1
|
He H, Ge Y, Ma X, Wang J, Qi W, Liu Y. Effect of LacBS/LacBP on biogenic amines degradation, physicochemical property, and flavor of Huangjiu. Food Chem 2025; 475:143244. [PMID: 39938271 DOI: 10.1016/j.foodchem.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/14/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Enzymatic reduction of biogenic amines (BAs) in fermented foods is effective and safe, with minimal impact on food flavor and the fermentation process. This study aimed to efficiently reduce BAs in Huangjiu using laccase. LacBS, LacBP, and LacBV demonstrated extensive substrate specificity for BAs. Additionally, these three laccases were resistant to acidic conditions and stable across a wide ethanol range (3-24 % vol). The effect of temperature on the ability of the three laccases to degrade BAs in Huangjiu was investigated, revealing that LacBS and LacBP had higher total BAs degradation than LacBV at 30 °C + 80 °C. Furthermore, synergistic LacBS/LacBP (at a 1:1 ratio) treatment efficiently increased the degradation of BAs in Huangjiu Sp.4, Sp.8, and Sp.10 by 68.93 %, 72.1 %, and 75.37 %, respectively, without affecting the flavor profile or physicochemical properties. Synergistic laccase system for BAs degradation might be a potential "green technology" for industries of traditional fermented foods.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yanyan Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangyang Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Zhang R, Wang Y, Wang X, Luo H, Wang Y, Yao B, Huang H, Tian J, Guan F. Influence of mutations at different distances from the active center on the activity and stability of laccase 13B22. BIORESOUR BIOPROCESS 2025; 12:47. [PMID: 40423903 DOI: 10.1186/s40643-025-00893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/26/2025] [Accepted: 05/17/2025] [Indexed: 05/28/2025] Open
Abstract
Laccases with high catalytic efficiency and high thermostability can drive a broader application scope. However, the structural distribution of key amino acids capable of significantly influencing the performance of laccases has not been explored in depth. Thirty laccase 13B22 mutants with changes in amino acids at distances of 5 Å (first shell), 5-8 Å (second shell), and 8-12 Å (third shell) from the active center were validated experimentally with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as substrate. Twelve of these mutants (first shell, 1; second shell, 4; third shell, 7) showed higher catalytic efficiency than the wild-type enzyme. Mutants D511E and I88L-D511E showed 5.36- and 10.58-fold increases in kcat/Km, respectively, with increases in optimal temperature of 15 °C and optimal pH from 7.0 to 8.0. Furthermore, both mutants exhibited greater thermostability compared to the wild-type, with increases of 3.33 °C and 5.06 °C in Tm and decreases of 0.39 J and 0.59 J in total structure energy, respectively. The D511E mutation resides in the third shell, while I88L is in the second shell, and their performance enhancements were attributed to alterations in the rigidity or flexibility of specific protein structural domains. Both mutants showed enhanced degradation efficiency for benzo[a]pyrene and zearalenone. These findings highlight the importance of the residues located far from the active center in the function of laccase (second shell and third shell), suggesting broader implications for enzyme optimization and biotechnological applications.
Collapse
Affiliation(s)
- Ruohan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchen Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Feifei Guan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Jeyabalan J, Veluchamy A, Narayanasamy S. Production optimization, characterization, and application of a novel thermo- and pH-stable laccase from Bacillus drentensis 2E for bioremediation of industrial dyes. Int J Biol Macromol 2025; 308:142557. [PMID: 40158574 DOI: 10.1016/j.ijbiomac.2025.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Environmental pollution driven by rapid industrialization and urbanization, has become serious concern due to adverse health effects. Among various bioremediation strategies, laccase, an oxidoreductase enzyme with wide substrate range and high redox-potential (0.4-0.8 V) has garnered significant attention due to its ability to oxidize various organic pollutants into non-toxic products. However, its practical application is often limited due to susceptibility to extreme pH and inhibitory compounds present in wastewater. To overcome this challenge, bacterial laccase, also known as versatile laccases, offer superior stability under harsh environmental conditions making them ideal for bioremediation. Furthermore, isolating native bacterium from contaminated sites enhances their potential, as these organisms are naturally adapted to pollutant-rich environments with intrinsic degradation ability. In this study, Bacillus drentensis 2E was isolated from dye-effluent release site. Laccase production was systematically optimized by One-Factor-at-a-Time, Plackett-Burman Design, and Central Composite Design, yielding a 2.45-fold increase in activity compared to unoptimized condition. Optimized media composition is as follows (g/L): KNO3-5.034,Glucose-3, KH2PO4-0.3,MgSO4-0.3, NaCl-0.55, CaCl2-0.55, CuSO4-0.178 mM, inoculum volume-3.54 %. The enzyme was further characterized for kinetic properties against ABTS, guaiacol and syringaldazine. It demonstrated exceptional stability across a wide temperature (20 ± 1 °C-70 ± 1 °C) and pH range (3.0 ± 0.01-8.0 ± 0.01) with heavy metal tolerance to Ca2+, Mn2+, Mg2+,Zn2+,Cu2+,Co2+,Ni2+. Also, BDLaccase effectively degraded Acid Red-27 (99.76 ± 2.27 %) and Direct Blue-6 (67.43 ± 2.31 %) within 5 h, as confirmed using UV-Vis spectroscopy, FT-IR, and LC-MS. These findings suggests that, BDLaccase is a robust biocatalyst for bioremediation especially in treatment of dyes due to its broad stability and efficiency.
Collapse
Affiliation(s)
- Jothika Jeyabalan
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajithkumar Veluchamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Wang D, Wu F, Xu X, Peng D, Duan Y, Peng H, Wu H. The function of HgLac in Heterodera glycines and its potential as a control target. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106225. [PMID: 40015834 DOI: 10.1016/j.pestbp.2024.106225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 03/01/2025]
Abstract
The soybean cyst nematode (SCN; Heterodera glycines) is one of the most devastating pathogens for soybean production. The second stage juvenile (J2) invades the host root, develops and form white females which then become brown cysts enter the soil. The brown cyst wall plays a key role in protecting inside eggs from adverse environmental conditions. However, the function of cyst wall tanning (sclerotization and pigmentation) in nematodes is not clear. A browning-related gene discovered from the whole-genome sequencing was cloned and characterized in this study, the gene was confirmed to be the laccase gene and was named HgLac. HgLac mRNA and HgLac protein was detected in the epidermis of juveniles using in situ hybridization and immunolocalization techniques. The HgLac expression level was greater in fourth-stage juveniles (J4s) than in the other stages. Knockdown of HgLac by in vitro RNA interference (RNAi) significantly decreased the infectivity, development and reproduction of J2s but had no effect on cyst wall tanning. Further research revealed that HgLac expression in nematodes was significantly suppressed by 35.41-59.17 % through in planta RNAi, 52.96-58.19 % females could not tan successfully, and the female wall was very soft and fragile, with a low egg hatching rate (1.33 %), which was significantly lower than that of normal females (68.85 %). These results indicate that HgLac plays a key role in cyst wall tanning and suppressing the development and reproduction of the SCN, which provides new ideas for the use of this gene as a target to control SCN.
Collapse
Affiliation(s)
- Dongya Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fangcao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haiyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Almeida LC, Zeferino JF, Branco C, Squillaci G, Morana A, Santos R, Ihalainen P, Sobhana L, Correia JP, Viana AS. Polynorepinephrine and polydopamine-bacterial laccase coatings for phenolic amperometric biosensors. Bioelectrochemistry 2025; 161:108826. [PMID: 39321496 DOI: 10.1016/j.bioelechem.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The successful fabrication of biosensors is greatly limited by the immobilization of their bioreceptor, thus we propose a facile and reproducible two-step method to modify graphite electrodes with a bacterial laccase, relying on a fast and controllable potentiostatic process to coat graphite surfaces with biomolecule-compatible thin films of polynorepinephrine (ePNE) and polydopamine (ePDA). Both polymers, synthesized with a similar thickness, were functionalized with bacterial laccase, displaying distinct electrochemical transducing behaviours at pH 5.0 and 7.0. ePNE layer enables adequate electron transfer of anionic and cationic species in acidic and neutral media, whereas transduction across ePDA strongly depends on pH and redox probe charge. ePNE stands out by improving the amperometric responses of the biosensing interface towards a phenolic acid (gallic acid) and a flavonoid (catechin), in respect to ePDA. The optimal graphite/ePNE/laccase interface outperforms biosensing interfaces based on fungal laccases at neutral pH, displaying detection sensitivities of 104 and 14.4 µA cm-2 mM-1for gallic acid and catechin, respectively. The fine synthetic control of the ePNE bio-inspired transduction layer and the use of an alkaliphilic bacterial laccase enabled the construction of an amperometric biosensing interface with extended pH range of polyphenols detection present in food products and agro-industrial waste.
Collapse
Affiliation(s)
- Luís C Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Jorge F Zeferino
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Clara Branco
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Guiseppe Squillaci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Alessandra Morana
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Romana Santos
- Centro de Ciências do Mar e do Ambiente (MARE), ARNET - Aquatic Research Network, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Liji Sobhana
- MetGen, Rakentajantie 26, 20780 Kaarina, Finland
| | - Jorge P Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Olbrich AC, Mielenbrink S, Willers VP, Koschorreck K, Birrell JA, Span I, Urlacher VB. Substitution of the Axial Type 1 Cu Ligand Affords Binding of a Water Molecule in Axial Position Affecting Kinetics, Spectral, and Structural Properties of the Small Laccase Ssl1. Chemistry 2025; 31:e202403005. [PMID: 39541228 DOI: 10.1002/chem.202403005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Multicopper oxidases use Cu ions as cofactors to oxidize various substrates. High reduction potential at Type 1 Cu is considered as crucial for effective catalysis. Previous studies have shown that replacing the axial methionine ligand of the Type 1 Cu with leucine or phenylalanine leads to an increased reduction potential, but not always to higher enzyme activity. Here we present a study on six variants of the small laccase Ssl1 from Streptomyces sviceus, where the axial methionine ligand was substituted, and the effect of the axial ligand on reduction potential, activity, spectral properties and structure was investigated. Absorption, electronic circular dichroism and EPR spectra revealed the presence of a stronger coordinating axial ligand like oxygen, which influences the electronic and catalytic properties more than the nature of the amino acid side chain. The crystal structures of the Ssl1 variants were solved, which show that none of the amino acid side chains coordinate to the Cu. Instead, a water molecule is found in the axial coordination site, which support the spectroscopic data. Our findings highlight the importance of combining structural and spectroscopic methods to investigate the effect of amino acid exchange on multicopper oxidases.
Collapse
Affiliation(s)
- Anna C Olbrich
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Steffen Mielenbrink
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Vivian P Willers
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, 40225, Germany
| | - James A Birrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, 40225, Germany
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, Erlangen, 91058, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, 40225, Germany
| |
Collapse
|
7
|
Knežević N, Vuksanović MM, Banjanac K, Pantić K, Veličković Z, Cvijetić I, Marinković A, Milošević M. Cationic waste hemp fibers-based membrane: Case study of anionic pollutants removal through environmentally friendly processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123174. [PMID: 39504666 DOI: 10.1016/j.jenvman.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In this study, waste hemp fibers were transformed into cationically modified lignocellulosic adsorbent through a three-step process. First, a delignification/defibrillation pretreatment was performed, followed by quaternization of fibers using the synthesized ionic liquid chlorocholine chloride-urea (CCC-U). Pressure-assisted cross-linking of modified fibres, using a citric acid, produced new membrane (CCC-UHM). The removal of anionic dyes (Acid Yellow 36 (AY36), Congo Red (CR), Acid Green 25 (AG25), and Acid Blue 92 (AB92)), and oxyanions (As(V) and Cr(VI)) was tested in batch and column system. The structural characteristics and chemical properties of the syntesised materials were investigated by SEM, FTIR, Raman, XPS, XRD, specific density, porosity and point of zero charges analysis. The endothermic and spontaneous equilibration of the system resulted in high capacity (qm), i.e., 302.9 mg g-1 (AY36), 456.8 mg g-1 (CR), 812.8 mg g-1 (AG25), 587.6 mg g-1 (AB92), 107.9 mg g-1 (As(V)), and 67.84 mg g-1 (Cr(VI)) at 25 °C, using the Langmuir model. The optimum pH for the adsorption process was 7. The multi-cycle adsorption/desorption process was followed by either decolorization, using laccase from M. thermophile expressed in Aspergillus oryzae (Novozym 51,003® laccase) immobilized on amino-modified fibers as biocatalyst, or photocatalytic degradation, in the presence of zinc oxide. The high decolorization efficiency (96%) observed for AG25 and AB92 underscores the considerable potential of laccase immobilized preparations as sustainable and eco-friendly approach for treating dye-contaminated wastewater. Photodegradation process provided low environmental threat of processed water, and biodegradabilty of exhausted membrane confirmed the circularity of the developed technology with implemented principles of sustainability.
Collapse
Affiliation(s)
- Nataša Knežević
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia.
| | - Marija M Vuksanović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia.
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Ltd, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Krstimir Pantić
- University of Priština, Faculty of Technical Sciences, Knjaza Miloša 7, 38220, Kosovska Mitrovica, Serbia.
| | - Zlate Veličković
- University of Defence, Military Academy, Veljka Lukica Kurjaka 33, 11042, Belgrade, Serbia.
| | - Ilija Cvijetić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Marinković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Milena Milošević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia.
| |
Collapse
|
8
|
Guo Y, Lv H, Rao Z, Wang Z, Zhang W, Tang Y, Zhao L. Enzymatic Oxidation of Aflatoxin M 1 in Milk Using CotA Laccase. Foods 2024; 13:3702. [PMID: 39594116 PMCID: PMC11593616 DOI: 10.3390/foods13223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Aflatoxin M1 (AFM1) in milk poses a significant threat to human health. This study examined the capacity of Bacillus licheniformis CotA laccase to oxidize AFM1. The optimal conditions for the CotA laccase-catalyzed AFM1 oxidation were observed at pH 8.0 and 70 °C, achieving an AFM1 oxidation rate of 86% in 30 min. The Km and Vmax values for CotA laccase with respect to AFM1 were 18.91 μg mL-1 and 9.968 μg min-1 mg-1, respectively. Computational analysis suggested that AFM1 interacted with CotA laccase via hydrogen bonding and van der Waals interactions. Moreover, the oxidation products of AFM1 mediated by CotA laccase were identified as the C3-hydroxy derivatives of AFM1 by HPLC-FLD and UPLC-TOF/MS. Toxicological assessment revealed that the hepatotoxicity of AFM1 was substantially reduced following oxidation by CotA laccase. The efficacy of CotA laccase in removing AFM1 in milk was further tested, and the result showed that the enzyme agent achieved an AFM1 removal rate of 83.5% in skim milk and 65.1% in whole milk. These findings suggested that CotA laccase was a novel AFM1 oxidase capable of eliminating AFM1 in milk. More effort is still needed to improve the AFM1 oxidase activity of CotA laccase in order to shorten the processing time when applying the enzyme in the milk industry.
Collapse
Affiliation(s)
- Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.G.); (H.L.); (Z.R.); (W.Z.)
| | - Hao Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.G.); (H.L.); (Z.R.); (W.Z.)
| | - Zhiyong Rao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.G.); (H.L.); (Z.R.); (W.Z.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.G.); (H.L.); (Z.R.); (W.Z.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.G.); (H.L.); (Z.R.); (W.Z.)
| | - Yu Tang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Lihong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
9
|
Zhai T, Wang H, Dong X, Wang S, Xin X, Du J, Guan Q, Jiao H, Yang W, Dong R. Laccase: A Green Biocatalyst Offers Immense Potential for Food Industrial and Biotechnological Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24158-24169. [PMID: 39436678 DOI: 10.1021/acs.jafc.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Laccase, a multipurpose biocatalyst, is widely distributed across all kingdoms of life and plays a key role in essential biological processes such as lignin synthesis, degradation, and pigment formation. These functions are critical for fungal growth, plant-pathogen interactions, and maintenance of soil health. Due to its broad substrate specificity, multifunctional nature, and environmentally friendly characteristics, laccase is widely employed as a catalyst in various green chemistry initiatives. With its ability to oxidize a diverse range of phenolic and nonphenolic compounds, laccase has also been found to be useful as a food additive and for assessing food quality parameters. Ongoing advancements in research and technology are continually expanding the recognition of laccase's potential to address global environmental, health, and energy challenges. This review aims to provide critical insights into the applications of laccases in the biotechnology and food industry.
Collapse
Affiliation(s)
- Tingting Zhai
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Hongwei Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Shu Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xin Xin
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jianfeng Du
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Huijun Jiao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Wei Yang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ran Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| |
Collapse
|
10
|
Özkul G, Kehribar EŞ, Ahan RE, Şeker UÖŞ. An Antibiotic-Degrading Engineered Biofilm Platform to Combat Environmental Antibiotic Resistance. ACS Biomater Sci Eng 2024; 10:6625-6633. [PMID: 39226538 DOI: 10.1021/acsbiomaterials.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The presence of antibiotics in natural water bodies is a growing problem regarding the occurrence of antibiotic resistance among various species. This is mainly caused by the excessive use of medical and veterinary antibiotics as well as the lack of effective treatment processes for eliminating residual antibiotics from wastewaters. In this study, we introduce a genetically engineered biomaterial as a solution for the effective degradation of one of the dominantly found antibiotics in natural water bodies. Our biomaterial harnesses laccase-type enzymes, which are known to attack specific types of antibiotics, i.e., fluoroquinolone-type synthetic antibiotics, and as a result degradation occurs. The engineered biomaterial is built using Escherichia coli biofilm protein CsgA as a scaffold, which is fused separately to two different laccase enzymes with the SpyTag-SpyCatcher peptide-protein duo. The designed biofilm materials were successful in degrading ciprofloxacin, as demonstrated with the data obtained from mass spectrometry analysis and cell viability assays.
Collapse
Affiliation(s)
- Gökçe Özkul
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ebru Şahin Kehribar
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
11
|
Han W, Zhao Y, Chen Q, Xie Y, Zhang M, Yao H, Wang L, Zhang Y. Laccase surface-display for environmental tetracycline removal: From structure to function. CHEMOSPHERE 2024; 365:143286. [PMID: 39265738 DOI: 10.1016/j.chemosphere.2024.143286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Facing the increasingly prominent tetracycline pollution and the resulting environmental problems, how to find environmental and efficient treatment means is one of the current research hotspots. In this study, the laccase surface-display technology for tetracycline treatment was investigated. Via study, the type of anchoring protein had a minor influence on the laccase ability, while the type of laccase showed a major impact. Bacillus subtilis spore coat protein (CotA) exhibited higher laccase activity, stability, and efficiency in degrading tetracycline than Pleurotus ostreatus laccase 6 (Lacc6). The superiority of bacterial laccase over fungal laccase was elucidated from the perspective of crystal structure. Besides, a variety of technical means were used to verify the success of surface-display. pGSA-CotA surface-displayed bacteria exhibited good tolerance to high temperature, pH, and various heavy metals. Importantly, surface-displayed bacteria showed faster degradation efficiency and better treatment effects than the intracellular expression bacteria in tetracycline degradation. This implies that surface display technology has greater potential for laccase-mediated environmental remediation. Due to the adverse impacts of tetracycline on soil enzyme activity and microorganisms, our study found that pGSA-CotA surface-displayed bacteria can alleviate tetracycline stress in soil and partially activate the soil, thereby increasing soil enzyme activity and certain nitrogen cycling genes.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Qi Chen
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Yuzhu Xie
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Hongkai Yao
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China.
| |
Collapse
|
12
|
Zeng B, Fu Y, Ye J, Yang P, Cui S, Qiu W, Li Y, Wu T, Zhang H, Wang Y, Du G, Liu S. Ancestral sequence reconstruction of the prokaryotic three-domain laccases for efficiently degrading polyethylene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135012. [PMID: 38944993 DOI: 10.1016/j.jhazmat.2024.135012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Biodegradation of polyethylene (PE) plastics is environmentally friendly. To obtain the laccases that can efficiently degrade PE plastics, we generated 9 ancestral laccases from 23 bacterial three-domain laccases through ancestral sequence reconstruction. The optimal temperatures of the ancestral laccases were between 60 °C-80 °C, while their optimal pHs were at 3.0 or 4.0. Without substrate pretreatment and mediator addition, all the ancestral laccases can degrade low-density polyethylene (LDPE) films at pH 7.0 and 60 °C. Among them, Anc52, which shared low sequence identity (18 %-41.7 %) with the reported PE-degrading laccases, was the most effective for LDPE degradation. After the catalytic reactions at 90 °C for 14 h, Anc52 (0.2 mg/mL) induced clear wrinkles and deep pits on the PE film surface detected by scanning electron microscope, and its carbonyl and hydroxyl indices reached 2.08 and 2.42, respectively. Then, we identified the residues 203 and 288 critical for PE degradation through site-directed mutation on Anc52. Moreover, Anc52 be activated by heat treatment (60 °C and 90 °C) at pH 7.0, which gave it a high catalytic efficiency (kcat/Km= 191.73 mM-1·s-1) and thermal stability (half-life at 70 °C = 13.70 h). The ancestral laccases obtained here could be good candidates for PE biodegradation.
Collapse
Affiliation(s)
- Bo Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yishan Fu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiacai Ye
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Penghui Yang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shixiu Cui
- JiaXing Institute of Future Food, Jiaxing, Zhejiang 314000, China
| | - Wenxuan Qiu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taoxu Wu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiyun Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yachan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Yang Q, Bai Y, Liu S, Han X, Liu T, Ma D, Mao J. Multicopper Oxidase from Lactobacillus hilgardii: Mechanism of Degradation of Tyramine and Phenylethylamine in Fermented Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17465-17480. [PMID: 39046216 DOI: 10.1021/acs.jafc.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yitao Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dongna Ma
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
14
|
Orlando C, Rizzo IC, Arrigoni F, Zampolli J, Mangiagalli M, Di Gennaro P, Lotti M, De Gioia L, Marino T, Greco C, Bertini L. Mechanism of non-phenolic substrate oxidation by the fungal laccase Type 1 copper site from Trametes versicolor: the case of benzo[ a]pyrene and anthracene. Dalton Trans 2024; 53:12152-12161. [PMID: 38989958 DOI: 10.1039/d4dt01377h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Laccases (EC 1.10.3.2) are multicopper oxidases with the capability to oxidize diverse phenolic and non-phenolic substrates. While the molecular mechanism of their activity towards phenolic substrates is well-established, their reactivity towards non-phenolic substrates, such as polycyclic aromatic hydrocarbons (PAHs), remains unclear. To elucidate the oxidation mechanism of PAHs, particularly the activation mechanism of the sp2 aromatic C-H bond, we conducted a density functional theory investigation on the oxidation of two PAHs (anthracene and benzo[a]pyrene) using an extensive model of the T1 copper catalytic site of the fungal laccase from Trametes versicolor.
Collapse
Affiliation(s)
- Carla Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte Pietro Bucci, cubo 14c, 87036 Rende, CS, Italy
| | - Isabella Cecilia Rizzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte Pietro Bucci, cubo 14c, 87036 Rende, CS, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
15
|
Núñez-García IC, Martínez-Ávila GCG, González-Herrera SM, Tafolla-Arellano JC, Rutiaga-Quiñones OM. Bioprospecting of endophytic fungi from semidesert candelilla (Euphorbia antisyphilitica Zucc): Potential for extracellular enzyme production. J Basic Microbiol 2024; 64:e2400049. [PMID: 38715338 DOI: 10.1002/jobm.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 07/04/2024]
Abstract
Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.
Collapse
Affiliation(s)
- Itzel C Núñez-García
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| | | | - Silvia M González-Herrera
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| | - Julio C Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular. Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, Mexico
| | - O Miriam Rutiaga-Quiñones
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| |
Collapse
|
16
|
Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Jia H, Li X. Thermo-Alkali-Tolerant Recombinant Laccase from Bacillus swezeyi and Its Degradation Potential against Zearalenone and Aflatoxin B 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13371-13381. [PMID: 38809574 DOI: 10.1021/acs.jafc.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The enzymatic biodegradation of mycotoxins in food and feed has attracted the most interest in recent years. In this paper, the laccase gene from Bacillus swezeyi was cloned and expressed in Escherichia coli BL 21(D3). The sequence analysis indicated that the gene consisted of 1533 bp. The purified B. swezeyi laccase was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis -12% with an estimated molecular weight of 56.7 kDa. The enzyme is thermo-alkali-tolerant, displaying the optimal degradation of zearalenone (ZEN) and aflatoxin B1 (AFB1) at pH 8 and 9, with incubation temperatures of 55 and 50 °C, respectively, within 24 h. The degradation potentials of the 50 μg of the enzyme against ZEN (5.0 μg/mL) and AFB1 (2.5 μg/mL) were 99.60 and 96.73%, respectively, within 24 h. To the best of our knowledge, this is the first study revealing the recombinant production of laccase from B. swezeyi, its biochemical properties, and potential use in ZEN and AFB1 degradation in vitro and in vivo.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
- Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya 53119, Tanzania
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
17
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
18
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
19
|
Mahuri M, Mohanty M, Thatoi H. Optimization and purification of laccase activity from Mammaliicoccus sciuri isolated from the soils of Similipal, Odisha, India: a kinetics study of crystal violet dye decolorization. Prep Biochem Biotechnol 2024; 54:573-586. [PMID: 37729443 DOI: 10.1080/10826068.2023.2258181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Four laccase-producing bacteria were found in soil samples from the Similipal Biosphere Reserve in Odisha, according to the current study. The isolates (SLCB1 to SLCB4) were evaluated for their laccase-producing ability in LB broth supplemented with guaiacol. The ABTS assay was performed to assess the laccase activity. The bacterium Mammaliicoccus sciuri shows the highest laccase activity i.e., 0.5125 U/L at the optimized conditions of pH 5.5, temperature 32.5 °C, ABTS concentration of 0.75 μl with an incubation time of 9 d. Laccase activity of M. sciuri grown in Sawdust was significantly increased in comparison to that in other agro wastes. The partially purified laccase enzyme after ammonium sulfate precipitation and dialysis showed a molecular weight of ∼58.5 kDa as determined by SDS-PAGE. A decolorization efficiency of 66.67% was recorded for the dye crystal violet after 1 h treatment with dialyzed laccase enzyme compared with phenol red, brilliant blue, and methylene blue.
Collapse
Affiliation(s)
- Monalisa Mahuri
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| | - Monalisa Mohanty
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| |
Collapse
|
20
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
21
|
Albulaihed Y, Adnan M, Jamal A, Snoussi M, Patel K, Patel M. Optimization of laccase from Stenotrophomonas maltophilia E1 by submerge fermentation using coconut husk with its detoxification and biodecolorization ability of synthetic dyes. BIORESOUR BIOPROCESS 2023; 10:80. [PMID: 38647840 PMCID: PMC10991366 DOI: 10.1186/s40643-023-00703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Enzymatic degradation of synthetic dyes holds an immense promise for addressing the environmental concerns associated with the textile and dye industries. This study aimed to isolate bacteria capable of producing laccase enzymes from an anthropogenic environment. Subsequently, viability of utilizing cost-effective agricultural residues as substrates for laccase production was assessed. Response Surface Methodology (RSM) and the One Variable at a Time (OVAT) approach was pursued for the optimization of laccase production, followed by pH and temperature stability, dye degradation and decolorization experiments, toxicological studies on the degraded dye metabolites. In results, laccase-producing bacterial strain was identified as Stenotrophomonas maltophilia strain E1 (S. maltophilia). Among variety of substrates, coconut husk exhibited optimal efficacy. In a statistical optimization study, it was found that S. maltophilia was capable of producing laccase 51.38 IU/mL, i.e., three times higher than the amount of laccase produced by unoptimized medium (16.7 IU/mL), and the enzyme activity was found to be steady at an acidic pH, and a mesophilic temperature range. The laccase obtained from S. maltophilia E1 demonstrated proficient dye decolorization capabilities, achieving a notable 92.1% reduction in Malachite green dye coloration at a concentration of 500 ppm. Gas chromatography-mass spectrometry (GC-MS) analysis of the decolorized derivatives of Malachite green revealed a conversion into a distinct compounds. Moreover, after undergoing laccase treatment, Malachite green exhibited decreased phytotoxic effects on Oryza sativa, pointing to enzymatic detoxification. Collectively, insights gained from the present study will contribute to the development of efficient enzymatic approaches for addressing the environmental pollution caused by synthetic dyes.
Collapse
Affiliation(s)
- Yazeed Albulaihed
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Kartik Patel
- Biotech Research and Development Lab, Witmans Industries Private Limited, Daman, Bhimpore, 396210, India
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
| |
Collapse
|
22
|
Bai BMY, Wang TT, Chen XA, Wu CC. Pathogen inhibition and indication by gelatin nonwoven mats with incorporation of polyphenol derivatives. RSC Adv 2023; 13:31602-31615. [PMID: 37908665 PMCID: PMC10613854 DOI: 10.1039/d3ra05905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
There is a need for non-pharmaceutical intervention methods that can prevent and indicate the risk of airborne disease spread. In this study, we developed a nonwoven mat based on the polyphenol gallic acid, which can inhibit pathogens growth and also indicate pathogen levels in the surrounding environment. Using nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography, we characterized this novel gelatin-based nonwoven mat and investigated the mechanism governing its ability to indicate pathogen levels. We demonstrated that the incorporation of gallic acid serves a vital role in indicating the presence of bacteria, causing the nonwoven mat to change in color from white to brown. We have proposed a plausible mechanism for this color change behavior based on a reaction of gallic acid with components excreted by bacteria, including glutamate, valine, and leucine. The concentrations of these components reflect the bacterial counts, enabling a real-time indication of pathogen levels in the surrounding air. In summary, the nonwoven mat presented herein can serve as an excellent antibacterial agent and as an indicator of nearby bacteria for fabricating personal protection equipment like filtration mask.
Collapse
Affiliation(s)
- By Meng-Yi Bai
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
- Adjunct Appointment to the National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Ting-Teng Wang
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
| | - Xin-An Chen
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Chia-Chun Wu
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| |
Collapse
|
23
|
Ghafouri M, Pourjafar F, Ghobadi Nejad Z, Yaghmaei S. Biological treatment of triclosan using a novel strain of Enterobacter cloacae and introducing naphthalene dioxygenase as an effective enzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131833. [PMID: 37473572 DOI: 10.1016/j.jhazmat.2023.131833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
In recent years, triclosan (TCS) has been widely used as an antibacterial agent in personal care products due to the spread of the Coronavirus. TSC is an emerging contaminant, and due to its stability and toxicity, it cannot be completely degraded through traditional wastewater treatment methods. In this study, a novel strain of Enterobacter cloacae was isolated and identified that can grow in high TCS concentrations. Also, we introduced naphthalene dioxygenase as an effective enzyme in TCS biodegradation, and its role during the removal process was investigated along with the laccase enzyme. The change of cell surface hydrophobicity during TCS removal revealed that a glycolipid biosurfactant called rhamnolipid was involved in TCS removal, leading to enhanced biodegradation of TCS. The independent variables, such as initial TCS concentration, pH, removal duration, and temperature, were optimized using the response surface method (RSM). As a result, the maximum TCS removal (97%) was detected at a pH value of 7 and a temperature of 32 °C after 9 days and 12 h of treatment. Gas chromatography-mass spectrometry (GC/MS) analysis showed five intermediate products and a newly proposed pathway for TCS degradation. Finally, the phytotoxicity experiment conducted on Cucumis sativus and Lens culinaris seeds demonstrated an increase in germination power and growth of stems and roots in comparison to untreated water. These results indicate that the final treated water was less toxic.
Collapse
Affiliation(s)
- Mahsa Ghafouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Pourjafar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Biochemical & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
24
|
Bao C, Liu Y, Li F, Cao H, Dong B, Cao Y. Expression and Characterization of Laccase Lac1 from Coriolopsis trogii Strain Mafic-2001 in Pichia pastoris and Its Degradation of Lignin. Appl Biochem Biotechnol 2023; 195:6150-6167. [PMID: 36847985 DOI: 10.1007/s12010-023-04390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The laccase gene (Lac1) was cloned from Coriolopsis trogii strain Mafic-2001. Full-length sequence of Lac1 containing 11 exons and 10 introns is composed of 2140 nucleotides (nts). mRNA of Lac1 encoded for a protein of 517 aa. Nucleotide sequence of the laccase was optimized and expressed in Pichia pastoris X-33. SDS-PAGE analysis showed that the molecular weight of the purified recombinant laccase rLac1 was about 70 kDa. The optimum temperature and pH of rLac1 were 40 ℃ and 3.0, respectively. rLac1 showed high residual activity (90%) in the solutions after 1 h incubation at the pH ranging from 2.5 to 8.0. rLac1 maintained over 60% of laccase activity at the temperatures ranging from 20 to 60 °C, and kept higher than 50% of its activity at 40 °C for 2 h. The activity of rLac1 was promoted by Cu2+ and inhibited by Fe2+. Under optimal conditions, lignin degradation rates of rLac1 on the substrates of rice straw, corn stover, and palm kernel cake were 50.24%, 55.49%, and 24.43% (the lignin contents of substrates untreated with rLac1 were 100%), respectively. Treated with rLac1, the structures of agricultural residues (rice straw, corn stover, and palm kernel cake) were obviously loosened which was reflected by the analysis of scanning electron microscopy and Fourier transform infrared spectroscopy. Based on the specific activity of rLac1 on the degradation of lignin, rLac1 from Coriolopsis trogii strain Mafic-2001 has the potential for in-depth utilization of agricultural residues.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
25
|
De Filippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V, Tettamanti G, Ercolini D, Casartelli M, Caccia S. Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. MICROBIOME 2023; 11:205. [PMID: 37705113 PMCID: PMC10500907 DOI: 10.1186/s40168-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Davide Savy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Silvana Cangemi
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Silvia Caccia
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Mutanda I, Zahoor, Sethupathy S, Xu Q, Zhu B, Shah SWA, Zhuang Z, Zhu D. Optimization of heterologous production of Bacillus ligniniphilus L1 laccase in Escherichia coli through statistical design of experiments. Microbiol Res 2023; 274:127416. [PMID: 37290170 DOI: 10.1016/j.micres.2023.127416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Laccases are powerful multi-copper oxidoreductases that have wide applicability as "green" biocatalysts in biotechnological, bioremediation, and industrial applications. Sustainable production of large amounts of functional laccases from original sources is limited by low yields, difficulties in purification, slow growth of the organisms, and high cost of production. Harnessing the full potential of these versatile biocatalysts will require the development of efficient heterologous systems that allow high-yield, scalable, and cost-effective production. We previously cloned a temperature- and pH-stable laccase from Bacillus ligniniphilus L1 (L1-lacc) that demonstrated remarkable activity in the oxidation of lignin and delignification for bioethanol production. However, L1-lacc is limited by low enzyme yields in both the source organism and heterologous systems. Here, to improve production yields and lower the cost of production, we optimized the recombinant E. coli BL21 strain for high-level production of L1-lacc. Several culture medium components and fermentation parameters were optimized using one-factor-at-a-time (OFAT) and Plackett-Burman design (PBD) to screen for important factors that were then optimized using response surface methodology (RSM) and an orthogonal design. The optimized medium composition had compound nitrogen (15.6 g/L), glucose (21.5 g/L), K2HPO4 (0.15 g/L), MgSO4 (1 g/L), and NaCl (7.5 g/L), which allowed a 3.3-fold yield improvement while subsequent optimization of eight fermentation parameters achieved further improvements to a final volumetric activity titer of 5.94 U/mL in 24 h. This represents a 7-fold yield increase compared to the initial medium and fermentation conditions. This work presents statistically guided optimization strategies for improving heterologous production of a bacterial laccase that resulted in a high-yielding, cost-efficient production system for an enzyme with promising applications in lignin valorization, biomass processing, and generation of novel composite thermoplastics.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sayed Waqas Ali Shah
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Cortés-Antiquera R, Márquez SL, Espina G, Sánchez-SanMartín J, Blamey JM. Recombinant expression and characterization of a new laccase, bioinformatically identified, from the Antarctic thermophilic bacterium Geobacillus sp. ID17. Extremophiles 2023; 27:18. [PMID: 37428266 DOI: 10.1007/s00792-023-01299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Geobacillus sp. ID17 is a gram-positive thermophilic bacterium isolated from Deception Island, Antarctica, which has shown to exhibit remarkable laccase activity in crude extract at high temperatures. A bioinformatic search using local databases led to the identification of three putative multicopper oxidase sequences in the genome of this microorganism. Sequence analysis revealed that one of those sequences contains the four-essential copper-binding sites present in other well characterized laccases. The gene encoding this sequence was cloned and overexpressed in Escherichia coli, partially purified and preliminary biochemically characterized. The resulting recombinant enzyme was recovered in active and soluble form, exhibiting optimum copper-dependent laccase activity at 55 °C, pH 6.5 with syringaldazine substrate, retaining over 60% of its activity after 1 h at 55 and 60 °C. In addition, this thermophilic enzyme is not affected by common inhibitors SDS, NaCl and L-cysteine. Furthermore, biodecolorization assays revealed that this laccase is capable of degrading 60% of malachite green, 54% of Congo red, and 52% of Remazol Brilliant Blue R, after 6 h at 55 °C with aid of ABTS as redox mediator. The observed properties of this enzyme and the relatively straightforward overexpression and partial purification of it could be of great interest for future biotechnology applications.
Collapse
Affiliation(s)
- Rodrigo Cortés-Antiquera
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
| | | | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile
| | | | - Jenny M Blamey
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Estación Central, Santiago, Chile.
- Fundación Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.
| |
Collapse
|
28
|
Zhang Y, Plesner TJ, Ouyang Y, Zheng YC, Bouhier E, Berentzen EI, Zhang M, Zhou P, Zimmermann W, Andersen GR, Eser BE, Guo Z. Computer-aided discovery of a novel thermophilic laccase for low-density polyethylene degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131986. [PMID: 37413797 DOI: 10.1016/j.jhazmat.2023.131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Polyethylene (PE) and industrial dyes are recalcitrant pollutants calling for the development of sustainable solutions for their degradation. Laccases have been explored for removal of contaminants and pollutants, including dye decolorization and plastic degradation. Here, a novel thermophilic laccase from PE-degrading Lysinibaccillus fusiformis (LfLAC3) was identified through a computer-aided and activity-based screening. Biochemical studies of LfLAC3 indicated its high robustness and catalytic promiscuity. Dye decolorization experiments showed that LfLAC3 was able to degrade all the tested dyes with decolorization percentage from 39% to 70% without the use of a mediator. LfLAC3 was also demonstrated to degrade low-density polyethylene (LDPE) films after eight weeks of incubation with either crude cell lysate or purified enzyme. The formation of a variety of functional groups was detected using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Damage on the surfaces of PE films was observed via scanning electron microscopy (SEM). The potential catalytic mechanism of LfLAC3 was disclosed by structure and substrate-binding modes analysis. These findings demonstrated that LfLAC3 is a promiscuous enzyme that has promising potential for dye decolorization and PE degradation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Thea Jess Plesner
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Yi Ouyang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Yu-Cong Zheng
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße10, 35043 Marburg, Germany
| | - Etienne Bouhier
- Department of Biological Engineering, University of Technology of Compiegne, Compiegne, France
| | | | - Mingliang Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark; Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Pengfei Zhou
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, China
| | - Wolfgang Zimmermann
- Institute of Analytical Chemistry, Leipzig University, 04103 Leipzig, Germany
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
29
|
Chaudhary S, Varma A, Mandal M, Prasad R, Porwal S. Isolation and Characterization of a Novel Laccase-Producing Bacteria Bhargavaea beijingensis from Paper and Pulp Effluent-Treated Soil Using In Silico Approaches. Curr Microbiol 2023; 80:241. [PMID: 37300594 DOI: 10.1007/s00284-023-03346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Laccases (EC 1.10.3.2) are considered one of the most prominent multicopper enzymes that exhibit the inherent properties of oxidizing a range of phenolic substrates. Mostly, reported laccases have been isolated from the plants and fungi species, whereas bacterial laccases are yet to be explored. Bacterial laccases have numerous distinctive properties over fungal laccases, including stability at high temperatures and high pH. This study includes the isolation of bacteria through the soil sample collected from the paper and pulp industry; the highest laccase-producing bacteria was identified as Bhargavaea bejingensis, using 16S rRNA gene sequencing. The extracellular and intracellular activities after 24 h incubation were 1.41 U/mL and 4.95 U/mL, respectively. The laccase-encoding gene of the bacteria was sequenced; moreover, the in vitro translated protein was bioinformatically characterized and asserted that the laccase produced by the bacteria Bhargavaea bejingensis was structurally and sequentially homologous to the CotA protein of Bacillus subtilis. The enzyme laccase produced from B. bejingensis was classified as three-domain laccase with several copper-binding residues, where a few crucial copper-binding residues of the laccase enzyme were also predicted.
Collapse
Affiliation(s)
- Sonal Chaudhary
- Amity Institute of Microbial Technology, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur Sonitpur, Assam, 784028, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
30
|
Harish BS, Thayumanavan T, Nambukrishnan V, Sakthishobana K. Heterogeneous biocatalytic system for effective decolorization of textile dye effluent. 3 Biotech 2023; 13:165. [PMID: 37162807 PMCID: PMC10163993 DOI: 10.1007/s13205-023-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
The current physicochemical methods for decolorizing toxic synthetic dyes are not sustainable to halt the environmental damage as they are expensive and often produce concentrated sludge, which may lead to secondary disposal problems. Biocatalysis (microbes and/or their enzymes) is a cost-effective, versatile, energy-saving and clean alternative. The most common enzymes involved in dye degradation are laccases, azoreductases and peroxidases. Toxic dyes could be converted into less harmful byproducts through the combined action of many enzymes or the utilization of whole cells. The action of whole cells to treat dye effluents is either by biosorption or degradation (aerobic or anaerobic). Using immobilized cells or enzymes will offer advantages such as superior stability, persistence against harsh environmental conditions, reusability and longer half-lives. This review envisages the recent strategies of immobilization and bioreactor considerations with the immobilized system as the effective treatment of textile dye effluents. Packed bed reactors are the most popular heterogeneous biocatalytic reactors for dye decolorization due to their efficiency and cost-effectiveness.
Collapse
Affiliation(s)
- B. S. Harish
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - Tha Thayumanavan
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - Veerasekar Nambukrishnan
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402 India
| | - K. Sakthishobana
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401 India
| |
Collapse
|
31
|
Rodriguez-Yupanqui M, De La Cruz-Noriega M, Quiñones C, Otiniano NM, Quezada-Alvarez MA, Rojas-Villacorta W, Vergara-Medina GA, León-Vargas FR, Solís-Muñoz H, Rojas-Flores S. Lignin-Degrading Bacteria in Paper Mill Sludge. Microorganisms 2023; 11:1168. [PMID: 37317142 DOI: 10.3390/microorganisms11051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
The effluents generated in the paper industry, such as black liquor, have a high content of lignin and other toxic components; however, they represent a source of lignin-degrading bacteria with biotechnological potential. Therefore, the present study aimed to isolate and identify lignin-degrading bacteria species in paper mill sludge. A primary isolation was carried out from samples of sludge present in environments around a paper company located in the province of Ascope (Peru). Bacteria selection was made by the degradation of Lignin Kraft as the only carbon source in a solid medium. Finally, the laccase activity (Um-L-1) of each selected bacteria was determined by oxidation of 2,2'-azinobis-(3-etilbencenotiazolina-6-sulfonate) (ABTS). Bacterial species with laccase activity were identified by molecular biology techniques. Seven species of bacteria with laccase activity and the ability to degrade lignin were identified. The bacteria Agrobacterium tumefasciens (2), Klebsiella grimontii (1), and Beijeinckia fluminensis (1) were reported for first time. K. grimowntii and B. fluminensis presented the highest laccase activity, with values of 0.319 ± 0.005 UmL-1 and 0.329 ± 0.004 UmL-1, respectively. In conclusion, paper mill sludge may represent a source of lignin-degrading bacteria with laccase activity, and they could have potential biotechnological applications.
Collapse
Affiliation(s)
- Magda Rodriguez-Yupanqui
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería y Arquitectura, Universidad Cesar Vallejo, Trujillo 13007, Peru
| | | | - Claudio Quiñones
- Laboratorio de Biotecnología e Ingeniería Genética, Departamento de Microbiología y Parasitología, Universidad Nacional de Trujillo, Trujillo 13011, Peru
| | - Nélida Milly Otiniano
- Instituto de Investigación en Ciencia y Tecnología, Universidad César Vallejo, Trujillo 13001, Peru
| | | | | | - Gino A Vergara-Medina
- Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Frank R León-Vargas
- Departamento de Ingeniería Química, Facultad de Ingeniería Química, Universidad Nacional de la Amazonia Peruana, Iquitos 16002, Peru
| | - Haniel Solís-Muñoz
- Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad Cesar Vallejo, Trujillo 13007, Peru
| | - Segundo Rojas-Flores
- Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru
| |
Collapse
|
32
|
Steffens S, Antell EH, Cook EK, Rao G, Britt RD, Sedlak DL, Alvarez-Cohen L. An Artifact of Perfluoroalkyl Acid (PFAA) Removal Attributed to Sorption Processes in a Laccase Mediator System. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:337-342. [PMID: 37064824 PMCID: PMC10100556 DOI: 10.1021/acs.estlett.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Fungi and laccase mediator systems (LMSs) have a proven track record of oxidizing recalcitrant organic compounds. There has been considerable interest in applying LMSs to the treatment of perfluoroalkyl acids (PFAAs), a class of ubiquitous and persistent environmental contaminants. Some laboratory experiments have indicated modest losses of PFAAs over extended periods, but there have been no clear demonstrations of a transformation mechanism or the kinetics that would be needed for remediation applications. We set out to determine if this was a question of identifying and optimizing a rate-limiting step but discovered that observed losses of PFAAs were experimental artifacts. While unable to replicate the oxidation of PFAAs, we show that interactions of the PFAA compounds with laccase and laccase mediator mixtures could cause an artifact that mimics transformation (≲60%) of PFAAs. Furthermore, we employed a surrogate compound, carbamazepine (CBZ), and electron paramagnetic resonance spectroscopy to probe the formation of the radical species that had been proposed to be responsible for contaminant oxidation. We confirmed that under conditions where sufficient radical concentrations were produced to oxidize CBZ, no PFAA removal took place.
Collapse
Affiliation(s)
- Sophia
D. Steffens
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Edmund H. Antell
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Emily K. Cook
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Guodong Rao
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - David L. Sedlak
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Lisa Alvarez-Cohen
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Fabbri F, Bischof S, Mayr S, Gritsch S, Jimenez Bartolome M, Schwaiger N, Guebitz GM, Weiss R. The Biomodified Lignin Platform: A Review. Polymers (Basel) 2023; 15:polym15071694. [PMID: 37050308 PMCID: PMC10096731 DOI: 10.3390/polym15071694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
A reliance on fossil fuel has led to the increased emission of greenhouse gases (GHGs). The excessive consumption of raw materials today makes the search for sustainable resources more pressing than ever. Technical lignins are mainly used in low-value applications such as heat and electricity generation. Green enzyme-based modifications of technical lignin have generated a number of functional lignin-based polymers, fillers, coatings, and many other applications and materials. These bio-modified technical lignins often display similar properties in terms of their durability and elasticity as fossil-based materials while also being biodegradable. Therefore, it is possible to replace a wide range of environmentally damaging materials with lignin-based ones. By researching publications from the last 20 years focusing on the latest findings utilizing databases, a comprehensive collection on this topic was crafted. This review summarizes the recent progress made in enzymatically modifying technical lignins utilizing laccases, peroxidases, and lipases. The underlying enzymatic reaction mechanisms and processes are being elucidated and the application possibilities discussed. In addition, the environmental assessment of novel technical lignin-based products as well as the developments, opportunities, and challenges are highlighted.
Collapse
|
34
|
Jiang J, Deng JL, Wang ZG, Chen XY, Wang SJ, Wang YC. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules 2023; 28:molecules28073037. [PMID: 37049802 PMCID: PMC10096025 DOI: 10.3390/molecules28073037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Laccases have been widely used for fruit juice clarification, food modification, and paper pulp delignification. In addition, laccases exhibit remarkable performance in the degradation of toxic substances, including pesticides, organic synthetic dyes, antibiotics, and organic pollutants. Thus, the screening and development of robust laccases has attracted significant attention. In this study, Vibrio sp. LA is a strain capable of producing cold-adapted laccases. The laccase coding gene L01 was cloned from this strain and expressed in Yarrowia lipolytica, a host with good secretion ability. The secreted L01 (approximate MW of 56,000 Da) had the activity and specific activity of 18.6 U/mL and 98.6 U/mg toward ABTS, respectively. The highest activity occurred at 35 °C. At 20 °C, L01 activity was over 70% of the maximum activity in pH conditions ranging from 4.5–10.0. Several synthetic dyes were efficiently degraded by L01. Owing to its robustness, salt tolerance, and pH stability, L01 is a promising catalytic tool for potential industrial applications.
Collapse
Affiliation(s)
- Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Jing-Ling Deng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Gang Wang
- Training Center, Qingdao Harbour Vocational & Technical College, Qingdao 266404, China
| | - Xiao-Yu Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shu-Jie Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong-Chuang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
35
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
36
|
Liu C, Zhang X, Zhou Y, Zhu L, Zhang C, Yan X, You S, Qi W, Su R. A reusable and leakage-proof immobilized Laccase@UiO-66-NH2(30) for the efficient biodegradation of rifampicin and lincomycin. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
37
|
Bisaccia M, Binda E, Rosini E, Caruso G, Dell'Acqua O, Azzaro M, Laganà P, Tedeschi G, Maffioli EM, Pollegioni L, Marinelli F. A novel promising laccase from the psychrotolerant and halotolerant Antarctic marine Halomonas sp. M68 strain. Front Microbiol 2023; 14:1078382. [PMID: 36846806 PMCID: PMC9950745 DOI: 10.3389/fmicb.2023.1078382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
Microbial communities inhabiting the Antarctic Ocean show psychrophilic and halophilic adaptations conferring interesting properties to the enzymes they produce, which could be exploited in biotechnology and bioremediation processes. Use of cold- and salt-tolerant enzymes allows to limit costs, reduce contaminations, and minimize pretreatment steps. Here, we report on the screening of 186 morphologically diverse microorganisms isolated from marine biofilms and water samples collected in Terra Nova Bay (Ross Sea, Antarctica) for the identification of new laccase activities. After primary screening, 13.4 and 10.8% of the isolates were identified for the ability to oxidize 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and the dye azure B, respectively. Amongst them, the marine Halomonas sp. strain M68 showed the highest activity. Production of its laccase-like activity increased six-fold when copper was added to culture medium. Enzymatic activity-guided separation coupled with mass spectrometry identified this intracellular laccase-like protein (named Ant laccase) as belonging to the copper resistance system multicopper oxidase family. Ant laccase oxidized ABTS and 2,6-dimethoxy phenol, working better at acidic pHs The enzyme showed a good thermostability, with optimal temperature in the 40-50°C range and maintaining more than 40% of its maximal activity even at 10°C. Furthermore, Ant laccase was salt- and organic solvent-tolerant, paving the way for its use in harsh conditions. To our knowledge, this is the first report concerning the characterization of a thermo- and halo-tolerant laccase isolated from a marine Antarctic bacterium.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy,*Correspondence: Melissa Bisaccia,
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (CNR-ISP), National Research Council, Messina, Italy
| | - Ombretta Dell'Acqua
- Institute of Polar Sciences (CNR-ISP), National Research Council, Venice, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences (CNR-ISP), National Research Council, Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Milan, Italy,Cimaina, University of Milan, Milan, Italy
| | - Elisa M. Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Milan, Italy,Cimaina, University of Milan, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| |
Collapse
|
38
|
Liu J, Li B, Li Z, Yang F, Chen B, Chen J, Li H, Jiang Z. Deciphering the alkaline stable mechanism of bacterial laccase from Bacillus pumilus by molecular dynamics simulation can improve the decolorization of textile dyes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130370. [PMID: 36444079 DOI: 10.1016/j.jhazmat.2022.130370] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Laccases are considered promising tools for removing synthetic dyes from textile and tannery effluents. However, the alkaline pH in the effluents causes laccase instability, inactivation, and difficulty in its bioremediation. Based on a Bacillus pumilus ZB1 (BpLac) derived alkaline stable laccase, this study aimed to elucidate its alkaline stable mechanism at molecular level using molecular dynamics simulation. The effects of metal ions, organic solvents, and inhibitors on BpLac activity were assessed. BpLac formed more salt bridges and negatively charged surface in alkaline environment. Thereafter, pH-induced conformation changes were analyzed using GROMACS at pH 5.0 and 10.0. Among the identified residues with high fluctuation, the distance between Pro359 and Thr414 was stable at pH 10.0 but highly variable at pH 5.0. DSSP analysis suggested that BpLac formed more β-sheet and less coil at pH 10.0. Principal component analysis and free energy landscape indicated that irregular coils formed at pH 5.0 benefit for activity, while rigid α-helix and β-sheet structures formed at pH 10.0 contributed to alkaline stability. Breaking the α-helix near T1 copper center would not reduce alkaline stability but could improve dye decolorization by BpLac. Overall, these findings would advance the potential application of bacterial laccase in alkaline effluent treatment.
Collapse
Affiliation(s)
- Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Bianxia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Fan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Bixin Chen
- Guilin Jingcheng Biotechnology Company Limited, Guilin 541001, PR China
| | - Jianhui Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
39
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
40
|
Recent Advancements in Biotechnological Applications of Laccase as a Multifunctional Enzyme. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotechnological and industrial processes involve applications of various microorganisms and enzymes, and laccase, as a multifunctional enzyme, is admired for its role in degrading a variety of substances. Laccase is a copper-containing oxidase enzyme that is usually found in insects, plants, and microorganisms including fungi and archaea. Several phenolic substrates are oxidized by laccases, which results in crosslinking. Various research work and industrial solutions have identified the true potential of laccases to degrade various aromatic polymers, and their plausible application in bioremediation and other industries is entirely conceivable. This review focuses on laccases as a multifunctional enzyme and provides an overview of its natural origin, catalytic mechanism, and various methods of production. Further, we discuss the various applications of laccase in the biotechnological arena. We observed that laccase can degrade and detoxify various synthetic compounds. The broad substrate specificity of the same makes it worthy for different fields of industrial applications such as food and bioremediation technology, textile and paper technology, biosensors and nanobiotechnology, biofuel, and various other applications, which are described in this paper. These recent developments in the application of laccase show the multifunctional role of laccase in industrial biotechnology and provide an outlook of laccase as a multifunctional enzyme at the forefront of biotechnology.
Collapse
|
41
|
Golgeri M DB, Mulla SI, Bagewadi ZK, Tyagi S, Hu A, Sharma S, Bilal M, Bharagava RN, Ferreira LFR, Gurumurthy DM, Nadda AK. A systematic review on potential microbial carbohydrases: current and future perspectives. Crit Rev Food Sci Nutr 2022; 64:438-455. [PMID: 35930295 DOI: 10.1080/10408398.2022.2106545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.
Collapse
Affiliation(s)
- Dilshad Begum Golgeri M
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
- Department of Biochemistry, Indian Academy Degree College-Autonomous Kalyanagar, Bangalore, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, India
| | - Swati Tyagi
- IRRI- South Asia Regional centre, Varanasi, Uttar Pradesh, India
| | - Anyi Hu
- Institute of Urban Environment Chinese Academy of Sciences, CAS Key Laboratory of Urban Pollutant Conversion, Xiamen, China
| | - Swati Sharma
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, Punjab, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bharagava
- Department of Microbiology (DM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | | | | | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
42
|
Kumar A, Singh AK, Bilal M, Chandra R. Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catal Letters 2022. [DOI: 10.1007/s10562-021-03800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Wang L, Tan Y, Sun S, Zhou L, Wu G, Shao Y, Wang M, Xin Z. Improving Degradation of Polycyclic Aromatic Hydrocarbons by Bacillus atrophaeus Laccase Fused with Vitreoscilla Hemoglobin and a Novel Strong Promoter Replacement. BIOLOGY 2022; 11:1129. [PMID: 36009756 PMCID: PMC9404780 DOI: 10.3390/biology11081129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Laccases catalyze a variety of electron-rich substrates by reducing O2 to H2O, with O2 playing a vital role as the final electron acceptor in the reaction process. In the present study, a laccase gene, lach5, was identified from Bacillus atrophaeus through sequence-based screening. LacH5 was engineered for modification by fusion expression and promoter replacement. Results showed that the purified enzyme LacH5 exhibited strong oxidative activity towards 2,2'-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid) ammonium salt (ABTS) under optimum pH and temperature conditions (pH 5.0, 60 °C) and displayed remarkable thermostability. The activity of the two fusion enzymes was enhanced significantly from 14.2 U/mg (LacH5) to 22.5 U/mg (LacH5-vgb) and 18.6 U/mg (Vgb-lacH5) toward ABTS after LacH5 fusing with Vitreoscilla hemoglobin (VHb). Three of six tested polycyclic aromatic hydrocarbons (PAHs) were significantly oxidized by two fusion laccases as compared with LacH5. More importantly, the expression level of LacH5 and fusion protein LacH5-vgb was augmented by 3.7-fold and 7.0-fold, respectively, by using a novel strong promoter replacement. The results from the current investigation provide new insights and strategies for improving the activity and expression level of bacterial laccases, and these strategies can be extended to other laccases and multicopper oxidases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (L.W.); (Y.T.); (S.S.); (L.Z.); (G.W.); (Y.S.); (M.W.)
| |
Collapse
|
44
|
Jiang Q, Cui Z, Wei R, Nie K, Xu H, Liu L. Feasible Cluster Model Method for Simulating the Redox Potentials of Laccase CueO and Its Variant. Front Bioeng Biotechnol 2022; 10:957694. [PMID: 35935497 PMCID: PMC9354848 DOI: 10.3389/fbioe.2022.957694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Laccases are regarded as versatile green biocatalysts, and recent scientific research has focused on improving their redox potential for broader industrial and environmental applications. The density functional theory (DFT) quantum mechanics approach, sufficiently rigorous and efficient for the calculation of electronic structures, is conducted to better comprehend the connection between the redox potential and the atomic structural feature of laccases. According to the crystal structure of wild type laccase CueO and its variant, a truncated miniature cluster model method was established in this research. On the basic of thermodynamic cycle, the overall Gibbs free energy variations before and after the one-electron reduction were calculated. It turned out that the trends of redox potentials to increase after variant predicted by the theoretical calculations correlated well with those obtained by experiments, thereby validating the feasibility of this cluster model method for simulating the redox potentials of laccases.
Collapse
Affiliation(s)
- Qixuan Jiang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Ziheng Cui
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Ren Wei
- Junior Research Group Plastic Biodegradation at Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Haijun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Haijun Xu, ; Luo Liu,
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Haijun Xu, ; Luo Liu,
| |
Collapse
|
45
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
46
|
Ali NS, Huang F, Qin W, Yang TC. Identification and Characterization of a New Serratia proteamaculans Strain That Naturally Produces Significant Amount of Extracellular Laccase. Front Microbiol 2022; 13:878360. [PMID: 35923404 PMCID: PMC9339997 DOI: 10.3389/fmicb.2022.878360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Natural biodegradation processes hold promises for the conversion of agro-industrial lignocellulosic biomaterials into biofuels and fine chemicals through lignin-degrading enzymes. The high cost and low stability of these enzymes remain a significant challenge to economic lignocellulosic biomass conversion. Wood-degrading microorganisms are a great source for novel enzyme discoveries. In this study, the decomposed wood samples were screened, and a promising γ-proteobacterial strain that naturally secreted a significant amount of laccase enzyme was isolated and identified as Serratia proteamaculans AORB19 based on its phenotypic and genotypic characteristics. The laccase activities in culture medium of strain AORB19 were confirmed both qualitatively and quantitatively. Significant cultural parameters for laccase production under submerged conditions were identified following a one-factor-at-a-time (OFAT) methodology: temperature 30°C, pH 9, yeast extract (2 g/l), Li+, Cu2+, Ca2+, and Mn2+ (0.5 mM), and acetone (5%). Under the selected conditions, a 6-fold increase (73.3 U/L) in laccase production was achieved when compared with the initial culturing conditions (12.18 U/L). Furthermore, laccase production was enhanced under alkaline and mesophilic growth conditions in the presence of metal ions and organic solvents. The results of the study suggest the promising potential of the identified strain and its enzymes in the valorization of lignocellulosic wastes. Further optimization of culturing conditions to enhance the AORB19 strain laccase secretion, identification and characterization of the purified enzyme, and heterologous expression of the specific enzyme may lead to practical industrial and environmental applications.
Collapse
Affiliation(s)
- Nadia Sufdar Ali
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Fang Huang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Trent Chunzhong Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
47
|
Aslam S, Ali A, Asgher M, Farah N, Iqbal HMN, Bilal M. Fabrication and Catalytic Characterization of Laccase-Loaded Calcium-Alginate Beads for Enhanced Degradation of Dye-Contaminated Aqueous Solutions. Catal Letters 2022; 152:1729-1741. [DOI: 10.1007/s10562-021-03765-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023]
|
48
|
Benit N, Lourthuraj AA, Barathikannan K, Mostafa AAF, Alodaini HA, Yassin MT, Hatamleh AA. Immobilization of Halomonas halodurans and Bacillus halodurans in packed bed bioreactor for continuous removal of phenolic impurities in waste water. ENVIRONMENTAL RESEARCH 2022; 209:112822. [PMID: 35093306 DOI: 10.1016/j.envres.2022.112822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Phenol is an organic contaminant widely distributed in wastewater. Biodegradation is one of the suitable methods used to remove phenol from the wastewater. In this study, the bacterial laccase and pectinase were analyzed and phenol degradation potential was studied. A total of six bacterial strains were selected and their phenol degrading potentials were studied. Laccase and pectinase producers were screened on substrate agar plates and several strains produced these enzymes in submerged fermentation. Among these enzyme producing strains, strain PD8 and PD22 exhibited potent phenol degrading ability than other strains. These two bacterial strains (Halomonas halodurans PD8 and Bacillus halodurans PD22) exhibited maximum growth in phenol-supplemented culture medium. These two organisms grown well at wide pH values (pH 3.0 and 10.0), survive well between 20 °C and 50 °C, and showed growth between 1 and 10% sodium chloride concentration. The lyophilized enzyme from PD8 and PD22 were immobilized with alginate beads cross liked with divalent cations. At 1% alginate, the binding efficiency was 40.2 ± 2.9% and it improved up to 2.0% concentration (67.5 ± 4.2%) and further increase on alginate concentration affected binding efficiency. Phenol degradation was maximum within 10 h of treatment in the immobilized packed bed column reactor (83.1 ± 3.2%) and colour removal efficiency was maximum at 12 h treatment (82.1 ± 3.9%). After four successive experimental trials more than 40% efficiency was achieved.
Collapse
Affiliation(s)
- N Benit
- Department of Botany, Holycross College, Nagercoil, Kanyakumari District, Tamilnadu, India.
| | - A Amala Lourthuraj
- Department of Biochemistry, Guru Nanak College (autonomous), Velachery, Chennai, 600042, Tamil nadu, India
| | - K Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ashraf Abdel-Fattah Mostafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
49
|
Edoamodu CE, Nwodo UU. Thermo-active and alkaliphilic amalgamated laccase immobilized on sodium alginate for synthetic dye decolourization. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2078661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Chiedu E. Edoamodu
- Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U. Nwodo
- Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
50
|
van Eerde A, Várnai A, Wang Y, Paruch L, Jameson JK, Qiao F, Eiken HG, Su H, Eijsink VGH, Clarke JL. Successful Production and Ligninolytic Activity of a Bacterial Laccase, Lac51, Made in Nicotiana benthamiana via Transient Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:912293. [PMID: 35646038 PMCID: PMC9141054 DOI: 10.3389/fpls.2022.912293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Giant panda could have bamboo as their exclusive diet for about 2 million years because of the contribution of numerous enzymes produced by their gut bacteria, for instance laccases. Laccases are blue multi-copper oxidases that catalyze the oxidation of a broad spectrum of phenolic and aromatic compounds with water as the only byproduct. As a "green enzyme," laccases have potential in industrial applications, for example, when dealing with degradation of recalcitrant biopolymers, such as lignin. In the current study, a bacterial laccase, Lac51, originating from Pseudomonas putida and identified in the gut microbiome of the giant panda's gut was transiently expressed in the non-food plant Nicotiana benthamiana and characterized. Our results show that recombinant Lac51 exhibits bacterial laccase properties, with optimal pH and temperature at 7-8 and 40°C, respectively, when using syringaldazine as substrate. Moreover, we demonstrate the functional capability of the plant expressed Lac51 to oxidize lignin using selected lignin monomers that serve as substrates of Lac51. In summary, our study demonstrates the potential of green and non-food plants as a viable enzyme production platform for bacterial laccases. This result enriches our understanding of plant-made enzymes, as, to our knowledge, Lac51 is the first functional recombinant laccase produced in plants.
Collapse
Affiliation(s)
- André van Eerde
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Yanliang Wang
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Lisa Paruch
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - John-Kristian Jameson
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Fen Qiao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Haidian, China
| | - Hans Geir Eiken
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Hang Su
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | |
Collapse
|