1
|
The ataxia-linked E1081Q mutation affects the sub-plasma membrane Ca 2+-microdomains by tuning PMCA3 activity. Cell Death Dis 2022; 13:855. [PMID: 36207321 PMCID: PMC9546857 DOI: 10.1038/s41419-022-05300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023]
Abstract
Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.
Collapse
|
2
|
Jeng JY, Harasztosi C, Carlton A, Corns L, Marchetta P, Johnson SL, Goodyear RJ, Legan KP, Rüttiger L, Richardson GP, Marcotti W. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca 2+ near stereocilia. J Physiol 2021; 599:2015-2036. [PMID: 33559882 PMCID: PMC7612128 DOI: 10.1113/jp280905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 10/11/2023] Open
Abstract
KEY POINTS The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 μM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Csaba Harasztosi
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Laura Corns
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Philine Marchetta
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Kevin P. Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Lukas Rüttiger
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
3
|
Goldring AC, Beurg M, Fettiplace R. The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells. J Physiol 2019; 597:5949-5961. [PMID: 31633194 PMCID: PMC6910908 DOI: 10.1113/jp278799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Hair cell mechanoelectrical transducer channels are opened by deflections of the hair bundle about a resting position set by incompletely understood adaptation mechanisms. We used three characteristics to define adaptation in hair cell mutants of transmembrane channel-like proteins, TMC1 and TMC2, which are considered to be channel constituents. The results obtained demonstrate that the three characteristics are not equivalent, and raise doubts about simple models in which intracellular Ca2+ regulates adaptation. Adaptation is faster and more effective in TMC1-containing than in TMC2-containing transducer channels. This result ties adaptation to the channel complex, and suggests that TMC1 is a better isoform for use in cochlear hair cells. We describe a TMC1 point mutation, D569N, that reduces the resting open probability and Ca2+ permeability of the transducer channels, comprising properties that may contribute to the deafness phenotype. ABSTRACT Recordings of mechanoelectrical transducer (MET) currents in cochlear hair cells were made in mice with mutations of transmembrane channel-like (TMC) protein to examine the effects on fast transducer adaptation. Adaptation was faster and more complete in Tmc2-/- than in Tmc1-/- , although this disparity was not explained by differences in Ca2+ permeability or Ca2+ influx between the two isoforms, with TMC2 having the larger permeability. We made a mouse mutation, Tmc1 p.D569N, homologous to a human DFNA36 deafness mutation, which also had MET channels with lower Ca2+ -permeability but showed better fast adaptation than wild-type Tmc1+/+ channels. Consistent with the more effective adaptation in Tmc1 p.D569N, the resting probability of MET channel opening was smaller. The three TMC variants studied have comparable single-channel conductances, although the lack of correlation between channel Ca2+ permeability and adaptation opposes the hypothesis that adaptation is controlled simply by Ca2+ influx through the channels. During the first postnatal week of mouse development, the MET currents amplitude grew, and transducer adaptation became faster and more effective. We attribute changes in adaptation partly to a developmental switch from TMC2- to TMC1- containing channels and partly to an increase in channel expression. More complete and faster adaptation, coupled with larger MET currents, may account for the sole use of TMC1 in the adult cochlear hair cells.
Collapse
Affiliation(s)
- Adam C Goldring
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Maryline Beurg
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
4
|
Minakata T, Inagaki A, Yamamura A, Yamamura H, Sekiya S, Murakami S. Calcium-Sensing Receptor Is Functionally Expressed in the Cochlear Perilymphatic Compartment and Essential for Hearing. Front Mol Neurosci 2019; 12:175. [PMID: 31379498 PMCID: PMC6648107 DOI: 10.3389/fnmol.2019.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
Maintaining Ca2+ homeostasis in lymphatic fluids is necessary for proper hearing. Despite its significance, the mechanisms that maintain the cochlear lymphatic Ca2+ concentrations within a certain range are not fully clarified. We investigated the functional expression of calcium-sensing receptor (CaSR), which plays a pivotal role in sensing extracellular Ca2+ concentrations for feedback regulations. Western blotting for CaSR revealed an approximately 130-kDa protein expression in cochlear tissue extracts and immunohistochemical analysis revealed its expression specifically in type I fibrocytes in the spiral ligament, fibrocytes in the supralimbal and limbal regions, the epithelium of the osseous spiral lamina, and the smooth muscle cells of the spiral modiolar arteries. Ca2+ imaging demonstrated that extracellular Ca2+ increased the levels of intracellular Ca2+ in CaSR-expressing fibrocytes in the spiral ligament, and that this was suppressed by the CaSR inhibitor, NPS2143. Furthermore, hearing thresholds were moderately elevated by intracochlear application of the CaSR inhibitors NPS2143 and Calhex231, across a range of frequencies (8–32 kHz). These results demonstrate the functional expression of CaSR in the cochlear perilymphatic compartment. In addition, the elevated hearing thresholds that are achieved by inhibiting CaSR suggest this is a required mechanism for normal hearing, presumably by sensing perilymphatic Ca2+ to stabilize Ca2+ concentrations within a certain range. These results provide novel insight into the mechanisms regulating Ca2+ homeostasis in the cochlea and provide a new perspective on cochlear physiology.
Collapse
Affiliation(s)
- Toshiya Minakata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Akira Inagaki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Shingo Murakami
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
5
|
Abstract
This review summarizes paleontological data as well as studies on the morphology, function, and molecular evolution of the cochlea of living mammals (monotremes, marsupials, and placentals). The most parsimonious scenario is an early evolution of the characteristic organ of Corti, with inner and outer hair cells and nascent electromotility. Most remaining unique features, such as loss of the lagenar macula, coiling of the cochlea, and bony laminae supporting the basilar membrane, arose later, after the separation of the monotreme lineage, but before marsupial and placental mammals diverged. The question of when hearing sensitivity first extended into the ultrasonic range (defined here as >20 kHz) remains speculative, not least because of the late appearance of the definitive mammalian middle ear. The last significant change was optimizing the operating voltage range of prestin, and thus the efficiency of the outer hair cells' amplifying action, in the placental lineage only.
Collapse
Affiliation(s)
- Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Abstract
A new mechanism that contributes to control of hearing sensitivity is described here. We show that an accessory structure in the hearing organ, the tectorial membrane, affects the function of inner ear sensory cells by storing calcium ions. When the calcium store is depleted, by brief exposure to rock concert-level sounds or by the introduction of calcium chelators, the sound-evoked responses of the sensory cells decrease. Upon restoration of tectorial membrane calcium, sensory cell function returns. This previously unknown mechanism contributes to explaining the temporary numbness in the ear that follows from listening to sounds that are too loud, a phenomenon that most people experience at some point in their lives. When sound stimulates the stereocilia on the sensory cells in the hearing organ, Ca2+ ions flow through mechanically gated ion channels. This Ca2+ influx is thought to be important for ensuring that the mechanically gated channels operate within their most sensitive response region, setting the fraction of channels open at rest, and possibly for the continued maintenance of stereocilia. Since the extracellular Ca2+ concentration will affect the amount of Ca2+ entering during stimulation, it is important to determine the level of the ion close to the sensory cells. Using fluorescence imaging and fluorescence correlation spectroscopy, we measured the Ca2+ concentration near guinea pig stereocilia in situ. Surprisingly, we found that an acellular accessory structure close to the stereocilia, the tectorial membrane, had much higher Ca2+ than the surrounding fluid. Loud sounds depleted Ca2+ from the tectorial membrane, and Ca2+ manipulations had large effects on hair cell function. Hence, the tectorial membrane contributes to control of hearing sensitivity by influencing the ionic environment around the stereocilia.
Collapse
|
7
|
Bortolozzi M, Mammano F. PMCA2 pump mutations and hereditary deafness. Neurosci Lett 2019; 663:18-24. [PMID: 29452611 DOI: 10.1016/j.neulet.2017.09.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/21/2023]
Abstract
Hair cells of the inner ear detect sound stimuli, inertial or gravitational forces by deflection of their apical stereocilia. A small number of stereociliary cation-selective mechanotransduction (MET) channels admit K+ and Ca2+ ions into the cytoplasm promoting hair cell membrane depolarization and, consequently, neurotransmitter release at the cell basolateral pole. Ca2+ influx into the stereocilia compartment is counteracted by the unusual w/a splicing variant of plasma-membrane calcium-pump isoform 2 (PMCA2) which, unlike other PMCA2 variants, increases only marginally its activity in response to a rapid variation of the cytoplasmic free Ca2+ concentration ([Ca2+]c). Missense mutations of PMCA2w/a cause deafness and loss of balance in humans. Mouse models in which the pump is genetically ablated or mutated show hearing and balance impairment, which correlates with defects in homeostatic regulation of stereociliary [Ca2+]c, decreased sensitivity of mechanotransduction channels to hair bundle displacement and progressive degeneration of the organ of Corti. These results highlight a critical role played by the PMCA2w/a pump in the control of hair cell function and survival, and provide mechanistic insight into the etiology of deafness and vestibular disorders.
Collapse
Affiliation(s)
- Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; CNR Institute of Protein Biochemistry, Naples, Italy.
| | - Fabio Mammano
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
8
|
Fettiplace R, Nam JH. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Hear Res 2018; 376:11-21. [PMID: 30473131 DOI: 10.1016/j.heares.2018.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
Ototoxicity, noise overstimulation, or aging, can all produce hearing loss with similar properties, in which outer hair cells (OHCs), principally those at the high-frequency base of the cochlea, are preferentially affected. We suggest that the differential vulnerability may partly arise from differences in Ca2+ balance among cochlear locations. Homeostasis is determined by three factors: Ca2+ influx mainly via mechanotransducer (MET) channels; buffering by calcium-binding proteins and organelles like mitochondria; and extrusion by the plasma membrane CaATPase pump. We review quantification of these parameters and use our experimentally-determined values to model changes in cytoplasmic and mitochondrial Ca2+ during Ca2+ influx through the MET channels. We suggest that, in OHCs, there are two distinct micro-compartments for Ca2+ handling, one in the hair bundle and the other in the cell soma. One conclusion of the modeling is that there is a tonotopic gradient in the ability of OHCs to handle the Ca2+ load, which correlates with their vulnerability to environmental challenges. High-frequency basal OHCs are the most susceptible because they have much larger MET currents and have smaller dimensions than low-frequency apical OHCs.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.
| | - Jong-Hoon Nam
- Departments of Mechanical Engineering and Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
9
|
Vicario M, Zanni G, Vallese F, Santorelli F, Grinzato A, Cieri D, Berto P, Frizzarin M, Lopreiato R, Zonta F, Ferro S, Sandre M, Marin O, Ruzzene M, Bertini E, Zanotti G, Brini M, Calì T, Carafoli E. A V1143F mutation in the neuronal-enriched isoform 2 of the PMCA pump is linked with ataxia. Neurobiol Dis 2018; 115:157-166. [PMID: 29655659 DOI: 10.1016/j.nbd.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca2+ signaling in neurons demands the continuous activity of Ca2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca2+ATPases (PMCA pumps) play a key role in the regulation of Ca2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca2+ ejection.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Ginevra Zanni
- Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Grinzato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Domenico Cieri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Paola Berto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Frizzarin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Zonta
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Stefania Ferro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Michele Sandre
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Enrico Bertini
- Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Padua Neuroscience Center (PNC), University of Padua, 35122 Padova, Italy.
| | | |
Collapse
|
10
|
Strehler EE, Thayer SA. Evidence for a role of plasma membrane calcium pumps in neurodegenerative disease: Recent developments. Neurosci Lett 2018; 663:39-47. [PMID: 28827127 PMCID: PMC5816698 DOI: 10.1016/j.neulet.2017.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
Abstract
Plasma membrane Ca2+ ATPases (PMCAs) are a major system for calcium extrusion from all cells. Different PMCA isoforms and splice variants are involved in the precise temporal and spatial handling of Ca2+ signals and the re-establishment of resting Ca2+ levels in the nervous system. Lack or inappropriate expression of specific PMCAs leads to characteristic neuronal phenotypes, which may be reciprocally exacerbated by genetic predisposition through alleles in other genes that modify PMCA interactions, regulation, and function. PMCA dysfunction is often poorly compensated in neurons and may lead to changes in synaptic transmission, altered excitability and, with long-term calcium overload, eventual cell death. Decrease and functional decline of PMCAs are hallmarks of neurodegeneration during aging, and mutations in specific PMCAs are responsible for neuronal dysfunction and accelerated neurodegeneration in many sensory and cognitive diseases.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Regulation of the Plasma Membrane Calcium ATPases by the actin cytoskeleton. Biochem Biophys Res Commun 2017; 506:347-354. [PMID: 29180009 DOI: 10.1016/j.bbrc.2017.11.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023]
Abstract
Associations between the cortical cytoskeleton and the components of the plasma membrane are no longer considered to be merely of structural and mechanical nature but are nowadays recognized as dynamic interactions that modulate a plethora of cellular responses. Reorganization of actin filaments upon diverse stimuli - among which is the rise in cytosolic Ca2+ - is involved in cell motility and adhesion, phagocytosis, cytokinesis, and secretion. Actin dynamics also participates in the regulation of ion transport across the membranes where it not only plays a key role in the delivery and stabilization of channels and transporters in the plasma membrane but also in the regulation of their activity. The recently described functional interaction between actin and the Plasma Membrane Ca2+-ATPase (PMCA) represents a novel regulatory mechanism of the pump at the time that unveils a new pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. In this review, we summarize the current knowledge on the interaction between the cortical actin cytoskeleton and the PMCA and discuss the possible mechanisms that may explain the pump's modulation.
Collapse
|
12
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Minich RR, Li J, Tempel BL. Early growth response protein 1 regulates promoter activity of α-plasma membrane calcium ATPase 2, a major calcium pump in the brain and auditory system. BMC Mol Biol 2017; 18:14. [PMID: 28532435 PMCID: PMC5441030 DOI: 10.1186/s12867-017-0092-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Along with sodium/calcium (Ca2+) exchangers, plasma membrane Ca2+ ATPases (ATP2Bs) are main regulators of intracellular Ca2+ levels. There are four ATP2B paralogs encoded by four different genes. Atp2b2 encodes the protein pump with the fastest activation, ATP2B2. In mice, the Atp2b2 transcript has several alternate transcriptional start site variants: α, β, µ and δ. These variants are expressed in developmental and tissue specific manners. The α and β Atp2b2 transcripts are equally expressed in the brain. αAtp2b2 is the only transcript found in the outer hair cells of young mice (Silverstein RS, Tempel BL. in Neuroscience 141:245-257, 2006). Mutations in the coding region of the mouse Atp2b2 gene indicate a narrow window for tolerated dysfunction of the ATP2B2 protein, specifically in the auditory system. This highlights the necessity of tight regulation of this gene for normal cell physiology. RESULTS Although ATP2Bs are important regulators of Ca2+ in many cell types, little is known about their transcriptional regulation. This study identifies the proximal promoter of the αAtp2b2 transcript. Further investigations indicate that ATOH1 and EGR1 modulate promoter activity. Additionally, we report that EGR1 increases endogenous expression of Atp2b2 transcript in two cell lines. Electrophoretic mobility shift assays (EMSA) indicate that EGR1 binds to a specific site in the CpG island of the αAtp2b2 promoter. CONCLUSION This study furthers our understanding of Atp2b2 regulation by: (I) elucidating transcriptional regulatory mechanisms for Atp2b2, and (II) identifying transcription factors that modulate expression of Atp2b2 in the brain and peripheral auditory system and (III) allows for future studies modulating gene expression of Atp2b2.
Collapse
Affiliation(s)
- Rebecca R. Minich
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jin Li
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Bruce L. Tempel
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Otolaryngology-HNS, School of Medicine, University of Washington, Box 357923, Seattle, WA 98195 USA
- Virginia Merrill Bloedel Hearing Research Center, School of Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
14
|
Miyazaki H, Wangemann P, Marcus DC. The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC PHYSIOLOGY 2016; 17:1. [PMID: 27515813 PMCID: PMC4982335 DOI: 10.1186/s12899-016-0024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disturbance of acid-base balance in the inner ear is known to be associated with hearing loss in a number of conditions including genetic mutations and pharmacologic interventions. Several previous physiologic and immunohistochemical observations lead to proposals of the involvement of acid-base transporters in stria vascularis. RESULTS We directly measured acid flux in vitro from the apical side of isolated stria vascularis from adult C57Bl/6 mice with a novel constant-perfusion pH-selective self-referencing probe. Acid efflux that depended on metabolism and ion transport was observed from the apical side of stria vascularis. The acid flux was decreased to about 40 % of control by removal of the metabolic substrate (glucose-free) and by inhibition of the sodium pump (ouabain). The flux was also decreased a) by inhibition of Na,H-exchangers by amiloride, dimethylamiloride (DMA), S3226 and Hoe694, b) by inhibition of Na,2Cl,K-cotransporter (NKCC1) by bumetanide, and c) by the likely inhibition of HCO3/anion exchange by DIDS. By contrast, the acid flux was increased by inhibition of gastric H,K-ATPase (SCH28080) but was not affected by an inhibitor of vH-ATPase (bafilomycin). K flux from stria vascularis was reduced less than 5 % by SCH28080. CONCLUSIONS These observations suggest that stria vascularis may be an important site of control of cochlear acid-base balance and demonstrate a functional role of several acid-base transporters in stria vascularis, including basolateral H,K-ATPase and apical Na,H-exchange. Previous suggestions that H secretion is mediated by an apical vH-ATPase and that basolateral H,K-ATPase contributes importantly to K secretion in stria vascularis are not supported. These results advance our understanding of inner ear acid-base balance and provide a stronger basis to interpret the etiology of genetic and pharmacologic cochlear dysfunctions that are influenced by endolymphatic pH.
Collapse
Affiliation(s)
- Hiromitsu Miyazaki
- Department of Anatomy & Physiology, Cellular Biophysics Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
- Deparment of Anatomy & Physiology, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574 Japan
| | - Philine Wangemann
- Deparment of Anatomy & Physiology, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
| | - Daniel C. Marcus
- Department of Anatomy & Physiology, Cellular Biophysics Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
| |
Collapse
|
15
|
Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells. J Neurosci 2016; 36:336-49. [PMID: 26758827 DOI: 10.1523/jneurosci.2439-15.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The transduction of sound into electrical signals depends on mechanically sensitive ion channels in the stereociliary bundle. The molecular composition of this mechanoelectrical transducer (MET) channel is not yet known. Transmembrane channel-like protein isoforms 1 (TMC1) and 2 (TMC2) have been proposed to form part of the MET channel, although their exact roles are still unclear. Using Beethoven (Tmc1(Bth/Bth)) mice, which have an M412K point mutation in TMC1 that adds a positive charge, we found that Ca(2+) permeability and conductance of the MET channel of outer hair cells (OHCs) were reduced. Tmc1(Bth/Bth) OHCs were also less sensitive to block by the permeant MET channel blocker dihydrostreptomycin, whether applied extracellularly or intracellularly. These findings suggest that the amino acid that is mutated in Bth is situated at or near the negatively charged binding site for dihydrostreptomycin within the permeation pore of the channel. We also found that the Ca(2+) dependence of the operating range of the MET channel was altered by the M412K mutation. Depolarization did not increase the resting open probability of the MET current of Tmc1(Bth/Bth) OHCs, whereas raising the intracellular concentration of the Ca(2+) chelator BAPTA caused smaller increases in resting open probability in Bth mutant OHCs than in wild-type control cells. We propose that these observations can be explained by the reduced Ca(2+) permeability of the mutated MET channel indirectly causing the Ca(2+) sensor for adaptation, at or near the intracellular face of the MET channel, to become more sensitive to Ca(2+) influx as a compensatory mechanism. SIGNIFICANCE STATEMENT In the auditory system, the hair cells convert sound-induced mechanical movement of the hair bundles atop these cells into electrical signals through the opening of mechanically gated ion channels at the tips of the bundles. Although the nature of these mechanoelectrical transducer (MET) channels is still unclear, recent studies implicate transmembrane channel-like protein isoform 1 (TMC1) channels in the mammalian cochlea. Using a mutant mouse model (Beethoven) for progressive hearing loss in humans (DFNA36), which harbors a point mutation in the Tmc1 gene, we show that this mutation affects the MET channel pore, reducing its Ca(2+) permeability and its affinity for the permeant blocker dihydrostreptomycin. A number of phenomena that we ascribe to Ca(2+)-dependent adaptation appear stronger, in compensation for the reduced Ca(2+) entry.
Collapse
|
16
|
Bortolozzi M, Mammano F. PMCA2w/a Splice Variant: A Key Regulator of Hair Cell Mechano-transduction Machinery. REGULATION OF CA2+-ATPASES,V-ATPASES AND F-ATPASES 2016:27-45. [DOI: 10.1007/978-3-319-24780-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Abstract
Usher syndrome (USH) is a neurosensory disorder affecting both hearing and vision in humans. Linkage studies of families of USH patients, studies in animals, and characterization of purified proteins have provided insight into the molecular mechanisms of hearing. To date, 11 USH proteins have been identified, and evidence suggests that all of them are crucial for the function of the mechanosensory cells of the inner ear, the hair cells. Most USH proteins are localized to the stereocilia of the hair cells, where mechano-electrical transduction (MET) of sound-induced vibrations occurs. Therefore, elucidation of the functions of USH proteins in the stereocilia is a prerequisite to understanding the exact mechanisms of MET.
Collapse
Affiliation(s)
- Zubair M Ahmed
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Ohio
| | | | | |
Collapse
|
18
|
Carpinelli MR, Manning MG, Kile BT, Burt RA. Two ENU-induced alleles of Atp2b2 cause deafness in mice. PLoS One 2013; 8:e67479. [PMID: 23826306 PMCID: PMC3691321 DOI: 10.1371/journal.pone.0067479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/14/2013] [Indexed: 12/12/2022] Open
Abstract
Over 120 loci are known to cause inherited hearing loss in humans. The deafness gene has been identified for only half of these loci. With the aim of identifying some of the remaining deafness genes, we performed an ethylnitrosourea mutagenesis screen for deaf mice. We isolated two mutants with semi-dominant hearing loss, Deaf11 and Deaf13. Both contained causative mutations in Atp2b2, which encodes the plasma membrane calcium ATPase 2. The Atp2b2Deaf11 mutation leads to a p. I1023S substitution in the tenth transmembrane domain. The Atp2b2Deaf13 mutation leads to a p. R561S substitution in the catalytic core. Mice homozygous for these mutations display profound hearing loss. Heterozygotes display mild to moderate, progressive hearing loss.
Collapse
Affiliation(s)
- Marina R Carpinelli
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Watson CJ, Tempel BL. A new Atp2b2 deafwaddler allele, dfw(i5), interacts strongly with Cdh23 and other auditory modifiers. Hear Res 2013; 304:41-8. [PMID: 23792079 DOI: 10.1016/j.heares.2013.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/22/2013] [Accepted: 06/08/2013] [Indexed: 12/24/2022]
Abstract
Tight regulation of calcium (Ca2+) concentrations in the stereocilia bundles of auditory hair cells of the inner ear is critical to normal auditory transduction. The plasma membrane Ca2+ ATPase 2 (PMCA2), encoded by the Atp2b2 gene, is the primary mechanism for clearance of Ca2+ from auditory stereocilia, keeping intracellular levels low, and also contributes to maintaining adequate levels of extracellular Ca2+ in the endolymph. This study characterizes a novel null Atp2b2 allele, dfw(i5), by examining cochlear anatomy, vestibular function and auditory physiology in mutant mice. Loss of auditory function in PMCA2 mutants can be attributed to dysregulation of intracellular Ca2+ inside the stereocilia bundles. However, extracellular Ca2+ ions surrounding the stereocilia are also required for rigidity of cadherin 23, a component of the stereocilia tip-link encoded by the Cdh23 gene. This study further resolves the interaction between Atp2b2 and Cdh23 in a gene dosage and frequency-dependent manner, and finds that low frequencies are significantly affected by the interaction. In +/dfw(i5) mice, one mutant copy of Cdh23 is sufficient to cause broad frequency hearing impairment. Additionally, we report another modifying interaction with Atp2b2 on auditory sensitivity, possibly caused by an unidentified hearing loss gene in mice.
Collapse
Affiliation(s)
- Claire J Watson
- The Virginia Merrill Bloedel Hearing Research Center, Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA
| | | |
Collapse
|
20
|
Go W, Korzh V. Plasma membrane Ca(2+) ATPase Atp2b1a regulates bone mineralization in zebrafish. Bone 2013; 54:48-57. [PMID: 23353107 DOI: 10.1016/j.bone.2013.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 12/07/2012] [Accepted: 01/07/2013] [Indexed: 01/11/2023]
Abstract
The zebrafish transgenic lines provide a possibility to observe the development of tissues and organs in real time. Using the reporter line for the zebrafish plasma membrane Ca(2+) ATPase (SqET4), we detected its expression in the epithelium of pharyngeal teeth and analyzed its role in their calcification and that of cranial bones. atp2b1a's expression in the pharyngeal epithelium is faithfully recapitulated in the SqET4 transgenics by GFP expression. We showed by morpholino knockdown of Atp2b1a translations as well as chemical inhibition of Atp2b1a pump activity using carboxyeosin, that its activity is required to facilitate calcification of the developing pharyngeal teeth by the dental epithelium. Atp2b1a could be required during calcification of endochondral bones, where it acts at two levels: 1) by exporting Ca(2+) from ameloblasts, it provides raw material for calcifying the pharyngeal teeth by adjacent odontoblasts; and 2) by regulating terminal differentiation of pharyngeal epithelial cells, including ameloblasts required for tissue hyper-mineralization. atp2b1a's expression in the pharyngeal epithelium is regulated by the homeodomain transcription factor dlx2b.
Collapse
Affiliation(s)
- William Go
- Institute of Molecular and Cell Biology, A-STAR, Singapore
| | | |
Collapse
|
21
|
Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet 2012; 44:1265-71. [PMID: 23023331 PMCID: PMC3501259 DOI: 10.1038/ng.2426] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/06/2012] [Indexed: 11/08/2022]
Abstract
Sensorineural hearing loss is genetically heterogeneous. Here we report that mutations in CIB2, encoding a Ca2+- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). There is one mutation of CIB2 that is a prevalent cause of DFNB48 deafness in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In rodents, CIB2 is localized in the mechanosensory stereocilia of inner ear hair cells and in retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of Ca2+ binding, CIB2 significantly decreased the ATP-induced Ca2+ responses in heterologous cells, while DFNB48 mutations altered CIB2 effects on Ca2+ responses. Furthermore, in zebrafish and Drosophila, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We show that CIB2 is a new member of the vertebrate Usher interactome.
Collapse
|
22
|
Johnson SL, Kennedy HJ, Holley MC, Fettiplace R, Marcotti W. The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells. J Neurosci 2012; 32:10479-83. [PMID: 22855797 PMCID: PMC3428842 DOI: 10.1523/jneurosci.0803-12.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 01/10/2023] Open
Abstract
Spontaneous Ca(2+)-dependent electrical activity in the immature mammalian cochlea is thought to instruct the formation of the tonotopic map during the differentiation of sensory hair cells and the auditory pathway. This activity occurs in inner hair cells (IHCs) during the first postnatal week, and the pattern differs along the cochlea. During the second postnatal week, which is before the onset of hearing in most rodents, the resting membrane potential for IHCs is apparently more hyperpolarized (approximately -75 mV), and it remains unclear whether spontaneous action potentials continue to occur. We found that when mouse IHC hair bundles were exposed to the estimated in vivo endolymphatic Ca(2+) concentration (0.3 mm) present in the immature cochlea, the increased open probability of the mechanotransducer channels caused the cells to depolarize to around the action potential threshold (approximately -55 mV). We propose that, in vivo, spontaneous Ca(2+) action potentials are intrinsically generated by IHCs up to the onset of hearing and that they are likely to influence the final sensory-independent refinement of the developing cochlea.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Ceriani F, Mammano F. Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications. Cell Commun Signal 2012; 10:20. [PMID: 22788415 PMCID: PMC3408374 DOI: 10.1186/1478-811x-10-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.
Collapse
Affiliation(s)
- Federico Ceriani
- Dipartimento di Fisica e Astronomia "G, Galilei", Università di Padova, 35131, Padova, Italy.
| | | |
Collapse
|
24
|
Chen Q, Mahendrasingam S, Tickle JA, Hackney CM, Furness DN, Fettiplace R. The development, distribution and density of the plasma membrane calcium ATPase 2 calcium pump in rat cochlear hair cells. Eur J Neurosci 2012; 36:2302-10. [PMID: 22672315 DOI: 10.1111/j.1460-9568.2012.08159.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium is tightly regulated in cochlear outer hair cells (OHCs). It enters mainly via mechanotransducer (MT) channels and is extruded by the plasma membrane calcium ATPase (PMCA)2 isoform of the PMCA, mutations in which cause hearing loss. To assess how pump expression matches the demands of Ca(2+) homeostasis, the distribution of PMCA2 at different cochlear locations during development was quantified using immunofluorescence and post-embedding immunogold labeling. The PMCA2 isoform was confined to stereociliary bundles, first appearing at the base of the cochlea around post-natal day (P)0 followed by the middle and then the apex by P3, and was unchanged after P8. The developmental appearance matched the maturation of the MT channels in rat OHCs. High-resolution immunogold labeling in adult rats showed that PMCA2 was distributed along the membranes of all three rows of OHC stereocilia at similar densities and at about a quarter of the density in inner hair cell stereocilia. The difference between OHCs and inner hair cells was similar to the ratio of their MT channel resting open probabilities. Gold particle counts revealed no difference in PMCA2 density between low- and high-frequency OHC bundles despite larger MT currents in high-frequency OHCs. The PMCA2 density in OHC stereocilia was determined in low- and high-frequency regions from calibration of immunogold particle counts as 2200/μm(2) from which an extrusion rate of ∼200 ions/s per pump was inferred. The limited ability of PMCA2 to extrude the Ca(2+) load through MT channels may constitute a major cause of OHC vulnerability and high-frequency hearing loss.
Collapse
Affiliation(s)
- Qingguo Chen
- Department of Otolaryngology - Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
25
|
Plasma membrane calcium pump (PMCA) isoform 4 is targeted to the apical membrane by the w-splice insert from PMCA2. Cell Calcium 2012; 51:171-8. [PMID: 22252018 DOI: 10.1016/j.ceca.2011.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/23/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022]
Abstract
Local Ca(2+) signaling requires proper targeting of the Ca(2+) signaling toolkit to specific cellular locales. Different isoforms of the plasma membrane Ca(2+) pump (PMCA) are responsible for Ca(2+) extrusion at the apical and basolateral membrane of polarized epithelial cells, but the mechanisms and signals for differential targeting of the PMCAs are not well understood. Recent work demonstrated that the alternatively spliced w-insert in PMCA2 directs this pump to the apical membrane. We now show that inserting the w-insert into the corresponding location of the PMCA4 isoform confers apical targeting to this normally basolateral pump. Mutation of a di-leucine motif in the C-tail thought to be important for basolateral targeting did not enhance apical localization of the chimeric PMCA4(2w)/b. In contrast, replacing the C-terminal Val residue by Leu to optimize the PDZ ligand site for interaction with the scaffolding protein NHERF2 enhanced the apical localization of PMCA4(2w)/b, but not of PMCA4x/b. Functional studies showed that both apical PMCA4(2w)/b and basolateral PMCA4x/b handled ATP-induced Ca(2+) signals with similar kinetics, suggesting that isoform-specific functional characteristics are retained irrespective of membrane targeting. Our results demonstrate that the alternatively spliced w-insert provides autonomous apical targeting information in the PMCA without altering its functional characteristics.
Collapse
|
26
|
Giacomello M, De Mario A, Lopreiato R, Primerano S, Campeol M, Brini M, Carafoli E. Mutations in PMCA2 and hereditary deafness: A molecular analysis of the pump defect. Cell Calcium 2011; 50:569-76. [DOI: 10.1016/j.ceca.2011.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
|
27
|
Apical localization of PMCA2w/b is enhanced in terminally polarized MDCK cells. Biochem Biophys Res Commun 2011; 410:322-7. [PMID: 21672522 DOI: 10.1016/j.bbrc.2011.05.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/23/2022]
Abstract
The "w" splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amount of the pump in the apical membrane of these epithelial cells. We generated a stable MDCK cell line expressing non-tagged, full-length PMCA2w/b to further study the localization and function of this protein. Here we demonstrate that PMCA2w/b is highly active and shows enhanced apical localization in terminally polarized MDCK cells grown on semi-permeable filters. Reversible surface biotinylation combined with confocal microscopy of fully polarized cells show that the pump is stabilized in the apical membrane via the apical membrane cytoskeleton with the help of endogenous NHERF2 and ezrin. Disruption of the actin cytoskeleton removed the pump from the apical actin patches without provoking its internalization. Our data suggest that full polarization is a prerequisite for proper positioning of the PMCA2w variants in the apical membrane domain of polarized cells.
Collapse
|
28
|
Abstract
Ca(2+) acts as a fundamental signal transduction element in inner ear, delivering information about sound, acceleration and gravity through a small number of mechanotransduction channels in the hair cell stereocilia and voltage activated Ca(2+) channels at the ribbon synapse, where it drives neurotransmission. The mechanotransduction process relies on the endocochlear potential, an electrical potential difference between endolymph and perilymph, the two fluids bathing respectively the apical and basolateral membrane of the cells in the organ of Corti. In mouse models, deafness and lack or reduction of the endocochlear potential correlate with ablation of connexin (Cx) 26 or 30. These Cxs form heteromeric channels assembled in a network of gap junction plaques connecting the supporting and epithelial cells of the organ of Corti presumably for K(+) recycle and transfer of key metabolites, for example, the Ca(2+) -mobilizing second messenger IP(3) . Ca(2+) signaling in these cells could play a crucial role in regulating Cx expression and function. Another district where Ca(2+) signaling alterations link to hearing loss is hair cell apex, where ablation or missense mutations of the PMCA2 Ca(2+) -pump of the stereocilia cause deafness and loss of balance. If less Ca(2+) is exported from the stereocilia, as in the PMCA2 mouse mutants, Ca(2+) concentration in endolymph is expected to fall causing an alteration of the mechanotransduction process. This may provide a clue as to why, in some cases, PMCA2 mutations potentiated the deafness phenotype induced by coexisting mutations of cadherin-23 (Usher syndrome type 1D), a single pass membrane Ca(2+) binding protein that is abundantly expressed in the stereocilia.
Collapse
Affiliation(s)
- Fabio Mammano
- Department of Physics "G. Galilei," University of Padova, Italy.
| |
Collapse
|
29
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bortolozzi M, Brini M, Parkinson N, Crispino G, Scimemi P, De Siati RD, Di Leva F, Parker A, Ortolano S, Arslan E, Brown SD, Carafoli E, Mammano F. The novel PMCA2 pump mutation Tommy impairs cytosolic calcium clearance in hair cells and links to deafness in mice. J Biol Chem 2010; 285:37693-703. [PMID: 20826782 PMCID: PMC2988374 DOI: 10.1074/jbc.m110.170092] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.
Collapse
Affiliation(s)
- Mario Bortolozzi
- Department of Physics G Galilei, University of Padua, Padua 35131, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim E, Hyrc KL, Speck J, Lundberg YW, Salles FT, Kachar B, Goldberg MP, Warchol ME, Ornitz DM. Regulation of cellular calcium in vestibular supporting cells by otopetrin 1. J Neurophysiol 2010; 104:3439-50. [PMID: 20554841 DOI: 10.1152/jn.00525.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5'-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization.
Collapse
Affiliation(s)
- Euysoo Kim
- Washington University School of Medicine, Department of Developmental Biology, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamauchi D, Nakaya K, Raveendran NN, Harbidge DG, Singh R, Wangemann P, Marcus DC. Expression of epithelial calcium transport system in rat cochlea and vestibular labyrinth. BMC PHYSIOLOGY 2010; 10:1. [PMID: 20113508 PMCID: PMC2825184 DOI: 10.1186/1472-6793-10-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/29/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The low luminal Ca2+ concentration of mammalian endolymph in the inner ear is required for normal hearing and balance. We recently reported the expression of mRNA for a Ca2+-absorptive transport system in primary cultures of semicircular canal duct (SCCD) epithelium. RESULTS We now identify this system in native vestibular and cochlear tissues by qRT-PCR, immunoblots and confocal immunolocalization. Transcripts were found and quantified for several isoforms of epithelial calcium channels (TRPV5, TRPV6), calcium buffer proteins (calbindin-D9K, calbindin-D28K), sodium-calcium exchangers (NCX1, NCX2, NCX3) and plasma membrane Ca2+-ATPase (PMCA1, PMCA2, PMCA3, and PMCA4) in native SCCD, cochlear lateral wall (LW) and stria vascularis (SV) of adult rat as well as Ca2+ channels in neonatal SCCD. All components were expressed except TRPV6 in SV and PMCA2 in SCCD. 1,25-(OH)2vitamin D3 (VitD) significantly up-regulated transcripts of TRPV5 in SCCD, calbindin-D9K in SCCD and LW, NCX2 in LW, while PMCA4 in SCCD and PMCA3 in LW were down-regulated. The expression of TRPV5 relative to TRPV6 was in the sequence SV > Neonatal SCCD > Adult SCCD > LW > primary culture SCCD. Expression of TRPV5 protein from primary culture of SCCD did not increase significantly when cells were incubated with VitD (1.2 times control; P > 0.05). Immunolocalization showed the distribution of TRPV5 and TRPV6. TRPV5 was found near the apical membrane of strial marginal cells and both TRPV5 and TRPV6 in outer and inner sulcus cells of the cochlea and in the SCCD of the vestibular system. CONCLUSIONS These findings demonstrate for the first time the expression of a complete Ca2+ absorptive system in native cochlear and vestibular tissues. Regulation by vitamin D remains equivocal since the results support the regulation of this system at the transcript level but evidence for control of the TRPV5 channel protein was lacking.
Collapse
Affiliation(s)
- Daisuke Yamauchi
- Cellular Biophysics Laboratory, Dept, Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
34
|
Mori Y, Watanabe M, Inui T, Nimura Y, Araki M, Miyamoto M, Takenaka H, Kubota T. Ca(2+) regulation of endocochlear potential in marginal cells. J Physiol Sci 2009; 59:355-65. [PMID: 19504169 PMCID: PMC10717738 DOI: 10.1007/s12576-009-0043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/02/2009] [Indexed: 11/26/2022]
Abstract
We examined the effect of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) in marginal cells on the asphyxia- or furosemide-induced decrease in the endocochlear potential (EP) by perfusing the endolymph with or without a Ca(2+) chelator or inhibitors of Ca(2+)-permeable channels or Ca(2+)-pump during transient asphyxia or intravenous administration of furosemide. We obtained the following results. (1) Endolymphatic administration of SKF96365 (an inhibitor of TRPC and L-type Ca(2+) channels) or EGTA-acetoxymethyl ester (EGTA-AM) significantly inhibited both the transient asphyxia-induced decrease in EP (TAID) and the furosemide-induced decrease in EP (FUID). (2) Endolymphatic perfusion with nifedipine significantly inhibited the TAID but not the FUID. (3) The recovery from the FUID was significantly suppressed by perfusing the endolymph with EGTA-AM, nifedipine, or SKF96365. (4) Endolymphatic administration of thapsigargin inhibited both the FUID and TAID. (5) The recovery rate from the FUID was much slower than that from the TAID, indicating that furosemide may inhibit the Ca(2+)-pump. (6) A strong reaction in immunohistochemical staining for TRPC channels was observed in the luminal and basolateral membranes of marginal cells. (7) A positive staining reaction for the gamma subunit of epithelial Na(+) channels was observed in the luminal and basolateral membranes of marginal cells. (8) Positive EP was diminished toward 0 mV by the endolymphatic perfusion with 10 muM amiloride or 10 muM phenamil. Taken together, these findings suggest that [Ca(2+)](c) regulated by endoplasmic Ca(2+)-pump and Ca(2+)-permeable channels in marginal cells may regulate the positive EP, which is partly produced by the diffusion potential of Na(+) across the basolateral membrane in marginal cells.
Collapse
Affiliation(s)
- Yoshiaki Mori
- Department of Physiology II, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686 Japan
| | - Masahito Watanabe
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Takaki Inui
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Yoshitsugu Nimura
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Michitoshi Araki
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Manabu Miyamoto
- Department of Physiology II, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686 Japan
| | - Hiroshi Takenaka
- Department of Otolaryngology, Osaka Medical College, Takatsuki, Osaka, 569-8686 Japan
| | - Takahiro Kubota
- Department of Physiology II, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686 Japan
| |
Collapse
|
35
|
Spiden SL, Bortolozzi M, Di Leva F, de Angelis MH, Fuchs H, Lim D, Ortolano S, Ingham NJ, Brini M, Carafoli E, Mammano F, Steel KP. The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet 2008; 4:e1000238. [PMID: 18974863 PMCID: PMC2568954 DOI: 10.1371/journal.pgen.1000238] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 09/25/2008] [Indexed: 11/19/2022] Open
Abstract
Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C-->T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca(2+) pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca(2+) exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone.
Collapse
MESH Headings
- Aequorin/metabolism
- Amino Acid Substitution
- Animals
- Calcium/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Chromosome Mapping
- DNA Mutational Analysis
- Deafness/genetics
- Deafness/pathology
- Deafness/physiopathology
- Ear, Inner/pathology
- Ear, Inner/ultrastructure
- Evoked Potentials, Auditory, Brain Stem
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Mice
- Microscopy, Electron, Scanning
- Mutagenesis
- Mutation, Missense
- Plasma Membrane Calcium-Transporting ATPases/genetics
- Plasma Membrane Calcium-Transporting ATPases/metabolism
- Saccule and Utricle/metabolism
Collapse
Affiliation(s)
- Sarah L. Spiden
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- MRC Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | | | - Francesca Di Leva
- Department of Biochemistry and Department of Experimental Veterinary Sciences, University of Padua, Padua, Italy
| | | | - Helmut Fuchs
- Helmholtz Zentrum München, Institute of Experimental Genetics, Neuherberg, Germany
| | - Dmitry Lim
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Saida Ortolano
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Neil J. Ingham
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Marisa Brini
- Department of Biochemistry and Department of Experimental Veterinary Sciences, University of Padua, Padua, Italy
| | | | - Fabio Mammano
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics, University of Padua, Padua, Italy
| | - Karen P. Steel
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- MRC Institute of Hearing Research, University Park, Nottingham, United Kingdom
| |
Collapse
|
36
|
Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations. The Journal of Laryngology & Otology 2008; 123:151-62. [DOI: 10.1017/s0022215108002624] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulation of inner-ear fluid homeostasis, with its parameters volume, concentration, osmolarity and pressure, is the basis for adequate response to stimulation. Many structures are involved in the complex process of inner-ear homeostasis. The stria vascularis and vestibular dark cells are the two main structures responsible for endolymph secretion, and possess many similarities. The characteristics of these structures are the basis for regulation of inner-ear homeostasis, while impaired function is related to various diseases. Their distinct morphology and function are described, and related to current knowledge of associated inner-ear diseases. Further research on the distinct function and regulation of these structures is necessary in order to develop future clinical interventions.
Collapse
|
37
|
Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 2008; 476:65-74. [PMID: 18328800 DOI: 10.1016/j.abb.2008.02.026] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 02/15/2008] [Accepted: 02/17/2008] [Indexed: 12/19/2022]
Abstract
Most important processes in cell life are regulated by calcium (Ca2+). A number of mechanisms have thus been developed to maintain the concentration of free Ca2+ inside cells at the level (100-200nM) necessary for the optimal operation of the targets of its regulatory function. The systems that move Ca2+ back and forth across membranes are important actors in its control. The plasma membrane calcium ATPase (PMCA pump) which ejects Ca2+ from all eukaryotic cell types will be the topic of this contribution. The pump uses a molecule of ATP to transport one molecule of Ca2+ from the cytosol to the external environment. It is a P-type ATPase encoded by four genes (ATP2B1-4), the transcripts of which undergo different types of alternative splicing. Many pump variants thus exist. Their multiplicity is best explained by the specific Ca2+ demands in different cell types. In keeping with these demands, the isoforms are differently expressed in tissues and cell types and have differential Ca2+ extruding properties. At very low Ca2+ concentrations the PMCAs are nearly inactive. They must be activated by calmodulin, by acid phospholipids, by protein kinases, and by other means, e.g., a dimerization process. Other proteins interact with the PMCAs (i.e., MAGUK and NHERF at the PDZ domain and calcineurin A in the main intracellular domain) to sort them to specific regions of the cell membrane or to regulate their function. In some cases the interaction is isoform, or even splice variant specific. PMCAs knock out (KO) mice have been generated and have contributed information on the importance of PMCAs to cells and organisms. So far, only one human genetic disease, hearing loss, has been traced back to a PMCA defect.
Collapse
Affiliation(s)
- Francesca Di Leva
- Department of Biochemistry, University of Padova, Viale G. Colombo, 3 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
38
|
Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007; 293:C1187-208. [PMID: 17670895 DOI: 10.1152/ajpcell.00024.2007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of ion channels and transporters are expressed in both the inner ear and kidney. In the inner ear, K+cycling and endolymphatic K+, Na+, Ca2+, and pH homeostasis are critical for normal organ function. Ion channels and transporters involved in K+cycling include K+channels, Na+-2Cl−-K+cotransporter, Na+/K+-ATPase, Cl−channels, connexins, and K+/Cl−cotransporters. Furthermore, endolymphatic Na+and Ca2+homeostasis depends on Ca2+-ATPase, Ca2+channels, Na+channels, and a purinergic receptor channel. Endolymphatic pH homeostasis involves H+-ATPase and Cl−/HCO3−exchangers including pendrin. Defective connexins (GJB2 and GJB6), pendrin (SLC26A4), K+channels (KCNJ10, KCNQ1, KCNE1, and KCNMA1), Na+-2Cl−-K+cotransporter (SLC12A2), K+/Cl−cotransporters (KCC3 and KCC4), Cl−channels (BSND and CLCNKA + CLCNKB), and H+-ATPase (ATP6V1B1 and ATPV0A4) cause hearing loss. All these channels and transporters are also expressed in the kidney and support renal tubular transport or signaling. The hearing loss may thus be paralleled by various renal phenotypes including a subtle decrease of proximal Na+-coupled transport (KCNE1/KCNQ1), impaired K+secretion (KCNMA1), limited HCO3−elimination (SLC26A4), NaCl wasting (BSND and CLCNKB), renal tubular acidosis (ATP6V1B1, ATPV0A4, and KCC4), or impaired urinary concentration (CLCNKA). Thus, defects of channels and transporters expressed in the kidney and inner ear result in simultaneous dysfunctions of these seemingly unrelated organs.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | | | |
Collapse
|
39
|
Abstract
Mechanical stimuli generated by head movements and changes in sound pressure are detected by hair cells with amazing speed and sensitivity. The mechanosensitive organelle, the hair bundle, is a highly elaborated structure of actin-based stereocilia arranged in precise rows of increasing height. Extracellular linkages contribute to its cohesion and convey forces to mechanically gated channels. Channel opening is nearly instantaneous and is followed by a process of sensory adaptation that keeps the channels poised in their most sensitive range. This process is served by motors, scaffolds, and homeostatic mechanisms. The molecular constituents of this process are rapidly being elucidated, especially by the discovery of deafness genes and antibody targets.
Collapse
Affiliation(s)
- Melissa A Vollrath
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
40
|
Abstract
The inner ear contains delicate sensory receptors that have adapted to detect the minutest mechanical disturbances. Ca(2+) ions are implicated in all steps of the transduction process, as well as in its regulation by an impressive ensemble of finely tuned feedback control mechanisms. Recent studies have unveiled some of the key players, but things do not sound quite right yet.
Collapse
Affiliation(s)
- Fabio Mammano
- Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, Padua, Italy.
| | | | | | | |
Collapse
|
41
|
Polimeni M, Prigioni I, Russo G, Calzi D, Gioglio L. Plasma membrane Ca2+-ATPase isoforms in frog crista ampullaris: identification of PMCA1 and PMCA2 specific splice variants. Hear Res 2007; 228:11-21. [PMID: 17336006 DOI: 10.1016/j.heares.2006.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Ca2+ ions play a pivotal role in inner ear hair cells as they are involved from the mechano-electrical transduction to the transmitter release. Most of the Ca2+ that enters into hair cells via mechano-transduction and voltage-gated channels is extruded by the plasma membrane Ca2+-ATPases (PMCAs) that operate in both apical and basal cellular compartments. Here, we determined the identity and distribution of PMCA isoforms in frog crista ampullaris: we showed that PMCA1, PMCA2 and PMCA3 are expressed, while PMCA4 appears to be negligible. We also identify PMCA1bx, PMCA2av and PMCA2bv as the major splice variants produced from PMCA1 and PMCA2 genes. PMCA2av appears to be the major Ca2+-pump operating at the apical pole of the cell, even if PMCA1b is also expressed in the stereocilia. PMCA1bx is, instead, the principal PMCA of hair cell basolateral compartment, where it is expressed together with PMCA2 (probably PMCA2bv) and PMCA3. Frog crista ampullaris hair cells lack a Na/Ca exchanger, therefore PMCAs are the only mechanism of Ca2+ extrusion. The coexpression of specific isozymes in the different cellular compartments responds to the need of a fine regulation of both basal and dynamic Ca2+ levels at the apical and basal pole of the cell.
Collapse
Affiliation(s)
- Mariarosa Polimeni
- Dipartimento di Medicina Sperimentale - Sezione di Anatomia Umana Normale, Università di Pavia, Via Forlanini 8, I-27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
42
|
Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC. Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 2007; 292:F1345-53. [PMID: 17299139 PMCID: PMC2020516 DOI: 10.1152/ajprenal.00487.2006] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendred syndrome, characterized by childhood deafness and postpuberty goiter, is caused by mutations of SLC26A4, which codes for the anion exchanger pendrin. The goal of the present study was to determine how loss of pendrin leads to hair cell degeneration and deafness. We evaluated pendrin function by ratiometric microfluorometry, hearing by auditory brain stem recordings, and expression of K(+) and Ca(2+) channels by confocal immunohistochemistry. Cochlear pH and Ca(2+) concentrations and endocochlear potential (EP) were measured with double-barreled ion-selective microelectrodes. Pendrin in the cochlea was characterized as a formate-permeable and DIDS-sensitive anion exchanger that is likely to mediate HCO(3)(-) secretion into endolymph. Hence endolymph in Slc26a4(+/-) mice was more alkaline than perilymph, and the loss of pendrin in Slc26a4(-/-) mice led to an acidification of endolymph. The stria vascularis of Slc26a4(-/-) mice expressed the K(+) channel Kcnj10 and generated a small endocochlear potential before the normal onset of hearing at postnatal day 12. This small potential and the expression of Kcnj10 were lost during further development, and Slc26a4(-/-) mice did not acquire hearing. Endolymphatic acidification may be responsible for inhibition of Ca(2+) reabsorption from endolymph via the acid-sensitive epithelial Ca(2+) channels Trpv5 and Trpv6. Hence the endolymphatic Ca(2+) concentration was found elevated in Slc26a4(-/-) mice. This elevation may inhibit sensory transduction necessary for hearing and promote the degeneration of the sensory hair cells. Degeneration of the hair cells closes a window of opportunity to restore the normal development of hearing in Slc26a4(-/-) mice and possibly human patients suffering from Pendred syndrome.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ficarella R, Di Leva F, Bortolozzi M, Ortolano S, Donaudy F, Petrillo M, Melchionda S, Lelli A, Domi T, Fedrizzi L, Lim D, Shull GE, Gasparini P, Brini M, Mammano F, Carafoli E. A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci U S A 2007; 104:1516-21. [PMID: 17234811 PMCID: PMC1785272 DOI: 10.1073/pnas.0609775104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca2+ enters the stereocilia of hair cells through mechanoelectrical transduction channels opened by the deflection of the hair bundle and is exported back to endolymph by an unusual splicing isoform (w/a) of plasma-membrane calcium-pump isoform 2 (PMCA2). Ablation or missense mutations of the pump cause deafness, as described for the G283S mutation in the deafwaddler (dfw) mouse. A deafness-inducing missense mutation of PMCA2 (G293S) has been identified in a human family. The family also was screened for mutations in cadherin 23, which accentuated hearing loss in a previously described human family with a PMCA2 mutation. A T1999S substitution was detected in the cadherin 23 gene of the healthy father and affected son but not in that of the unaffected mother, who presented instead the PMCA2 mutation. The w/a isoform was overexpressed in CHO cells. At variance with the other PMCA2 isoforms, it became activated only marginally when exposed to a Ca2+ pulse. The G293S and G283S mutations delayed the dissipation of Ca2+ transients induced in CHO cells by InsP3. In organotypic cultures, Ca2+ imaging of vestibular hair cells showed that the dissipation of stereociliary Ca2+ transients induced by Ca2+ uncaging was compromised in the dfw and PMCA2 knockout mice, as was the sensitivity of the mechanoelectrical transduction channels to hair bundle displacement in cochlear hair cells.
Collapse
Affiliation(s)
- R. Ficarella
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - F. Di Leva
- Departments of Biochemistry, Experimental Veterinary Sciences, and
| | - M. Bortolozzi
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - S. Ortolano
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - F. Donaudy
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - M. Petrillo
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - S. Melchionda
- Unit of Medical Genetics, Instituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - A. Lelli
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - T. Domi
- Departments of Biochemistry, Experimental Veterinary Sciences, and
| | - L. Fedrizzi
- Departments of Biochemistry, Experimental Veterinary Sciences, and
| | - D. Lim
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - G. E. Shull
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, OH 45221; and
| | - P. Gasparini
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
- Unit of Medical Genetics, Department of Reproductive Science and Development, Instituto di Ricovero e Cura a Carattere Scientifico-Burlo Garofalo, University of Trieste, 34127 Trieste, Italy
| | - M. Brini
- Departments of Biochemistry, Experimental Veterinary Sciences, and
- **To whom correspondence may be addressed. E-mail:
, , or fabio.mammano@unipd
| | - F. Mammano
- Physics, University of Padua, 35121 Padua, Italy
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy
- **To whom correspondence may be addressed. E-mail:
, , or fabio.mammano@unipd
| | - E. Carafoli
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy
- **To whom correspondence may be addressed. E-mail:
, , or fabio.mammano@unipd
| |
Collapse
|
44
|
McCullough BJ, Adams JC, Shilling DJ, Feeney MP, Sie KCY, Tempel BL. 3p-- syndrome defines a hearing loss locus in 3p25.3. Hear Res 2007; 224:51-60. [PMID: 17208398 PMCID: PMC1995240 DOI: 10.1016/j.heares.2006.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/11/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
Deletions affecting the terminal end of chromosome 3p result in a characteristic set of clinical features termed 3p-- syndrome. Bilateral, sensorineural hearing loss (SNHL) has been found in some but not all cases, suggesting the possibility that it is due to loss of a critical gene in band 3p25. To date, no genetic locus in this region has been shown to cause human hearing loss. However, the ATP2B2 gene is located in 3p25.3, and haploinsufficiency of the mouse homolog results in SNHL with similar severity. We compared auditory test results with fine deletion mapping in seven previously unreported 3p-- syndrome patients and identified a 1.38Mb region in 3p25.3 in which deletions were associated with moderate to severe, bilateral SNHL. This novel hearing loss locus contains 18 genes, including ATP2B2. ATP2B2 encodes the plasma membrane calcium pump PMCA2. We used immunohistochemistry in human cochlear sections to show that PMCA2 is located in the stereocilia of hair cells, suggesting its function in the auditory system is conserved between humans and mice. Although other genes in this region remain candidates, we conclude that haploinsufficiency of ATP2B2 is the most likely cause of SNHL in 3p-- syndrome.
Collapse
MESH Headings
- Animals
- Base Sequence
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Human, Pair 3/genetics
- Cochlea/metabolism
- DNA Primers/genetics
- Disease Models, Animal
- Female
- Hearing Loss, Bilateral/genetics
- Hearing Loss, Bilateral/metabolism
- Hearing Loss, Bilateral/physiopathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Immunohistochemistry
- Male
- Mice
- Mutation
- Plasma Membrane Calcium-Transporting ATPases/deficiency
- Plasma Membrane Calcium-Transporting ATPases/genetics
- Plasma Membrane Calcium-Transporting ATPases/metabolism
- Species Specificity
- Syndrome
Collapse
Affiliation(s)
- Brendan J. McCullough
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
- Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joe C. Adams
- Department of Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Dustin J. Shilling
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - M. Patrick Feeney
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kathleen C. Y. Sie
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
- Children’s Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Bruce L Tempel
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
- Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Nakaya K, Harbidge DG, Wangemann P, Schultz BD, Green ED, Wall SM, Marcus DC. Lack of pendrin HCO3- transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. Am J Physiol Renal Physiol 2007; 292:F1314-21. [PMID: 17200157 PMCID: PMC2515270 DOI: 10.1152/ajprenal.00432.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The low Ca(2+) concentration ([Ca(2+)]) of mammalian endolymph in the inner ear is required for normal hearing and balance. We reported (Yamauchi et al., Biochem Biophys Res Commun 331: 1353-1357, 2005) that the epithelial Ca(2+) channels TRPV5 and TRPV6 (transient receptor potential types 5 and 6) are expressed in the vestibular system and that TRPV5 expression is stimulated by 1,25-dihydroxyvitamin D(3), as also reported in kidney. TRPV5/6 channels are known to be inhibited by extracellular acidic pH. Endolymphatic pH, [Ca(2+)], and transepithelial potential of the utricle were measured in Cl(-)/HCO(3)(-) exchanger pendrin (SLC26A4) knockout mice in vivo. Slc26a4(-/-) mice exhibit reduced pH and utricular endolymphatic potential and increased [Ca(2+)]. Monolayers of primary cultures of rat semicircular canal duct cells were grown on permeable supports, and cellular uptake of (45)Ca(2+) was measured individually from the apical and basolateral sides. Net uptake of (45)Ca(2+) was greater after incubation with 1,25-dihydroxyvitamin D(3). Net (45)Ca(2+) absorption was dramatically inhibited by low apical pH and was stimulated by apical alkaline pH. Gadolinium, lanthanum, and ruthenium red reduced apical uptake. These observations support the notion that one aspect of vestibular dysfunction in Pendred syndrome is a pathological elevation of endolymphatic [Ca(2+)] due to luminal acidification and consequent inhibition of TRPV5/6-mediated Ca(2+) absorption.
Collapse
Affiliation(s)
- Kazuhiro Nakaya
- Cellular Biophysics Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
- Dept. of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Donald G. Harbidge
- Cellular Biophysics Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| | - Philine Wangemann
- Cell Physiology Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| | - Bruce D. Schultz
- Epithelial Cell Biology Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| | - Eric D. Green
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan M. Wall
- Renal Division, Emory University School of Medicine, 1639 Pierce Drive NE, Atlanta, GA 30322
| | - Daniel C. Marcus
- Cellular Biophysics Laboratory, Dept. Anatomy & Physiology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
46
|
The unusual history and unique properties of the calcium signal. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Farris HE, Wells GB, Ricci AJ. Steady-state adaptation of mechanotransduction modulates the resting potential of auditory hair cells, providing an assay for endolymph [Ca2+]. J Neurosci 2006; 26:12526-36. [PMID: 17135414 PMCID: PMC2180014 DOI: 10.1523/jneurosci.3569-06.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The auditory hair cell resting potential is critical for proper translation of acoustic signals to the CNS, because it determines their filtering properties, their ability to respond to stimuli of both polarities, and, because the hair cell drives afferent firing rates, the resting potential dictates spontaneous transmitter release. In turtle auditory hair cells, the filtering properties are established by the interactions between BK calcium-activated potassium channels and an L-type calcium channel (electrical resonance). However, both theoretical and in vitro recordings indicate that a third conductance is required to set the resting potential to a point on the I(Ca) and I(BK) activation curves in which filtering is optimized like that found in vivo. Present data elucidate a novel mechanism, likely universal among hair cells, in which mechanoelectric transduction (MET) and its calcium-dependent adaptation provide the depolarizing current to establish the hair cell resting potential. First, mechanical block of the MET current hyperpolarized the membrane potential, resulting in broadband asymmetrical resonance. Second, altering steady-state adaptation by altering the [Ca2+] bathing the hair bundle changed the MET current at rest, the magnitude of which resulted in membrane potential changes that encompassed the best resonant voltage. The Ca2+ sensitivity of adaptation allowed for the first physiological estimate of endolymphatic Ca2+ near the MET channel (56 +/- 11 microM), a value similar to bulk endolymph levels. These effects of MET current on resting potential were independently confirmed using a theoretical model of electrical resonance that included the steady-state MET conductance.
Collapse
Affiliation(s)
- Hamilton E Farris
- Center for Neuroscience and Kresge Hearing Laboratories, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
48
|
Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 2006; 576:11-21. [PMID: 16857713 PMCID: PMC1995626 DOI: 10.1113/jphysiol.2006.112888] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/14/2006] [Indexed: 12/13/2022] Open
Abstract
The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endocochlear potential and requires a highly specialized environment that enables and sustains sensory function. Disturbance of cochlear homeostasis is the cause of many forms of hearing loss including the most frequently occurring syndromic and non-syndromic forms of hereditary hearing loss, Pendred syndrome and Cx26-related deafness. The occurrence of these and other monogenetic disorders illustrates that cochlear fluid homeostasis and the generation of the endocochlear potential are poorly secured by functional redundancy. This review summarizes the most prominent aspects of cochlear fluid homeostasis. It covers cochlear fluid composition, the generation of the endocochlear potential, K(+) secretion and cycling and its regulation, the role of gap junctions, mechanisms of acid-base homeostasis, and Ca(2+) transport.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, 205 Coles Hall, Kansas State University, Manhattan, 66506, USA.
| |
Collapse
|
49
|
Duncan JL, Yang H, Doan T, Silverstein RS, Murphy GJ, Nune G, Liu X, Copenhagen D, Tempel BL, Rieke F, Križaj D. Scotopic visual signaling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion. J Neurosci 2006; 26:7201-11. [PMID: 16822977 PMCID: PMC1987386 DOI: 10.1523/jneurosci.5230-05.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmission of visual signals at the first retinal synapse is associated with changes in calcium concentration in photoreceptors and bipolar cells. We investigated how loss of plasma membrane Ca2+ ATPase isoform 2 (PMCA2), the calcium transporter isoform with the highest affinity for Ca2+/calmodulin, affects transmission of rod- and cone-mediated responses. PMCA2 expression in the neuroblast layer was observed soon after birth; in the adult, PMCA2 was expressed in inner segments and synaptic terminals of rod photoreceptors, in rod bipolar cells, and in most inner retinal neurons but was absent from cones. To determine the role of PMCA2 in retinal signaling, we compared morphology and light responses of retinas from control mice and deafwaddler dfw2J mice, which lack functional PMCA2 protein. The cytoarchitecture of retinas from control and dfw2J mice was indistinguishable at the light microscope level. Suction electrode recordings revealed no difference in the sensitivity or amplitude of outer segment light responses of control and dfw2J rods. However, rod-mediated ERG b-wave responses in dfw2J mice were approximately 45% smaller and significantly slower than those of control mice. Furthermore, recordings from individual rod bipolar cells showed that the sensitivity of transmission at the rod output synapse was reduced by approximately 50%. No changes in the amplitude or timing of cone-mediated ERG responses were observed. These results suggest that PMCA2-mediated Ca2+ extrusion modulates the amplitude and timing of the high-sensitivity rod pathway to a much greater extent than that of the cone pathway.
Collapse
|
50
|
Grati M, Schneider ME, Lipkow K, Strehler EE, Wenthold RJ, Kachar B. Rapid turnover of stereocilia membrane proteins: evidence from the trafficking and mobility of plasma membrane Ca(2+)-ATPase 2. J Neurosci 2006; 26:6386-95. [PMID: 16763047 PMCID: PMC1949025 DOI: 10.1523/jneurosci.1215-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the spatial distribution, mobility, and trafficking of plasma membrane Ca2+ATPase-2 (PMCA2), a protein enriched in the hair cell apical membrane and essential for hair cell function. Using immunofluorescence, we determined that PMCA2 is enriched in the stereocilia and present at a relatively low concentration in the kinocilium and in the remaining apical membrane. Using an antibody to the extracellular domain of PMCA2 as a probe, we observed that PMCA2 diffuses laterally from the stereocilia membrane and is internalized at the apical cell border maintaining an estimated half-life of residency in the stereocilia of approximately 5-7 h. A computer simulation of our data indicates that PMCA2 has an estimated global diffusion coefficient of 0.01-0.005 microm2/s. Using a green fluorescent protein tag, we observed that PMCA2 is rapidly delivered to the apical cell border from where it diffuses to the entire stereocilia surface. Fluorescence recovery after photobleaching experiments show that approximately 60% of PMCA2 in the stereocilia exhibit high mobility with a diffusion coefficient of 0.1-0.2 microm2/s, whereas the remaining pool represents a relatively immobile fraction. These results suggest that PMCA2 molecules maintain transient interactions with other components of the stereocilia, and the mobile pool of PMCA2 mediates the exchange between the stereocilia and the removal and delivery sites at the periphery of the apical cell surface. This rapid turnover of a major stereocilia membrane protein matches the previously described rapid turnover of proteins of the stereocilia actin core, further demonstrating that these organelles undergo rapid continuous renewal.
Collapse
|