful for trees planted in highly developed areas, it is not clear that trees in urban forest patches experience the same stressful environmental impacts. In this study, we examine chlorophyll fluorescence parameters, leaf traits, foliar nutrients and stable isotope signatures of urban forest patch trees compared with trees growing at reference forest sites, in order to characterize physiological response of these native tree species to the urban environment of three major cities arranged along a latitudinal gradient (New York, NY; Philadelphia, PA; Baltimore, MD). Overall, white oaks (Quercus alba L.) show more differences in chlorophyll fluorescence parameters and leaf traits by city and site type (urban vs reference) than red maples (Acer rubrum L.). The exceptions were δ13C and δ15N, which did not vary in white oak foliage but were significantly depleted (δ13C) and enriched (δ15N) in urban red maple foliage. Across all sites, red maples had higher thermal tolerance of photosynthesis (Tcrit) than white oaks, suggesting a greater ability to withstand temperature stress from the urban heat island effect and climate change. However, the highest average values of Tcrit were found in the Baltimore urban white oaks, suggesting that species suitability and response to the urban environment varies across a latitudinal gradient. Stomatal pore index (SPI) showed inter-specific differences, with red maple SPI being higher in urban trees, whereas white oak SPI was lower in urban trees. These results demonstrate that differences in native tree physiology occur between urban and reference forest patches, but they are site- and species-specific. Data on local site characteristics and tree species performance over time remain necessary to gain insight about urban woodland ecosystem function.
Collapse
Affiliation(s)
- Nancy F Sonti
- USDA Forest Service Northern Research Station, 5523 Research Park Drive, Suite 350, Baltimore, MD 21228, USA
| | - Richard A Hallett
- USDA Forest Service Northern Research Station, 431 Walter Reed Road, Bayside, NY 11359, USA
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Tara L E Trammell
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joe H Sullivan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Tatsumi C, Hyodo F, Taniguchi T, Shi W, Koba K, Fukushima K, Du S, Yamanaka N, Templer P, Tateno R. Arbuscular Mycorrhizal Community in Roots and Nitrogen Uptake Patterns of Understory Trees Beneath Ectomycorrhizal and Non-ectomycorrhizal Overstory Trees. FRONTIERS IN PLANT SCIENCE 2021; 11:583585. [PMID: 33519844 PMCID: PMC7840530 DOI: 10.3389/fpls.2020.583585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is an essential plant nutrient, and plants can take up N from several sources, including via mycorrhizal fungal associations. The N uptake patterns of understory plants may vary beneath different types of overstory trees, especially through the difference in their type of mycorrhizal association (arbuscular mycorrhizal, AM; or ectomycorrhizal, ECM), because soil mycorrhizal community and N availability differ beneath AM (non-ECM) and ECM overstory trees (e.g., relatively low nitrate content beneath ECM overstory trees). To test this hypothesis, we examined six co-existing AM-symbiotic understory tree species common beneath both AM-symbiotic black locust (non-ECM) and ECM-symbiotic oak trees of dryland forests in China. We measured AM fungal community composition of roots and natural abundance stable isotopic composition of N (δ15N) in plant leaves, roots, and soils. The root mycorrhizal community composition of understory trees did not significantly differ between beneath non-ECM and ECM overstory trees, although some OTUs more frequently appeared beneath non-ECM trees. Understory trees beneath non-ECM overstory trees had similar δ15N values in leaves and soil nitrate, suggesting that they took up most of their nitrogen as nitrate. Beneath ECM overstory trees, understory trees had consistently lower leaf than root δ15N, suggesting they depended on mycorrhizal fungi for N acquisition since mycorrhizal fungi transfer isotopically light N to host plants. Additionally, leaf N concentrations in the understory trees were lower beneath ECM than the non-ECM overstory trees. Our results show that, without large differences in root mycorrhizal community, the N uptake patterns of understory trees vary between beneath different overstory trees.
Collapse
Affiliation(s)
- Chikae Tatsumi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Biology, Boston University, Boston, MA, United States
| | - Fujio Hyodo
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | | | - Weiyu Shi
- School of Geographical Sciences, Southwest University, Chongqing, China
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | | | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Beijing, China
| | | | - Pamela Templer
- Department of Biology, Boston University, Boston, MA, United States
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Acuña-Rodríguez IS, Galán A, Torres-Díaz C, Atala C, Molina-Montenegro MA. Fungal Symbionts Enhance N-Uptake for Antarctic Plants Even in Non-N Limited Soils. Front Microbiol 2020; 11:575563. [PMID: 33193189 PMCID: PMC7645117 DOI: 10.3389/fmicb.2020.575563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Plant-fungi interactions have been identified as fundamental drivers of the plant host performance, particularly in cold environments where organic matter degradation rates are slow, precisely for the capacity of the fungal symbiont to enhance the availability of labile nitrogen (N) in the plant rhizosphere. Nevertheless, these positive effects appear to be modulated by the composition and amount of the N pool in the soil, being greater when plant hosts are growing where N is scarce as is the case of Antarctic soils. Nevertheless, in some coastal areas of this continent, seabirds and marine mammal colonies exert, through their accumulated feces and urine a strong influence on the edaphic N content surrounding their aggregation points. To evaluate if the fungal symbionts (root endophytes), associated to the only two Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica, act as N-uptake enhancers, even in such N-rich conditions as those found around animal influence, we assessed, under controlled conditions, the process of N mineralization in soil by the accumulation of NH4 + in the rizhosphere and the biomass accumulation of plants with (E+) and without (E-) fungal symbionts. Complementarily, taking advantage of the isotopic N-fractionation that root-fungal symbionts exert on organic N molecules during its acquisition process, we also determined if endophytes actively participate in the Antarctic plants N-uptake, when inorganic N is not a limiting factor, by estimating the δ15N isotopic signatures in leaves. Overall, symbiotic interaction increased the availability of NH4 + in the rhizosphere of both species. As expected, the enhanced availability of inorganic N resulted in a higher final biomass in E + compared with E- plants of both species. In addition, we found that the positive role of fungal symbionts was also actively linked to the process of N-uptake in both species, evidenced by the contrasting δ15N signatures present in E+ (-0.4 to -2.3‰) relative to E- plants (2.7-3.1‰). In conclusion, despite being grown under rich N soils, the two Antarctic vascular plants showed that the presence of root-fungal endophytes, furthermore enhanced the availability of inorganic N sources in the rhizosphere, has a positive impact in their biomass, remarking the active participation of these endophytes in the N-uptake process for plants inhabiting the Antarctic continent.
Collapse
Affiliation(s)
- Ian S. Acuña-Rodríguez
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Alexander Galán
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Chile
- Centro Regional de Estudios Ambientales (CREA), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Cristian Torres-Díaz
- Laboratorio de Genómica y Biodiversidad (LGB), Departamento de Ciencias Naturales, Universidad del Bío-Bío, Chillán, Chile
| | - Cristian Atala
- Laboratorio de Anatomía y Ecología Funcional de Plantas (AEF), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Marco A. Molina-Montenegro
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
23
|
Finzi AC, Giasson M, Barker Plotkin AA, Aber JD, Boose ER, Davidson EA, Dietze MC, Ellison AM, Frey SD, Goldman E, Keenan TF, Melillo JM, Munger JW, Nadelhoffer KJ, Ollinger SV, Orwig DA, Pederson N, Richardson AD, Savage K, Tang J, Thompson JR, Williams CA, Wofsy SC, Zhou Z, Foster DR. Carbon budget of the Harvard Forest Long‐Term Ecological Research site: pattern, process, and response to global change. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1423] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Adrien C. Finzi
- Department of Biology Boston University Boston Massachusetts02215 USA
| | | | | | - John D. Aber
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824 USA
| | - Emery R. Boose
- Harvard Forest Harvard University Petersham Massachusetts01366 USA
| | - Eric A. Davidson
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg Maryland21532 USA
| | - Michael C. Dietze
- Department of Earth & Environment Boston University Boston Massachusetts02215 USA
| | - Aaron M. Ellison
- Harvard Forest Harvard University Petersham Massachusetts01366 USA
| | - Serita D. Frey
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824 USA
| | - Evan Goldman
- School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts02138 USA
| | - Trevor F. Keenan
- Lawrence Berkeley National Laboratory Berkeley California94720 USA
- Department of Environmental Science, Policy and Management UC Berkeley Berkeley California94720 USA
| | - Jerry M. Melillo
- The Ecosystems Center Marine Biological laboratory Woods Hole Massachusetts02543 USA
| | - J. William Munger
- School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts02138 USA
| | - Knute J. Nadelhoffer
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan48109 USA
| | - Scott V. Ollinger
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire03824 USA
- Earth Systems Research Center University of New Hampshire Durham New Hampshire03824 USA
| | - David A. Orwig
- Harvard Forest Harvard University Petersham Massachusetts01366 USA
| | - Neil Pederson
- Harvard Forest Harvard University Petersham Massachusetts01366 USA
| | - Andrew D. Richardson
- School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff Arizona86011 USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona86011 USA
| | - Kathleen Savage
- Woods Hole Research Center 149 Woods Hole Road Falmouth Massachusetts02540 USA
| | - Jianwu Tang
- The Ecosystems Center Marine Biological laboratory Woods Hole Massachusetts02543 USA
| | | | - Christopher A. Williams
- Graduate School of Geography and Department of Biology Clark University Worcester Massachusetts01610 USA
| | - Steven C. Wofsy
- School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts02138 USA
| | - Zaixing Zhou
- Earth Systems Research Center University of New Hampshire Durham New Hampshire03824 USA
| | - David R. Foster
- Harvard Forest Harvard University Petersham Massachusetts01366 USA
| |
Collapse
|
24
|
Weemstra M, Peay KG, Davies SJ, Mohamad M, Itoh A, Tan S, Russo SE. Lithological constraints on resource economies shape the mycorrhizal composition of a Bornean rain forest. THE NEW PHYTOLOGIST 2020; 228:253-268. [PMID: 32436227 DOI: 10.1111/nph.16672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting plant-soil feedbacks, but how these feedbacks are constrained by lithology is poorly understood. We investigated the hypothesis that lithological drivers of soil fertility filter plant resource economic strategies in ways that influence the relative fitness of trees with AMF or EMF symbioses in a Bornean rain forest containing species with both mycorrhizal strategies. Using forest inventory data on 1245 tree species, we found that although AMF-hosting trees had greater relative dominance on all soil types, with declining lithological soil fertility EMF-hosting trees became more dominant. Data on 13 leaf traits and wood density for a total of 150 species showed that variation was almost always associated with soil type, whereas for six leaf traits (structural properties; carbon, nitrogen, phosphorus ratios, nitrogen isotopes), variation was also associated with mycorrhizal strategy. EMF-hosting species had slower leaf economics than AMF-hosts, demonstrating the central role of mycorrhizal symbiosis in plant resource economies. At the global scale, climate has been shown to shape forest mycorrhizal composition, but here we show that in communities it depends on soil lithology, suggesting scale-dependent abiotic factors influence feedbacks underlying the relative fitness of different mycorrhizal strategies.
Collapse
Affiliation(s)
- Monique Weemstra
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry, Montpellier), 1919 route de Mende, Montpellier, 34293, France
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, 68588-0118, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, PO Box 37012, Washington, DC, 20013, USA
| | - Mohizah Mohamad
- Forest Department Sarawak, Wisma Sumber Alam, Petra Jaya, Kuching, Sarawak, 93660, Malaysia
| | - Akira Itoh
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Sylvester Tan
- Smithsonian ForestGEO, Lambir Hills National Park, Km32 Miri-Bintulu Road, Miri, Sarawak, 9800, Malaysia
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, 68588-0660, USA
| |
Collapse
|
25
|
Wang T, Tian Z, Tunlid A, Persson P. Nitrogen acquisition from mineral-associated proteins by an ectomycorrhizal fungus. THE NEW PHYTOLOGIST 2020; 228:697-711. [PMID: 32279319 DOI: 10.1111/nph.16596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/29/2020] [Indexed: 05/07/2023]
Abstract
In nitrogen (N)-limited boreal forests, trees depend on the decomposing activity of their ectomycorrhizal (ECM) fungal symbionts to access soil N. A large fraction of this N exists as proteinaceous compounds associated with mineral particles. However, it is not known if ECM fungi can access these mineral-associated proteins; accordingly, possible acquisition mechanisms have not been investigated. With tightly controlled isotopic, spectroscopic, and chromatographic experiments, we quantified and analyzed the mechanisms of N acquisition from iron oxide mineral-associated proteins by Paxillus involutus, a widespread ECM fungus in boreal forests. The fungus acquired N from the mineral-associated proteins. The collective results indicated a proteolytic mechanism involving formation of the crucial enzyme-substrate complexes at the mineral surfaces. Hence, the enzymes hydrolyzed the mineral-associated proteins without initial desorption of the proteins. The proteolytic activity was suppressed by adsorption of proteases to the mineral particles. This process was counteracted by fungal secretion of mineral-surface-reactive compounds that decreased the protease-mineral interactions and thereby promoted the formation of enzyme-substrate complexes. The ability of ECM fungi to simultaneously generate extracellular proteases and surface-reactive metabolites suggests that they can play an important role in unlocking the large N pool of mineral-associated proteins to trees in boreal forests.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Zhaomo Tian
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
26
|
Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. Peatland warming strongly increases fine-root growth. Proc Natl Acad Sci U S A 2020; 117:17627-17634. [PMID: 32661144 PMCID: PMC7395547 DOI: 10.1073/pnas.2003361117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Belowground climate change responses remain a key unknown in the Earth system. Plant fine-root response is especially important to understand because fine roots respond quickly to environmental change, are responsible for nutrient and water uptake, and influence carbon cycling. However, fine-root responses to climate change are poorly constrained, especially in northern peatlands, which contain up to two-thirds of the world's soil carbon. We present fine-root responses to warming between +2 °C and 9 °C above ambient conditions in a whole-ecosystem peatland experiment. Warming strongly increased fine-root growth by over an order of magnitude in the warmest treatment, with stronger responses in shrubs than in trees or graminoids. In the first year of treatment, the control (+0 °C) shrub fine-root growth of 0.9 km m-2 y-1 increased linearly by 1.2 km m-2 y-1 (130%) for every degree increase in soil temperature. An extended belowground growing season accounted for 20% of this dramatic increase. In the second growing season of treatment, the shrub warming response rate increased to 2.54 km m-2 °C-1 Soil moisture was negatively correlated with fine-root growth, highlighting that drying of these typically water-saturated ecosystems can fuel a surprising burst in shrub belowground productivity, one possible mechanism explaining the "shrubification" of northern peatlands in response to global change. This previously unrecognized mechanism sheds light on how peatland fine-root response to warming and drying could be strong and rapid, with consequences for the belowground growing season duration, microtopography, vegetation composition, and ultimately, carbon function of these globally relevant carbon sinks.
Collapse
Affiliation(s)
- Avni Malhotra
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830;
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - Deanne J Brice
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - Joanne Childs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - Jake D Graham
- Department of Geosciences, Boise State University, Boise, ID 83725
| | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, NH 03824
| | - Holly Vander Stel
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060
| | - Sarah C Feron
- Department of Physics, Universidad de Santiago de Chile, Santiago, 9170022, Chile
- School of Earth, Energy and Environmental Sciences, Department of Earth System Science, Stanford University, Stanford, CA 94305
| | - Paul J Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - Colleen M Iversen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| |
Collapse
|
27
|
Kou D, Yang G, Li F, Feng X, Zhang D, Mao C, Zhang Q, Peng Y, Ji C, Zhu Q, Fang Y, Liu X, Xu-Ri, Li S, Deng J, Zheng X, Fang J, Yang Y. Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nat Commun 2020; 11:3331. [PMID: 32620773 PMCID: PMC7335038 DOI: 10.1038/s41467-020-17169-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
The ecosystem carbon (C) balance in permafrost regions, which has a global significance in understanding the terrestrial C-climate feedback, is significantly regulated by nitrogen (N) dynamics. However, our knowledge on temporal changes in vegetation N limitation (i.e., the supply of N relative to plant N demand) in permafrost ecosystems is still limited. Based on the combination of isotopic observations derived from a re-sampling campaign along a ~3000 km transect and simulations obtained from a process-based biogeochemical model, here we detect changes in ecosystem N cycle across the Tibetan alpine permafrost region over the past decade. We find that vegetation N limitation becomes stronger despite the increased available N production. The enhanced N limitation on vegetation growth is driven by the joint effects of elevated plant N demand and gaseous N loss. These findings suggest that N would constrain the future trajectory of ecosystem C cycle in this alpine permafrost region.
Collapse
Affiliation(s)
- Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, 70210, Finland
- Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehui Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiwen Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Qiuan Zhu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xueyan Liu
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xu-Ri
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Siqi Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jia Deng
- Earth Systems Research Centre, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH, 03824, USA
| | - Xunhua Zheng
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jingyun Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Jach-Smith LC, Jackson RD. Inorganic N addition replaces N supplied to switchgrass (Panicum virgatum) by arbuscular mycorrhizal fungi. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02047. [PMID: 31758822 DOI: 10.1002/eap.2047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/20/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) provide many benefits in agroecosystems including improved soil tilth, carbon sequestration, and water and nutrient transfer to plants. AMF are known to affect plant nitrogen (N) dynamics and transfer N to plants, but there have been few studies addressing whether the amount of N transferred to plants by AMF is agronomically relevant. We used δ15 N natural abundance methods and δ15 N mass balance equations to estimate the amount of plant N derived from AMF transfer in perennial grasses managed for bioenergy production under different N addition treatments (0, 56, and 196 kg N/ha). Differentiation of δ15 N among plant, soil N, and AMF pools was higher than anticipated leading to calculations of 34-55% of plant N transferred by AMF in the treatments receiving no N addition to 6-22% of plant N transferred to plants in high-N addition treatments. AMF extra-radical hyphae biomass was significantly reduced in the high-N (196 kg N/ha) addition treatments, which was negatively correlated to enriched plant δ15 N. Our results suggest that N addition decreases AMF N transfer to plants. When N was limiting to plant growth, AMF supplied agronomically significant amounts of plant N, and a higher proportion of overall plant N. Because differentiation between N pools was greater than expected, stable isotope measurements can be used to estimate N transfer to AMF plant hosts.
Collapse
Affiliation(s)
- Laura C Jach-Smith
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, 550 North Park Street, Madison, Wisconsin, 53706, USA
- DOE-Great Lakes Bioenergy Research Center, 1552 University Avenue, Madison, Wisconsin, 53726, USA
| | - Randall D Jackson
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, 550 North Park Street, Madison, Wisconsin, 53706, USA
- DOE-Great Lakes Bioenergy Research Center, 1552 University Avenue, Madison, Wisconsin, 53726, USA
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin, 53706, USA
| |
Collapse
|
29
|
Weemstra M, Kiorapostolou N, Ruijven J, Mommer L, Vries J, Sterck F. The role of fine‐root mass, specific root length and life span in tree performance: A whole‐tree exploration. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monique Weemstra
- Forest Ecology and Forest Management Group Wageningen University Wageningen the Netherlands
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
| | - Natasa Kiorapostolou
- Forest Ecology and Forest Management Group Wageningen University Wageningen the Netherlands
- Department Territorio e Sistemi Agro‐Forestali University of Padova Legnaro Italy
| | - Jasper Ruijven
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
| | - Jorad Vries
- Centre for Crop System Analysis Wageningen University Wageningen the Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group Wageningen University Wageningen the Netherlands
| |
Collapse
|
30
|
Salazar A, Rousk K, Jónsdóttir IS, Bellenger J, Andrésson ÓS. Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology 2020; 101:e02938. [PMID: 31750541 PMCID: PMC7027553 DOI: 10.1002/ecy.2938] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022]
Abstract
Warming can alter the biogeochemistry and ecology of soils. These alterations can be particularly large in high northern latitude ecosystems, which are experiencing the most intense warming globally. In this meta-analysis, we investigated global trends in how experimental warming is altering the biogeochemistry of the most common limiting nutrient for biological processes in cold ecosystems of high northern latitudes (>50°): nitrogen (N). For comparison, we also analyzed cold ecosystems at intermediate and high southern latitudes. In addition, we examined N-relevant genes and enzymes, and the abundance of belowground organisms. Together, our findings suggest that warming in cold ecosystems increases N mineralization rates and N2 O emissions and does not affect N fixation, at least not in a consistent way across biomes and conditions. Changes in belowground N fluxes caused by warming lead to an accumulation of N in the forms of dissolved organic and root N. These changes seem to be more closely linked to increases in enzyme activity that target relatively labile N sources, than to changes in the abundance of N-relevant genes (e.g., amoA and nosZ). Finally, our analysis suggests that warming in cold ecosystems leads to an increase in plant roots, fungi, and (likely in an indirect way) fungivores, and does not affect the abundance of archaea, bacteria, or bacterivores. In summary, our findings highlight global trends in the ways warming is altering the biogeochemistry and ecology of soils in cold ecosystems, and provide information that can be valuable for prediction of changes and for management of such ecosystems.
Collapse
Affiliation(s)
- Alejandro Salazar
- Faculty of Life and Environmental SciencesUniversity of IcelandSturlugata 7101ReykjavíkIceland
| | - Kathrin Rousk
- Department of BiologyTerrestrial Ecology SectionUniversity of CopenhagenUniversitetsparken 152100CopenhagenDenmark
- Center for Permafrost (CENPERM)University of CopenhagenØster Voldgade 101350CopenhagenDenmark
| | - Ingibjörg S. Jónsdóttir
- Faculty of Life and Environmental SciencesUniversity of IcelandSturlugata 7101ReykjavíkIceland
| | - Jean‐Philippe Bellenger
- Centre SeveDepartment of ChemistryFaculty of SciencesUniversite de SherbrookeJ1K2R1SherbrookeQuebecCanada
| | - Ólafur S. Andrésson
- Faculty of Life and Environmental SciencesUniversity of IcelandSturlugata 7101ReykjavíkIceland
| |
Collapse
|
31
|
Tatsumi C, Taniguchi T, Du S, Yamanaka N, Tateno R. Soil nitrogen cycling is determined by the competition between mycorrhiza and ammonia-oxidizing prokaryotes. Ecology 2020; 101:e02963. [PMID: 31872432 DOI: 10.1002/ecy.2963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023]
Abstract
Mycorrhizal fungi have considerable effects on soil carbon (C) storage, as they control the decomposition of soil organic matter (SOM), by modifying the amount of soil nitrogen (N) available for free-living microbes. Through their access to organic N, ectomycorrhizal (ECM) fungi compete with free-living soil microbes; this competition is thought to slow down SOM decomposition. However, arbuscular mycorrhizal (AM) fungi cannot decompose SOM, and therefore must wait for N to first be processed by free-living microbes. It is unclear what form of N the ECM fungi and free-living microbes compete for, or which microbial groups compete for N with ECM fungi. To investigate this, we focused on the N transformation steps (i.e., the degradation of high-molecular-weight organic matter, mineralization, and nitrification) and the microbes driving each step. Simple comparisons between AM forests and ECM forests are not sufficient to assert that mycorrhizal types would determine the N transformation steps in soil, because soil physiochemistry, which strongly affects N transformation steps, differs between the forests. We used an aridity gradient with large differences in soil moisture, pH, and SOM quantity and quality, to distinguish the mycorrhizal and physicochemical effects on N transformation. Soil samples (0-10 cm depth) were collected from AM-symbiotic black locust forests under three aridity levels, and from ECM-symbiotic oak forests under two aridity levels. Soil physicochemical properties, extractable N dynamics and abundance, composition, and function of soil microbial communities were measured. In ECM forests, the ammonia-oxidizing prokaryotic abundance was low, whereas that of ECM fungi was high, resulting in lower nitrate N content than in AM forests. Since ECM forests did not have lower saprotrophic fungal abundance and prokaryotic decompositional activity than the AM forests, the hypothesis that ECM fungi could reduce SOM decay and ammonification by free-living microbes, might not hold in ECM forests. However, the limitation of ECM fungi on nitrate N production would result in a feedback that will accelerate plant dependence on these fungi, thereby raising soil C storage through an increase in the ECM biomass and plant C investment in soils.
Collapse
Affiliation(s)
- Chikae Tatsumi
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo, Kyoto, 606-8502, Japan
| | - Takeshi Taniguchi
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi, 712100, China
| | - Norikazu Yamanaka
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
32
|
Frey SD. Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110617-062331] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhabiting the interface between plant roots and soil, mycorrhizal fungi play a unique but underappreciated role in soil organic matter (SOM) dynamics. Their hyphae provide an efficient mechanism for distributing plant carbon throughout the soil, facilitating its deposition into soil pores and onto mineral surfaces, where it can be protected from microbial attack. Mycorrhizal exudates and dead tissues contribute to the microbial necromass pool now known to play a dominant role in SOM formation and stabilization. While mycorrhizal fungi lack the genetic capacity to act as saprotrophs, they use several strategies to access nutrients locked in SOM and thereby promote its decay, including direct enzymatic breakdown, oxidation via Fenton chemistry, and stimulation of heterotrophic microorganisms through carbon provision to the rhizosphere. An additional mechanism, competition with free-living saprotrophs, potentially suppresses SOM decomposition, leading to its accumulation. How these various nutrient acquisition strategies differentially influence SOM formation, stabilization, and loss is an area of critical research need.
Collapse
Affiliation(s)
- Serita D. Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, USA
| |
Collapse
|
33
|
Accounting for Carbon Flux to Mycorrhizal Fungi May Resolve Discrepancies in Forest Carbon Budgets. Ecosystems 2019. [DOI: 10.1007/s10021-019-00440-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Birnbaum C, Hopkins AJM, Fontaine JB, Enright NJ. Soil fungal responses to experimental warming and drying in a Mediterranean shrubland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:524-536. [PMID: 31146058 DOI: 10.1016/j.scitotenv.2019.05.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/28/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Implications of a drying and warming climate have been investigated for aboveground vegetation across a range of biomes yet below-ground effects on microorganisms have received considerably less attention, especially in Mediterranean Type Ecosystems (MTE) that are predicted to be negatively impacted by climate change. We experimentally reduced rainfall and increased temperature across two contrasting study sites (deep sand dune vs shallow sand swale) to test how projected future climate conditions may impact soil fungal composition, richness and diversity. We also assessed fungal OTU warming responses and putative functions of 100 most abundant OTUs and 120 OTUs that either increased or decreased based on their presence/absence across treatments. We found a significant effect of study site, treatment and canopy species on fungal composition. Soil fungal diversity increased under warming treatment in swale plots as compared to control plots indicating a positive effect of warming on fungal diversity. In dunes, significantly more OTUs responded to drought than warming treatment. Among the most abundant soil fungal putative functional groups were endophytes, ericoid mycorrhizas, yeasts and ectomycorrhizas consistent with previous studies. Plant pathogens were found to increase across dunes and swales, while ericoid mycorrhizae decreased. In summary, our study revealed that it is critical to understand belowground microbial patterns as a result of climate change treatments for our ability to better predict how ecosystems may respond to global environmental changes in the future.
Collapse
Affiliation(s)
- Christina Birnbaum
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia.
| | - Anna J M Hopkins
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia; Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Joseph B Fontaine
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia
| | - Neal J Enright
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia
| |
Collapse
|
35
|
Benavent-González A, Raggio J, Villagra J, Blanquer JM, Pintado A, Rozzi R, Green TGA, Sancho LG. High nitrogen contribution by Gunnera magellanica and nitrogen transfer by mycorrhizas drive an extraordinarily fast primary succession in sub-Antarctic Chile. THE NEW PHYTOLOGIST 2019; 223:661-674. [PMID: 30951191 DOI: 10.1111/nph.15838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Chronosequences at the forefront of retreating glaciers provide information about colonization rates of bare surfaces. In the northern hemisphere, forest development can take centuries, with rates often limited by low nutrient availability. By contrast, in front of the retreating Pia Glacier (Tierra del Fuego, Chile), a Nothofagus forest is in place after only 34 yr of development, while total soil nitrogen (N) increased from near zero to 1.5%, suggesting a strong input of this nutrient. We measured N-fixation rates, carbon fluxes, leaf N and phosphorus contents and leaf δ15 N in the dominant plants, including the herb Gunnera magellanica, which is endosymbiotically associated with a cyanobacterium, in order to investigate the role of N-fixing and mycorrhizal symbionts in N-budgets during successional transition. G. magellanica presented some of the highest nitrogenase activities yet reported (potential maximal contribution of 300 kg N ha-1 yr-1 ). Foliar δ15 N results support the framework of a highly efficient N-uptake and transfer system based on mycorrhizas, with c. 80% of N taken up by the mycorrhizas potentially transferred to the host plant. Our results suggest the symbiosis of G. magellanica with cyanobacteria, and trees and shrubs with mycorrhizas, to be the key processes driving this rapid succession.
Collapse
Affiliation(s)
- Alberto Benavent-González
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José Raggio
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Johana Villagra
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José Manuel Blanquer
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana Pintado
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ricardo Rozzi
- Parque Etnobotánico Omora, Sede Puerto Williams, Universidad de Magallanes, Teniente Muñoz 396, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB-Chile), Teniente Muñoz 396, Puerto Williams, Chile
- Department of Philosophy and Religion Studies, University of North Texas, Denton, TX, 76201, USA
| | - T G Allan Green
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
- Biological Sciences, Waikato University, Hamilton, 3240, New Zealand
| | - Leopoldo G Sancho
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
36
|
Nutrient and Isotopic Dynamics of Litter Decomposition from Different Land Uses in Naturally Restoring Taihang Mountain, North China. SUSTAINABILITY 2019. [DOI: 10.3390/su11061752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Litter decomposition is a prominent pathway for nutrient availability and management in terrestrial ecosystems. An in-situ litter decomposition experiment was carried out for different land use types along an elevation gradient in the Taihang Mountain area restored after heavy forest degradation in the past. Four land use types, i.e., cropland, shrubland, grassland, and forest, selected randomly from a 300–700 m elevation were investigated for the experiment using the litter bag technique. Litter mass loss ranged from 26.9% (forest) to 44.3% (cropland) varying significantly among land use types. The initial litter quality, mainly N and C/N, had a significant effect on the litter loss rate. The interaction of elevation × land use types × time was significant (p < 0.001). Litter nutrient mobility (K > P ≈ N > C) of the decomposing litter was sporadic with substantial stoichiometric effects of C/N, N/P, and C/P. The residual litters were enriched in δ15N and depleted in 13C as compared to the initial litter. Increment of N, P, and 15N values in residual litter indicates that, even in the highly weathered substrate, plant litter plays a crucial role in conserving nutrients. This study is a strong baseline for monitoring the functioning of the Taihang Mountain ecosystem restored after the complete destruction in the early 1990s.
Collapse
|
37
|
Mgelwa AS, Hu YL, Liu JF, Qiu Q, Liu Z, Yannick Ngaba MJ. Differential patterns of nitrogen and δ 15N in soil and foliar along two urbanized rivers in a subtropical coastal city of southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:907-914. [PMID: 30469285 DOI: 10.1016/j.envpol.2018.10.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Urbanization usually pollutes the environment leading to alterations in key biogeochemical cycles. Therefore, understanding its effects on forest nitrogen (N) saturation is becoming increasingly important for addressing N pollution challenges in urban ecosystems. In this study, we compared soil (N availability, net N mineralization, net nitrification, and δ15N) and foliar (N concentrations and δ15N) variables in upstream, midstream and downstream forest stands of Bailongjiang River (BJR; more urbanized) and Wulongjiang River (WJR; less urbanized), the two branches of the Minjiang River Estuary. Total soil N, ammonium, nitrate, net N mineralization and nitrification rates, as well as soil δ15N were significantly higher in BJR compared with WJR forest stands. While no substantial difference in foliar N concentrations was noted between rivers, foliar δ15N was on average more than 2.5 times higher in BJR than WJR forest stands. Across the study area, foliar δ15N was positively related to soil δ15N, which also had positive linear relationships with soil nitrate concentrations, net N mineralization and net nitrification rates. Moreover, all variables except foliar δ15N and ammonium concentrations showed decreasing patterns in the order: upstream > midstream > downstream along the BJR forest stands. Soil ammonium and foliar values (N concentrations and δ15N) revealed clear patterns along the WJR, with the former increasing and the latter decreasing from the upstream to downstream forest stands. Our findings indicate an increase in urbanization-induced N inputs from the WJR to BJR and that forest stands along the BJR especially at the upstream have higher N availability and are shifting rapidly towards N saturation state. These results emphasize the need for effective N pollution control in urban environments through sustainable urban planning.
Collapse
Affiliation(s)
- Abubakari Said Mgelwa
- Forest Ecology & Stable Isotope Research Center, College of Forestry, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China; College of Life Science, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China; College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania
| | - Ya-Lin Hu
- Forest Ecology & Stable Isotope Research Center, College of Forestry, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Jin-Fu Liu
- Forest Ecology & Stable Isotope Research Center, College of Forestry, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China
| | - Qingyan Qiu
- Forest Ecology & Stable Isotope Research Center, College of Forestry, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zheng Liu
- Forest Ecology & Stable Isotope Research Center, College of Forestry, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China
| | - Mbezele Junior Yannick Ngaba
- Forest Ecology & Stable Isotope Research Center, College of Forestry, Fujian Agriculture & Forestry University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
38
|
Zhang Z, Phillips RP, Zhao W, Yuan Y, Liu Q, Yin H. Mycelia‐derived C contributes more to nitrogen cycling than root‐derived C in ectomycorrhizal alpine forests. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ziliang Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
- Department of Plant & Environmental SciencesClemson University Clemson South Carolina
| | | | - Wenqiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of Sciences Chengdu China
| | - Yuanshuang Yuan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of Sciences Chengdu China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of Sciences Chengdu China
| |
Collapse
|
39
|
Hayashi M, Lopez Caceres ML, Nobori Y, Mijidsuren B, Boy J. Nitrogen isotope pattern in Mongolian larch stands at the southern Eurasian boreal forest boundary. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2018; 54:608-621. [PMID: 30156882 DOI: 10.1080/10256016.2018.1509073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In the last decades a drastic increase in air temperature but a stable precipitation regime in Mongolia has led to gradual drying conditions. Thus, we evaluated the effect of spatial and climatic characteristics on the soil-plant nitrogen dynamics in three representative larch stands (Larix sibirica) with different geographical and climatic conditions using stable nitrogen isotopes. The results showed significant differences in the soil inorganic N content among sites and consequently a different isotopic composition in the plant-soil system. Litter, bark and wood had the lowest δ15N values for all sites, slightly higher δ15N values for needles, while the highest δ15N values were observed for roots and soil. These differences could be the result of the larch stands age themselves, but were in agreement with the spatial and climatic characteristics of the sites. Based on the δ15N value a higher reliance on ectomycorrhizal fungi (ECMF) was observed in the warmest and driest site, while lower dependency was shown in the cooler northern site with higher soil inorganic N content. In both sites, the rate of air temperature increase has been similar in the last decades; however, their soil-plant N dynamics showed different characteristics.
Collapse
Affiliation(s)
- Mika Hayashi
- a Faculty of Agriculture , Yamagata University , Tsuruoka , Japan
| | | | - Yoshihiro Nobori
- a Faculty of Agriculture , Yamagata University , Tsuruoka , Japan
| | - Byambasuren Mijidsuren
- b Plant Protection Research Institute , Mongolian University of Life Sciences , Ulaanbaatar , Mongolia
| | - Jens Boy
- c Soil Institute , Leibniz Universität Hannover , Hannover , Germany
| |
Collapse
|
40
|
Liu Y, Sun Q, Li J, Lian B. Bacterial diversity among the fruit bodies of ectomycorrhizal and saprophytic fungi and their corresponding hyphosphere soils. Sci Rep 2018; 8:11672. [PMID: 30076360 PMCID: PMC6076286 DOI: 10.1038/s41598-018-30120-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/24/2018] [Indexed: 11/08/2022] Open
Abstract
Macro-fungi play important roles in the soil elemental cycle in terrestrial ecosystems. Many researchers have focused on the interactions between mycorrhizal fungi and host plants, whilst comparatively few studies aim to characterise the relationships between macro-fungi and bacteria in situ. In this study, we detected endophytic bacteria within fruit bodies of ectomycorrhizal and saprophytic fungi (SAF) using high-throughput sequencing technology, as well as bacterial diversity in the corresponding hyphosphere soils below the fruit bodies. Bacteria such as Helicobacter, Escherichia-Shigella, and Bacillus were found to dominate within fruit bodies, indicating that they were crucial in the development of macro-fungi. The bacterial richness in the hyphosphere soils of ectomycorrhizal fungi (EcMF) was higher than that of SAF and significant difference in the composition of bacterial communities was observed. There were more Verrucomicrobia and Bacteroides in the hyphosphere soils of EcMF, and comparatively more Actinobacteria and Chloroflexi in the hyphosphere of SAF. The results indicated that the two types of macro-fungi can enrich, and shape the bacteria compatible with their respective ecological functions. This study will be beneficial to the further understanding of interactions between macro-fungi and relevant bacteria.
Collapse
Affiliation(s)
- Yaping Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qibiao Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jing Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Lian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
41
|
Zhang G, Yu X, Xu J, Duan H, Rafay L, Zhang Q, Li Y, Liu Y, Xia S. Effects of environmental variation on stable isotope abundances during typical seasonal floodplain dry season litter decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1205-1215. [PMID: 29554742 DOI: 10.1016/j.scitotenv.2018.02.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Unique hydrological characteristics and complex topography can create wide-ranging dry season environmental heterogeneity in response to groundwater level across China's Jiangxi Province Poyang Lake wetland. Soil traits are one of several fluctuating environmental variables. To determine the effects of soil variables on stable isotope (δ13C and δ15N) abundances during decomposition, we performed a field experiment using Carex cinerascens along a groundwater level gradient (GT-L: -25 to -50cm, GT-LM: -15 to -25cm, GT-MH: -5 to -15cm, GT-H: 5 to -5cm) in a shallow lake. Twelve soil properties-including total organic carbon (TOC), nitrogen (N), pH, moisture, bulk density, clay, silt, sand, peroxidase, cellulase, microbial biomass carbon (MBC), and microbial biomass nitrogen-were measured in surface soil samples to assess soil environmental conditions. Analyses were performed to determine the effects of soil traits and lignin degradation on changes in stable isotope abundances. This study revealed that stable isotope abundances were significantly lower at high groundwater levels than at low groundwater levels. Lignin degradation was associated with a decrease in both δ13C and δ15N abundances. These two stable isotopes were positively related with soil N and bulk density, but negatively with pH and microbial quotient (MBC/TOC). Variation partitioning analysis (VPA) showed that soil variables and lignin decay rates explained 80.1% of the δ13C variation and 42.8% of the δ15N variation. Soil chemical and biological variables exhibited significant interactions with lignin decay rates, indicating they may affect stable isotope abundances via complex mechanisms. Our results indicate that the change in stable isotope abundances during decomposition may be affected directly by soil variables or indirectly through lignin degradation. Our results provide useful insight for understanding the roles of litter decomposition and soil traits in changing environmental conditions of seasonal floodplain wetlands.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiubo Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystem, State Key Lab of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Houlang Duan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Loretta Rafay
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Quanjun Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaoxia Xia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Liu XY, Koba K, Koyama LA, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, Makabe A, Yano M, Liu CQ. Nitrate is an important nitrogen source for Arctic tundra plants. Proc Natl Acad Sci U S A 2018; 115:3398-3403. [PMID: 29540568 PMCID: PMC5879661 DOI: 10.1073/pnas.1715382115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3-) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3- concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3- that is typically below detection limits. Here we reexamine NO3- use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3- Soil-derived NO3- was detected in tundra plant tissues, and tundra plants took up soil NO3- at comparable rates to plants from relatively NO3--rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3- relative to soil NO3- accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3- availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3- availability in tundra soils is crucial for predicting C storage in tundra.
Collapse
Affiliation(s)
- Xue-Yan Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China;
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Keisuke Koba
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Lina A Koyama
- Department of Social Informatics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Marissa S Weiss
- Science Policy Exchange, Harvard Forest, Harvard University, Petersham, MA 01366
| | - Yoshiyuki Inagaki
- Shikoku Research Center, Forestry and Forest Products Research Institute, Kochi 780-8077, Japan
| | - Gaius R Shaver
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Satoru Hobara
- Department of Environmental and Symbiotic Science, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Knute J Nadelhoffer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | | | - Edward B Rastetter
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - James A Laundre
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Yuriko Yano
- Department of Ecology, Montana State University, Bozeman, MT 59717
| | - Akiko Makabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Midori Yano
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
43
|
Dijkstra FA, Carrillo Y, Blumenthal DM, Mueller KE, LeCain DR, Morgan JA, Zelikova TJ, Williams DG, Follett RF, Pendall E. Elevated CO 2 and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability. Ecol Lett 2018; 21:674-682. [PMID: 29508508 DOI: 10.1111/ele.12935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 02/08/2018] [Indexed: 11/28/2022]
Abstract
Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.
Collapse
Affiliation(s)
- Feike A Dijkstra
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Camden, 2570, NSW, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2570, NSW, Australia
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Dan R LeCain
- Rangeland Resources & Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - Jack A Morgan
- Rangeland Resources & Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - Tamara J Zelikova
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Ronald F Follett
- Agricultural Research Service, Soil Plant and Nutrient Research Unit, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2570, NSW, Australia
| |
Collapse
|
44
|
Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB, Hainaut M, Kuo RC, LaButti K, Lindahl BD, Lindquist EA, Lipzen A, Khouja HR, Magnuson J, Murat C, Ohm RA, Singer SW, Spatafora JW, Wang M, Veneault-Fourrey C, Henrissat B, Grigoriev IV, Martin FM, Perotto S. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. THE NEW PHYTOLOGIST 2018; 217:1213-1229. [PMID: 29315638 DOI: 10.1111/nph.14974] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/25/2017] [Indexed: 05/10/2023]
Abstract
Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.
Collapse
Affiliation(s)
- Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Emmanuelle Morin
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Gwen-Aëlle Grelet
- Manaaki Whenua - Landcare Research, Ecosystems and Global Change Team, Gerald Street, PO Box 69040, Lincoln, 7640, New Zealand
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Annegret Kohler
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| | - Kerrie W Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Nicolas Cichocki
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Rhyan B Dockter
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, UMR7257 Centre National de la Recherche Scientifique - Aix-Marseille Université, Case 932, 163 Avenue de Luminy, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, 13288, France
| | - Rita C Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Erika A Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Jon Magnuson
- Pacific Northwest National Laboratory, Chemical and Biological Process Development Group, Richland, WA, 99354, USA
| | - Claude Murat
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Robin A Ohm
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Microbiology, Department of Biology, Utrecht University, 3508, TB Utrecht, the Netherlands
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Claire Veneault-Fourrey
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
- Laboratoire d'Excellence ARBRE, Faculté des Sciences et Technologies, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Université de Lorraine, Campus Aiguillettes, BP 70239, Vandoeuvre les Nancy cedex, 54506, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR7257 Centre National de la Recherche Scientifique - Aix-Marseille Université, Case 932, 163 Avenue de Luminy, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, 13288, France
- Department of Biological Sciences, King Abdulaziz University - KSA, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis M Martin
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| |
Collapse
|
45
|
Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC. Ecosystem responses to elevated CO 2 governed by plant-soil interactions and the cost of nitrogen acquisition. THE NEW PHYTOLOGIST 2018; 217:507-522. [PMID: 29105765 DOI: 10.1111/nph.14872] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 05/11/2023]
Abstract
Contents Summary 507 I. Introduction 507 II. The return on investment approach 508 III. CO2 response spectrum 510 IV. Discussion 516 Acknowledgements 518 References 518 SUMMARY: Land ecosystems sequester on average about a quarter of anthropogenic CO2 emissions. It has been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants' ability to store additional carbon (C) under rising CO2 , but these mechanisms are not well understood. Here, we review findings from elevated CO2 experiments using a plant economics framework, highlighting how ecosystem responses to elevated CO2 may depend on the costs and benefits of plant interactions with mycorrhizal fungi and symbiotic N-fixing microbes. We found that N-acquisition efficiency is positively correlated with leaf-level photosynthetic capacity and plant growth, and negatively with soil C storage. Plants that associate with ectomycorrhizal fungi and N-fixers may acquire N at a lower cost than plants associated with arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plants is partly offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive models aimed at quantifying C cycle feedbacks to global change may be improved by treating N as a resource that can be acquired by plants in exchange for energy, with different costs depending on plant interactions with microbial symbionts.
Collapse
Affiliation(s)
- César Terrer
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Sara Vicca
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Benjamin D Stocker
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Adrien C Finzi
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - I Colin Prentice
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| |
Collapse
|
46
|
Early Acacia invasion in a sandy ecosystem enables shading mediated by soil, leaf nitrogen and facilitation. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1647-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Tahmasebi F, Longstaffe FJ, Zazula G, Bennett B. Nitrogen and carbon isotopic dynamics of subarctic soils and plants in southern Yukon Territory and its implications for paleoecological and paleodietary studies. PLoS One 2017; 12:e0183016. [PMID: 28813532 PMCID: PMC5559067 DOI: 10.1371/journal.pone.0183016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 07/30/2017] [Indexed: 11/20/2022] Open
Abstract
We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of -27.5 ± 1.2 ‰ and foliar δ13C of -28.0 ± 1.3 ‰, and average whole plant δ15N of -0.3 ± 2.2 ‰ and foliar δ15N of -0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region.
Collapse
Affiliation(s)
- Farnoush Tahmasebi
- Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Fred J. Longstaffe
- Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Grant Zazula
- Yukon Palaeontology Program, Department of Tourism and Culture, Government of Yukon, Whitehorse, Yukon Territory, Canada
| | - Bruce Bennett
- Yukon Conservation Data Centre, Environment Yukon, Government of Yukon, Whitehorse, Yukon Territory, Canada
| |
Collapse
|
48
|
Hellmann C, Große-Stoltenberg A, Thiele J, Oldeland J, Werner C. Heterogeneous environments shape invader impacts: integrating environmental, structural and functional effects by isoscapes and remote sensing. Sci Rep 2017; 7:4118. [PMID: 28646189 PMCID: PMC5482842 DOI: 10.1038/s41598-017-04480-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Spatial heterogeneity of ecosystems crucially influences plant performance, while in return plant feedbacks on their environment may increase heterogeneous patterns. This is of particular relevance for exotic plant invaders that transform native ecosystems, yet, approaches integrating geospatial information of environmental heterogeneity and plant-plant interaction are lacking. Here, we combined remotely sensed information of site topography and vegetation cover with a functional tracer of the N cycle, δ15N. Based on the case study of the invasion of an N2-fixing acacia in a nutrient-poor dune ecosystem, we present the first model that can successfully predict (R 2 = 0.6) small-scale spatial variation of foliar δ15N in a non-fixing native species from observed geospatial data. Thereby, the generalized additive mixed model revealed modulating effects of heterogeneous environments on invader impacts. Hence, linking remote sensing techniques with tracers of biological processes will advance our understanding of the dynamics and functioning of spatially structured heterogeneous systems from small to large spatial scales.
Collapse
Affiliation(s)
- Christine Hellmann
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - André Große-Stoltenberg
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Jan Thiele
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Jens Oldeland
- Biodiversity, Ecology and Evolution of Plants, Biocentre Klein Flottbek and Botanical Garden, University of Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Christiane Werner
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany.
| |
Collapse
|
49
|
Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, Rillig MC, Zobel M, Kühn I. Mycorrhizal status helps explain invasion success of alien plant species. Ecology 2016; 98:92-102. [DOI: 10.1002/ecy.1621] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Menzel
- Department of Community Ecology; Helmholtz Centre for Environmental Research-UFZ; Theodor-Lieser-Strasse 4 06120 Halle (Saale) Germany
| | - Stefan Hempel
- Institute of Biology; Dahlem Center for Plant Sciences; Freie Universität Berlin; Altensteinstraße 6 14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB); 14195 Berlin Germany
| | - Stefan Klotz
- Department of Community Ecology; Helmholtz Centre for Environmental Research-UFZ; Theodor-Lieser-Strasse 4 06120 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
| | - Mari Moora
- Institute of Ecology and Earth Sciences; University of Tartu; 40 Lai Street Tartu 51005 Estonia
| | - Petr Pyšek
- Department of Invasion Ecology; Institute of Botany; The Czech Academy of Sciences; CZ-252 43 Průhonice Czech Republic
- Department of Ecology; Faculty of Science; Charles University; Viničná 7 CZ-128 44 Prague 2 Czech Republic
- Department of Botany and Zoology; Centre for Invasion Biology; Stellenbosch University; Matieland 7602 South Africa
| | - Matthias C. Rillig
- Institute of Biology; Dahlem Center for Plant Sciences; Freie Universität Berlin; Altensteinstraße 6 14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB); 14195 Berlin Germany
| | - Martin Zobel
- Institute of Ecology and Earth Sciences; University of Tartu; 40 Lai Street Tartu 51005 Estonia
| | - Ingolf Kühn
- Department of Community Ecology; Helmholtz Centre for Environmental Research-UFZ; Theodor-Lieser-Strasse 4 06120 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Biology/Geobotany and Botanical Garden; Martin-Luther-University Halle-Wittenberg; Am Kirchtor 1 06108 Halle Germany
| |
Collapse
|
50
|
Hellmann C, Rascher KG, Oldeland J, Werner C. Isoscapes resolve species-specific spatial patterns in plant-plant interactions in an invaded Mediterranean dune ecosystem. TREE PHYSIOLOGY 2016; 36:1460-1470. [PMID: 27587484 DOI: 10.1093/treephys/tpw075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Environmental heterogeneity and plant-plant interactions are key factors shaping plant communities. However, the spatial dimension of plant-plant interactions has seldom been addressed in field studies. This is at least partially rooted in a lack of methods that can accurately resolve functional processes in a spatially explicit manner. Isoscapes, that is, spatially explicit representations of stable isotope data, provide a versatile means to trace functional changes on spatial scales, for example, related to N-cycling (foliar δ15N) and water use efficiency (WUEi, foliar δ13C). In a case study in a nutrient-depleted Mediterranean dune ecosystem, we analysed the spatial impact of the invasive N2-fixing Acacia longifolia on three native species of different functional types using δ15N and δ13C isoscapes and spatial autocorrelation analyses. Isoscapes revealed strong spatial patterns in δ15N and δ13C with pronounced species-specific differences, demonstrating distinct spatial ranges of plant-plant interactions. A coniferous tree and an ericaceous dwarf shrub showed significant enrichment in δ15N within a range of 5-8 m surrounding the canopy of A. longifolia, indicating input of N originating from symbiotic N2-fixation by the invader. In the dwarf shrub, which was most responsive to invader influence, enrichment in δ13C additionally demonstrated spatially explicit changes to WUEi, while a native N2-fixer was unresponsive to the presence of the invader. Furthermore, δ15N and δ13C isoscapes yielded different patterns, indicating that plant-plant interactions can have distinct spatial distributions and ranges based on the process measured. Additionally, the magnitude of the effect differed between field situations with high and low invasion pressure. This study highlights that the spatial scale must be accounted for when assessing the effects and outcome of species interactions. Functional tracers such as stable isotopes enable us to quantify spatial ranges of plant-plant interactions, providing empirical data that can help to better understand and predict complex species interactions in multifaceted natural environments.
Collapse
Affiliation(s)
- Christine Hellmann
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
- Department of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - Katherine G Rascher
- Department of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - Jens Oldeland
- Biodiversity, Evolution and Ecology of Plants, Biocentre Klein Flottbek and Botanical Garden, University of Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Christiane Werner
- Department of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| |
Collapse
|