1
|
Pouptsis A, Zaragozá R, García-Trevijano ER, Viña JR, Ortiz-Zapater E. Nutrition, Lifestyle, and Environmental Factors in Lung Homeostasis and Respiratory Health. Nutrients 2025; 17:954. [PMID: 40289995 PMCID: PMC11944992 DOI: 10.3390/nu17060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
The lungs play a vital role in maintaining homeostasis by facilitating gas exchange and serving as a structural and immune barrier. External factors, including nutrition, lifestyle, and environmental exposures, profoundly influence normal lung function and contribute to the development, progression, and prognosis of various respiratory diseases. Deficiencies in key micronutrients, such as vitamins A, D, and C, as well as omega-3 fatty acids, can impair the integrity of the epithelial lining, compromising the lungs' defense mechanisms and increasing susceptibility to injury and disease. Obesity and physical inactivity further disrupt respiratory function by inducing structural changes in the chest wall and promoting a pro-inflammatory state. Environmental pollutants further worsen oxidative damage and activate inflammatory pathways. Addressing these modifiable factors through interventions such as dietary optimization, physical activity programs, and strategies to reduce environmental exposure offers promising avenues for preserving lung function and preventing disease progression. This review examines the molecular pathways through which nutrition, lifestyle, and environmental influences impact lung homeostasis.
Collapse
Affiliation(s)
- Athanasios Pouptsis
- Department of Biochemistry and Molecular Biology-INCLIVA, University of Valencia, 46010 Valencia, Spain; (A.P.); (E.R.G.-T.); (J.R.V.)
| | - Rosa Zaragozá
- Department of Human Anatomy and Embryology-INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology-INCLIVA, University of Valencia, 46010 Valencia, Spain; (A.P.); (E.R.G.-T.); (J.R.V.)
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology-INCLIVA, University of Valencia, 46010 Valencia, Spain; (A.P.); (E.R.G.-T.); (J.R.V.)
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology-INCLIVA, University of Valencia, 46010 Valencia, Spain; (A.P.); (E.R.G.-T.); (J.R.V.)
| |
Collapse
|
2
|
Bignier C, Havet L, Brisoux M, Omeiche C, Misra S, Gonsard A, Drummond D. Climate change and children's respiratory health. Paediatr Respir Rev 2025; 53:64-73. [PMID: 39107182 DOI: 10.1016/j.prrv.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Climate change has significant consequences for children's respiratory health. Rising temperatures and extreme weather events increase children's exposure to allergens, mould, and air pollutants. Children are particularly vulnerable to these airborne particles due to their higher ventilation per unit of body weight, more frequent mouth breathing, and outdoor activities. Children with asthma and cystic fibrosis are at particularly high risk, with increased risks of exacerbation, but the effects of climate change could also be observed in the general population, with a risk of impaired lung development and growth. Mitigation measures, including reducing greenhouse gas emissions by healthcare professionals and healthcare systems, and adaptation measures, such as limiting outdoor activities during pollution peaks, are essential to preserve children's respiratory health. The mobilisation of society as a whole, including paediatricians, is crucial to limit the impact of climate change on children's respiratory health.
Collapse
Affiliation(s)
| | | | | | | | | | - Apolline Gonsard
- Service de pneumologie et d'allergologie pédiatrique, hôpital universitaire Necker-Enfants-Malades, AP-HP, Paris, France
| | - David Drummond
- Université Paris Cité, Paris, France; Service de pneumologie et d'allergologie pédiatrique, hôpital universitaire Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France; Inserm UMR 1138, équipe HeKA, Centre de Recherche des Cordeliers, France.
| |
Collapse
|
3
|
Zetlen HL, Rifas-Shiman SL, Gibson H, Oken E, Gold DR, Rice MB. Long-Term Exposure to Nitrogen Dioxide and Ozone and Respiratory Health in Children. Ann Am Thorac Soc 2025; 22:226-234. [PMID: 39471316 PMCID: PMC11808547 DOI: 10.1513/annalsats.202405-455oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/29/2024] [Indexed: 11/01/2024] Open
Abstract
Rationale: Further evaluation of the impact of long-term exposure to the gaseous air pollutants nitrogen dioxide (NO2) and ozone (O3) on child lung function and of NO2 or O3 on eosinophilic airway inflammation is needed. Objectives: To determine whether NO2 and O3 are associated with lung function and fractional exhaled nitric oxide (FeNO) in children. Methods: We measured lung function (forced expiratory volume in 1 second [FEV1] and forced vital capacity [FVC]) at midchildhood (mean age, 7.9 yr; n = 703), early teens (13.2 yr; n = 976), and midteens (17.6 yr; n = 624) study visits, and FeNO at the early and midteens study visits in Project Viva, a cohort of mother-child pairs in the Boston area. Long-term exposure to NO2 and O3 was estimated at the home address using geospatial models. We examined associations of home address NO2 and O3 exposure and proximity to roadway with lung function and FeNO using linear regression models, adjusting for age, sex, height, weight, season, relative humidity, temperature, parental smoking, and measures of socioeconomic status. We examined for effect modification of the midteen associations by blood eosinophil concentration, physical activity, aeroallergen sensitization, and parental atopy. Results: Median exposure to NO2 was 33.1 ppb (interquartile range [IQR], 10.4 ppb) and to O3 was 35.3 ppb (IQR, 3.4) in the first year of life. Exposure to NO2 was associated with lower FEV1 and FVC across all age groups and exposure time intervals: For example, an IQR increment of NO2 exposure from birth through the early teen visit was associated with 189.9 ml lower FEV1 (95% confidence interval, -273.3, -106.5) at the midteen visit. Lifetime NO2 exposure at was associated with higher FeNO at the early teen visit: for example, 16.2% higher FeNO (95% confidence interval, 7.1-26.4%) per IQR of lifetime NO2 through the early teen visit. O3 exposure was not associated with lung function or FeNO. Aeroallergen sensitization (measured in a subset of participants) modified associations of NO2 and O3 with FeNO. Conclusions: Exposure to NO2 was associated with lower lung function and higher FeNO among generally healthy children and teenagers. Because NO2 exposure levels were within the annual U.S. Environmental Protection Agency standard, these findings suggest a need to reduce exposure to this pollutant to optimize child respiratory health.
Collapse
Affiliation(s)
- Hilary L. Zetlen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Heike Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
4
|
Tsai YG, Chio CP, Yang KD, Lin CH, Yeh YP, Chang YJ, Chien JW, Wang SL, Huang SK, Chan CC. Long-term PM 2.5 exposure is associated with asthma prevalence and exhaled nitric oxide levels in children. Pediatr Res 2025; 97:370-377. [PMID: 38263452 DOI: 10.1038/s41390-023-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Exhaled nitric oxide concentration (FENO) is a marker of airway inflammation. This study aimed to evaluate the association of air pollution exposure with FENO levels and asthma prevalence with respiratory symptoms in school children. METHODS We analyzed 4736 school children who reside in six townships near industrial areas in central Taiwan. We evaluated asthmatic symptoms, FENO, and conducted the environmental questionnaire. The personal exposure of PM2.5, NO, and SO2 was estimated using land-use regression models data on children's school and home addresses. RESULTS Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma (OR = 1.595), exercise-induced wheezing (OR = 1.726), itchy eyes (OR = 1.417), and current nasal problems (OR = 1.334) (P < 0.05). FENO levels in the absence of infection were positively correlated with age, previous wheezing, allergic rhinitis, atopic eczema, near the road, and for children with high exposure to PM2.5 (P < 0.05). An increase of 1 μg/m3 PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels for children after adjusting for potential confounding variables, including exposures to NO and SO2. CONCLUSIONS Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children. IMPACT Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma and nasal problems and itchy eyes. Long-term exposures to PM2.5 were significantly associated with FENO levels after adjusting for potential confounding variables. This is first study to assess the association between FENO levels and long-term air pollution exposures in children near coal-based power plants. An increase of 1 μg/m3 annual PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels. Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chia-Pin Chio
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, and Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan, ROC
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Recreation and Holistic Wellness, MingDao University, Changhua, Taiwan, ROC
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan, ROC
| | - Yu-Jun Chang
- Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
- Johns Hopkins Asthma and Allergy Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Sherris AR, Hazlehurst MF, Dearborn LC, Loftus CT, Szpiro AA, Adgent MA, Carroll KN, Day DB, LeWinn KZ, Ni Y, Sathyanarayana S, Wright RJ, Zhao Q, Karr CJ, Moore PE. Prenatal exposure to ambient fine particulate matter and child lung function in the CANDLE cohort. Ann Med 2024; 56:2422051. [PMID: 39492664 PMCID: PMC11536642 DOI: 10.1080/07853890.2024.2422051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 08/09/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) exposure adversely impacts child airway health; however, research on prenatal PM2.5 exposure, and child lung function is limited. We investigated these associations in the ECHO-PATHWAYS Consortium, focusing on the role of exposure timing during different phases of fetal lung development. METHODS We included 675 children in the CANDLE cohort born between 2007 and 2011 in Memphis, TN, USA. Prenatal exposure to ambient PM2.5 was estimated using a spatiotemporal model based on maternal residential history and averaged over established prenatal periods of lung development. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) were measured by spirometry at age 8-9 years. We used linear regression and Bayesian Distributed Lag Interaction Models (BDLIM) to estimate associations between exposure and lung function z-scores, adjusting for maternal/child characteristics, prenatal/postnatal tobacco exposure, and birth year/season, and evaluating effect modification by child sex and allergic sensitization. RESULTS The average ambient concentration of PM2.5 during pregnancy was 11.1 µg/m3 (standard deviation:1.0 µg/m3). In the adjusted linear regression and BDLIM models, adverse, but not statistically significant, associations were observed between exposure during the pseudoglandular (5-16 weeks of gestation) and saccular (24-36 weeks) phases of lung development and FEV1 and FVC. The strongest association was between a 2 μg/m3 higher concentration of PM2.5 during the saccular phase and FEV1 z-score (-0.176, 95% Confidence Interval [CI]: -0.361, 0.010). The FEV1/FVC ratio was not associated with PM2.5 in any exposure window. No effect modification by child sex or allergic sensitization was observed. CONCLUSIONS We did not find strong evidence of associations between prenatal ambient PM2.5 exposure and child lung function in a large, well-characterized study sample. However, there was a suggested adverse association between FEV1 and exposure during late pregnancy. The saccular phase of lung development might be an important window for exposure to PM2.5.
Collapse
Affiliation(s)
- Allison R. Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Logan C. Dearborn
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Margaret A. Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kecia N. Carroll
- Department of Pediatrics, Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew B. Day
- Department of Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Yu Ni
- School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Climate Science, Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qi Zhao
- The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Paul E. Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Garcia E, Birnhak ZH, West S, Howland S, Lurmann F, Pavlovic NR, McConnell R, Farzan SF, Bastain TM, Habre R, Breton CV. Childhood Air Pollution Exposure Associated with Self-reported Bronchitic Symptoms in Adulthood. Am J Respir Crit Care Med 2024; 210:1025-1034. [PMID: 38940605 PMCID: PMC11531092 DOI: 10.1164/rccm.202308-1484oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/28/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: Few studies have examined the effects of long-term childhood air pollution exposure on adult respiratory health, including whether childhood respiratory effects underlie this relation. Objectives: To evaluate associations between childhood air pollution exposure and self-reported adult bronchitic symptoms while considering child respiratory health in the Southern California Children's Health Study. Methods: Exposures to nitrogen dioxide (NO2), ozone, and particulate matter <2.5 μm and <10 μm in diameter (PM10) assessed using inverse-distance-squared spatial interpolation based on childhood (birth to age 17 yr) residential histories. Bronchitic symptoms (bronchitis, cough, or phlegm in the past 12 mo) were ascertained via a questionnaire in adulthood. Associations between mean air pollution exposure across childhood and self-reported adult bronchitic symptoms were estimated using logistic regression. We further adjusted for childhood bronchitic symptoms and asthma to understand whether associations operated beyond childhood respiratory health impacts. Effect modification was assessed for family history of asthma, childhood asthma, and adult allergies. Measurements and Main Results: A total of 1,308 participants were included (mostly non-Hispanic White [56%] or Hispanic [32%]). At adult assessment (mean age, 32.0 yr; standard deviation [SD], 4.7), 25% reported bronchitic symptoms. Adult bronchitic symptoms were associated with NO2 and PM10 childhood exposures. Odds ratios per 1-SD increase were 1.69 (95% confidence interval, 1.14-2.49) for NO2 (SD, 11.1 ppb) and 1.51 (95% confidence interval, 1.00-2.27) for PM10 (SD, 14.2 μg/m3). Adjusting for childhood bronchitic symptoms or asthma produced similar results. NO2 and PM10 associations were modified by childhood asthma, with greater associations among asthmatic individuals. Conclusions: Childhood NO2 and PM10 exposures were associated with adult bronchitic symptoms. Associations were not explained by childhood respiratory health impacts; however, participants with childhood asthma had stronger associations.
Collapse
Affiliation(s)
- Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Zoe H. Birnhak
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Scott West
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Steve Howland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | | | | | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| |
Collapse
|
7
|
Pedersen M, Liu S, Andersen ZJ, Nybo AA, Brandt J, Budtz-Jørgensen E, Bønnelykke K, Frohn LM, Ketzel M, Khan J, Tingskov PC, Stayner LT, Zhang J, Brunekreef B, Loft S. Birth Cohort Studies of Long-Term Exposure to Ambient Air Pollution in Early Life and Development of Asthma in Children and Adolescents from Denmark. Res Rep Health Eff Inst 2024; 2024:1-63. [PMID: 39469971 PMCID: PMC11525942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Exposure to ambient air pollution from combustion-source emissions contributes to the prevalence of asthma, but the role of early-life exposure in asthma development is not well understood. The objective was to examine the effects of early-life exposure to multiple specific ambient air pollutants on incidence and prevalence of asthma and to determine the mechanistic basis for these effects. METHODS The study included all live-born singletons in Denmark during 1998-2016 (N = 1,060,154), participants in the Danish National Birth Cohort (DNBC3, N = 22,084), and participants in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC, N = 803). We modeled the concentrations of particulate matter ≤2.5 and ≤10 μm in aerodynamic diameter (PM2.5 and PM10), PM-related elemental carbon (EC), organic carbon (OC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), secondary organic aerosols (SOA), and sea salt as well as nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3) - from all sources. Prenatal and postnatal time-weighted mean exposures were calculated for all residential addresses. We defined asthma incidence as the first registered asthma diagnosis for all and used parental recall at child aged 7 to determine the prevalence of doctor-diagnosed asthma ever and active asthma for the DNBC participants. For the COPSAC participants, we analyzed inflammatory markers in blood collected at 6 months of age; at 6 years of age, we analyzed nasal epithelial deoxyribonucleic acid (DNA) methylation, gene expression, immune mediators, and forced expiratory volume in 1 second (FEV1). Cox proportional hazard models were fitted with fixed prenatal means and time-varying running annual means of a year before the event for the postnatal follow-up period for asthma incidence. Logistic regression models with cluster-robust standard errors and generalized estimating equations for dependence between women being included more than once were used for asthma prevalence. Mixed-effect linear regression models with random intercept for cohort were used to examine changes in lung function, and linear regression models were used to examine changes in biomarkers. RESULTS The prenatal mean and interquartile range (IQR) concentrations of PM2.5 and NO2 were 10.5 (2.4) and 17.5 (8.7) μg/m3. In the nationwide study the risk of asthma incidence increased with increasing prenatal exposure to all pollutants except for O3 and sea salt. An IQR increase in prenatal exposure was associated with an adjusted hazard ratio (HR) and 95% confidence interval (CI) of 1.06 (95% CI: 1.04-1.08) for PM2.5 and 1.04 (1.02-1.05) for NO2. The corresponding estimates for postnatal exposures were 1.08 (1.05-1.10) and 1.02 (1.01-1.04), respectively. In the DNBC participants, the asthma incidence results from models further adjusted with cohort-specific covariates were similar to models adjusted for register-based covariates only. Prenatal exposure to PM2.5, PM10, NO2, NOx, EC, SO42-, and sea salt were weakly associated with elevated risk for asthma incidence. There was no evidence of associations with asthma prevalence. For the COPSAC children, an IQR of PM2.5 and of NH4+ was each associated with a 2%-3% (95% CI: 1%-5%) reduction in mean FEV1, consistently for prenatal and postnatal exposures. Prenatal exposure to PM and NO2 was associated with immunological changes in blood and the airways but not with DNA methylation or gene expression changes. CONCLUSIONS The results of these studies strengthen the evidence that long-term exposure to ambient air pollution contributes to the development of asthma in early life through an altered immune profile, even at these relatively low concentrations.
Collapse
Affiliation(s)
| | - S Liu
- University of Copenhagen, Denmark
| | | | | | - J Brandt
- Aarhus University, Roskilde, Denmark
| | | | | | - L M Frohn
- Aarhus University, Roskilde, Denmark
| | - M Ketzel
- Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - J Khan
- Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | | | | | - J Zhang
- University of Copenhagen, Denmark
| | | | - S Loft
- University of Copenhagen, Denmark
| |
Collapse
|
8
|
Rosser F. Outdoor Air Pollution and Pediatric Respiratory Disease. Clin Chest Med 2024; 45:531-541. [PMID: 39069319 PMCID: PMC11286236 DOI: 10.1016/j.ccm.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Outdoor air pollution is ubiquitous, and no safe level of exposure has been identified for the most common air pollutants such as ozone and particle pollution. Children are uniquely more susceptible to the harms of outdoor air pollution, which can cause and exacerbate respiratory disease. Although challenging to identify the effects of outdoor air pollution on individual patients, understanding the basics of outdoor air pollution is essential for pediatric respiratory health care providers. This review covers basic information regarding outdoor air pollution, unique considerations for children, mechanisms for increased susceptibility, and association with incident and exacerbation of respiratory disease in children.
Collapse
Affiliation(s)
- Franziska Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
9
|
Debelu D, Mengistu DA, Aschalew A, Mengistie B, Deriba W. Global Public Health Implications of Traffic Related Air Pollution: Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241272403. [PMID: 39192968 PMCID: PMC11348364 DOI: 10.1177/11786302241272403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
Background Traffic-related air pollution (TRAP) has significant public health implications and a wide range of adverse health effects, including cardiovascular, respiratory, pulmonary, and other health problems. This study aimed to determine the public health impacts of traffic-related air pollution across the world that can be used as an input for protecting human health. Methods This study considered studies conducted across the world and full-text articles written in English. The articles were searched using a combination of Boolean logic operators (AND, OR, and NOT), MeSH, and keywords from the included electronic databases (SCOPUS, PubMed, EMBASE, Web of Science, CINAHL, and Google Scholars). The quality assessment of the articles was done using JBI tools to determine the relevance of each included article to the study. Results In this study, 1 282 032 participants ranging from 19 to 452 735 were included in 30 articles published from 2010 to 2022. About 4 (13.3%), 9 (30.0%), 12 (40.0%), 8 (26.7%), 2 (6.7%), 15 (50.0%), 3 (10.0%), 3 (10.0%) 1 (3.3%), and 3 (10.0%) of articles reported the association between human health and exposure to CO, PM10, PM2.5, NOx, NO, NO2, black carbon, O3, PAH, and SO2, respectively. Respiratory diseases, cancer, cognitive function problems, preterm birth, blood pressure and hypertension, diabetes, allergies and sensitization, coronary heart disease, dementia incidence, and hemorrhagic stroke were associated with exposure to TRAP. Conclusions Exposure to nitrogen dioxide, nitrogen oxide, sulfur dioxide, and fine particulate matter was associated with various health effects. This revealed that there is a need for the concerned organizations to respond appropriately.
Collapse
Affiliation(s)
- Desi Debelu
- School of Environmental Health, College of Health and Science, Haramaya University, Harar, Ethiopia
| | - Dechasa Adare Mengistu
- School of Environmental Health, College of Health and Science, Haramaya University, Harar, Ethiopia
| | - Alemayehu Aschalew
- Institutional Development and Facility Management, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Bizatu Mengistie
- Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Wegene Deriba
- School of Environmental Health, College of Health and Science, Haramaya University, Harar, Ethiopia
| |
Collapse
|
10
|
Rotaru S, Pana C, Negurescu N, Cernat A, Nutu C, Fuiorescu D, Lazaroiu G. CNG impact on combustion quality of a diesel engine fueled in diesel-gas mode. Heliyon 2024; 10:e35010. [PMID: 39170269 PMCID: PMC11336338 DOI: 10.1016/j.heliyon.2024.e35010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The main objective of the paper is to reveal a few aspects related to combustion quality of a diesel engine fueled in diesel-gas mode with diesel fuel and compressed natural gas. The total amount of heat released per cycle will be higher when the engine is fueled in dual-fuel mode due to higher LHV and because of the gaseous state of CNG. For low and medium loads the total quality of heat released per cycle will increase with 10 % and for higher loads it will reach levels with 25 % higher. The heat release rate of the preformed mixture will double its value for low and medium loads and will reach thresholds up to 3.5 times higher (interval -15; -5°CA); admitting CNG into cylinder will help the preformed mixture to reach stoichiometric values and thus improving the fast combustion phase. Fueling the engine in dual fuel mode with diesel fuel and CNG will have a negative effect on the maximum heat release rate; there will be a 10 % drop in maximum HRR for low loads when the energetic substitution coefficient reaches 36 % and 14 % at high loads when the xc is 26 %. The gaseous state and a higher LHV of CNG will have a good impact on indicated mean effective pressure for all studied regimes when the engine is fueled in DG mode: for low and medium loads 30 % and for high loads 20 % increase will be recorded. Gaseous state of CNG will lead to a higher percentage of preformed mixture and thus the fast combustion phase will extend for longer periods for all studied regimes when the engine is fueled in DG mode (20 % longer for low and medium loads and 30 % for high loads). The diffusive combustion phase will become shorter due to a lower quantity of the main dose when CNG is injected into the intake manifold (10-15 % shorter for low loads and 7 % at high loads).
Collapse
Affiliation(s)
- Silviu Rotaru
- National University of Science and Technology Politehnica Bucharest, Department of Thermotechnics, Engines, Thermal and Frigorific Equipment, Romania
| | - Constantin Pana
- National University of Science and Technology Politehnica Bucharest, Department of Thermotechnics, Engines, Thermal and Frigorific Equipment, Romania
| | - Niculae Negurescu
- National University of Science and Technology Politehnica Bucharest, Department of Thermotechnics, Engines, Thermal and Frigorific Equipment, Romania
| | - Alexandru Cernat
- National University of Science and Technology Politehnica Bucharest, Department of Energy Generation and Use, Romania
| | - Cristian Nutu
- National University of Science and Technology Politehnica Bucharest, Department of Thermotechnics, Engines, Thermal and Frigorific Equipment, Romania
| | - Dinu Fuiorescu
- National University of Science and Technology Politehnica Bucharest, Department of Thermotechnics, Engines, Thermal and Frigorific Equipment, Romania
| | - Gheorghe Lazaroiu
- National University of Science and Technology Politehnica Bucharest, Department of Energy Generation and Use, Romania
| |
Collapse
|
11
|
Lee W, Chaudhary F, Agrawal DK. Environmental Influences on Atopic Eczema. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2024; 8:101-115. [PMID: 39157262 PMCID: PMC11328973 DOI: 10.26502/jesph.96120209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The health outcomes of an individual are shaped by a combination of genetic predisposition and environmental influences. While some diseases stem solely from environmental factors, others like atopic eczema, also known as neurodermatitis or atopic dermatitis, are multifaceted, with environmental variables playing a significant role in its initiation and severity. Atopic eczema is a prevalent chronic condition observed globally, particularly in Western industrialized nations where its prevalence is estimated to range from 2.5% to 3.5% in adults and 10% to 15% among children. The increasing incidence of atopic eczema in industrialized countries over recent decades suggests that this trend may be due to environmental changes rather than genetic predispositions. Therefore, by thoroughly examining environmental factors and their role in atopic dermatitis, one may be able to gain a better understanding of its disease pattern and develop possible preventative measures. This article provides a comprehensive analysis of how the surrounding environment contributes to the pathogenesis of atopic eczema.
Collapse
Affiliation(s)
- Wismmy Lee
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Fihr Chaudhary
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
12
|
Roche IV, Ubalde-Lopez M, Daher C, Nieuwenhuijsen M, Gascon M. The Health-Related and Learning Performance Effects of Air Pollution and Other Urban-Related Environmental Factors on School-Age Children and Adolescents-A Scoping Review of Systematic Reviews. Curr Environ Health Rep 2024; 11:300-316. [PMID: 38369581 PMCID: PMC11082043 DOI: 10.1007/s40572-024-00431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW This scoping review aims to assess the impact of air pollution, traffic noise, heat, and green and blue space exposures on the physical and cognitive development of school-age children and adolescents. While existing evidence indicates adverse effects of transport-related exposures on their health, a comprehensive scoping review is necessary to consolidate findings on various urban environmental exposures' effects on children's development. RECENT FINDINGS There is consistent evidence on how air pollution negatively affects children's cognitive and respiratory health and learning performance, increasing their susceptibility to diseases in their adult life. Scientific evidence on heat and traffic noise, while less researched, indicates that they negatively affect children's health. On the contrary, green space exposure seems to benefit or mitigate these adverse effects, suggesting a potential strategy to promote children's cognitive and physical development in urban settings. This review underscores the substantial impact of urban exposures on the physical and mental development of children and adolescents. It highlights adverse health effects that can extend into adulthood, affecting academic opportunities and well-being beyond health. While acknowledging the necessity for more research on the mechanisms of air pollution effects and associations with heat and noise exposure, the review advocates prioritizing policy changes and urban planning interventions. This includes minimizing air pollution and traffic noise while enhancing urban vegetation, particularly in school environments, to ensure the healthy development of children and promote lifelong health.
Collapse
Affiliation(s)
- Inés Valls Roche
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Mònica Ubalde-Lopez
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carolyn Daher
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mireia Gascon
- ISGlobal, Parc de Recerca Biomèdica de Barcelona-PRBB, C/ Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
13
|
Hazlehurst MF, Carroll KN, Moore PE, Szpiro AA, Adgent MA, Dearborn LC, Sherris AR, Loftus CT, Ni Y, Zhao Q, Barrett ES, Nguyen RHN, Swan SH, Wright RJ, Bush NR, Sathyanarayana S, LeWinn KZ, Karr CJ. Associations of prenatal ambient air pollution exposures with asthma in middle childhood. Int J Hyg Environ Health 2024; 258:114333. [PMID: 38460460 PMCID: PMC11042473 DOI: 10.1016/j.ijheh.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
We examined associations between prenatal fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) exposures and child respiratory outcomes through age 8-9 years in 1279 ECHO-PATHWAYS Consortium mother-child dyads. We averaged spatiotemporally modeled air pollutant exposures during four fetal lung development phases: pseudoglandular (5-16 weeks), canalicular (16-24 weeks), saccular (24-36 weeks), and alveolar (36+ weeks). We estimated adjusted relative risks (RR) for current asthma at age 8-9 and asthma with recent exacerbation or atopic disease, and odds ratios (OR) for wheezing trajectories using modified Poisson and multinomial logistic regression, respectively. Effect modification by child sex, maternal asthma, and prenatal environmental tobacco smoke was explored. Across all outcomes, 95% confidence intervals (CI) included the null for all estimates of associations between prenatal air pollution exposures and respiratory outcomes. Pseudoglandular PM2.5 exposure modestly increased risk of current asthma (RRadj = 1.15, 95% CI: 0.88-1.51); canalicular PM2.5 exposure modestly increased risk of asthma with recent exacerbation (RRadj = 1.26, 95% CI: 0.86-1.86) and persistent wheezing (ORadj = 1.28, 95% CI: 0.86-1.89). Similar findings were observed for O3, but not NO2, and associations were strengthened among mothers without asthma. While not statistically distinguishable from the null, trends in effect estimates suggest some adverse associations of early pregnancy air pollution exposures with child respiratory conditions, warranting confirmation in larger samples.
Collapse
Affiliation(s)
- Marnie F Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Kecia N Carroll
- Department of Pediatrics, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul E Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan C Dearborn
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Allison R Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, and Environmental and Occupational Health Sciences Institute, Piscataway, NJ and Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Pediatrics, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences and Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, School of Medicine and Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, and Seattle Children's Research Institute, Seattle, WA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Pediatrics, School of Medicine and Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
15
|
Peno-Mazzarino L, Radionov N, Merino M, González S, Mullor JL, Jones J, Caturla N. Protective Potential of a Botanical-Based Supplement Ingredient against the Impact of Environmental Pollution on Cutaneous and Cardiopulmonary Systems: Preclinical Study. Curr Issues Mol Biol 2024; 46:1530-1555. [PMID: 38392217 PMCID: PMC10887869 DOI: 10.3390/cimb46020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Air pollution is a growing threat to human health. Airborne pollution effects on respiratory, cardiovascular and skin health are well-established. The main mechanisms of air-pollution-induced health effects involve oxidative stress and inflammation. The present study evaluates the potential of a polyphenol-enriched food supplement ingredient comprising Lippia citriodora, Olea europaea, Rosmarinus officinalis, and Sophora japonica extracts in mitigating the adverse effects of environmental pollution on skin and cardiopulmonary systems. Both in vitro and ex vivo studies were used to assess the blend's effects against pollution-induced damage. In these studies, the botanical blend was found to reduce lipid peroxidation, inflammation (by reducing IL-1α), and metabolic alterations (by regulating MT-1H, AhR, and Nrf2 expression) in human skin explants exposed to a mixture of pollutants. Similar results were also observed in keratinocytes exposed to urban dust. Moreover, the ingredient significantly reduced pollutant-induced ROS production in human endothelial cells and lung fibroblasts, while downregulating the expression of apoptotic genes (bcl-2 and bax) in lung fibroblasts. Additionally, the blend counteracted the effect of urban dust on the heart rate in zebrafish embryos. These results support the potential use of this supplement as an adjuvant method to reduce the impact of environmental pollution on the skin, lungs, and cardiovascular tissues.
Collapse
Affiliation(s)
| | - Nikita Radionov
- Laboratoire BIO-EC, Chemin de Saulxier 1, 91160 Longjumeau, France
| | - Marián Merino
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Sonia González
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - José L Mullor
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | | | - Nuria Caturla
- Monteloeder SA, Miguel Servet 16, 03203 Elche, Spain
| |
Collapse
|
16
|
Mizutani RF, de Paula Santos U, Arbex RF, Arbex MA, Terra-Filho M. An Evaluation of the Impact of Air Pollution on the Lung Functions of High School Students Living in a Ceramic Industrial Park Zone. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6964. [PMID: 37947522 PMCID: PMC10649640 DOI: 10.3390/ijerph20216964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Santa Gertrudes (SG) and Rio Claro (RC), Sao Paulo, Brazil, are located in a ceramic industrial park zone, and their particulate matter with an aerodynamic diameter of less than 10 µm (PM10) concentration levels has been among the highest in recently monitored cities in Brazil. Local PM10 was mostly composed of silica. A cross-sectional study was designed to evaluate the lung functions of public high school students in SG, RC, and São Pedro (SP) (control location), Brazil, in 2018. The prevalence of asthma, mean PM10, FVC (forced vital capacity), and FEV1 (forced expiratory volume in the first second) were compared between the locations, and regression analyses were performed. A total of 450 students were included (SG: 158, RC: 153, and SP: 139). The mean FVC% (SG: 95.0% ± 11.8%, RC: 98.8% ± 12.9%, SP: 102.4% ± 13.8%, p < 0.05), the mean FEV1% (SG: 95.7% ± 10.4%, RC: 99.7% ± 12.0%, SP: 103.2% ± 12.0%, p < 0.05) and the mean PM10 (SG: 77.75 ± 38.08 µg/m3, RC: 42.59 ± 23.46 µg/m3, SP: 29.52 ± 9.87 µg/m3, p < 0.01) differed between locations. In regression models, each increase in PM10 by 10 µg/m3 was associated with a decrease in FVC% by 1.10% (95% CI 0.55%-1.65%) and a decrease in FEV1% by 1.27% (95% CI 0.75%-1.79%). Exposure to high levels of silica-rich environmental PM10 was found to be associated with lower FVC and FEV1.
Collapse
Affiliation(s)
- Rafael Futoshi Mizutani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Ubiratan de Paula Santos
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | | | - Marcos Abdo Arbex
- Faculdade de Medicina, Universidade de Araraquara, Sao Paulo 14801-340, Brazil
| | - Mario Terra-Filho
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
17
|
Naishadham K, Naishadham G, Cabrera N, Bekyarova E. Response Surface Modeling of the Steady-State Impedance Responses of Gas Sensor Arrays Comprising Functionalized Carbon Nanotubes to Detect Ozone and Nitrogen Dioxide. SENSORS (BASEL, SWITZERLAND) 2023; 23:8447. [PMID: 37896540 PMCID: PMC10610975 DOI: 10.3390/s23208447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Carbon nanotube (CNT) sensors provide a versatile chemical platform for ambient monitoring of ozone (O3) and nitrogen dioxide (NO2), two important airborne pollutants known to cause acute respiratory and cardiovascular health problems. CNTs have shown great potential for use as sensing layers due to their unique properties, including high surface to volume ratio, numerous active sites and crystal facets with high surface reactivity, and high thermal and electrical conductivity. With operational advantages such as compactness, low-power operation, and easy integration with electronics devices, nanotechnology is expected to have a significant impact on portable low-cost environmental sensors. Enhanced sensitivity is feasible by functionalizing the CNTs with polymers, metals, and metal oxides. This paper focuses on the design and performance of a two-element array of O3 and NO2 sensors comprising single-walled CNTs functionalized by covalent modification with organic functional groups. Unlike the conventional chemiresistor in which the change in DC resistance across the sensor terminals is measured, we characterize the sensor array response by measuring both the magnitude and phase of the AC impedance. Multivariate response provides higher degrees of freedom in sensor array data processing. The complex impedance of each sensor is measured at 5 kHz in a controlled gas-flow chamber using gas mixtures with O3 in the 60-120 ppb range and NO2 between 20 and 80 ppb. The measured data reveal response change in the 26-36% range for the O3 sensor and 5-31% for the NO2 sensor. Multivariate optimization is used to fit the laboratory measurements to a response surface mathematical model, from which sensitivity and selectivity are calculated. The ozone sensor exhibits high sensitivity (e.g., 5 to 6 MΩ/ppb for the impedance magnitude) and high selectivity (0.8 to 0.9) for interferent (NO2) levels below 30 ppb. However, the NO2 sensor is not selective.
Collapse
Affiliation(s)
| | | | - Nelson Cabrera
- Carbon Solutions, Inc., Riverside, CA 92507, USA; (N.C.); (E.B.)
| | - Elena Bekyarova
- Carbon Solutions, Inc., Riverside, CA 92507, USA; (N.C.); (E.B.)
| |
Collapse
|
18
|
Vicedo-Cabrera AM, Melén E, Forastiere F, Gehring U, Katsouyanni K, Yorgancioglu A, Ulrik CS, Hansen K, Powell P, Ward B, Hoffmann B, Andersen ZJ. Climate change and respiratory health: a European Respiratory Society position statement. Eur Respir J 2023; 62:2201960. [PMID: 37661094 DOI: 10.1183/13993003.01960-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
- Science Policy and Epidemiology Environmental Research Group King's College London, London UK
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Klea Katsouyanni
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Arzu Yorgancioglu
- Celal Bayar University Medical Faculty Department of Pulmonology, Manisa, Turkey
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hansen
- European Lung Foundation, Sheffield, UK
- Kristiania University College, Technology, Oslo, Norway
| | | | - Brian Ward
- European Respiratory Society, Brussels, Belgium
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Zorana Jovanovic Andersen
- Section of Environment and Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Lin FC, Chen PS, Lin YC, Lin MC, Wu CC, Chen KS, Lee CH, Wang TN. Body composition modify the association between ambient particulate matter and lung function among asthma patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88060-88071. [PMID: 37438512 DOI: 10.1007/s11356-023-28597-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/19/2022] [Indexed: 07/14/2023]
Abstract
The effect of ambient PM10 and PM2.5 on lung function modified by body muscle and adipose tissue is not fully understood at present. Our aims were to investigate the association between seasonal average air pollutants and lung function in asthmatic patients modified by body composition indicators. In this cross-sectional study, we recruited 914 doctor-diagnosed asthmatic patients, and performed interaction and stratified analysis using the median values of total body muscle (TBM), total body fat (TBF), and percentage body fat (PBF) as well as body mass index (BMI) =25 as the cutoff points of the high/low body composition groups. The adjusted R2 values of the developed LUR models of PM2.5 and PM10 were 91.4% and 90.5% and also verified by cross-validation, respectively. After adjusting for confounding factors, we found that TBM significantly modified the association between PM10 and lung function among asthma patients (interaction P value <0.05). In the low TBM group, seasonal average concentrations of PM10 estimated by the LUR model increased by 10 μg/m3, and negative associations with lung function indicators were observed. For obese patients with BMI>25 and high TBF, the increase in PM10 was associated with the decrease in lung function. The asthma patients with obesity and low total body muscle were more susceptible to adverse effects of PM10 on lung function.
Collapse
Affiliation(s)
- Fang-Chi Lin
- Department of Public Health, College of Health Science, Kaohsiung Medical University, No. 100, Shi-Chuan 1st Rd, Kaohsiung, 807, Taiwan
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, No. 100, Shi-Chuan 1st Rd, Kaohsiung, 807, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kang-Shin Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, No. 100, Shi-Chuan 1st Rd, Kaohsiung, 807, Taiwan
| | - Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, No. 100, Shi-Chuan 1st Rd, Kaohsiung, 807, Taiwan.
| |
Collapse
|
20
|
Andersen ZJ, Vicedo-Cabrera AM, Hoffmann B, Melén E. Climate change and respiratory disease: clinical guidance for healthcare professionals. Breathe (Sheff) 2023; 19:220222. [PMID: 37492343 PMCID: PMC10365076 DOI: 10.1183/20734735.0222-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/28/2023] [Indexed: 07/27/2023] Open
Abstract
Climate change is one of the major public health emergencies with already unprecedented impacts on our planet, environment and health. Climate change has already resulted in substantial increases in temperatures globally and more frequent and extreme weather in terms of heatwaves, droughts, dust storms, wildfires, rainstorms and flooding, with prolonged and altered allergen and microbial exposure as well as the introduction of new allergens to certain areas. All these exposures may have a major burden on patients with respiratory conditions, which will pose increasing challenges for respiratory clinicians and other healthcare providers. In addition, complex interactions between these different factors, along with other major environmental risk factors (e.g. air pollution), will exacerbate adverse health effects on the lung. For example, an increase in heat and sunlight in urban areas will lead to increases in ozone exposure among urban populations; effects of very high exposure to smoke and pollution from wildfires will be exacerbated by the accompanying heat and drought; and extreme precipitation events and flooding will increase exposure to humidity and mould indoors. This review aims to bring respiratory healthcare providers up to date with the newest research on the impacts of climate change on respiratory health. Respiratory clinicians and other healthcare providers need to be continually educated about the challenges of this emerging and growing public health problem and be equipped to be the key players in solutions to mitigate the impacts of climate change on patients with respiratory conditions. Educational aims To define climate change and describe major related environmental factors that pose a threat to patients with respiratory conditions.To provide an overview of the epidemiological evidence on climate change and respiratory diseases.To explain how climate change interacts with air pollution and other related environmental hazards to pose additional challenges for patients.To outline recommendations to protect the health of patients with respiratory conditions from climate-related environmental hazards in clinical practice.To outline recommendations to clinicians and patients with respiratory conditions on how to contribute to mitigating climate change.
Collapse
Affiliation(s)
- Zorana Jovanovic Andersen
- Section of Environment and Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
21
|
Lepeule J, Pin I, Boudier A, Quentin J, Lyon-Caen S, Supernant K, Seyve E, Chartier R, Slama R, Siroux V. Pre-natal exposure to NO 2 and PM 2.5 and newborn lung function: An approach based on repeated personal exposure measurements. ENVIRONMENTAL RESEARCH 2023; 226:115656. [PMID: 36906269 DOI: 10.1016/j.envres.2023.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT While strong evidence supports adverse effects of pre-natal air pollution on child's lung function, previous studies rarely considered fine particulate matter (PM2.5) or the potential role of offspring sex and no study examined the effects of pre-natal PM2.5 on the lung function of the newborn. AIM We examined overall and sex-specific associations of personal pre-natal exposure to PM2.5 and nitrogen (NO2) with newborn lung function measurements. METHODS This study relied on 391 mother-child pairs from the French SEPAGES cohort. PM2.5 and NO2 exposure was estimated by the average concentration of pollutants measured by sensors carried by the pregnant women during repeated periods of one week. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple breath washout (N2MBW) test, performed at 7 weeks. Associations between pre-natal exposure to air pollutants and lung function indicators were estimated by linear regression models adjusted for potential confounders, and then stratified by sex. RESULTS Mean exposure to NO2 and PM2.5 during pregnancy was 20.2 μg/m3 and 14.3 μg/m3, respectively. A 10 μg/m3 increase in PM2.5 maternal personal exposure during pregnancy was associated with an adjusted 2.5 ml (2.3%) decrease in the functional residual capacity of the newborn (p-value = 0.11). In females, functional residual capacity was decreased by 5.2 ml (5.0%) (p = 0.02) and tidal volume by 1.6 ml (p = 0.08) for each 10 μg/m3 increase in PM2.5. No association was found between maternal NO2 exposure and newborns lung function. CONCLUSIONS Personal pre-natal PM2.5 exposure was associated with lower lung volumes in female newborns, but not in males. Our results provide evidence that pulmonary effects of air pollution exposure can be initiated in utero. These findings have long term implications for respiratory health and may provide insights into the underlying mechanisms of PM2.5 effects.
Collapse
Affiliation(s)
- Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France.
| | - Isabelle Pin
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Anne Boudier
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Joane Quentin
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Sarah Lyon-Caen
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | - Karine Supernant
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | - Emie Seyve
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | | | - Remy Slama
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000, Grenoble, France
| |
Collapse
|
22
|
Wang R, Kang N, Zhang W, Chen B, Xu S, Wu L. The developmental toxicity of PM2.5 on the early stages of fetal lung with human lung bud tip progenitor organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121764. [PMID: 37142209 DOI: 10.1016/j.envpol.2023.121764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Exposure to air pollution has been proven to be associated with impaired fetal lung development. However, due to the lack of reliable human source models, it is still challenging to deeply understand the human fetal lung development under PM2.5 exposure. Here, we utilized human embryonic stem cell (hESC) line H9 to generate lung bud tip progenitor organoids (LPOs), a process that mimics early stages of fetal lung development including definitive endoderm (DE) formation, anterior foregut endoderm (AFE) differentiation and lung progenitor cell specification, to evaluate potential pulmonary developmental toxicity of PM2.5. We demonstrated that PM2.5 exposure the entire LPOs induction from hESCs significantly affected cellular proliferation of LPOs, and altered the expression of lung progenitor cell markers NKX2.1, SOX2 and SOX9, which are canonically defined subsequently proximal-distal airways specification. To explore the dynamic influences of PM2.5 exposure at different stages of LPOs specification, we also found that PM2.5 exposure significantly affected the expression of several transcriptional factors that are important for the differentiation of DE and AFE. Mechanistically, we suggested PM2.5-induced developmental toxicity to LPOs was partially linked with the Wnt/β-catenin signaling pathway. Therefore, our findings further emphasize the substantial health risks in the development of respiratory system associated with prenatal exposure to PM2.5.
Collapse
Affiliation(s)
- Run Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ningning Kang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Wen Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|
23
|
Neophytou AM, Lutzker L, Good KM, Mann JK, Noth EM, Holm SM, Costello S, Tyner T, Nadeau KC, Eisen EA, Lurmann F, Hammond SK, Balmes JR. Associations between prenatal and early-life air pollution exposure and lung function in young children: Exploring influential windows of exposure on lung development. ENVIRONMENTAL RESEARCH 2023; 222:115415. [PMID: 36738772 PMCID: PMC9974878 DOI: 10.1016/j.envres.2023.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Evidence in the literature suggests that air pollution exposures experienced prenatally and early in life can be detrimental to normal lung development, however the specific timing of critical windows during development is not fully understood. OBJECTIVES We evaluated air pollution exposures during the prenatal and early-life period in association with lung function at ages 6-9, in an effort to identify potentially influential windows of exposure for lung development. METHODS Our study population consisted of 222 children aged 6-9 from the Fresno-Clovis metro area in California with spirometry data collected between May 2015 and May 2017. We used distributed-lag non-linear models to flexibly model the exposure-lag-response for monthly average exposure to fine particulate matter (PM2.5) and ozone (O3) during the prenatal months and first three years of life in association with forced vital capacity (FVC), and forced expiratory volume in the first second (FEV1), adjusted for covariates. RESULTS PM2.5 exposure during the prenatal period and the first 3-years of life was associated with lower FVC and FEV1 assessed at ages 6-9. Specifically, an increase from the 5th percentile of the observed monthly average exposure (7.55 μg/m3) to the median observed exposure (12.69 μg/m3) for the duration of the window was associated with 0.42 L lower FVC (95% confidence interval (CI): -0.82, -0.03) and 0.38 L lower FEV1 (95% CI: -0.75, -0.02). The shape of the lag-response indicated that the second half of pregnancy may be a particularly influential window of exposure. Associations for ozone were not as strong and typically CIs included the null. CONCLUSIONS Our findings indicate that prenatal and early-life exposures to PM2.5 are associated with decreased lung function later in childhood. Exposures during the latter months of pregnancy may be especially influential.
Collapse
Affiliation(s)
- Andreas M Neophytou
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kristen M Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Division of Disease Control and Public Health Response, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Jennifer K Mann
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Elizabeth M Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Stephanie M Holm
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA
| | - Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA; Central California Asthma Collaborative, Fresno, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA; Department of Environmental Health. Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | | | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; University of California, San Francisco-Fresno, Fresno, CA, USA
| |
Collapse
|
24
|
Panunzi S, Marchetti P, Stafoggia M, Badaloni C, Caranci N, de Hoogh K, Giorgi Rossi P, Guarda L, Locatelli F, Ottone M, Silocchi C, Ricci P, Marcon A. Residential exposure to air pollution and adverse respiratory and allergic outcomes in children and adolescents living in a chipboard industrial area of Northern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161070. [PMID: 36565877 DOI: 10.1016/j.scitotenv.2022.161070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chipboard production is a source of wood dust, formaldehyde, and combustion-related pollutants such as nitrogen dioxide (NO2) and particulate matter (PM). In this cohort study, we assessed whether exposures to NO2, formaldehyde, PM10, PM2.5, and black carbon were associated with adverse respiratory and allergic outcomes among all 7525 people aged 0-21 years residing in the Viadana district, an area in Northern Italy including the largest chipboard industrial park in the country. METHODS Data on hospitalizations, emergency room (ER) admissions, and specialist visits in pneumology, allergology, ophthalmology, and otorhinolaryngology were obtained from the Local Health Unit. Residential air pollution concentrations in 2013 (baseline) were derived using local (Viadana II), national (EPISAT), and continental (ELAPSE) exposure models. Associations were estimated using negative binomial regression models for counts of events occurred during 2013-2017, with follow-up time as an offset term and adjustment for sex, age, nationality, and a census-block socio-economic indicator. RESULTS Median annual exposures to NO2, PM10, and PM2.5 were below the European Union annual air quality standards (40, 40, and 25 μg/m3) but above the World Health Organization 2021 air quality guideline levels (10, 15, and 5 μg/m3). Exposures to NO2 and PM2.5 were significantly associated with higher rates of ER pneumology admissions (13 to 30 % higher rates per interquartile range exposure differences, all p < 0.01). Higher rates of allergology and ophthalmology visits were found for participants exposed to higher pollutants' concentrations. When considering the 4-km buffer around the industries, associations with respiratory hospitalizations became significant, and associations with ER pneumology admissions, allergology and ophthalmology visits became stronger. Formaldehyde was not associated with the outcomes considered. CONCLUSION Using administrative indicators of health effects a priori attributable to air pollution, we documented the adverse impact of long-term air pollution exposure in residential areas close to the largest chipboard industries in Italy. These findings, combined with evidence from previous studies, call for an action to improve air quality through preventive measures especially targeting emissions related to the industrial activities.
Collapse
Affiliation(s)
- Silvia Panunzi
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Pierpaolo Marchetti
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service ASL Roma 1, Rome, Italy
| | - Chiara Badaloni
- Department of Epidemiology, Lazio Regional Health Service ASL Roma 1, Rome, Italy
| | - Nicola Caranci
- Regional Health and Social Care Agency, Emilia-Romagna Region, Bologna, Italy
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Linda Guarda
- UOC Osservatorio Epidemiologico, Agenzia di Tutela della Salute della Val Padana, Mantova, Italy
| | - Francesca Locatelli
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Marta Ottone
- Epidemiology Unit, AUSL - IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Caterina Silocchi
- UOS Salute e Ambiente, Agenzia di Tutela della Salute della Val Padana, Mantova, Italy
| | - Paolo Ricci
- UOC Osservatorio Epidemiologico, Agenzia di Tutela della Salute della Val Padana, Mantova, Italy
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy
| |
Collapse
|
25
|
Ambient air pollution exposure linked to long COVID among young adults: a nested survey in a population-based cohort in Sweden. Lancet Reg Health Eur 2023; 28:100608. [PMID: 37131862 PMCID: PMC9989696 DOI: 10.1016/j.lanepe.2023.100608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Background Post COVID-19 conditions, also known as long COVID, are of public health concern, but little is known about their underlying risk factors. We aimed to investigate associations of air pollution exposure with long COVID among Swedish young adults. Methods We used data from the BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology [in Swedish]) cohort. From October 2021 to February 2022 participants answered a web-questionnaire focusing on persistent symptoms following acute SARS-CoV-2 infection. Long COVID was defined as symptoms after confirmed infection with SARS-CoV-2 lasting for two months or longer. Ambient air pollution levels (particulate matter ≤2.5 μm [PM2.5], ≤10 μm [PM10], black carbon [BC] and nitrogen oxides [NOx]) at individual-level addresses were estimated using dispersion modelling. Findings A total of 753 participants with SARS-CoV-2 infection were included of whom 116 (15.4%) reported having long COVID. The most common symptoms were altered smell/taste (n = 80, 10.6%), dyspnea (n = 36, 4.8%) and fatigue (n = 34, 4.5%). Median annual PM2.5 exposure in 2019 (pre-pandemic) was 6.39 (interquartile range [IQR] 6.06-6.71) μg/m3. Adjusted Odds Ratios (95% confidence intervals) of PM2.5 per IQR increase were 1.28 (1.02-1.60) for long COVID, 1.65 (1.09-2.50) for dyspnea symptoms and 1.29 (0.97-1.70) for altered smell/taste. Positive associations were found for the other air pollutants and remained consistent across sensitivity analyses. Associations tended to be stronger among participants with asthma, and those having had COVID during 2020 (versus 2021). Interpretation Ambient long-term PM2.5 exposure may affect the risk of long COVID in young adults, supporting efforts for continuously improving air quality. Funding The study received funding from the Swedish Research Council (grant no. 2020-01886, 2022-06340), the Swedish Research Council for Health, Working life and Welfare (FORTE grant no. 2017-01146), the Swedish Heart-Lung Foundation, Karolinska Institute (no. 2022-01807) and Region Stockholm (ALF project for cohort and database maintenance).
Collapse
|
26
|
Kiss P, de Rooij MMT, Koppelman GH, Boer J, Vonk JM, Vermeulen R, Hogerwerf L, Sterk HAM, Huss A, Smit LAM, Gehring U. Residential exposure to livestock farms and lung function in adolescence - The PIAMA birth cohort study. ENVIRONMENTAL RESEARCH 2023; 219:115134. [PMID: 36563981 DOI: 10.1016/j.envres.2022.115134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is a growing interest in the impact of air pollution from livestock farming on respiratory health. Studies in adults suggest adverse effects of livestock farm emissions on lung function, but so far, studies involving children and adolescents are lacking. OBJECTIVES To study the association of residential proximity to livestock farms and modelled particulate matter ≤10 μm (PM10) from livestock farms with lung function in adolescence. METHODS We performed a cross-sectional study among 715 participants of the Dutch prospective PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort study. Relationships of different indicators of residential livestock farming exposure (distance to farms, distance-weighted number of farms, cattle, pigs, poultry, horses and goats within 3 km; modelled atmospheric PM10 concentrations from livestock farms) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 were assessed by linear regression taking into account potential confounders. Associations were expressed per interquartile range increase in exposure. RESULTS Higher exposure to livestock farming was consistently associated with a lower FEV1, but not with FVC among participants living in less urbanized municipalities (<1500 addresses/km2, N = 402). Shorter distances of homes to livestock farms were associated with a 1.4% (0.2%; 2.7%) lower FEV1. Larger numbers of farms within 3 km and higher concentrations of PM10 from livestock farming were associated with a 1.8% (0.8%, 2.9%) and 0.9% (0.4%,1.5%) lower FEV1, respectively. CONCLUSIONS Our findings suggest that higher exposure to livestock farming is associated with a lower FEV1 in adolescents. Replication and more research on the etiologic agents involved in these associations and the underlying mechanisms is needed.
Collapse
Affiliation(s)
- Pauline Kiss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jolanda Boer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hendrika A M Sterk
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
27
|
Rosa MJ, Lamadrid-Figueroa H, Alcala C, Colicino E, Tamayo-Ortiz M, Mercado-Garcia A, Kloog I, Just AC, Bush D, Carroll KN, Téllez-Rojo MM, Wright RO, Gennings C, Wright RJ. Associations between early-life exposure to PM 2.5 and reductions in childhood lung function in two North American longitudinal pregnancy cohort studies. Environ Epidemiol 2023; 7:e234. [PMID: 36777528 PMCID: PMC9915957 DOI: 10.1097/ee9.0000000000000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/12/2022] [Indexed: 12/16/2022] Open
Abstract
Data integration of epidemiologic studies across different geographic regions can provide enhanced exposure contrast and statistical power to examine adverse respiratory effects of early-life exposure to particulate matter <2.5 microns in diameter (PM2.5). Methodological tools improve our ability to combine data while more fully accounting for study heterogeneity. Methods Analyses included children enrolled in two longitudinal birth cohorts in Boston, Massachusetts, and Mexico City. Propensity score matching using the 1:3 nearest neighbor with caliper method was used. Residential PM2.5 exposure was estimated from 2 months before birth to age 6 years using a validated satellite-based spatiotemporal model. Lung function was tested at ages 6-11 years and age, height, race, and sex adjusted z scores were estimated for FEV1, FVC, FEF25-75%, and FEV1/FVC. Using distributed lag nonlinear models, we examined associations between monthly averaged PM2.5 levels and lung function outcomes adjusted for covariates, in unmatched and matched pooled samples. Results In the matched pooled sample, PM2.5 exposure between postnatal months 35-44 and 35-52 was associated with lower FEV1 and FVC z scores, respectively. A 5 µg/m3 increase in PM2.5 was associated with a reduction in FEV1 z score of 0.13 (95% CI = -0.26, -0.01) and a reduction in FVC z score of 0.13 (95% CI = -0.25, -0.01). Additionally PM2.5 during postnatal months 23-39 was associated with a reduction in FEF25-75% z score of 0.31 (95% CI = -0.57, -0.05). Conclusions Methodological tools enhanced our ability to combine multisite data while accounting for study heterogeneity. Ambient PM2.5 exposure in early childhood was associated with lung function reductions in middle childhood.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Cecilia Alcala
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS) Mexico City, Mexico
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Douglas Bush
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kecia N. Carroll
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health (INSP), Cuernavaca, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
28
|
Bauer SE, Rhoads E, Wall BL, Sanders DB. The Effects of Air Pollution in Pediatric Respiratory Disease. Am J Respir Crit Care Med 2023; 207:346-348. [PMID: 36154892 DOI: 10.1164/rccm.202107-1583rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sarah E Bauer
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eli Rhoads
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brittany L Wall
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Don B Sanders
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; and.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
29
|
Ojeda Sánchez C, García-Pérez J, Gómez-Barroso D, Domínguez-Castillo A, Pardo Romaguera E, Cañete A, Ortega-García JA, Ramis R. Exploring Urban Green Spaces' Effect against Traffic Exposure on Childhood Leukaemia Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2506. [PMID: 36767873 PMCID: PMC9915143 DOI: 10.3390/ijerph20032506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Several environmental factors seem to be involved in childhood leukaemia incidence. Traffic exposure could increase the risk while urban green spaces (UGS) exposure could reduce it. However, there is no evidence how these two factors interact on this infant pathology. OBJECTIVES to evaluate how residential proximity to UGS could be an environmental protective factor against traffic exposure on childhood leukaemia incidence. METHODS A population-based case control study was conducted across thirty Spanish regions during the period 2000-2018. It included 2526 incident cases and 15,156, individually matched by sex, year-of-birth, and place-of-residence. Using the geographical coordinates of the participants' home residences, a 500 m proxy for exposure to UGS was built. Annual average daily traffic (AADT) was estimated for all types of roads 100 m near the children's residence. Odds ratios (ORs) and 95% confidence intervals (95% CIs), UGS, traffic exposure, and their possible interactions were calculated for overall childhood leukaemia, and the acute lymphoblastic (ALL) and acute myeloblastic leukaemia (AML) subtypes, with adjustment for socio-demographic covariates. RESULTS We found an increment of childhood leukaemia incidence related to traffic exposure, for every 100 AADT increase the incidence raised 1.1% (95% CI: 0.58-1.61%). UGS exposure showed an incidence reduction for the highest exposure level, Q5 (OR = 0.63; 95% CI = 0.54-0.72). Regression models with both traffic exposure and UGS exposure variables showed similar results but the interaction was not significant. CONCLUSIONS Despite their opposite effects on childhood leukaemia incidence individually, our results do not suggest a possible interaction between both exposures. This is the first study about the interaction of these two environmental factors; consequently, it is necessary to continue taking into account more individualized data and other possible environmental risk factors involved.
Collapse
Affiliation(s)
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
| | - Diana Gómez-Barroso
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
- National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
| | - Elena Pardo Romaguera
- Spanish Registry of Childhood Tumours (RETI-SEHOP), University of Valencia, 46010 Valencia, Spain
| | - Adela Cañete
- Spanish Registry of Childhood Tumours (RETI-SEHOP), University of Valencia, 46010 Valencia, Spain
| | - Juan Antonio Ortega-García
- Pediatric Environmental Health Speciality Unit, Department of Paediatrics, Environment and Human Health (EH2) Lab., Institute of Biomedical Research, IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- European and Latin American Environment, Survival and Childhood Cancer Network (ENSUCHICA), 30120 Murcia, Spain
| | - Rebeca Ramis
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
- European and Latin American Environment, Survival and Childhood Cancer Network (ENSUCHICA), 30120 Murcia, Spain
| |
Collapse
|
30
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
31
|
Teng J, Li J, Yang T, Cui J, Xia X, Chen G, Zheng S, Bao J, Wang T, Shen M, Zhang X, Meng C, Wang Z, Wu T, Xu Y, Wang Y, Ding G, Duan H, Li W. Long-term exposure to air pollution and lung function among children in China: Association and effect modification. Front Public Health 2022; 10:988242. [PMID: 36589956 PMCID: PMC9795025 DOI: 10.3389/fpubh.2022.988242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Children are vulnerable to the respiratory effects of air pollution, and their lung function has been associated with long-term exposure to low air pollution level in developed countries. However, the impact of contemporary air pollution level in developing countries as a result of recent efforts to improve air quality on children's lung function is less understood. Methods We obtained a cross-sectional sample of 617 schoolchildren living in three differently polluted areas in Anhui province, China. 2-year average concentrations of air pollutants at the year of spirometry and the previous year (2017-2018) obtained from district-level air monitoring stations were used to characterize long-term exposure. Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and forced expiratory flow between 25 and 75% of FVC (FEF25-75) were determined under strict quality control. Multivariable regression was employed to evaluate the associations between air pollution level and lung function parameters, overall and by demographic characteristics, lifestyle, and vitamin D that was determined by liquid chromatography tandem mass spectrometry. Results Mean concentration of fine particulate matter was 44.7 μg/m3, which is slightly above the interim target 1 standard of the World Health Organization. After adjusting for confounders, FVC, FEV1, and FEF25-75 showed inverse trends with increasing air pollution levels, with children in high exposure group exhibiting 87.9 [95% confidence interval (CI): 9.5, 166.4] mL decrement in FEV1 and 195.3 (95% CI: 30.5, 360.1) mL/s decrement in FEF25-75 compared with those in low exposure group. Additionally, the above negative associations were more pronounced among those who were younger, girls, not exposed to secondhand smoke, non-overweight, physically inactive, or vitamin D deficient. Conclusions Our study suggests that long-term exposure to relatively high air pollution was associated with impaired lung function in children. More stringent pollution control measures and intervention strategies accounting for effect modification are needed for vulnerable populations in China and other developing countries.
Collapse
Affiliation(s)
- Jingjing Teng
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, China,Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Tongjin Yang
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Jie Cui
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Xin Xia
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Guoping Chen
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Siyu Zheng
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Junhui Bao
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Ting Wang
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Meili Shen
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Xiao Zhang
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Meng
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Zhiqiang Wang
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Tongjun Wu
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Yanlong Xu
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Yan Wang
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Gang Ding
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China
| | - Huawei Duan
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Weidong Li
- Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, China,*Correspondence: Weidong Li
| |
Collapse
|
32
|
Feng S, Miao J, Wang M, Jiang N, Dou S, Yang L, Ma Y, Yu P, Ye T, Wu Y, Wen B, Lu P, Li S, Guo Y. Long-term improvement of air quality associated with lung function benefits in Chinese young adults: A quasi-experiment cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158150. [PMID: 35995154 DOI: 10.1016/j.scitotenv.2022.158150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Long-term exposure to air pollution is associated with lung function impairment. However, whether long-term improvements in air quality could improve lung function is unclear. OBJECTIVES To examine whether the reduction of long-term air pollution was associated with lung function improvement among Chinese young adults. METHODS We conducted a prospective quasi-experiment cohort study with 1731 college students in Shandong, China from September 2019 to September 2020, covering COVID-19 lockdown period. Data on air pollution concentrations were obtained from China Environmental Monitoring Station. Lung function indicators included forced vital capacity (FVC), forced expiratory volume in 1st second (FEV1) and forced expiratory flow at 50 % of FVC (FEF50%). We used linear mixed-effects model to examine the associations between the change of air pollutants concentrations and the change of lung function, and additional adjustments for indoor air pollution (IAP) source. We also conducted stratified analysis by sex. RESULTS Compared with 2019, the mean FVC, FEV1 and FEF50% were elevated by 414.4 ml, 321.5 ml, and 28.4 ml/s respectively in 2020. Every 5 μg/m3 decrease in annual average PM2.5 concentrations was associated with 36.0 ml [95 % confidence interval (CI):6.0, 66.0 ml], 46.1 ml (95 % CI:16.7, 75.5 ml), and 124.2 ml/s (95 % CI:69.5, 178.9 ml/s) increment in the FVC, FEV1, and FEF50%, respectively. Similar associations were found for PM10. The estimated impact was almost unchanged after adjusting for IAP source. There was no significant effect difference between males and females. CONCLUSION Long-term improvement of air quality can improve lung function among young adults. Stricter policies on improving air quality are needed to protect human health.
Collapse
Affiliation(s)
- Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Minghao Wang
- Binzhou Medical University, Yantai, Shandong, China
| | - Ning Jiang
- Binzhou Medical University, Yantai, Shandong, China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yang Ma
- Binzhou Medical University, Yantai, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Melén E, Koppelman GH, Vicedo-Cabrera AM, Andersen ZJ, Bunyavanich S. Allergies to food and airborne allergens in children and adolescents: role of epigenetics in a changing environment. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:810-819. [PMID: 35985346 DOI: 10.1016/s2352-4642(22)00215-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases affect millions of children and adolescents worldwide. In this Review, we focus on allergies to food and airborne allergens and provide examples of prevalence trends during a time when climate change is of increasing concern. Profound environmental changes have affected natural systems in terms of biodiversity loss, air pollution, and climate. We discuss the potential links between these changes and allergic diseases in children, and the clinical implications. Several exposures of relevance for allergic disease also correlate with epigenetic changes such as DNA methylation. We propose that epigenetics could be a promising tool by which exposures and hazards related to a changing environment can be captured. Epigenetics might also provide promising biomarkers and help to elucidate the mechanisms related to allergic disease initiation and progress.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology and Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, Netherlands
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | | | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Mein SA, Nurhussien L, Rifas-Shiman SL, Luttmann-Gibson H, Sordillo JE, Oken E, Gold DR, Rice MB. Lifetime Exposure to Traffic-related Pollution and Lung Function in Early Adolescence. Ann Am Thorac Soc 2022; 19:1776-1779. [PMID: 35580245 PMCID: PMC9528743 DOI: 10.1513/annalsats.202112-1352rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Sheryl L. Rifas-Shiman
- Harvard Pilgrim Health Care InstituteBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | | | | | - Emily Oken
- Harvard Pilgrim Health Care InstituteBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | - Diane R. Gold
- Harvard Medical SchoolBoston, Massachusetts
- Harvard T.H. Chan School of Public HealthBoston, Massachusetts
| | - Mary B. Rice
- Beth Israel Deaconess Medical CenterBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
35
|
Muttoo S, Jeena PM, Röösli M, de Hoogh K, Meliefste K, Tularam H, Olin AC, Carlsen HK, Mentz G, Asharam K, Naidoo RN. Effect of short-term exposure to ambient nitrogen dioxide and particulate matter on repeated lung function measures in infancy: A South African birth cohort. ENVIRONMENTAL RESEARCH 2022; 213:113645. [PMID: 35700764 DOI: 10.1016/j.envres.2022.113645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The developing lung is highly susceptible to environmental toxicants, with both short- and long-term exposure to ambient air pollutants linked to early childhood effects. This study assessed the short-term exposure effects of nitrogen dioxide (NO2) and particulate matter (PM10) on lung function in infants aged 6 weeks, 6, 12 and 24 months, the early developmental phase of child growth. METHODS Lung function was determined by multiple breath washout and tidal breathing measurement in non-sedated infants. Individual exposure to NO2 and PM10 was determined by hybrid land use regression and dispersion modelling, with two-week average estimates (preceding the test date). Linear mixed models were used to adjust for the repeated measures design and an age*exposure interaction was introduced to obtain effect estimates for each age group. RESULTS There were 165 infants that had lung function testing, with 82 of them having more than one test occasion. Exposure to PM10 (μg/m3) resulted in a decline in tidal volume at 6 weeks [-0.4 ml (-0.9; 0.0), p = 0.065], 6 months [-0.5 ml (-1.0; 0.0), p = 0.046] and 12 months [-0.3 ml (-0.7; 0.0), p = 0.045]. PM10 was related to an increase in respiratory rate and minute ventilation, while a decline was observed for functional residual capacity for the same age groups, though not statistically significant for these outcomes. Such associations were however less evident for exposure to NO2, with inconsistent changes observed across measurement parameters and age groups. CONCLUSION Our study suggests that PM10 results in acute lung function impairments among infants from a low-socioeconomic setting, while the association with NO2 is less convincing.
Collapse
Affiliation(s)
- S Muttoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - P M Jeena
- Discipline of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa.
| | - M Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - K de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - K Meliefste
- Institute for Risk Assessment Sciences, Utrecht, the Netherlands.
| | - H Tularam
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - A C Olin
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - H K Carlsen
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - G Mentz
- University Michigan, Ann Arbor, MI, USA.
| | - K Asharam
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - R N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
36
|
Gruzieva O, Jeong A, He S, Yu Z, de Bont J, Pinho MGM, Eze IC, Kress S, Wheelock CE, Peters A, Vlaanderen J, de Hoogh K, Scalbert A, Chadeau-Hyam M, Vermeulen RCH, Gehring U, Probst-Hensch N, Melén E. Air pollution, metabolites and respiratory health across the life-course. Eur Respir Rev 2022; 31:220038. [PMID: 35948392 PMCID: PMC9724796 DOI: 10.1183/16000617.0038-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
Previous studies have explored the relationships of air pollution and metabolic profiles with lung function. However, the metabolites linking air pollution and lung function and the associated mechanisms have not been reviewed from a life-course perspective. Here, we provide a narrative review summarising recent evidence on the associations of metabolic profiles with air pollution exposure and lung function in children and adults. Twenty-six studies identified through a systematic PubMed search were included with 10 studies analysing air pollution-related metabolic profiles and 16 studies analysing lung function-related metabolic profiles. A wide range of metabolites were associated with short- and long-term exposure, partly overlapping with those linked to lung function in the general population and with respiratory diseases such as asthma and COPD. The existing studies show that metabolomics offers the potential to identify biomarkers linked to both environmental exposures and respiratory outcomes, but many studies suffer from small sample sizes, cross-sectional designs, a preponderance on adult lung function, heterogeneity in exposure assessment, lack of confounding control and omics integration. The ongoing EXposome Powered tools for healthy living in urbAN Settings (EXPANSE) project aims to address some of these shortcomings by combining biospecimens from large European cohorts and harmonised air pollution exposure and exposome data.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
- Both authors contributed equally to this article
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Both authors contributed equally to this article
| | - Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhebin Yu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G M Pinho
- Dept of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sara Kress
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Dept of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Annette Peters
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Marc Chadeau-Hyam
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Imperial College London, London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- These authors contributed equally to this article
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- These authors contributed equally to this article
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs Children's Hospital, Stockholm, Sweden
- These authors contributed equally to this article
| |
Collapse
|
37
|
Kim SG, Sung G, Yook SJ, Kim M, Park D. Reducing PM 10 and PM 2.5 Concentrations in a Subway Station by Changing the Diffuser Arrangement. TOXICS 2022; 10:537. [PMID: 36136502 PMCID: PMC9502813 DOI: 10.3390/toxics10090537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
According to the stringent regulations on particulate matter (PM) concentrations in Seoul, Korea, the PM10 and PM2.5 concentrations in subway stations must be maintained below 50 and 30 μg/m3, respectively, by 2024. Therefore, the PM concentrations in a subway station were analyzed considering air-conditioning diffuser arrangement and filtration efficiency, with the total ventilation flow rate of the station maintained constant. Dynamic analysis was performed under a worst-case scenario, wherein outdoor air was introduced through ground entrances and high-concentration dust (PM10, PM2.5) was introduced from stationary train cabins into the platforms through open platform screen doors (PSDs). Although the average PM concentrations were predicted to satisfy the reinforced criteria of Seoul under the existing operating conditions, the recommended limits were exceeded in certain local areas. To address this, the PM concentrations were predicted by changing the diffuser arrangement in the waiting room and maintaining the total ventilation flow rate constant. When the diffusers were placed near the waiting room walls, the PM10 and PM2.5 concentrations were reduced by approximately 10.5 and 5%, respectively, compared to the previous diffuser arrangement. Thus, the required PM concentration criteria were satisfied in nearly all areas of the target station, except for certain areas close to PSDs. The study findings can form the basis for improving the air quality of other subway stations.
Collapse
Affiliation(s)
- Seong-Gyu Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Gibong Sung
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Se-Jin Yook
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Minjeong Kim
- Artificial Intelligence Railroad Research Department, Korea Railroad Research Institute, Uiwang-si 17104, Gyeonggi-do, Korea
| | - Duckshin Park
- Transportation Environmental Research Department, Korea Railroad Research Institute, Uiwang-si 16105, Gyeonggi-do, Korea
| |
Collapse
|
38
|
Mueller W, Wilkinson P, Milner J, Loh M, Vardoulakis S, Petard Z, Cherrie M, Puttaswamy N, Balakrishnan K, Arvind DK. The relationship between greenspace and personal exposure to PM 2.5 during walking trips in Delhi, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119294. [PMID: 35436507 DOI: 10.1016/j.envpol.2022.119294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mechanisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored continuously for exposure to PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm) for 48 h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed the relationship between greenspace and personal PM2.5 using different spatial scales of the mean Normalised Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM2.5 personal exposure of 133.9 (standard deviation = 114.8) μg/m3. The within-trip analysis showed weak inverse associations between greenspace markers and PM2.5 concentrations only in the spring/summer/monsoon season, with statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. Associations between greenspace and personal PM2.5 during walking trips in Delhi varied across metrics, spatial scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being dominated by walking along roads and small effects on PM2.5 of small pockets of greenspace. Larger areas of greenspace may, however, give rise to observable spatial effects on PM2.5, which vary by season.
Collapse
Affiliation(s)
- William Mueller
- Research, Institute of Occupational Medicine, Edinburgh, UK; Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| | - Paul Wilkinson
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - James Milner
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Miranda Loh
- Research, Institute of Occupational Medicine, Edinburgh, UK
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia
| | - Zoë Petard
- Centre for Speckled Computing, School of Informatics, University of Edinburgh, Scotland, UK
| | - Mark Cherrie
- Research, Institute of Occupational Medicine, Edinburgh, UK
| | - Naveen Puttaswamy
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - D K Arvind
- Centre for Speckled Computing, School of Informatics, University of Edinburgh, Scotland, UK
| |
Collapse
|
39
|
Dąbrowiecki P, Badyda A, Chciałowski A, Czechowski PO, Wrotek A. Influence of Selected Air Pollutants on Mortality and Pneumonia Burden in Three Polish Cities over the Years 2011-2018. J Clin Med 2022; 11:jcm11113084. [PMID: 35683472 PMCID: PMC9181391 DOI: 10.3390/jcm11113084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Poland has one of the worst air qualities in the European Union, particularly regarding concentrations of particulate matter (PM). This study aimed to evaluate the short-term effects of air pollution and weather conditions on all-cause mortality and pneumonia-related hospitalizations in three Polish agglomerations. We investigated data from 2011 to 2018 on a number of health outcomes, concentrations of PM2.5, PM10, nitrogen dioxide (NO2), ozone (O3), and selected meteorological parameters. To examine the impact of air pollutants and weather conditions on mortality and pneumonia burden, we identified optimal general regression models for each agglomeration. The final models explained <24% of the variability in all-cause mortality. In the models with interactions, O3 concentration in Warsaw, NO2, O3, and PM2.5 concentrations in Cracow and PM10 and O3 concentrations in the Tricity explained >10% of the variability in the number of deaths. Up to 46% of daily variability in the number of pneumonia-related hospitalizations was explained by the combination of both factors, i.e., air quality and meteorological parameters. The impact of NO2 levels on pneumonia burden was pronounced in all agglomerations. We showed that the air pollution profile and its interactions with weather conditions exert a short-term effect on all-cause mortality and pneumonia-related hospitalizations. Our findings may be relevant for prioritizing strategies to improve air quality.
Collapse
Affiliation(s)
- Piotr Dąbrowiecki
- Department of Allergology and Infectious Diseases, Military Institute of Medicine, 04-141 Warsaw, Poland;
- Polish Federation of Asthma, Allergy and COPD Patients Associations, 01-604 Warsaw, Poland
- Correspondence: (P.D.); (A.B.)
| | - Artur Badyda
- Polish Federation of Asthma, Allergy and COPD Patients Associations, 01-604 Warsaw, Poland
- Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
- Correspondence: (P.D.); (A.B.)
| | - Andrzej Chciałowski
- Department of Allergology and Infectious Diseases, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Piotr Oskar Czechowski
- Department of Quantitative Methods and Environmental Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland;
| | - August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Pediatrics, Bielanski Hospital, 01-809 Warsaw, Poland
| |
Collapse
|
40
|
Lundberg B, Gruzieva O, Eneroth K, Melén E, Persson Å, Hallberg J, Pershagen G. Air pollution exposure impairs lung function in infants. Acta Paediatr 2022; 111:1788-1794. [PMID: 35582781 PMCID: PMC9543871 DOI: 10.1111/apa.16412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
Aim To assess associations between air pollution exposure and infant lung function. Methods Healthy infants from Stockholm were recruited to two cohorts (n = 99 and n = 78). Infant spirometry included plethysmography and raised volume forced expiratory flows. In pooled analyses, lung function at ~6 months of age was related to time‐weighted average air pollution levels at residential addresses from birth until the lung function test. The pollutants included particulate matter with an aerodynamic diameter < 10 μm (PM10) or <2.5 μm and nitrogen dioxide. Results There were significant inverse relations between air pollution exposure during infancy and forced expiratory volume at 0.5 s (FEV0.5) as well as forced vital capacity (FVC) for all pollutants. For example, the decline was 10.1 ml (95% confidence interval 1.3–18.8) and 10.3 ml (0.5–20.1) in FEV0.5 and FVC, respectively, for an interquartile increment of 5.3 μg/m3 in PM10. Corresponding associations for minute ventilation and functional residual capacity were 43.3 ml/min (−9.75–96.3) and 0.84 ml (−4.14–5.82). Conclusions Air pollution exposure was associated with impaired infant lung function measures related to airway calibre and lung volume, suggesting that comparatively low levels of air pollution negatively affect lung function in early life.
Collapse
Affiliation(s)
- Björn Lundberg
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm Stockholm Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB‐analys Stockholm Sweden
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Åsa Persson
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Jenny Hallberg
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm Stockholm Sweden
| |
Collapse
|
41
|
Liu H. Determining the effect of air quality on activities of daily living disability: using tracking survey data from 122 cities in China. BMC Public Health 2022; 22:835. [PMID: 35473502 PMCID: PMC9044699 DOI: 10.1186/s12889-022-13240-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Current research on activities of daily living (ADLs) disability has mostly focused on the analysis of demographic characteristics, while research on the microcharacteristics of individuals and the macroenvironment is relatively limited, and these studies solely concern the impact of air quality on individual health. Methods This study innovatively investigated the impact of air quality on ADL disability by matching micro data of individuals from the China Health and Retirement Longitudinal Study with data of urban environmental quality from 122 cities. In this study, an ordered panel logit model was adopted for the benchmark test, and the two-stage ordered probit model with IV was used for endogenous treatment. Results This innovative study investigated the impact of air quality on ADL disability by matching individual micro data from the China Health and Retirement Longitudinal Study with urban environmental quality data for 122 cities. The results showed that air quality significantly increased the probability of ADL disability. The positive and marginal effect of air quality on moderate and mild disability was higher. Generally, the marginal effect of air quality on residents’ health was negative. In terms of group heterogeneity, the ADL disability of individuals aged over 60 years, those in the high Gross Domestic Product (GDP) group, females, and those in the nonpilot long-term care insurance group was more affected by air quality, and the interaction between air quality and serious illness showed that the deterioration of air quality exacerbated the ADL disability caused by serious illness; that is, the moderating effect was significant. Conclusions According to the equilibrium condition of the individual health production function, the ADL disability caused by a 1% improvement in air quality is equivalent to the ADL disability caused by an 89.9652% reduction in serious illness, indicating that the effect of improved air quality is difficult to replace by any other method. Therefore, good air quality can not only reduce ADL disability directly but also reduce serious illness indirectly, which is equivalent to the reduction of ADL disability. This is called the health impact.
Collapse
Affiliation(s)
- Huan Liu
- School of Public Administration, Zhejiang University of Finance & Economics, No. 18 Xueyuan Street, Xiasha Higher Education Park, Hang Zhou, 310018, Zhejiang, China.
| |
Collapse
|
42
|
Suhaimi NF, Jalaludin J, Mohd Juhari MA. The impact of traffic-related air pollution on lung function status and respiratory symptoms among children in Klang Valley, Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:535-546. [PMID: 32579034 DOI: 10.1080/09603123.2020.1784397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Increasing the range of vehicles on traffic roads in the urban area has led to traffic-related air pollution (TRAP) and is currently becoming the main concern for health, especially among children. The study aimed to determine associations between TRAP and respiratory health, also to identify the main factors that influenced them. A cross-sectional comparative study was carried out among children in high and low traffic areas. Air quality monitoring was conducted in six primary schools. A set of standardized questionnaires was distributed to obtain respondents' exposure history and respiratory health symptoms, while spirometry test was carried out to determine the lung function status. There were associations between TRAP and abnormality of FEV1% among children. NO2 was the main predictor that influenced both chest tightness and abnormality of FEV1%. Children exposed to a high level of traffic-related air pollution have an increased risk of respiratory symptoms and abnormality of lung function.
Collapse
Affiliation(s)
- Nur Faseeha Suhaimi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Muhammad Afif Mohd Juhari
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
43
|
You Y, Wang D, Liu J, Chen Y, Ma X, Li W. Physical Exercise in the Context of Air Pollution: An Emerging Research Topic. Front Physiol 2022; 13:784705. [PMID: 35295574 PMCID: PMC8918627 DOI: 10.3389/fphys.2022.784705] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Physical exercise (PE) brings physiological benefits to human health; paradoxically, exposure to air pollution (AP) is harmful. Hence, the combined effects of AP and PE are interesting issues worth exploring. The objective of this study is to review literature involved in AP-PE fields to perform a knowledge-map analysis and explore the collaborations, current hotspots, physiological applications, and future perspectives. Herein, cluster, co-citation, and co-occurrence analysis were applied using CiteSpace and VOSviewer software. The results demonstrated that AP-PE domains have been springing up and in rapid growth since the 21st century. Subsequently, active countries and institutions were identified, and the productive institutions were mainly located in USA, China, UK, Spain, and Canada. Developed countries seemed to be the major promoters. Additionally, subject analysis found that environmental science, public health, and sports medicine were the core subjects, and multidimensional communications were forming. Thereafter, a holistic presentation of reference co-citation clusters was conducted to discover the research topics and trace the development focuses. Youth, elite athletes, and rural population were regarded as the noteworthy subjects. Commuter exposure and moderate aerobic exercise represented the common research context and exercise strategy, respectively. Simultaneously, the research hotspots and application fields were elaborated by keyword co-occurrence distribution. It was noted that physiological adaptations including respiratory, cardiovascular, metabolic, and mental health were the major themes; oxidative stress and inflammatory response were the mostly referred mechanisms. Finally, several challenges were proposed, which are beneficial to promote the development of the research field. Molecular mechanisms and specific pathways are still unknown and the equilibrium points and dose-effect relationships remain to be further explored. We are highly confident that this study provides a unique perspective to systematically and comprehensively review the pieces of AP-PE research and its related physiological mechanisms for future investigations.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Dizhi Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Wenkai Li
- China Table Tennis College, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
44
|
Miao J, Feng S, Wang M, Jiang N, Yu P, Wu Y, Ye T, Wen B, Lu P, Li S, Guo Y. Life-time summer heat exposure and lung function in young adults: A retrospective cohort study in Shandong China. ENVIRONMENT INTERNATIONAL 2022; 160:107058. [PMID: 34999345 DOI: 10.1016/j.envint.2021.107058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health impact of short-term heat exposure is well documented. However, limited studies explored the association between life-time summer heat exposure and lung function. OBJECTIVE To examine the association between life-time summer heat exposure and lung function among young adults. METHODS We conducted a retrospective cohort study among 1928 college students in Shandong, China from September 4, 2020 to November 15, 2020. Life-time summer heat exposure for participants were estimated based on the nearest station meteorological data after the participant's birth date and divided by their learning phases. Lung function indicators included forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). A multiple linear regression model was conducted to examine the associations between summer heat exposure and lung function. Stratificationanalysis by cooling facilities and respiratory diseases history were also conducted. RESULTS The study subjects had a slight majority of women (58.8%), age 19.2 ± 0.6 years. Each 1 °C increase in life-time summer mean temperature was associated with 1.07% [95% confidence interval (CI): -1.95-0.18%] decrease in FVC and 0.88% (95 %CI: -1.71, -0.05%) decrease in FEV1. Participants with respiratory diseases and non-cooling facility users were more susceptible to summer heat exposure. The usage of fan and air condition could effectively reduce the deleterious heat effects on lung function. CONCLUSION Life-time summer heat exposure is significantly associated with the reduction of lung function in young adults. Cooling facilities are necessary for pre-school children to reduce heat effects. Fan and air-condition are effective cooling facilities, especially for people with respiratory diseases.
Collapse
Affiliation(s)
- Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Minghao Wang
- Binzhou Medical University, Yantai, Shandong, China
| | - Ning Jiang
- Binzhou Medical University, Yantai, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
45
|
Odo DB, Yang IA, Dey S, Hammer MS, van Donkelaar A, Martin RV, Dong GH, Yang BY, Hystad P, Knibbs LD. Ambient air pollution and acute respiratory infection in children aged under 5 years living in 35 developing countries. ENVIRONMENT INTERNATIONAL 2022; 159:107019. [PMID: 34875446 DOI: 10.1016/j.envint.2021.107019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Evidence from developed countries suggests that fine particulate matter (≤2.5 µm [PM2.5]) contributes to childhood respiratory morbidity and mortality. However, few analyses have focused on resource-limited settings, where much of this burden occurs. We aimed to investigate the cross-sectional associations between annual average exposure to ambient PM2.5 and acute respiratory infection (ARI) in children aged <5 years living in low- and middle-income countries (LMICs). METHODS We combined Demographic and Health Survey (DHS) data from 35 countries with gridded global estimates of annual PM2.5 mass concentrations. We analysed the association between PM2.5 and maternal-reported ARI in the two weeks preceding the survey among children aged <5 years living in 35 LMICs. We used multivariable logistic regression models that adjusted for child, maternal, household and cluster-level factors. We also fitted multi-pollutant models (adjusted for nitrogen dioxide [NO2] and surface-level ozone [O3]), among other sensitivity analyses. We assessed whether the associations between PM2.5 and ARI were modified by sex, age and place of residence. RESULTS The analysis comprised 573,950 children, among whom the prevalence of ARI was 22,506 (3.92%). The mean (±SD) estimated annual concentration of PM2.5 to which children were exposed was 48.2 (±31.0) µg/m3. The 5th and 95th percentiles of PM2.5 were 9.8 µg/m3 and 110.9 µg/m3, respectively. A 10 µg/m3 increase in PM2.5 was associated with greater odds of having an ARI (OR: 1.06; 95% CI: 1.05-1.07). The association between PM2.5 and ARI was robust to adjustment for NO2 and O3. We observed evidence of effect modification by sex, age and place of residence, suggesting greater effects of PM2.5 on ARI in boys, in younger children, and in children living in rural areas. CONCLUSIONS Annual average ambient PM2.5, as an indicator for long-term exposure, was associated with greater odds of maternal-reported ARI in children aged <5 years living in 35 LMICs. Longitudinal studies in LMICs are required to corroborate our cross-sectional findings, to further elucidate the extent to which lowering PM2.5 may have a role in the global challenge of reducing ARI-related morbidity and mortality in children.
Collapse
Affiliation(s)
- Daniel B Odo
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; College of Health Sciences, Arsi University, Asela, Ethiopia.
| | - Ian A Yang
- Thoracic Program, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Australia; UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India; Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, New Delhi, India
| | - Melanie S Hammer
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Perry Hystad
- College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; School of Public Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
46
|
Kitagawa YKL, Kumar P, Galvão ES, Santos JM, Reis NC, Nascimento EGS, Moreira DM. Exposure and dose assessment of school children to air pollutants in a tropical coastal-urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149747. [PMID: 34487895 DOI: 10.1016/j.scitotenv.2021.149747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This study estimates exposure and inhaled dose to air pollutants of children residing in a tropical coastal-urban area in Southeast Brazil. For that, twenty-one children filled their time-activities diaries and wore the passive samplers to monitor NO2. The personal exposure was also estimated using data provided by the combination of WRF-Urban/GEOS-Chem/CMAQ models, and the nearby monitoring station. Indoor/outdoor ratios were used to consider the amount of time spent indoors by children in homes and schools. The model's performance was assessed by comparing the modelled data with concentrations measured by urban monitoring stations. A sensitivity analyses was also performed to evaluate the impact of the model's height on the air pollutant concentrations. The results showed that the mean children's personal exposure to NO2 predicted by the model (22.3 μg/m3) was nearly twice to those measured by the passive samplers (12.3 μg/m3). In contrast, the nearest urban monitoring station did not represent the personal exposure to NO2 (9.3 μg/m3), suggesting a bias in the quantification of previous epidemiological studies. The building effect parameterisation (BEP) together with the lowering of the model height enhanced the air pollutant concentrations and the exposure of children to air pollutants. With the use of the CMAQ model, exposure to O3, PM10, PM2.5, and PM1 was also estimated and revealed that the daily children's personal exposure was 13.4, 38.9, 32.9, and 9.6 μg/m3, respectively. Meanwhile, the potential inhalation daily dose was 570-667 μg for PM2.5, 684-789 μg for PM10, and 163-194 μg for PM1, showing to be favourable to cause adverse health effects. The exposure of children to air pollutants estimated by the numerical model in this work was comparable to other studies found in the literature, showing one of the advantages of using the modelling approach since some air pollutants are poorly spatially represented and/or are not routinely monitored by environmental agencies in many regions.
Collapse
Affiliation(s)
- Yasmin Kaore Lago Kitagawa
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Centro Integrado de Manufatura e Tecnologia (SENAI CIMATEC), Salvador, Bahia, Brazil.
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Elson Silva Galvão
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Jane Meri Santos
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Neyval Costa Reis
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | | | - Davidson Martins Moreira
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil; Centro Integrado de Manufatura e Tecnologia (SENAI CIMATEC), Salvador, Bahia, Brazil
| |
Collapse
|
47
|
Liu H, Hu T, Wang M. Impact of Air Pollution on Residents' Medical Expenses: A Study Based on the Survey Data of 122 Cities in China. Front Public Health 2022; 9:743087. [PMID: 34988046 PMCID: PMC8720779 DOI: 10.3389/fpubh.2021.743087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Background: With the development of the social economy, air pollution has resulted in increased social costs. Medical costs and health issues due to air pollution are important aspects of environmental governance in various countries. Methods: This study uses daily air pollution monitoring data from 122 cities in China to empirically investigate the impact of air pollution on residents' medical expenses using the Heckman two-stage and instrumental variable methods, matching data from the 2018 China Health and Retirement Longitudinal Study (CHARLS) survey. Results: The study found that poor air quality, measured by the air quality index (AQI), significantly increased the probability of chronic lung disease, heart disease, and self-rated poor health. Additionally, the AQI (with an effect of 4.51%) significantly impacted health-seeking behavior and medical expenses. The medical expenditure effects of mild, moderate, severe, and serious pollution days were 3.27, 7.21, 8.62, and 42.66%, respectively. Conclusion: In the long run, residents' health in areas with a higher air pollution index, indicating poor air quality, is negatively impacted. The more extreme the pollution, the higher the probability of residents' medical treatment and the subsequent increase in medical expenses. Group and regional heterogeneity also play a role in the impact of air pollution on medical expenses. Compared with the existing literature, this study is based on individuals aged 15 years and above and produces reliable research conclusions.
Collapse
Affiliation(s)
- Huan Liu
- School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Tiantian Hu
- School of Political Science and Public Administration, Wuhan University, Wuhan, China
| | - Meng Wang
- School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
48
|
Voraphani N, Stern DA, Zhai J, Wright AL, Halonen M, Sherrill DL, Hallberg J, Kull I, Bergström A, Murray CS, Lowe L, Custovic A, Morgan WJ, Martinez FD, Melén E, Simpson A, Guerra S. The role of growth and nutrition in the early origins of spirometric restriction in adult life: a longitudinal, multicohort, population-based study. THE LANCET. RESPIRATORY MEDICINE 2022; 10:59-71. [PMID: 34843665 PMCID: PMC8855728 DOI: 10.1016/s2213-2600(21)00355-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Spirometric restriction, defined as a reduced forced vital capacity (FVC) with a preserved FEV1/FVC ratio, is associated with increased respiratory and non-respiratory comorbidities and all-cause mortality in adulthood. Little is known about the early origins of this condition. We sought to identify early-life risk factors for spirometric restriction in adult life. METHODS In this longitudinal, multicohort, population-based study, we used data from the Tucson Children's Respiratory Study (TCRS), which recruited 1246 healthy infants at birth between April 1980, and October 1984, in Tucson, AZ, USA. Questionnaires were answered by the primary caregiver at enrolment, immediately after the child's birth, and multiple follow-up questionnaires were completed through childhood and adulthood. At the age of 22, 26, 32, and 36 years, lung function was measured with spirometry. At each survey, three mutually exclusive spirometric patterns were defined: (1) normal (FEV1/FVC ≥10th percentile and FVC ≥10th percentile); (2) restrictive (FEV1/FVC ≥10th percentile and FVC <10th percentile); and (3) obstructive (FEV1/FVC <10th percentile, independent of FVC). Data on demographic features and parental health factors were collected from questionnaires; pregnancy and perinatal data (including nutritional problems) and birth measurements were obtained from medical records; and weight, height, and body-mass index (BMI) during childhood (age 6-16 years) were measured by study nurses. The associations between early-life risk factors and spirometric patterns were assessed by multivariate multinomial logistic regression analysis, adjusted for survey year, sex, and race-ethnicity. Significant risk factors were further tested for replication in the Swedish Child (Barn), Allergy, Milieu, Stockholm, Epidemiological (BAMSE; n=1817; spirometry surveys were done at age 24 years) survey and the UK Manchester Asthma and Allergy Study (MAAS; n=411; spirometry surveys were done at age 18 years) birth cohorts, and fixed-effect meta-analyses of relative risk ratios (RRRs) from multinomial logistic regression models were done to generate a pooled estimate of the effect across the three cohorts. Measurements of body composition (MAAS; n=365) and total lung capacity (TCRS; n=173 and MAAS; n=407) were also available for a subset of participants. FINDINGS Of 1246 healthy infants included in TCRS, for the present study we included data for 652 participants who had at least one set of spirometry data, contributing up to 1668 observations. In the TCRS cohort, results from the multivariate models showed that maternal nutritional problems during pregnancy (RRR 2·48 [95% CI 1·30-4·76]; p=0·0062), being born small for gestational age (birthweight <10th percentile; 3·26 [1·34-7·93]; p=0·0093), and being underweight in childhood (BMI-for-age <5th percentile; 3·54 [1·35-9·26]; p=0·010) were independent predictors of spirometric restriction in adult life. Associations between being small for gestational age (p=0·0028) and underweight in childhood (p<0·0001) with adult spirometric restriction were supported by the results of meta-analysis of data from all three cohorts. In the MAAS cohort, having a low lean BMI (ie, <10th percentile) at age 11 years predicted adult (age 18 years) spirometric restriction (RRR 3·66 [1·48-9·02]; p=0·0048). These associations of spirometric restriction with small for gestational age, childhood underweight, and low lean BMI in childhood were verified in participants with spirometric restriction who had diminished total lung capacity, indicating that these factors specifically increase the risk of lung restriction. INTERPRETATION Poor growth and nutritional deficits in utero and throughout childhood precede and predict the development of spirometric restriction in adult life. Strategies to improve prenatal and childhood growth trajectories could help to prevent spirometric restriction and its associated morbidity and mortality burden. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Nipasiri Voraphani
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Anne L Wright
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jenny Hallberg
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Lesley Lowe
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Adnan Custovic
- Section of Paediatrics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Wayne J Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Erik Melén
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA; ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
| |
Collapse
|
49
|
Zou W, Wang X, Sun R, Hu J, Ye D, Bai G, Liu S, Hong W, Guo M, Ran P. PM2.5 Induces Airway Remodeling in Chronic Obstructive Pulmonary Diseases via the Wnt5a/β-Catenin Pathway. Int J Chron Obstruct Pulmon Dis 2021; 16:3285-3295. [PMID: 34887658 PMCID: PMC8650833 DOI: 10.2147/copd.s334439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background Fine-particulate matter ≤2.5 μm in diameter (PM2.5)-associated airway remodeling has recently been recognized as a central feature of COPD. Activation of the Wnt/β-catenin pathway is closely related to the occurrence of airway remodeling. Accordingly, the goal of this study was to determine whether the Wnt5a/β-Catenin pathway is involved in PM2.5-induced smooth muscle proliferation in vivo and in vitro, which promotes the development of airway remodeling in subjects with COPD. Methods The effect of Wnt5a on β-Catenin-mediated airway remodeling was assessed using an in vivo model of PM2.5-induced COPD and PM2.5-exposed human bronchial smooth muscle cells (HBSMCs) in vitro. Small animal spirometry was used to measure lung function in mice. H&E staining and immunohistochemistry were performed to inspect emphysema and airway remodeling indices. Real-time PCR was used to detect Wnt5a, β-Catenin, TGF-β1, CyclinD1 and c-myc mRNA expression. The CCK8 assay was performed to detect cellular activity. Western blotting was performed to assess PCNA, α-SMA, Wnt5a, β-Catenin, PDGFRβ and TenascinC protein expression. β-Catenin expression was detected using cellular immunofluorescence. Results Exposure to PM2.5 led to emphysema, airway wall thickening, an increased smooth muscle layer thickness, decreased lung function and increased expression of the Wnt5a, β-Catenin, PDGFRβ and Tenascin C proteins in the mouse lung tissue. BOX5 (a Wnt5a antagonist) alleviated these PM2.5-induced outcomes in mice. Moreover, PM2.5 induced the expression of the Wnt5a, β-Catenin, TGF-β1, CyclinD1 and c-myc mRNAs in HBSMCs. BOX5 also inhibited the PM2.5-induced increases in PCNA, α-SMA, Wnt5a, β-Catenin, PDGFRβ and Tenascin C protein expression in HBSMCs. Conclusion Our findings suggest that PM2.5 exposure induces HBSMC proliferation, contributing to airway remodeling via the Wnt5a/β-Catenin signaling pathway in vivo and in vitro, which might be a target for COPD treatment.
Collapse
Affiliation(s)
- Weifeng Zou
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqian Wang
- The Third Hospital of Mianyang, Mianyang, Sichuan, People's Republic of China
| | - Ruiting Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Dong Ye
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ge Bai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Sha Liu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Meihua Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
50
|
Yu Z, Koppelman GH, Hoek G, Kerckhoffs J, Vonk JM, Vermeulen R, Gehring U. Ultrafine particles, particle components and lung function at age 16 years: The PIAMA birth cohort study. ENVIRONMENT INTERNATIONAL 2021; 157:106792. [PMID: 34388675 DOI: 10.1016/j.envint.2021.106792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Particulate matter (PM) air pollution exposure has been linked to lung function in adolescents, but little is known about the relevance of specific PM components and ultrafine particles (UFP). OBJECTIVES To investigate the associations of long-term exposure to PM elemental composition and UFP with lung function at age 16 years. METHODS For 706 participants of a prospective Dutch birth cohort, we assessed associations of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 with average exposure to eight elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc) in PM2.5 and PM10, as well as UFP during the preceding years (age 13-16 years) estimated by land-use regression models. After assessing associations for each pollutant individually using linear regression models with adjustment for potential confounders, independence of associations with different pollutants was assessed in two-pollutant models with PM mass and NO2, for which associations with lung function have been reported previously. RESULTS We observed that for most PM elemental components higher exposure was associated with lower FEV1, especially PM10 sulfur [e.g. adjusted difference -2.23% (95% confidence interval (CI) -3.70 to -0.74%) per interquartile range (IQR) increase in PM10 sulfur]. The association with PM10 sulfur remained after adjusting for PM10 mass. Negative associations of exposure to UFP with both FEV1 and FVC were observed [-1.06% (95% CI: -2.08 to -0.03%) and -0.65% (95% CI: -1.53 to 0.23%), respectively per IQR increase in UFP], but did not persist in two-pollutant models with NO2 or PM2.5. CONCLUSIONS Long-term exposure to sulfur in PM10 may result in lower FEV1 at age 16. There is no evidence for an independent effect of UFP exposure.
Collapse
Affiliation(s)
- Zhebin Yu
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Department of Epidemiology and Health Statistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|