1
|
Bokun V, Strang BL, Pantazi P, Liu Y, Holder B. Nano-Flow Cytometry-Guided Discrimination and Separation of Human Cytomegalovirus Virions and Extracellular Vesicles. J Extracell Vesicles 2025; 14:e70060. [PMID: 40314077 PMCID: PMC12046292 DOI: 10.1002/jev2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/20/2024] [Accepted: 02/12/2025] [Indexed: 05/03/2025] Open
Abstract
Accurate quantification and physical separation of viral particles and extracellular vesicles (EVs) produced by virus-infected cells presents a significant challenge due to their overlapping physical and biochemical properties. Most analytical methods provide information on a particle mixture as a whole, without distinguishing viral particles from EVs. By utilising nano-flow cytometry (nFC), a specialised form of flow cytometry adapted for the investigation of nanoparticles, we developed a simple, nucleic acid staining-based method for discrimination and simultaneous quantification of the human cytomegalovirus (HCMV) virions, dense bodies and EVs, within extracellular particle mixtures produced by HCMV-infected cells. We show that nucleic acid staining allows for discrimination of the individual particle types based on their distinct fluorescence/side scatter profiles, assessed at single-particle level by nFC. Following this, we optimised a method for physical separation of EVs from viral particles, based on high-speed centrifugation through density cushions, using nFC as a tool to evaluate the purity of the isolated EVs. The methods introduced here have the capacity to circumvent common difficulties associated with the co-investigation of EVs and viruses.
Collapse
Affiliation(s)
- Vladimir Bokun
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Blair L. Strang
- Institute for Infection and ImmunityCity St George's, University of LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Yan Liu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
2
|
Vučemilović A. Exosomes: intriguing mediators of intercellular communication in the organism's response to noxious agents. Arh Hig Rada Toksikol 2024; 75:228-239. [PMID: 39718095 PMCID: PMC11667715 DOI: 10.2478/aiht-2024-75-3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Exosomes are small extracellular vesicles that range from 30 to 150 nm in size and are formed through cellular endocytosis. They consist of proteins, lipids, and nucleic acids at varying ratios and quantities. The composition and spatiotemporal dynamics of exosomes suggest that they play a crucial role in intercellular communication. The information conveyed by exosomes significantly impacts the regulation of health and disease states in the organism. The term "noxious" refers to all harmful environmental agents and conditions that can disrupt the physiological equilibrium and induce pathological states, regardless whether of radiological, biological, or chemical origin. This review comprehensively examines the presence of such noxious agents within the organism in relation to exosome formation and function. Furthermore, it explores the cause-effect relationship between noxious agents and exosomes, aiming to restore physiological homeostasis and prepare the organism for defence against harmful agents. Regardless of the specific bioinformatic content associated with each noxious agent, synthesis of data on the interactions between various types of noxious agents and exosomes reveals that an organized defence against these agents is unachievable without the support of exosomes. Consequently, exosomes are identified as the primary communication and information system within an organism, with their content being pivotal in maintaining the health-disease balance.
Collapse
|
3
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
4
|
Wu J, Mao K, Zhang R, Fu Y. Extracellular vesicles in the pathogenesis of neurotropic viruses. Microb Pathog 2024; 195:106901. [PMID: 39218378 DOI: 10.1016/j.micpath.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.
Collapse
Affiliation(s)
- Junyi Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Kedan Mao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Mao L, Gao Q, Shen Y, Bao C, Xiang H, Chen Q, Gao Q, Huang F, He W, Wang J. EV71 infection alters the lipid composition of human rhabdomyosarcoma (RD) cells-derived extracellular vesicles. Front Microbiol 2024; 15:1430052. [PMID: 39301189 PMCID: PMC11411429 DOI: 10.3389/fmicb.2024.1430052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 09/22/2024] Open
Abstract
Previous studies demonstrated that EV71-infected cells secrete extracellular vesicles (EVs), facilitating the transfer of viral components to recipient cells and thereby promoting virus spread. Considering lipid signaling plays a crucial role in EVs-mediated cell-to-cell communication, we compared the lipid profile of EVs secreted from uninfected and EV71-infected cells (EVs-Mock and EVs-EV71) using the human rhabdomyosarcoma (RD) cell model. These two groups of EVs were purified by using size exclusion chromatography (SEC), respectively, and evaluated by transmission electron microscopy (TEM), nanoparticle tracking technology (NTA), and Western blotting (WB). In-depth lipidomic analysis of EVs identified 1705 lipid molecules belonging to 43 lipid classes. The data showed a significant increase in the lipid content of EVs after EV71 infection. Meanwhile, we deeply analyzed the changes in lipids and screened for lipid molecules with significant differences compared EVs-EV71 with EVs-Mock EVs. Altogether, we report the alterations in the lipid profile of EVs derived from RD-cells after EV71 infection, which may affect the function of the EVs in the recipient cells.
Collapse
Affiliation(s)
- Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxuan Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
- Department of Laboratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Feng Huang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Wenyuan He
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Jianjun Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
6
|
Takakura Y, Hanayama R, Akiyoshi K, Futaki S, Hida K, Ichiki T, Ishii-Watabe A, Kuroda M, Maki K, Miura Y, Okada Y, Seo N, Takeuchi T, Yamaguchi T, Yoshioka Y. Quality and Safety Considerations for Therapeutic Products Based on Extracellular Vesicles. Pharm Res 2024; 41:1573-1594. [PMID: 39112776 PMCID: PMC11362369 DOI: 10.1007/s11095-024-03757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/28/2024] [Indexed: 08/30/2024]
Abstract
Extracellular vesicles (EVs) serve as an intrinsic system for delivering functional molecules within our body, playing significant roles in diverse physiological phenomena and diseases. Both native and engineered EVs are currently the subject of extensive research as promising therapeutics and drug delivery systems, primarily due to their remarkable attributes, such as targeting capabilities, biocompatibility, and low immunogenicity and mutagenicity. Nevertheless, their clinical application is still a long way off owing to multiple limitations. In this context, the Science Board of the Pharmaceuticals and Medical Devices Agency (PMDA) of Japan has conducted a comprehensive assessment to identify the current issues related to the quality and safety of EV-based therapeutic products. Furthermore, we have presented several examples of the state-of-the-art methodologies employed in EV manufacturing, along with guidelines for critical processes, such as production, purification, characterization, quality evaluation and control, safety assessment, and clinical development and evaluation of EV-based therapeutics. These endeavors aim to facilitate the clinical application of EVs and pave the way for their transformative impact in healthcare.
Collapse
Affiliation(s)
- Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Biology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Japan
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency, Chiyoda-ku, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yoshiaki Okada
- Department of Transfusion Medicine and Cell Transplantation, Saitama Medical University Hospital, Kawagoe, Japan
| | - Naohiro Seo
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Toshihide Takeuchi
- Life Science Research Institute, Kindai University, Higashi-osaka, Japan
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjuku, Japan
| |
Collapse
|
7
|
Yu H, Wu J, Pan G. Targeting the Ophthalmic Diseases Using Extracellular Vesicles 'Exosomes': Current Insights on Their Clinical Approval and Present Trials. Aging Dis 2024; 16:1225-1241. [PMID: 38913038 PMCID: PMC12096919 DOI: 10.14336/ad.2024.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/25/2024] [Indexed: 06/25/2024] Open
Abstract
Ophthalmic diseases encompass a diverse range of conditions, each necessitating tailored treatment strategies. In the realm of ophthalmic research and therapeutic interventions, various subtypes of exosomes are being explored for their regenerative, neuroprotective, and anti-inflammatory properties. Exosomes have garnered increasing attention as promising therapeutic vehicles due to their natural role in cell-to-cell communication and targeted delivery capabilities. Derived from cells, these small vesicles facilitate the transportation of numerous molecules between cells, offering advantages such as low immunogenicity, stability, and precise cell targeting. These inherent qualities make exosomes an enticing avenue for advancing treatment options for ophthalmic diseases. While ongoing research and clinical applications continue to evolve, several exosome subtypes have demonstrated potential for addressing various ophthalmic conditions, including glaucoma, age-related macular degeneration, retinal degenerative disorders, and ocular inflammatory conditions.
Collapse
Affiliation(s)
- Hanxiang Yu
- Queen Marry College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jinsong Wu
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Gaoxiang Pan
- Queen Marry College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
8
|
Ferdous J, Bhuia MS, Chowdhury R, Rakib AI, Aktar MA, Al Hasan MS, Melo Coutinho HD, Islam MT. Pharmacological Activities of Plant-Derived Fraxin with Molecular Mechanisms: A Comprehensive Review. Chem Biodivers 2024; 21:e202301615. [PMID: 38506600 DOI: 10.1002/cbdv.202301615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mst Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
9
|
Latanova A, Karpov V, Starodubova E. Extracellular Vesicles in Flaviviridae Pathogenesis: Their Roles in Viral Transmission, Immune Evasion, and Inflammation. Int J Mol Sci 2024; 25:2144. [PMID: 38396820 PMCID: PMC10889558 DOI: 10.3390/ijms25042144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.K.); (E.S.)
| | | | | |
Collapse
|
10
|
Chatterjee S, Kordbacheh R, Sin J. Extracellular Vesicles: A Novel Mode of Viral Propagation Exploited by Enveloped and Non-Enveloped Viruses. Microorganisms 2024; 12:274. [PMID: 38399678 PMCID: PMC10892846 DOI: 10.3390/microorganisms12020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are small membrane-enclosed structures that have gained much attention from researchers across varying scientific fields in the past few decades. Cells secrete diverse types of EVs into the extracellular milieu which include exosomes, microvesicles, and apoptotic bodies. These EVs play a crucial role in facilitating intracellular communication via the transport of proteins, lipids, DNA, rRNA, and miRNAs. It is well known that a number of viruses hijack several cellular pathways involved in EV biogenesis to aid in their replication, assembly, and egress. On the other hand, EVs can also trigger host antiviral immune responses by carrying immunomodulatory molecules and viral antigens on their surface. Owing to this intricate relationship between EVs and viruses, intriguing studies have identified various EV-mediated viral infections and interrogated how EVs can alter overall viral spread and longevity. This review provides a comprehensive overview on the EV-virus relationship, and details various modes of EV-mediated viral spread in the context of clinically relevant enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
| | | | - Jon Sin
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Lane, Tuscaloosa, AL 35401, USA; (S.C.); (R.K.)
| |
Collapse
|
11
|
Gheitasi H, Sabbaghian M, Shekarchi AA, Mirmazhary AA, Poortahmasebi V. Exosome-mediated regulation of inflammatory pathway during respiratory viral disease. Virol J 2024; 21:30. [PMID: 38273382 PMCID: PMC10811852 DOI: 10.1186/s12985-024-02297-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Viruses have developed many mechanisms by which they can stimulate or inhibit inflammation and cause various diseases, including viral respiratory diseases that kill many people every year. One of the mechanisms that viruses use to induce or inhibit inflammation is exosomes. Exosomes are small membrane nanovesicles (30-150 nm) released from cells that contain proteins, DNA, and coding and non-coding RNA species. They are a group of extracellular vesicles that cells can take up to produce and mediate communication. Intercellular effect exosomes can deliver a broad confine of biological molecules, containing nucleic acids, proteins, and lipids, to the target cell, where they can convey therapeutic or pathogenic consequences through the modulation of inflammation and immune processes. Recent research has shown that exosomes can deliver entire virus genomes or virions to distant target cells, then the delivered viruses can escape the immune system and infect cells. Adenoviruses, orthomyxoviruses, paramyxoviruses, respiratory syncytial viruses, picornaviruses, coronaviruses, and rhinoviruses are mostly related to respiratory diseases. In this article, we will first discuss the current knowledge of exosomes. We will learn about the relationship between exosomes and viral infections, and We mention the inflammations caused by viruses in the airways, the role of exosomes in them, and finally, we examine the relationship between the viruses as mentioned earlier, and the regulation of inflammatory pathways that play a role in causing the disease.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ali Mirmazhary
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Wang Y, Lu C, Guo S, Guo Y, Wei T, Chen Q. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. Nat Commun 2024; 15:3. [PMID: 38167823 PMCID: PMC10762104 DOI: 10.1038/s41467-023-43488-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
Salivary effectors of piercing-sucking insects can suppress plant defense to promote insect feeding, but it remains largely elusive how they facilitate plant virus transmission. Leafhopper Nephotettix cincticeps transmits important rice reovirus via virus-packaging exosomes released from salivary glands and then entering the rice phloem. Here, we report that intact salivary vitellogenin of N. cincticeps (NcVg) is associated with the GTPase Rab5 of N. cincticeps (NcRab5) for release from salivary glands. In virus-infected salivary glands, NcVg is upregulated and packaged into exosomes mediated by virus-induced NcRab5, subsequently entering the rice phloem. The released NcVg inherently suppresses H2O2 burst of rice plants by interacting with rice glutathione S-transferase F12, an enzyme catalyzing glutathione-dependent oxidation, thus facilitating leafhoppers feeding. When leafhoppers transmit virus, virus-upregulated NcVg thus promotes leafhoppers feeding and enhances viral transmission. Taken together, the findings provide evidence that viruses exploit insect exosomes to deliver virus-hijacked effectors for efficient transmission.
Collapse
Affiliation(s)
- Yanfei Wang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shude Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxin Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
14
|
Waury K, Gogishvili D, Nieuwland R, Chatterjee M, Teunissen CE, Abeln S. Proteome encoded determinants of protein sorting into extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e120. [PMID: 38938677 PMCID: PMC11080751 DOI: 10.1002/jex2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are membranous structures released by cells into the extracellular space and are thought to be involved in cell-to-cell communication. While EVs and their cargo are promising biomarker candidates, sorting mechanisms of proteins to EVs remain unclear. In this study, we ask if it is possible to determine EV association based on the protein sequence. Additionally, we ask what the most important determinants are for EV association. We answer these questions with explainable AI models, using human proteome data from EV databases to train and validate the model. It is essential to correct the datasets for contaminants introduced by coarse EV isolation workflows and for experimental bias caused by mass spectrometry. In this study, we show that it is indeed possible to predict EV association from the protein sequence: a simple sequence-based model for predicting EV proteins achieved an area under the curve of 0.77 ± 0.01, which increased further to 0.84 ± 0.00 when incorporating curated post-translational modification (PTM) annotations. Feature analysis shows that EV-associated proteins are stable, polar, and structured with low isoelectric point compared to non-EV proteins. PTM annotations emerged as the most important features for correct classification; specifically, palmitoylation is one of the most prevalent EV sorting mechanisms for unique proteins. Palmitoylation and nitrosylation sites are especially prevalent in EV proteins that are determined by very strict isolation protocols, indicating they could potentially serve as quality control criteria for future studies. This computational study offers an effective sequence-based predictor of EV associated proteins with extensive characterisation of the human EV proteome that can explain for individual proteins which factors contribute to their EV association.
Collapse
Affiliation(s)
- Katharina Waury
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Dea Gogishvili
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Vesicle Observation Centre, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Abeln
- Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
| |
Collapse
|
15
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
16
|
Xiao W, Huang Q, Luo P, Tan X, Xia H, Wang S, Sun Y, Wang Z, Ma Y, Zhang J, Jin Y. Lipid metabolism of plasma-derived small extracellular vesicles in COVID-19 convalescent patients. Sci Rep 2023; 13:16642. [PMID: 37789017 PMCID: PMC10547714 DOI: 10.1038/s41598-023-43189-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), which affects multiple organs, is causing an unprecedented global public health crisis. Most COVID-19 patients recover gradually upon appropriate interventions. Viruses were reported to utilize the small extracellular vesicles (sEVs), containing a cell-specific cargo of proteins, lipids, and nucleic acids, to escape the attack from the host's immune system. This study aimed to examine the sEVs lipid profile of plasma of recovered COVID-19 patients (RCs). Plasma sEVs were separated from 83 RCs 3 months after discharge without underlying diseases, including 18 recovered asymptomatic patients (RAs), 32 recovered moderate patients (RMs), and 33 recovered severe and critical patients (RSs), and 19 healthy controls (HCs) by Total Exosome Isolation Kit. Lipids were extracted from sEVs and then subjected to targeted liquid chromatography-mass spectrometry. The size, concentration, and distribution of sEVs did not differ in RCs and HCs as validated by transmission electron microscopy, nanoparticle tracking analysis, and immunoblot analysis. Fifteen subclasses of 508 lipids were detected in plasma sEVs from HCs, RAs, RMs, and RSs, such as phosphatidylcholines (PCs) and diacylglycerols (DAGs), etc. Total lipid intensity displayed downregulation in RCs compared with HCs. The relative abundance of DAGs gradually dropped, whereas PCs, lysophosphatidylcholines, and sphingomyelins were higher in RCs relative to HCs, especially in RSs. 88 lipids out of 241 in sEVs of RCs were significantly different and a conspicuous increase was revealed with disease status. The sEVs lipids alternations were found to be significantly correlated with the clinical indices in RCs and HCs, suggesting that the impact of COVID-19 on lipid metabolism lingered for a long time. The lipid abnormalities bore an intimate link with glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis. Furthermore, the lipidomic analysis showed that RCs were at higher risk of developing diabetes and sustaining hepatic impairment. The abnormality of immunomodulation in RCs might still exist. The study may offer new insights into the mechanism of organ dysfunction and help identify novel therapeutic targets in the RCs.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ping Luo
- Department of Translational Medicine Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yice Sun
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhihui Wang
- Department of Scientific Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jianchu Zhang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Wuhan, 430022, China.
| |
Collapse
|
17
|
Huang H, Liu S, Zhao X, Zhao P, Jia Q, Ma H, Lin Q. Role of tear exosomes in the spread of herpes simplex virus type 1 in recurrent herpes simplex keratitis. Eye (Lond) 2023; 37:3180-3185. [PMID: 36894762 PMCID: PMC10564740 DOI: 10.1038/s41433-023-02473-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Herpes simplex keratitis (HSK) is the most common but serious infectious keratitis with high recurrence. It is predominantly caused by herpes simplex virus type 1 (HSV-1). The spread mechanism of HSV-1 in HSK is not entirely clear. Multiple publications indicate that exosomes participate in the intercellular communication process during viral infections. However, there is rare evidence that HSV-1 spreads in HSK by exosomal pathway. This study aims to investigate the relationship between the spread of HSV-1 and tear exosomes in recurrent HSK. METHODS Tear fluids collected from total 59 participants were included in this study. Tear exosomes were isolated by ultracentrifugation, then identified by silver staining and western blot. The size was determined by dynamic light scattering (DLS). The viral biomarkers were identified by western blot. The cellular uptake of exosomes was studied using labelled exosomes. RESULTS Tear exosomes were indeed enriched in tear fluids. Collected exosomes own normal diameters consistent with related reports. The exosomal biomarkers existed in tear exosomes. Labelled exosomes were successfully taken up by human corneal epithelial cells (HCEC) in large numbers in a short time. After cellular uptake, HSK biomarkers were detectable by western blot in infected cells. CONCLUSIONS Tear exosomes should be the latent sites of HSV-1 in recurrent HSK and might be involved in the spread of HSV-1. Besides, this study verifies HSV-1 genes can be indeed transferred between cells by exosomal pathway, providing new inspiration for the clinical intervention and treatment as well as the drug discovery of recurrent HSK.
Collapse
Affiliation(s)
- Huiying Huang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sihao Liu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xia Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingqing Jia
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huixiang Ma
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
18
|
Martínez LE, Magpantay LI, Guo Y, Hegde P, Detels R, Hussain SK, Epeldegui M. Extracellular vesicles as biomarkers for AIDS-associated non-Hodgkin lymphoma risk. Front Immunol 2023; 14:1259007. [PMID: 37809067 PMCID: PMC10556683 DOI: 10.3389/fimmu.2023.1259007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Extracellular vesicles are membrane-bound structures secreted into the extracellular milieu by cells and can carry bioactive molecules. There is emerging evidence suggesting that EVs play a role in the diagnosis, treatment, and prognosis of certain cancers. In this study, we investigate the association of EVs bearing PD-L1 and molecules important in B-cell activation and differentiation with AIDS-NHL risk. Methods EVs were isolated from archived serum collected prior to the diagnosis of AIDS-NHL in cases (N = 51) and matched HIV+ controls (N = 52) who were men enrolled in the Los Angeles site of the MACS/WIHS Combined Cohort Study (MWCCS). Serum specimens of AIDS-NHL cases were collected at a mean time of 1.25 years (range of 2 to 36 months) prior to an AIDS-NHL diagnosis. The expression of PD-L1 and other molecules on EVs (CD40, CD40L, TNF-RII, IL-6Rα, B7-H3, ICAM-1, and FasL) were quantified by Luminex multiplex assay. Results and discussion We observed significantly higher levels of EVs bearing PD-L1, CD40, TNF-RII and/or IL-6Rα in AIDS-NHL cases compared with controls. Using multivariate conditional logistic regression models adjusted for age and CD4+ T-cell count, we found that EVs bearing PD-L1 (OR = 1.93; 95% CI: 1.10 - 3.38), CD40 (OR = 1.97, 95% CI: 1.09 - 3.58), TNF-RII (OR = 5.06; 95% CI: 1.99 - 12.85) and/or IL-6Rα (OR = 4.67; 95% CI: 1.40 - 15.53) were significantly and positively associated with AIDS-NHL risk. In addition, EVs bearing these molecules were significantly and positively associated with non-CNS lymphoma: PD-L1 (OR = 1.94; 95% CI: 1.01 - 3.72); CD40 (OR = 2.66; 95% CI: 1.12 - 6.35); TNF-RII (OR = 9.64; 95% CI: 2.52 - 36.86); IL-6Rα (OR = 8.34; 95% CI: 1.73 - 40.15). These findings suggest that EVs bearing PD-L1, CD40, TNF-RII and/or IL-6Rα could serve as biomarkers for the early detection of NHL in PLWH.
Collapse
Affiliation(s)
- Laura E. Martínez
- UCLA AIDS Institute and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larry I. Magpantay
- UCLA AIDS Institute and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yu Guo
- UCLA AIDS Institute and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Priya Hegde
- UCLA AIDS Institute and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Detels
- Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shehnaz K. Hussain
- Department of Public Health Sciences, School of Medicine and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Marta Epeldegui
- UCLA AIDS Institute and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Reshi QUA, Godakumara K, Ord J, Dissanayake K, Hasan MM, Andronowska A, Heath P, Fazeli A. Spermatozoa, acts as an external cue and alters the cargo and production of the extracellular vesicles derived from oviductal epithelial cells in vitro. J Cell Commun Signal 2023; 17:737-755. [PMID: 36469292 PMCID: PMC10409707 DOI: 10.1007/s12079-022-00715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
The oviduct provides optimum physiological and biochemical milieu essential for successful fertilization, early embryo development and facilitates functional maturation of spermatozoa. A study has revealed that spermatozoa alters the gene expression in bovine oviductal epithelial cells (BOECs) remotely via bio-active particles, thus acting as a cue to the oviduct prior to their arrival. However, very little attention has been paid to the question of whether spermatozoa could alter the cargo of extracellular vesicles (EVs) derived from BOECs. Therefore, the aim of this study was to investigate the alterations in small non-coding RNAs in EVs cargo derived from BOECs when incubated with spermatozoa in contact and non-contact co-culture models. After 4 h of incubation the EVs were isolated from the conditioned media, followed by small non-coding sequencing of the BOEC derived EVs. Our results revealed that EVs from both co-culture models contained distinct cargo in form of miRNA, fragmented mRNA versus control. The pathway enrichment analysis revealed that EV miRNA from direct co-culture were involved in the biological processes associated with phagocytosis, macroautophagy, placenta development, cellular responses to TNF and FGF. The mRNA fragments also varied within the different groups and mapped to the exonic regions of the transcriptome providing vital insights regarding the changes in cellular transcriptome on the arrival of spermatozoa. The findings of this study suggest that spermatozoa, in contact as well as remotely, alter the EV cargo of female reproductive tract epithelial cells which might be playing an essential role in pre and post-fertilization events.
Collapse
Affiliation(s)
- Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - James Ord
- Institute for Fish and Wildlife Health, University of Bern, Längassstrasse 122, 3012, Bern, Switzerland
| | - Keerthie Dissanayake
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mohammad Mehedi Hasan
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, 86-96 Chenies Mews, London, WC1N 1EH, UK
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748, Olsztyn, Poland
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience SITraN, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia.
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2SF, UK.
| |
Collapse
|
20
|
Pleet ML, Welsh JA, Stack EH, Cook S, Johnson DA, Killingsworth B, Traynor T, Clauze A, Hughes R, Monaco MC, Ngouth N, Ohayon J, Enose-Akahata Y, Nath A, Cortese I, Reich DS, Jones JC, Jacobson S. Viral Immune signatures from cerebrospinal fluid extracellular vesicles and particles in HAM and other chronic neurological diseases. Front Immunol 2023; 14:1235791. [PMID: 37622115 PMCID: PMC10446883 DOI: 10.3389/fimmu.2023.1235791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background and objectives Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease. Methods We analyzed the EVPs from the CSF of HVs, individuals with HAM, HTLV-1-infected asymptomatic carriers (ACs), and from patients with a variety of chronic neurologic diseases of both known viral and non-viral etiologies to investigate the surface repertoires of CSF EVPs during disease. Results Significant increases in CD8+ and CD2+ EVPs were found in HAM patient CSF samples compared to other clinical groups (p = 0.0002 and p = 0.0003 compared to HVs, respectively, and p = 0.001 and p = 0.0228 compared to MS, respectively), consistent with the immunopathologically-mediated disease associated with CD8+ T-cells in the central nervous system (CNS) of HAM patients. Furthermore, CD8+ (p < 0.0001), CD2+ (p < 0.0001), CD44+ (p = 0.0176), and CD40+ (p = 0.0413) EVP signals were significantly increased in the CSF from individuals with viral infections compared to those without. Discussion These data suggest that CD8+ and CD2+ CSF EVPs may be important as: 1) potential biomarkers and indicators of disease pathways for viral-mediated neurological diseases, particularly HAM, and 2) as possible meditators of the disease process in infected individuals.
Collapse
Affiliation(s)
- Michelle L. Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Emily H. Stack
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sean Cook
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dove-Anna Johnson
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bryce Killingsworth
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tim Traynor
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Annaliese Clauze
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Randall Hughes
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Maria Chiara Monaco
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Nyater Ngouth
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Joan Ohayon
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Hatami Z, Hashemi ZS, Eftekhary M, Amiri A, Karpisheh V, Nasrollahi K, Jafari R. Natural killer cell-derived exosomes for cancer immunotherapy: innovative therapeutics art. Cancer Cell Int 2023; 23:157. [PMID: 37543612 PMCID: PMC10403883 DOI: 10.1186/s12935-023-02996-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023] Open
Abstract
Chimeric antigen receptor natural killer cells (CAR-NK) promote off-the-shelf cellular therapy for solid tumors and malignancy.However,, the development of CAR-NK is due to their immune surveillance uncertainty and cytotoxicity challenge was restricted. Natural killer cell-derived exosome (NK-Exo) combine crucial targeted cellular therapies of NK cell therapies with unique non-toxic Exo as a self-origin shuttle against cancer immunotherapy. This review study covers cytokines, adoptive (autologous and allogenic) NK immunotherapy, stimulatory and regulatory functions, and cell-free derivatives from NK cells. The future path of NK-Exo cytotoxicity and anti-tumor activity with considering non-caspase-independent/dependent apoptosis and Fas/FasL pathway in cancer immunotherapy. Finally, the significance and implication of NK-Exo therapeutics through combination therapy and the development of emerging approaches for the purification and delivery NK-Exo to severe immune and tumor cells and tissues were discussed in detail.
Collapse
Affiliation(s)
- Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mohamad Eftekhary
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kaveh Nasrollahi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
22
|
Shen X, Yin L, Xu S, Wang J, Yin D, Zhao R, Pan X, Dai Y, Hou H, Zhou X, Hu X. Altered Proteomic Profile of Exosomes Secreted from Vero Cells Infected with Porcine Epidemic Diarrhea Virus. Viruses 2023; 15:1640. [PMID: 37631983 PMCID: PMC10459195 DOI: 10.3390/v15081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea in pigs and can be fatal in newborn piglets. Exosomes are extracellular vesicles secreted by cells that transfer biologically active proteins, lipids, and RNA to neighboring or distant cells. Herein, the morphology, particle size, and secretion of exosomes derived from a control and PEDV-infected group are examined, followed by a proteomic analysis of the exosomes. The results show that the exosomes secreted from the Vero cells had a typical cup-shaped structure. The average particle size of the exosomes from the PEDV-infected group was 112.4 nm, whereas that from the control group was 150.8 nm. The exosome density analysis and characteristic protein determination revealed that the content of exosomes in the PEDV-infected group was significantly higher than that in the control group. The quantitative proteomics assays revealed 544 differentially expressed proteins (DEPs) in the PEDV-infected group's exosomes compared with those in the controls, with 236 upregulated and 308 downregulated proteins. The DEPs were closely associated with cellular regulatory pathways, such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and cytoskeletal regulation. These findings provide the basis for further investigation of the pathogenic mechanisms of PEDV and the discovery of novel antiviral targets.
Collapse
Affiliation(s)
- Xuehuai Shen
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Shuangshuang Xu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Jieru Wang
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Dongdong Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Ruihong Zhao
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xiaocheng Pan
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Yin Dai
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Hongyan Hou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xueli Zhou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xiaomiao Hu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| |
Collapse
|
23
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
24
|
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14:1154217. [PMID: 37063897 PMCID: PMC10098074 DOI: 10.3389/fimmu.2023.1154217] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Exosomes are messengers of intercellular communication in monolayer vesicles derived from cells. It affects the pathophysiological process of the body in various diseases, such as tumors, inflammation, and infection. It has been confirmed that exosomes are similar to viruses in biogenesis, and exosome cargo is widely involved in many viruses’ replication, transmission, and infection. Simultaneously, virus-associated exosomes can promote immune escape and activate the antiviral immune response of the body, which bidirectionally modulates the immune response. This review focuses on the role of exosomes in HIV, HBV, HCV, and SARS-CoV-2 infection and explores the prospects of exosome development. These insights may be translated into therapeutic measures for viral infections and reduce the disease burden.
Collapse
Affiliation(s)
| | | | | | | | - Yingyi Luan
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | | |
Collapse
|
25
|
Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
26
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
27
|
Huang D, Taha MS, Nocera AL, Workman AD, Amiji MM, Bleier BS. Cold exposure impairs extracellular vesicle swarm-mediated nasal antiviral immunity. J Allergy Clin Immunol 2023; 151:509-525.e8. [PMID: 36494212 DOI: 10.1016/j.jaci.2022.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human upper respiratory tract is the first site of contact for inhaled respiratory viruses and elaborates an array of innate immune responses. Seasonal variation in respiratory viral infections and the importance of ambient temperature in modulating immune responses to infections have been well recognized; however, the underlying biological mechanisms remain understudied. OBJECTIVE We investigated the role of nasal epithelium-derived extracellular vesicles (EVs) in innate Toll-like receptor 3 (TLR3)-dependent antiviral immunity. METHODS We evaluated the secretion and composition of nasal epithelial EVs after TLR3 stimulation in human autologous cells and fresh human nasal mucosal surgical specimens. We also explored the antiviral activity and mechanisms of TLR3-stimulated EVs against respiratory viruses as well as the effect of cool ambient temperature on TLR3-dependent antiviral immunity. RESULTS We found that polyinosinic:polycytidylic acid, aka poly(I:C), exposure induced a swarm-like increase in the secretion of nasal epithelial EVs via the TLR3 signaling. EVs participated in TLR3-dependent antiviral immunity, protecting the host from viral infections through both EV-mediated functional delivery of miR-17 and direct virion neutralization after binding to virus ligands via surface receptors, including LDLR and ICAM-1. These potent antiviral immune defense functions mediated by TLR3-stimulated EVs were impaired by cold exposure via a decrease in total EV secretion as well as diminished microRNA packaging and antiviral binding affinity of individual EV. CONCLUSION TLR3-dependent nasal epithelial EVs exhibit multiple innate antiviral mechanisms to suppress respiratory viral infections. Furthermore, our study provides a direct quantitative mechanistic explanation for seasonal variation in upper respiratory tract infection prevalence.
Collapse
Affiliation(s)
- Di Huang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Maie S Taha
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Alan D Workman
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass.
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
| |
Collapse
|
28
|
Jackson KK, Marcus RK. Rapid isolation and quantification of extracellular vesicles from suspension-adapted human embryonic kidney cells using capillary-channeled polymer fiber spin-down tips. Electrophoresis 2023; 44:190-202. [PMID: 35973415 PMCID: PMC10087738 DOI: 10.1002/elps.202200149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
Exosomes, a subset of extracellular vesicles (EVs, 30-200-nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large-scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low-yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary-channeled polymer fiber spin-down tip format. EVs are isolated from the CCM of suspension-adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid-phase extraction technique allows 1012 EVs to be obtained from only 100-µl aliquots of milieu, processed using a benchtop centrifuge. The tip-isolated EVs were characterized using transmission electron microscopy, multi-angle light scattering, absorbance quantification, an enzyme-linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production-level scale-up projected.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
29
|
Abstract
Tenascin-C is a large extracellular matrix glycoprotein with complex, not yet fully unveiled roles. Its context- and structure-dependent modus operandi renders tenascin-C a puzzling protein. Since its discovery ∼40 years ago, research into tenascin-C biology continues to reveal novel functions, the most recent of all being its immunomodulatory activity, especially its role in infection, which is just now beginning to emerge. Here, we explore the role of tenascin-C in the immune response to viruses, including SARS-CoV-2 and HIV-1. Recently, tenascin-C has emerged as a biomarker of disease severity during COVID-19 and other viral infections, and we highlight relevant RNA sequencing and proteomic analyses that suggest a correlation between tenascin-C levels and disease severity. Finally, we ask what the function of this protein during viral replication is and propose tenascin-C as an intercellular signal of inflammation shuttled to distal sites via exosomes, a player in the repair and remodeling of infected and damaged tissues during severe infectious disease, as well as a ligand for specific pathogens with distinct implications for the host.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- 1QBI Coronavirus Research Group, San Francisco, California,2Quantitative Biosciences Institute, University of California, San Francisco, California,3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Anna M. Piccinini
- 4School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
31
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
32
|
Kaczmarek M, Baj-Krzyworzeka M, Bogucki Ł, Dutsch-Wicherek M. HPV-Related Cervical Cancer and Extracellular Vesicles. Diagnostics (Basel) 2022; 12:2584. [PMID: 36359429 PMCID: PMC9689649 DOI: 10.3390/diagnostics12112584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer in females worldwide. Infection with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and progression to precancer and invasive cancer. The majority of HPV infections are cleared and controlled by the immune system within 2 years, but some infections may become quiescent or undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk of malignant transformation of infected cells; however, the mechanisms responsible for the persistence of infection are not yet well-understood. It is estimated that 10-15% of infections do persist, and the local microenvironment is now recognized as an important cofactor promoting infection maintenance. Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral components incorporated into EVs are transmitted independently of the production of infectious virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs participate in both physiological and pathological conditions; they have also been identified as one of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in remodeling the cervical cancer microenvironment which may be crucial to tumor development and the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.
Collapse
Affiliation(s)
- Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Łukasz Bogucki
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| |
Collapse
|
33
|
Chen Y, Wang T, Yang Y, Fang Y, Zhao B, Zeng W, Lv D, Zhang L, Zhang Y, Xue Q, Chen X, Wang J, Qi X. Extracellular vesicles derived from PPRV-infected cells enhance signaling lymphocyte activation molecular (SLAM) receptor expression and facilitate virus infection. PLoS Pathog 2022; 18:e1010759. [PMID: 36084159 PMCID: PMC9491601 DOI: 10.1371/journal.ppat.1010759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV is lymphotropic in nature and SLAM was identified as the primary receptor for PPRV and other Morbilliviruses. Many viruses have been demonstrated to engage extracellular vesicles (EVs) to facilitate their replication and pathogenesis. Here, we provide evidence that PPRV infection significantly induced the secretion levels of EVs from goat PBMC, and that PPRV-H protein carried in EVs can enhance SLAM receptor expression in the recipient cells via suppressing miR-218, a negative miRNA directly targeting SLAM gene. Importantly, EVs-mediated increased SLAM expression enhances PPRV infectivity as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Moreover, our data reveal that PPRV associate EVs rapidly entry into the recipient cells mainly through macropinocytosis pathway and cooperated with caveolin- and clathrin-mediated endocytosis. Taken together, our findings identify a new strategy by PPRV to enhance virus infection and escape innate immunity by engaging EVs pathway. Peste des petitsruminants virus (PPRV) infection induces a transient but severe immunosuppression in the host, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research, the mechanism underlying pathogenesis of PPRV infection remains elusive. Our data provide the first direct evidence that the EVs derived from PPRV-infected cells are involved in PPRV replication. In this study, the EVs derived from PPRV-infected goat PBMCs can enhance SLAM expression in the recipient cells, and more importantly, EVs-mediated increased SLAM expression enhances PPRV replication as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Taken together, our research has provided new insight into understanding the effect of EVs on PPRV replication and pathogenesis, and revealed a potential therapeutic target for antiviral intervention.
Collapse
Affiliation(s)
- Yan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi’an, China
| | - Wei Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Leyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| |
Collapse
|
34
|
Kaur S, Saldana AC, Elkahloun AG, Petersen JD, Arakelyan A, Singh SP, Jenkins LM, Kuo B, Reginauld B, Jordan DG, Tran AD, Wu W, Zimmerberg J, Margolis L, Roberts DD. CD47 interactions with exportin-1 limit the targeting of m 7G-modified RNAs to extracellular vesicles. J Cell Commun Signal 2022; 16:397-419. [PMID: 34841476 PMCID: PMC9411329 DOI: 10.1007/s12079-021-00646-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
CD47 is a marker of self and a signaling receptor for thrombospondin-1 that is also a component of extracellular vesicles (EVs) released by various cell types. Previous studies identified CD47-dependent functional effects of T cell EVs on target cells, mediated by delivery of their RNA contents, and enrichment of specific subsets of coding and noncoding RNAs in CD47+ EVs. Mass spectrometry was employed here to identify potential mechanisms by which CD47 regulates the trafficking of specific RNAs to EVs. Specific interactions of CD47 and its cytoplasmic adapter ubiquilin-1 with components of the exportin-1/Ran nuclear export complex were identified and confirmed by coimmunoprecipitation. Exportin-1 is known to regulate nuclear to cytoplasmic trafficking of 5'-7-methylguanosine (m7G)-modified microRNAs and mRNAs that interact with its cargo protein EIF4E. Interaction with CD47 was inhibited following alkylation of exportin-1 at Cys528 by its covalent inhibitor leptomycin B. Leptomycin B increased levels of m7G-modified RNAs, and their association with exportin-1 in EVs released from wild type but not CD47-deficient cells. In addition to perturbing nuclear to cytoplasmic transport, transcriptomic analyses of EVs released by wild type and CD47-deficient Jurkat T cells revealed a global CD47-dependent enrichment of m7G-modified microRNAs and mRNAs in EVs released by CD47-deficient cells. Correspondingly, decreasing CD47 expression in wild type cells or treatment with thrombospondin-1 enhanced levels of specific m7G-modified RNAs released in EVs, and re-expressing CD47 in CD47-deficient T cells decreased their levels. Therefore, CD47 signaling limits the trafficking of m7G-modified RNAs to EVs through physical interactions with the exportin-1/Ran transport complex.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Alejandra Cavazos Saldana
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Abdel G Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Jennifer D Petersen
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anush Arakelyan
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Bethany Kuo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Bianca Reginauld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - David G Jordan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Andy D Tran
- Confocal Microscopy Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Weiwei Wu
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Joshua Zimmerberg
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Leonid Margolis
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
35
|
Fordjour FK, Guo C, Ai Y, Daaboul GG, Gould SJ. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J Biol Chem 2022; 298:102394. [PMID: 35988652 PMCID: PMC9512851 DOI: 10.1016/j.jbc.2022.102394] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Exosomes are small extracellular vesicles of ∼30 to 150 nm that are secreted by all cells, abundant in all biofluids, and play important roles in health and disease. However, details about the mechanism of exosome biogenesis are unclear. Here, we carried out a cargo-based analysis of exosome cargo protein biogenesis in which we identified the most highly enriched exosomal cargo proteins and then followed their biogenesis, trafficking, and exosomal secretion to test different hypotheses for how cells make exosomes. We show that exosome cargo proteins bud from cells (i) in exosome-sized vesicles regardless of whether they are localized to plasma or endosome membranes, (ii) ∼5-fold more efficiently when localized to the plasma membrane, (iii) ∼5-fold less efficiently when targeted to the endosome membrane, (iv) by a stochastic process that leads to ∼100-fold differences in their abundance from one exosome to another, and (v) independently of small GTPase Rab27a, the ESCRT complex–associated protein Alix, or the cargo protein CD63. Taken together, our results demonstrate that cells use a shared, stochastic mechanism to bud exosome cargoes along the spectrum of plasma and endosome membranes and far more efficiently from the plasma membrane than the endosome. Our observations also indicate that the pronounced variation in content between different exosome-sized vesicles is an inevitable consequence of a stochastic mechanism of small vesicle biogenesis, that the origin membrane of exosome-sized extracellular vesicles simply cannot be determined, and that most of what we currently know about exosomes has likely come from studies of plasma membrane-derived vesicles.
Collapse
Affiliation(s)
- Francis K Fordjour
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
36
|
Kimiz-Gebologlu I, Oncel SS. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release 2022; 347:533-543. [PMID: 35597405 DOI: 10.1016/j.jconrel.2022.05.027] [Citation(s) in RCA: 311] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
Exosomes are nanovesicles with different contents that play a role in various biological and pathological processes. It offers significant advantages over other delivery systems such as liposomes and polymeric nanoparticles. Although exosomes are expected to be effective therapeutic agents, their optimal use remains a challenge. The development of methods for large-scale production, isolation, and drug loading is necessary to improve their efficiency and therapeutic potential. In this review, after mentioning general properties and biological functions of the exosomes, details of their potential for use in the drug delivery system are presented. For this purpose, methodologies for the large-scale production of exosomes, exosome isolation, exosomal cargo loading, and exosome uptake by the recipient cell are reviewed. The current challenges and potential directions of this new area of drug delivery that has become popular recently are also investigated.
Collapse
Affiliation(s)
| | - Suphi S Oncel
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey..
| |
Collapse
|
37
|
PPRV-Induced Autophagy Facilitates Infectious Virus Transmission by the Exosomal Pathway. J Virol 2022; 96:e0024422. [PMID: 35319226 DOI: 10.1128/jvi.00244-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. We showed previously that PPRV induced sustained autophagy for their replication in host cells. Many studies have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate the recipient's cellular response and result in productive infection of the recipient host. Here, we show that PPRV infection results in packaging of the viral genomic RNA and partial viral proteins into exosomes of Vero cells and upregulates exosome secretion. We provide evidence showing that the exosomal viral cargo can be transferred to and establish productive infection in a new target cell. Importantly, our study reveals that PPRV-induced autophagy enhances exosome secretion and exosome-mediated virus transmission. Additionally, our data show that TSG101 may be involved in the sorting of the infectious PPRV RNA into exosomes to facilitate the release of PPRV through the exosomal pathway. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated PPRV intercellular transmission. IMPORTANCE Autophagy plays an important role in PPRV pathogenesis. The role of exosomes in viral infections is beginning to be appreciated. The present study examined the role of autophagy in secretion of infectious PPRV from Vero cells. Our data provided the first direct evidence that ATG7-mediated autophagy enhances exosome secretion and exosome-mediated PPRV transmission. TSG101 may be involved in the sorting of the infectious PPRV RNA genomes into exosomes to facilitate the release of PPRV through the exosomal pathway. Inhibition of PPRV-induced autophagy or TSG101 expression could be used as a strategy to block exosome-mediated virus transmission.
Collapse
|
38
|
Kaffash Farkhad N, Mahmoudi A, Mahdipour E. Regenerative therapy by using Mesenchymal Stem Cells-derived exosomes in COVID-19 treatment. The potential role and underlying mechanisms. Regen Ther 2022; 20:61-71. [PMID: 35340407 PMCID: PMC8938276 DOI: 10.1016/j.reth.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), started in December 2019 in Wuhan, China, and quickly became the global pandemic. The high spread rate, relatively high mortality rate, and the lack of specific medicine have led researchers and clinicians worldwide to find new treatment strategies. Unfortunately, evidence shows that the virus-specific receptor Angiotensin-Converting Enzyme 2 (ACE-2) is present on the surface of most cells in the body, leading to immune system dysfunction and multi-organ failure in critically ill patients. In this context, the use of Mesenchymal Stem Cells (MSCs) and their secret has opened new therapeutic horizons for patients due to the lack of ACE2 receptor expression. MSCs exert their beneficial therapeutic actions, particularly anti-inflammatory and immunomodulatory properties, mainly through paracrine effects which are mediated by exosomes. Exosomes are bilayer nanovesicles that carry a unique cargo of proteins, lipids and functional nucleic acids based on their cell origin. This review article aims to investigate the possible role of exosomes and the underlying mechanism involved in treating COVID-19 disease based on recent findings.
Collapse
Affiliation(s)
- Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding author. Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, University campus. Azadi Sq, Mashhad. Iran.
| |
Collapse
|
39
|
Chand S, DeMarino C, Gowen A, Cowen M, Al-Sharif S, Kashanchi F, Yelamanchili SV. Methamphetamine Induces the Release of Proadhesive Extracellular Vesicles and Promotes Syncytia Formation: A Potential Role in HIV-1 Neuropathogenesis. Viruses 2022; 14:v14030550. [PMID: 35336957 PMCID: PMC8950763 DOI: 10.3390/v14030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the success of combinational antiretroviral therapy (cART), the high pervasiveness of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) poses a significant challenge for society. Methamphetamine (meth) and related amphetamine compounds, which are potent psychostimulants, are among the most commonly used illicit drugs. Intriguingly, HIV-infected individuals who are meth users have a comparatively higher rate of neuropsychological impairment and exhibit a higher viral load in the brain than infected individuals who do not abuse meth. Effectively, all cell types secrete nano-sized lipid membrane vesicles, referred to as extracellular vesicles (EVs) that can function as intercellular communication to modulate the physiology and pathology of the cells. This study shows that meth treatments on chronically HIV-infected promonocytic U1 cells induce the release of EVs that promote cellular clustering and syncytia formation, a phenomenon that facilitates HIV pathogenesis. Our analysis also revealed that meth exposure increased intercellular adhesion molecule-1 (ICAM-1) and HIV-Nef protein expression in both large (10 K) and small (100 K) EVs. Further, when meth EVs are applied to uninfected naïve monocyte-derived macrophages (MDMs), we saw a significant increase in cell clustering and syncytia formation. Furthermore, treatment of MDMs with antibodies against ICAM-1 and its receptor, lymphocyte function-associated antigen 1 (LFA1), substantially blocked syncytia formation, and consequently reduced the number of multinucleated cells. In summary, our findings reveal that meth exacerbates HIV pathogenesis in the brain through release of proadhesive EVs, promoting syncytia formation and thereby aiding in the progression of HIV infection in uninfected cells.
Collapse
Affiliation(s)
- Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.C.); (A.G.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (C.D.); (M.C.); (S.A.-S.)
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.C.); (A.G.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (C.D.); (M.C.); (S.A.-S.)
| | - Sarah Al-Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (C.D.); (M.C.); (S.A.-S.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (C.D.); (M.C.); (S.A.-S.)
- Correspondence: (F.K.); (S.V.Y.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.C.); (A.G.)
- Correspondence: (F.K.); (S.V.Y.)
| |
Collapse
|
40
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
41
|
Dubey A, Lobo CL, GS R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci 2022; 17:20-34. [PMID: 34630723 PMCID: PMC8487464 DOI: 10.1016/j.ajps.2021.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
The spread of SARS-CoV-2 as an emerging novel coronavirus disease (COVID-19) had progressed as a worldwide pandemic since the end of 2019. COVID-19 affects firstly lungs tissues which are known for their very slow regeneration. Afterwards, enormous cytokine stimulation occurs in the infected cells immediately after a lung infection which necessitates good management to save patients. Exosomes are extracellular vesicles of nanometric size released by reticulocytes on maturation and are known to mediate intercellular communications. The exosomal cargo serves as biomarkers in diagnosing various diseases; moreover, exosomes could be employed as nanocarriers in drug delivery systems. Exosomes look promising to combat the current pandemic since they contribute to the immune response against several viral pathogens. Many studies have proved the potential of using exosomes either as viral elements or host systems that acquire immune-stimulatory effects and could be used as a vaccine or drug delivery tool. It is essential to stop viral replication, prevent and reverse the massive storm of cytokine that worsens the infected patients' situations for the management of COVID-19. The main benefits of exosomes could be; no cells will be introduced, no chance of mutation, lack of immunogenicity and the damaged genetic material that could negatively affect the recipient is avoided. Additionally, it was found that exosomes are static with no ability for in vivo reproduction. The current review article discusses the possibilities of using exosomes for detecting novel coronavirus and summarizes state of the art concerning the clinical trials initiated for examining the use of COVID-19 specific T cells derived exosomes and mesenchymal stem cells derived exosomes in managing COVID-19.
Collapse
Affiliation(s)
- Akhilesh Dubey
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Cynthia Lizzie Lobo
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Ravi GS
- Formulation and Development, Viatris R&D Centre, Bengaluru 560105, India
| | - Amitha Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| |
Collapse
|
42
|
Dubey A, Lobo CL, GS R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci 2022. [DOI: https://doi.org/10.1016/j.ajps.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Exosomes and COVID-19: challenges and opportunities. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:347-354. [PMID: 35039753 PMCID: PMC8754531 DOI: 10.1007/s00580-021-03311-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 or COVID-19, starting from Wuhan, China, in December 2019, is a pandemic situation affecting millions worldwide and has exerted a huge burden on healthcare infrastructure. Therefore, there is an urgent need to understand the molecular mechanisms underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and design novel effective therapeutic strategies for combating this pandemic. In this regard, special attention has been paid to the exosomes. These nanoparticles are extracellular vesicles with critical function in the pathogenesis of several diseases including viral sepsis. Therefore, they may be involved in the pathogenesis of COVID-19 infection and also may be a way for transferring viral components and infecting other neighbor cells. Exosomes also can be considered as a therapeutic strategy for treating COVID-19 patients or used as a carrier for delivering effective therapeutic agents. Therefore, in this review, we discussed the biogenesis and contents of exosomes, their function in viral infection, and their potential as a therapeutic candidate in treating COVID-19.
Collapse
|
44
|
Xie S, Liang Z, Yang X, Pan J, Yu D, Li T, Cao R. Japanese Encephalitis Virus NS2B-3 Protein Complex Promotes Cell Apoptosis and Viral Particle Release by Down-Regulating the Expression of AXL. Virol Sin 2021; 36:1503-1519. [PMID: 34487337 DOI: 10.1007/s12250-021-00442-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes that causes severe encephalitis in humans and animals. It has been suggested that AXL, a transmembrane protein, can promote the replication of various flaviviruses, such as dengue (DENV), Zika (ZIKV), and West Nile (WNV) viruses. However, the effect of AXL on JEV infection has not yet been determined. In the present study, we demonstrate that AXL is down-regulated after JEV infection in the late stage. JEV NS2B-3 protein specifically interacted with AXL, and promoted AXL degradation through the ubiquitin-proteasome pathway. AXL-degradation increased cell apoptosis by disrupting phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction. In addition, the degradation of AXL promoted JEV release to supernatant, whereas the virus in the cell lysates decreased. The supplementation of AXL ligand Gas6 inhibited the JEV-mediated degradation of AXL. Altogether, we discover a new function of NS2B-3 during the process of JEV replication, and provide a new insight into the interactions between JEV and cell hosts.
Collapse
Affiliation(s)
- Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenjie Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhui Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Du Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongtong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
45
|
Saad MH, Badierah R, Redwan EM, El-Fakharany EM. A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics 2021; 13:1405. [PMID: 34575480 PMCID: PMC8466084 DOI: 10.3390/pharmaceutics13091405] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) subtype, exosome is an extracellular nano-vesicle that sheds from cells' surface and originates as intraluminal vesicles during endocytosis. Firstly, it was thought to be a way for the cell to get rid of unwanted materials as it loaded selectively with a variety of cellular molecules, including RNAs, proteins, and lipids. However, it has been found to play a crucial role in several biological processes such as immune modulation, cellular communication, and their role as vehicles to transport biologically active molecules. The latest discoveries have revealed that many viruses export their viral elements within cellular factors using exosomes. Hijacking the exosomal pathway by viruses influences downstream processes such as viral propagation and cellular immunity and modulates the cellular microenvironment. In this manuscript, we reviewed exosomes biogenesis and their role in the immune response to viral infection. In addition, we provided a summary of how some pathogenic viruses hijacked this normal physiological process. Viral components are harbored in exosomes and the role of these exosomes in viral infection is discussed. Understanding the nature of exosomes and their role in viral infections is fundamental for future development for them to be used as a vaccine or as a non-classical therapeutic strategy to control several viral infections.
Collapse
Affiliation(s)
- Mabroka H. Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt; (M.H.S.); (E.M.R.)
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt; (M.H.S.); (E.M.R.)
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt; (M.H.S.); (E.M.R.)
| |
Collapse
|
46
|
Jiang Y, Ding Y, Liu S, Luo B. The role of Epstein–Barr virus-encoded latent membrane proteins in host immune escape. Future Virol 2021. [DOI: 10.2217/fvl-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epstein–Barr virus (EBV) is a type IV herpesvirus that widely infects the vast majority of adults, and establishes a latent infection pattern in host cells to escape the clearance of immune system. The virus is intimately associated with the occurrence and progression of lymphomas and epithelial cell cancers. EBV latent membrane proteins (LMPs) can assist its immune escape by downregulating host immune response. Besides EBV, LMPs have important effects on the functions of exosomes and autophagy, which also help EBV to escape immune surveillance. These escape mechanisms may provide conditions for further development of EBV-associated tumors. In this article, we discussed the potential functions of EBV-encoded LMPs in promoting immune escape.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Medical Affairs of The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266021, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Shuzhen Liu
- Department of Medical Affairs of The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Bing Luo
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266021, China
| |
Collapse
|
47
|
Liu Q, Li S, Dupuy A, le Mai H, Sailliet N, Logé C, Robert JMH, Brouard S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int J Mol Sci 2021; 22:ijms22157763. [PMID: 34360530 PMCID: PMC8346134 DOI: 10.3390/ijms22157763] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nano-sized vesicles secreted by most cells that contain a variety of biological molecules, such as lipids, proteins and nucleic acids. They have been recognized as important mediators for long-distance cell-to-cell communication and are involved in a variety of biological processes. Exosomes have unique advantages, positioning them as highly effective drug delivery tools and providing a distinct means of delivering various therapeutic agents to target cells. In addition, as a new clinical diagnostic biomarker, exosomes play an important role in many aspects of human health and disease, including endocrinology, inflammation, cancer, and cardiovascular disease. In this review, we summarize the development of exosome-based drug delivery tools and the validation of novel biomarkers, and illustrate the role of exosomes as therapeutic targets in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Shiying Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Amandine Dupuy
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Hoa le Mai
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Nicolas Sailliet
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - Cédric Logé
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - J.-Michel H. Robert
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
- Correspondence: (J.-M.H.R.); (S.B.)
| | - Sophie Brouard
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Correspondence: (J.-M.H.R.); (S.B.)
| |
Collapse
|
48
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. J Neuroimmune Pharmacol 2021; 16:270-288. [PMID: 33544324 PMCID: PMC7862527 DOI: 10.1007/s11481-020-09981-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, 94304, Palo Alto, CA, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, 94304, Palo Alto, CA, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, 21201, Baltimore, MD, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
49
|
Rajendran KV, Neelakanta G, Sultana H. Sphingomyelinases in a journey to combat arthropod-borne pathogen transmission. FEBS Lett 2021; 595:1622-1638. [PMID: 33960414 DOI: 10.1002/1873-3468.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Ixodes scapularis ticks feed on humans and other vertebrate hosts and transmit several pathogens of public health concern. Tick saliva is a complex mixture of bioactive proteins, lipids and immunomodulators, such as I. scapularis sphingomyelinase (IsSMase)-like protein, an ortholog of dermonecrotoxin SMase D found in the venom of Loxosceles spp. of spiders. IsSMase modulates the host immune response towards Th2, which suppresses Th1-mediated cytokines to facilitate pathogen transmission. Arboviruses utilize exosomes for their transmission from tick to the vertebrate host, and exosomes derived from tick saliva/salivary glands suppress C-X-C motif chemokine ligand 12 and interleukin-8 immune response(s) in human skin to delay wound healing and repair processes. IsSMase affects also viral replication and exosome biogenesis, thereby inhibiting tick-to-vertebrate host transmission of pathogenic exosomes. In this review, we elaborate on exosomes and their biogenesis as potential candidates for developing novel control measure(s) to combat tick-borne diseases. Such targets could help with the development of an efficient anti-tick vaccine for preventing the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Kundave V Rajendran
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.,Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
50
|
Estrada E. Cascading from SARS-CoV-2 to Parkinson's Disease through Protein-Protein Interactions. Viruses 2021; 13:897. [PMID: 34066091 PMCID: PMC8150712 DOI: 10.3390/v13050897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Extensive extrapulmonary damages in a dozen of organs/systems, including the central nervous system (CNS), are reported in patients of the coronavirus disease 2019 (COVID-19). Three cases of Parkinson's disease (PD) have been reported as a direct consequence of COVID-19. In spite of the scarce data for establishing a definitive link between COVID-19 and PD, some hypotheses have been proposed to explain the cases reported. They, however, do not fit well with the clinical findings reported for COVID-19 patients, in general, and for the PD cases reported, in particular. Given the importance of this potential connection, we present here a molecular-level mechanistic hypothesis that explains well these findings and will serve to explore the potential CNS damage in COVID-19 patients. The model explaining the cascade effects from COVID-19 to CNS is developed by using bioinformatic tools. It includes the post-translational modification of host proteins in the lungs by viral proteins, the transport of modified host proteins via exosomes out the lungs, and the disruption of protein-protein interaction in the CNS by these modified host proteins. Our hypothesis is supported by finding 44 proteins significantly expressed in the CNS which are associated with PD and whose interactions can be perturbed by 24 host proteins significantly expressed in the lungs. These 24 perturbators are found to interact with viral proteins and to form part of the cargoes of exosomes in human tissues. The joint set of perturbators and PD-vulnerable proteins form a tightly connected network with significantly more connections than expected by selecting a random cluster of proteins of similar size from the human proteome. The molecular-level mechanistic hypothesis presented here provides several routes for the cascading of effects from the lungs of COVID-19 patients to PD. In particular, the disruption of autophagy/ubiquitination processes appears as an important mechanism that triggers the generation of large amounts of exosomes containing perturbators in their cargo, which would insult several PD-vulnerable proteins, potentially triggering Parkinsonism in COVID-19 patients.
Collapse
Affiliation(s)
- Ernesto Estrada
- Institute of Mathematics and Applications, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|