1
|
Sattari Z, Pourfaizi H, Dehghan G, Amani M, Moosavi-Movahedi AA. Thermal inactivation and conformational lock studies on glucose oxidase. Struct Chem 2013; 24:1105-1110. [DOI: 10.1007/s11224-012-0136-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A 2009; 106:8653-8. [PMID: 19433799 DOI: 10.1073/pnas.0900850106] [Citation(s) in RCA: 681] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non-self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coumermycin-induced ERIS dimerization led to strong and fast IFN induction, suggesting that dimerization of ERIS was critical for self-activation and subsequent downstream signaling.
Collapse
|
3
|
Moreira IS, Fernandes PA, Ramos MJ. Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins 2007; 68:803-12. [PMID: 17546660 DOI: 10.1002/prot.21396] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins tendency to bind to one another in a highly specific manner forming stable complexes is fundamental to all biological processes. A better understanding of complex formation has many practical applications, which include the rational design of new therapeutic agents, and the analysis of metabolic and signal transduction networks. Alanine-scanning mutagenesis made possible the detection of the functional epitopes, and demonstrated that most of the protein-protein binding energy is related only to a group of few amino acids at intermolecular protein interfaces: the hot spots. The scope of this review is to summarize all the available information regarding hot spots for a better atomic understanding of their structure and function. The ultimate objective is to improve the rational design of complexes of high affinity and specificity as well as that of small molecules, which can mimic the functional epitopes of the proteic complexes.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
4
|
Moreira IS, Fernandes PA, Ramos MJ. Hot Spot Occlusion from Bulk Water: a Comprehensive Study of the Complex between the Lysozyme HEL and the Antibody FVD1.3. J Phys Chem B 2007; 111:2697-706. [PMID: 17315919 DOI: 10.1021/jp067096p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alanine scanning of protein-protein interfaces has shown that there are some residues in the protein-protein interfaces, responsible for most of the binding free energy, which are called hot spots. Hot spots tend to exist in densely packed central clusters, and a hypothesis has been proposed that considers that inaccessibility to the solvent must be a necessary condition to define a residue as a binding hot spot. This O-ring hypothesis is mainly based on the analysis of the accessible surface area (ASA) of 23 static, crystallographic structures of protein complexes. It is known, however, that protein flexibility allows for temporary exposures of buried interfacial groups, and even though the ASA provides a general trend of the propensity for hydration, protein/solvent-specific interactions or hydrogen bonding cannot be considered here. Therefore, a microscopic level, atomistic picture of hot spot solvation is needed to support the O-ring hypothesis. In this study, we began by applying a computational alanine-scanning mutagenesis technique, which reproduces the experimental results and allows for decomposing the binding free energy difference in its different energetic factors. Subsequently, we calculated the radial distribution function and residence times of the water molecules near the hot/warm spots to study the importance of the water environment around those energetically important amino acid residues. This study shows that within a flexible, dynamic protein framework, the warm/hot spot residues are, indeed, kept sheltered from the bulk solvent during the whole simulation, which allows a better interacting microenvironment.
Collapse
Affiliation(s)
- Irina S Moreira
- Requimte/Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto- Portugal
| | | | | |
Collapse
|
5
|
Computational Determination of the Relative Free Energy of Binding – Application to Alanine Scanning Mutagenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/1-4020-5372-x_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Goffin V, Bernichtein S, Touraine P, Kelly PA. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 2005; 26:400-22. [PMID: 15814850 DOI: 10.1210/er.2004-0016] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a large body of literature showing that prolactin (PRL) exerts growth-promoting activities in breast cancer, and possibly in prostate cancer and prostate hyperplasia. In addition, increasing evidence argues for the involvement of locally produced (autocrine) PRL, perhaps even more than pituitary-secreted (endocrine) PRL, in tumor growth. Because dopamine analogs are unable to inhibit PRL production in extrapituitary sites, alternative strategies need investigation. To that end, several PRL receptor antagonists have been developed by introducing various mutations into its natural ligands. For all but one of these analogs, the mechanism of action involves a competition with endogenous PRL for receptor binding. Such compounds are thus candidates to counteract the undesired actions of PRL, not only in tumors, but also in dopamine-resistant prolactinomas. In this review, we describe the different versions of antagonists that have been developed, with emphasis on the controversies regarding their characterization, and the limits for their potential development as a drug. The most recently developed antagonist, Delta1-9-G129R-hPRL, is the only one that is totally devoid of residual agonistic activity, meaning it acts as pure antagonist. We discuss to what extent this new molecule could be considered as a lead compound for inhibiting the actions of human PRL in the above-mentioned diseases. We also speculate on the multiple questions that could be addressed with respect to the therapeutic use of PRL receptor antagonists in patients.
Collapse
Affiliation(s)
- Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale Unit 584, Faculté de Médecine Necker, 156, rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
7
|
Amani M, Moosavi-Movahedi AA, Floris G, Longu S, Mura A, Moosavi-Nejad SZ, Saboury AA, Ahmad F. Comparative study of the conformational lock, dissociative thermal inactivation and stability of euphorbia latex and lentil seedling amine oxidases. Protein J 2005; 24:183-191. [PMID: 16096724 DOI: 10.1007/s10930-005-7842-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The thermal stability of copper/quinone containing amine oxidases from Euphorbia characias latex (ELAO) and lentil seedlings (LSAO) was measured in 100 mM potassium phosphate buffer (pH 7.0) following changes in absorbance at 292 nm. ELAO was shown to be about 10 degrees C more stable than LSAO. The dissociative thermal inactivation of ELAO was studied using putrescine as substrate at different temperatures in the range 47-70 degrees C, and a "conformational lock" was developed using the theory pertaining to oligomeric enzyme. Moreover ELAO was shown to be more stable towards denaturants than LSAO, as confirmed by dodecyl trimethylammonium bromide denaturation curves. A comparison of the numbers of contact sites in inter-subunits of ELAO relative to LSAO led us to conclude that the higher stability of ELAO to temperature and towards denaturants was due to the presence of larger number of contact sites in the conformational lock of the enzyme. This study also gives a putative common mechanism for thermal inactivation of amine oxidases and explains the importance of C-terminal conserved amino acids residues in this class of enzymes.
Collapse
Affiliation(s)
- M Amani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett 2003; 550:107-13. [PMID: 12935895 DOI: 10.1016/s0014-5793(03)00846-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The receptor for advanced glycation end-products (RAGE)-mediated cellular activation through the mitogen-activated protein kinase (MAPK) cascade, activation of NF-kappaB and Rho family small G-proteins, cdc42/Rac, is implicated in the pathogenesis of inflammatory disorders and tumor growth/metastasis. However, the precise molecular mechanisms for the initiation of cell signaling by RAGE remain to be elucidated. In this study, proteins which directly bind to the cytoplasmic C-terminus of RAGE were purified from rat lung extracts using an affinity chromatography technique and identified to be extracellular signal-regulated protein kinase-1 and -2 (ERK-1/2). Their interactions were confirmed by immunoprecipitation of ERK-1/2 from RAGE-expressing HT1080 cell extracts with anti-RAGE antibody. Furthermore, the augmentation of kinase activity of RAGE-bound ERK upon the stimulation of cells with amphoterin was demonstrated by determining the phosphorylation level of myelin basic protein, an ERK substrate. In vitro binding studies using a series of C-terminal deletion mutants of human RAGE revealed the importance of the membrane-proximal cytoplasmic region of RAGE for the direct ERK-RAGE interaction. This region contained a sequence similar to the D-domain, a ERK docking site which is conserved in some ERK substrates including MAPK-interacting kinase-1/2, mitogen- and stress-activated protein kinase-1, and ribosomal S6 kinase. These data suggest that ERK may play a role in RAGE signaling through direct interaction with RAGE.
Collapse
Affiliation(s)
- Katsuya Ishihara
- Discovery Biology, Tsukuba Research Institute, Novartis Pharma K.K., Okubo 8, Tsukuba-shi, Ibaraki 300-2611, Japan
| | | | | | | | | |
Collapse
|
9
|
Moosavi-Nejad SZ, Moosavi-Movahedi AA, Rezaei-Tavirani M, Floris G, Medda R. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:167-72. [PMID: 12689514 DOI: 10.5483/bmbrep.2003.36.2.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.
Collapse
|
10
|
Yi S, Bernat B, Pál G, Kossiakoff A, Li WH. Functional promiscuity of squirrel monkey growth hormone receptor toward both primate and nonprimate growth hormones. Mol Biol Evol 2002; 19:1083-92. [PMID: 12082127 DOI: 10.1093/oxfordjournals.molbev.a004166] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primate growth hormone (GH) has evolved rapidly, having undergone approximately 30% amino acid substitutions from the inferred ancestral eutherian sequence. Nevertheless, human growth hormone (hGH) is physiologically effective when administered to nonprimate mammals. In contrast, its functional counterpart, the human growth hormone receptor (hGHR), has evolved species specificity so that it responds only to Old World primate GHs. It has been proposed that this species specificity of the hGHR is largely caused by the Leu --> Arg change at position 43 after a prior His --> Asp change at position 171 of the GH. Sequence analyses supported this hypothesis and revealed that the transitional phase in the GH:GHR coevolution still persists in New World monkeys. For example, although the GH of the squirrel monkey has the His --> Asp substitution at position 171, residue 43 of its GHR is a Leu, the nonprimate residue. If the squirrel monkey truly represents an intermediate stage of GH:GHR coevolution, its GHR should respond to both hGH and nonprimate GH. Also, if the emergence of species specificity was a result of the selection for a more efficient GH:GHR interaction, then changing residue 43 of the squirrel monkey growth hormone receptor (smGHR) to Arg should increase its binding affinity toward higher primate GH. To test these hypotheses, we performed protein-binding assays between the smGHR and both human and rat GHs, using the surface plasmon resonance methodology. Furthermore, the effects of reciprocal mutations at position 43 of human and squirrel monkey GHRs are measured for their binding affinities toward human and squirrel monkey GHs. The results from the binding kinetic assays clearly demonstrate that the smGHR is in the intermediate state of the evolution of species specificity. Interestingly, the altered residue Arg at position 43 of the smGHR does not lead to an increased binding affinity. The implications of these results on the evolution of the GH:GHR interaction and on functional evolution are discussed.
Collapse
Affiliation(s)
- Soojin Yi
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
11
|
Thirone ACP, Carvalho CRO, Saad MJA. G120K-PEG, a human GH antagonist, decreases GH signal transduction in the liver of mice. Mol Cell Endocrinol 2002; 192:65-74. [PMID: 12088868 DOI: 10.1016/s0303-7207(02)00110-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After receptor binding, growth hormone (GH) induces GH receptors (GHR) dimerization and JAK2 is activated after its association with a dimerized GHR, stimulating the tyrosyl phosphorylation of insulin receptor substrate-1 (IRS-1), IRS-2 and Shc proteins. G120K-PEG, a GH antagonist is produced by a mutation that blocks GH action by preventing the GHR dimerization. This study shows that the inhibitory effect of G120K-PEG was maximal with a GH:G120K-PEG ratio of 1:100, as no increase in JAK2 tyrosyl phosphorylation was observed with this dose of GH. When the dose of GH was increased and with a GH:G120K-PEG ratio of 1:10 some tyrosyl phosphorylation of JAK2 could be observed. Additionally, GH-induced IRS-1, IRS-2 and SHC tyrosyl phosphorylation was inhibited approximately 50% at equimolar concentrations of the antagonist of GH and almost abolished with a GH:G120K-PEG ratio of 1:100. The results clearly show that G120K-PEG inhibits GH signal transduction in mouse liver.
Collapse
Affiliation(s)
- Ana C P Thirone
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13081-970, SP, Campinas, Brazil
| | | | | |
Collapse
|
12
|
Xu B, Hua QX, Nakagawa SH, Jia W, Chu YC, Katsoyannis PG, Weiss MA. A cavity-forming mutation in insulin induces segmental unfolding of a surrounding alpha-helix. Protein Sci 2002; 11:104-16. [PMID: 11742127 PMCID: PMC2368773 DOI: 10.1110/ps.32102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To investigate the cooperativity of insulin's structure, a cavity-forming substitution was introduced within the hydrophobic core of an engineered monomer. The substitution, Ile(A2)-->Ala in the A1-A8 alpha-helix, does not impair disulfide pairing between chains. In accord with past studies of cavity-forming mutations in globular proteins, a decrement was observed in thermodynamic stability (DeltaDeltaG(u) 0.4-1.2 kcal/mole). Unexpectedly, CD studies indicate an attenuated alpha-helix content, which is assigned by NMR spectroscopy to selective destabilization of the A1-A8 segment. The analog's solution structure is otherwise similar to that of native insulin, including the B chain's supersecondary structure and a major portion of the hydrophobic core. Our results show that (1) a cavity-forming mutation in a globular protein can lead to segmental unfolding, (2) tertiary packing of Ile(A2), a residue of low helical propensity, stabilizes the A1-A8 alpha-helix, and (3) folding of this segment is not required for native disulfide pairing or overall structure. We discuss these results in relation to a hierarchical pathway of protein folding and misfolding. The Ala(A2) analog's low biological activity (0.5% relative to the parent monomer) highlights the importance of the A1-A8 alpha-helix in receptor recognition.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Eggers CT, Wang SX, Fletterick RJ, Craik CS. The role of ecotin dimerization in protease inhibition. J Mol Biol 2001; 308:975-91. [PMID: 11352586 DOI: 10.1006/jmbi.2001.4754] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ecotin is a homodimeric protein from Escherichia coli that inhibits many serine proteases of the chymotrypsin fold, often with little effect from the character or extent of enzyme substrate specificity. This pan-specificity of inhibition is believed to derive from formation of a heterotetrameric complex with target proteases involving three types of interface: the dimerization interface, a primary substrate-like interaction, and a smaller secondary interaction between the partner ecotin subunit and the protease. A monomeric ecotin variant (mEcotin) and a single-chain ecotin dimer (scEcotin) were constructed to study the effect of a network of protein interactions on binding affinity and the role of dimerization in broad inhibitor specificity. mEcotin was produced by inserting a beta-turn into the C-terminal arm, which normally exchanges with the other subunit. While the dimerization constant (K(dim)) of wild-type (WT) ecotin was found to be picomolar by subunit exchange experiments using FRET and by association kinetics, mEcotin was monomeric up to 1 mM as judged by gel filtration and analytical centrifugation. A crystal structure of uncomplexed mEcotin to 2.0 A resolution verifies the design, showing a monomeric protein in which the C-terminal arm folds back onto itself to form a beta-barrel structure nearly identical to its dimeric counterpart. The kinetic rate constants and equilibrium dissociation constants for monomeric and dimeric ecotin variants were determined with both trypsin and chymotrypsin. The effect of the secondary binding site on affinity was found to vary inversely with the strength of the interaction at the primary site. This compensatory effect yields a nonadditivity of up to 5 kcal/mol and can be explained in terms of the optimization of binding orientation. Such a mechanism of adaptability allows femtomolar affinities for two proteases with very different specificities.
Collapse
Affiliation(s)
- C T Eggers
- Departments of Biochemistry and Biophysics, University of California at San Francisco 94143-0446, USA
| | | | | | | |
Collapse
|
14
|
Oostenbrink BC, Pitera JW, Meerman JH. Simulations of the estrogen receptor ligand-binding domain: affinity of natural ligands and xenoestrogens. J Med Chem 2000; 43:4594-605. [PMID: 11101351 DOI: 10.1021/jm001045d] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have carried out molecular dynamics (MD) simulations and free energy calculations on the alpha-subtype of the human estrogen receptor ligand-binding domain (ERalpha LBD) complexed with a number of known agonists and putative xenoestrogens. Our dynamical simulations of ligand-receptor complexes underscore the highly structured nature of the complex and offer some interesting insights into the structure-activity relationship (SAR) for these ligands. With traditional thermodynamic integration (TI) calculations, we calculate relative binding free energies for three known agonists, in good agreement with experimental values. The sheer number of possible xenoestrogenic compounds makes an approach using traditional free energy calculations unfeasible. Instead, we have made use of a single-step perturbation methodology that allows the calculation of relative free energies for a large number of related polyaromatic hydrocarbons (PAHs) from a single simulation. Our results show good (maximum deviation 3.3 kJ mol(-1)) agreement with experimental data, suggesting the possibility of large-scale xenoestrogen screening in silico to obtain strongly estrogenic compounds for subsequent experimental testing.
Collapse
Affiliation(s)
- B C Oostenbrink
- Division of Chemistry, Department of Pharmacochemistry, Section Molecular Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
|
16
|
Abstract
TNFR1/Fas engagement results in the cleavage of cytosolic BID to truncated tBID, which translocates to mitochondria. Immunodepletion and gene disruption indicate BID is required for cytochrome c release. Surprisingly, the three-dimensional structure of this BH3 domain-only molecule revealed two hydrophobic α-helices suggesting tBID itself might be a pore-forming protein. Instead, we demonstrate that tBID functions as a membrane-targeted death ligand in which an intact BH3 domain is required for cytochrome c release, but not for targeting.Bak-deficient mitochondria and blocking antibodies reveal tBID binds to its mitochondrial partner BAK to release cytochrome c, a process independent of permeability transition. Activated tBID results in an allosteric activation of BAK, inducing its intramembranous oligomerization into a proposed pore for cytochrome c efflux, integrating the pathway from death receptors to cell demise.
Collapse
|
17
|
|
18
|
Warren WC, Byatt JC, Huynh M, Paik K, Pegg G, Staten NR. Evaluation of the somatogenic activity of bovine placental lactogen with cell lines transfected with the bovine somatotropin receptor. Life Sci 2000; 65:2755-67. [PMID: 10622285 DOI: 10.1016/s0024-3205(99)00544-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Studies have shown that bovine placental lactogen (bPL) has partial somatogenic activity in vivo even though binding results clearly indicate bPL does not cause homodimerization of the bovine somatotropin receptor (bST-R). To help understand the receptor binding versus biological activity of bovine somatotropin (bST) and bPL we have developed a homologous model system. Full length bST-R was stably transfected into a murine lymphoid cell line, Ba/F3 and a hamster kidney cell line, BHK. From both transfected cell lines, clones were isolated (Ba/F3-C1 and BHK-24) which demonstrated specific binding of bST and, or bPL. Bovine ST stimulated proliferation of the Ba/F3-C1 clonal line over a dose range of 10 to 3000 pM with an EC50 of 100 pM. A bST variant (des 1-4 bST) and porcine ST (pST) which both have approximately 10% of the binding affinity for bST-R as native bST were 1 and 10% as potent as bST in this bioassay, respectively. This suggests that affinity and biological activity are correlated for this system. Proliferation was initiated through the bST-R because addition of a monoclonal antibody which recognizes the extracellular domain of bST-R and inhibits binding of bST to its receptor, inhibited bST-stimulated mitosis. However, even though the affinity of bPL for the bST-R is similar to that of bST, bPL antagonized the proliferative action of bST with an IC50 of 1 nM. Components of the somatogenic signal transduction pathway were also evaluated in both cell lines. Addition of bST to the cell cultures increased phosphorylation of JAK2 in Ba/F3-C1 and BHK-24 cells in a dose-responsive manner but bPL failed to increase phosphorylation of JAK2 in either cell line. In summary, these data support the hypothesis that ST-R homodimerization is necessary for bioactivity in this model system but fail to explain apparent somatogenic activity of bPL in vivo.
Collapse
Affiliation(s)
- W C Warren
- Agricultural Sector, Monsanto Company, St. Louis, MO 63198, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Qureshi SA, Kim RM, Konteatis Z, Biazzo DE, Motamedi H, Rodrigues R, Boice JA, Calaycay JR, Bednarek MA, Griffin P, Gao YD, Chapman K, Mark DF. Mimicry of erythropoietin by a nonpeptide molecule. Proc Natl Acad Sci U S A 1999; 96:12156-61. [PMID: 10518592 PMCID: PMC18428 DOI: 10.1073/pnas.96.21.12156] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Erythropoietin (EPO) controls the proliferation and differentiation of erythroid progenitor cells into red blood cells. EPO induces these effects by dimerization of the EPO receptors (EPOR) present on these cells. To discover nonpeptide molecules capable of mimicking the effects of EPO, we identified a small molecule capable of binding to one chain of EPOR and used it to synthesize molecules capable of inducing dimerization of the EPOR. We first identified compound 1 (N-3-[2-(4-biphenyl)-6-chloro-5-methyl]indolyl-acetyl-L-lysine methyl ester) by screening the in-house chemical collection for inhibitors of EPO binding to human EPOR and then prepared compound 5, which contains eight copies of compound 1 held together by a central core. Although both compounds inhibited EPO binding of EPOR, only compound 5 induced dimerization of soluble EPOR. Binding of EPO to its receptor in cells results in activation of many intracellular signaling molecules, including transcription factors like signal transducer and activator of transcription (STAT) proteins, leading to growth and differentiation of these cells. Consistent with its ability to induce dimerization of EPOR in solution, compound 5 exhibited much of the same biological activities as EPO, such as (i) the activation of a STAT-dependent luciferase reporter gene in BAF3 cells expressing human EPOR, (ii) supporting the proliferation of several tumor cell lines expressing the human or mouse EPOR, and (iii) the in vitro differentiation of human progenitor cells into colonies of erythrocytic lineage. These data demonstrate that a nonpeptide molecule is capable of inducing EPOR dimerization and mimicking the biological activities of EPO.
Collapse
Affiliation(s)
- S A Qureshi
- Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yoshida H, Yokode M, Yamamoto A, Masaki R, Murayama T, Horiuchi H, Kita T. Compensated endocytosis of LDL by hamster cells co-expressing the two distinct mutant LDL receptors defective in endocytosis and ligand binding. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32116-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Abstract
A number of reports describe small peptides, and even bona fide small organic molecules, that activate homodimeric cytokine receptors and show cytokine-like activity in vitro and in vivo. These cases can be examined in light of the mechanistic and thermodynamic principles that govern cytokine-receptor activation.
Collapse
Affiliation(s)
- A Whitty
- Protein Engineering Department, Biogen, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
22
|
Silva CM, Isgaard J, Thorner MO. Cytokines in endocrine function. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:199-221. [PMID: 9917921 DOI: 10.1016/s0065-3233(08)60436-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- C M Silva
- Department of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
23
|
Iten M, Hoffmann T, Grill E. Receptors and signalling components of plant hormones. J Recept Signal Transduct Res 1999; 19:41-58. [PMID: 10071749 DOI: 10.3109/10799899909036636] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in understanding plant hormonal signalling has resulted in the identification of a variety of signalling components including receptor kinases with homology to the bacterial two component system as well as serine/threonine kinases and protein phosphatases. In addition, the existence of MAP kinase pathways in plants indicates a similar role of these signalling cascades in the relay of exogenous signals into the nucleus as has been disclosed in animal cells. The emerging signalling pathways of the plant hormone abscisic acid and ethylene are presented.
Collapse
Affiliation(s)
- M Iten
- Lehrstuhl für Botanik, Technische Universität München, Germany
| | | | | |
Collapse
|
24
|
Novel peptide mimetic building blocks and strategies for efficient lead finding. ADVANCES IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s1067-5698(99)80003-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Douni E, Kollias G. A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin alpha, or the p55TNF-R. J Exp Med 1998; 188:1343-52. [PMID: 9763613 PMCID: PMC2212501 DOI: 10.1084/jem.188.7.1343] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite overwhelming evidence that enhanced production of the p75 tumor necrosis factor receptor (p75TNF-R) accompanies development of specific human inflammatory pathologies such as multi-organ failure during sepsis, inflammatory liver disease, pancreatitis, respiratory distress syndrome, or AIDS, the function of this receptor remains poorly defined in vivo. We show here that at levels relevant to human disease, production of the human p75TNF-R in transgenic mice results in a severe inflammatory syndrome involving mainly the pancreas, liver, kidney, and lung, and characterized by constitutively increased NF-kappaB activity in the peripheral blood mononuclear cell compartment. This process is shown to evolve independently of the presence of TNF, lymphotoxin alpha, or the p55TNF-R, although coexpression of a human TNF transgene accelerated pathology. These results establish an independent role for enhanced p75TNF-R production in the pathogenesis of inflammatory disease and implicate the direct involvement of this receptor in a wide range of human inflammatory pathologies.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Extracts
- Cell Nucleus
- Cells, Cultured
- Female
- Gene Expression
- Humans
- Inflammation/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/pharmacology
- Lymphotoxin-alpha/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- NF-kappa B/metabolism
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Transgenes
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- E Douni
- Department of Molecular Genetics, Hellenic Pasteur Institute, 115 21 Athens, Hellas
| | | |
Collapse
|
26
|
Raskin N, Jakubowski A, Sizing I, Olson DL, Kalled SL, Hession CA, Benjamin CD, Baker DP, Burkly LC. Molecular Mapping with Functional Antibodies Localizes Critical Sites on the Human IL Receptor Common γ (γc) Chain. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The IL receptor common γ (γc) chain is required for the formation of high affinity cytokine receptor complexes for IL-2, IL-4, IL-7, IL-9, and IL-15, and for signals regulating cell survival, growth, and differentiation. Our current understanding of how γc chain associates with multiple ligands and receptor subunits is drawn largely from its structural homology to the human growth hormone (hGH) receptor and known structure of the hGH/hGH receptor complex. These receptors share distinct features in their extracellular portions and are believed to function by a mechanism of ligand-induced association of receptor subunits. Here, we report the first directed mutational analysis of the human γc chain by alanine scanning conducted across seven regions likely to contain residues required for intermolecular contact. Functionally distinct, neutralizing anti-γc mAbs were employed to define critical residues. One particular mAb, CP.B8, unique in its ability to inhibit IL-2-, IL-4-, IL-7-, and IL-15-induced proliferation and high affinity cytokine binding of normal T cells as an intact mAb and as a Fab fragment, localized critical residues to four noncontinuous stretches, namely residues in loops AB and EF of domain 1, in the interdomain segment, and in loop FG of domain 2. Notably, these residues form a contiguous patch on the γc chain surface in a three-dimensional structural model. These results provide functional evidence for the location of contact points on γc chain required for its association with multiple ligands.
Collapse
|
27
|
Boger DL, Ducray P, Chai W, Jiang W, Goldberg J. Higher order iminodiacetic acid libraries for probing protein-protein interactions. Bioorg Med Chem Lett 1998; 8:2339-44. [PMID: 9873538 DOI: 10.1016/s0960-894x(98)00423-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Higher order iminodiacetic acid diamide trimer (560 compounds) and tetramer libraries (1260 compounds) are described and were assembled in a convergent multistep solution-phase synthesis for use in studying protein-protein interactions.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 1998; 94:261-71. [PMID: 9695954 DOI: 10.1016/s0092-8674(00)81425-7] [Citation(s) in RCA: 564] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A family of genes including ETR1, ETR2, EIN4, ERS1, and ERS2 is implicated in ethylene perception in Arabidopsis thaliana. As only dominant mutations were previously available for these genes, it was unclear whether all of them are components in the ethylene signaling pathway and whether they code for positive or negative regulators of ethylene responses. In this study, we have isolated loss-of-function mutations of four of these genes (ETR1, ETR2, EIN4, and ERS2) and identified an ethylene-independent role of ETR1 in promoting cell elongation. Quadruple mutants had constitutive ethylene responses, revealing that these proteins negatively regulate ethylene responses and that the induction of ethylene response in Arabidopsis is through inactivation rather than activation of these proteins.
Collapse
Affiliation(s)
- J Hua
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
29
|
Walter MR, Bordens R, Nagabhushan TL, Williams BR, Herberman RB, Dinarello CA, Borden EC, Trotta PP, Pestka S, Pfeffer LM. Review of recent developments in the molecular characterization of recombinant alfa interferons on the 40th anniversary of the discovery of interferon. Cancer Biother Radiopharm 1998; 13:143-54. [PMID: 10850350 DOI: 10.1089/cbr.1998.13.143] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant alfa interferons (IFN-alpha s) are approved worldwide for the treatment of a variety of cancers and diseases of virologic origin. A series of recent advances in the molecular characterization of recombinant IFN-alpha s have allowed the determination of the three-dimensional IFN-alpha 2b structure by high-resolution x-ray crystallography. We review here recent developments in our understanding of the molecular and physicochemical properties of recombinant IFN-alpha, including our current state of knowledge of the IFN-alpha gene family and the multiple species of human leukocyte IFN. Based on the reported three-dimensional structure of IFN-alpha 2b, we propose a molecular model for the IFN-alpha 2b receptor complex and predict models for the naturally occurring subtypes IFN-alpha 1 and IFN-alpha 8, as well as the synthetic, non-naturally occurring consensus IFN. Such models provide molecular insights into the mechanism of action of IFN-alpha.
Collapse
Affiliation(s)
- M R Walter
- Department of Microbiology, University of Alabama at Birmingham 35294-0005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998; 19:225-68. [PMID: 9626554 DOI: 10.1210/edrv.19.3.0334] [Citation(s) in RCA: 1059] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C Bole-Feysot
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Vallesi A, Giuli G, Ghiara P, Scapigliati G, Luporini P. Structure-function relationships of pheromones of the ciliate Euplotes raikovi with mammalian growth factors: cross-reactivity between Er-1 and interleukin-2 systems. Exp Cell Res 1998; 241:253-9. [PMID: 9633534 DOI: 10.1006/excr.1998.4056] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diffusible protein signals of the ciliate Euplotes raikovi, denoted as pheromones, have functionally been linked with prototypic growth factors of animal cells by the demonstration that they not only induce a temporary cell union in mating pairs, by acting in a paracrine-like fashion, but can also bind to cells in autocrine fashion and promote their vegetative (mitotic) proliferation. It is now shown that pheromone Er-1 is capable of binding to the alpha and beta chains of the multimeric IL-2 receptor on mammalian cells and that IL-2 can, in turn, bind to the putative cell receptor of this pheromone. Similarities in the IL-2 and Er-1 structures support these findings and raise controversial implications with regard to their evolutionary significance.
Collapse
Affiliation(s)
- A Vallesi
- Dipartimento di Biologia Molecolare, Cellulare e Animale, University of Camerino, Italy
| | | | | | | | | |
Collapse
|
32
|
Qiu H, Belanger A, Yoon HW, Bunn HF. Homodimerization restores biological activity to an inactive erythropoietin mutant. J Biol Chem 1998; 273:11173-6. [PMID: 9556605 DOI: 10.1074/jbc.273.18.11173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) is believed to transduce a signal by bringing two Epo receptors into close proximity, enabling cross-phosphorylation. We compared monomeric Epos with homodimers in which two Epo monomers are linked by polyglycine. Monomeric Epo mutant R103A is unable to support Epo-dependent cell growth or trigger Janus kinase 2 and STAT5 activation, even at concentrations greater than 7,000 times that sufficient for wild-type Epo activity. In contrast, R103A homodimer induces proliferation and transduces signal at concentrations similar to that of wild-type Epo monomer and homodimer. These experiments show that two discrete domains on Epo are required for receptor binding and activation. Our results also suggest that the EpoR can be dimerized by different forms and sizes of molecules, as long as two recognition motifs are provided in the same molecule. Design of other dimeric molecules may enhance our understanding of cytokine specificity and signal transduction.
Collapse
Affiliation(s)
- H Qiu
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
33
|
Boger DL, Chai W. Solution-phase combinatorial synthesis: Convergent multiplication of diversity via the olefin metathesis reaction. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)00128-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
|
35
|
Goffin V, Ferrag F, Kelly PA. Chapter 1 Molecular aspects of prolactin and growth hormone receptors. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2566(98)80009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
36
|
Klaus W, Gsell B, Labhardt AM, Wipf B, Senn H. The three-dimensional high resolution structure of human interferon alpha-2a determined by heteronuclear NMR spectroscopy in solution. J Mol Biol 1997; 274:661-75. [PMID: 9417943 DOI: 10.1006/jmbi.1997.1396] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The solution structure of recombinant human interferon alpha-2a (Roferon-A) has been determined by multidimensional heteronuclear NMR spectroscopy. The calculations using simulated annealing produced a family of 24 convergent structures which satisfy the experimental restraints comprising 1541 NOE-derived inter-proton distances, 187 dihedral restraints, 66 pairs of hydrogen bond restraints, and six upper and lower limits for two disulfide bridges. The fractional labeling of methyl groups allowed their direct and unambiguous stereospecific assignment which proved to be essential for obtaining a high resolution of the structures. A best fit superposition of residues 10 to 47, 50 to 101 and 111 to 157 gives an rms deviation of 0.62 A for the backbone heavy atoms and 1.39 A for all heavy atoms of these segments. The dominant feature of the structure is a cluster of five alpha-helices, four of which are arranged to form a left-handed helix bundle with an up-up-down-down topology and two over-hand connections. The interpretation of heteronuclear 15N-¿1H¿ NOE data shows the co-existence of flexible regions within an otherwise rigid framework of the protein. Four stretches of pronounced flexibility can be located: Cys1-Ser8, Gly44-Ala50, Ile100-Lys112, and Ser160-Glu165. Among the structurally related four-helical bundle cytokines, the structure of IFN alpha-2a is most similar to that of human interferon alpha-2b and murine interferon-beta. From this structural information and mutagenesis data, areas on the surface of the protein are identified which seem to be important in receptor interactions.
Collapse
Affiliation(s)
- W Klaus
- F. Hoffmann-LaRoche AG Pharma Preclinical Research Department, Basel, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Verna J, Lodder A, Lee K, Vagts A, Ballester R. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:13804-9. [PMID: 9391108 PMCID: PMC28388 DOI: 10.1073/pnas.94.25.13804] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The PKC1-MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1-green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC results in phenotypes similar to mutants in the PKC1-MPK1 pathway and an increase in the activity of MPK1 upon a mild heat treatment is impaired in a wscDelta mutant. Genetic analysis places the function of WSC upstream of PKC1, suggesting that they play a role in its activation. We also find a genetic interaction between WSC and the RAS-cAMP pathway. The RAS-cAMP pathway is required for cell cycle progression and for the heat shock response. Overexpression of WSC suppresses the heat shock sensitivity of a strain in which RAS is hyperactivated and the heat shock sensitivity of a wscDelta strain is rescued by deletion of RAS2. The functional characteristics and cellular localization of WSC suggest that they may mediate intracellular responses to environmental stress in yeast.
Collapse
Affiliation(s)
- J Verna
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
38
|
Lichtarge O, Yamamoto KR, Cohen FE. Identification of functional surfaces of the zinc binding domains of intracellular receptors. J Mol Biol 1997; 274:325-37. [PMID: 9405143 DOI: 10.1006/jmbi.1997.1395] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcriptional regulatory factor complexes assemble on genomic response elements to control gene expression. To gain insights on the surfaces that determine this assembly in the zinc binding domains from intracellular receptors, we systematically analyzed the variations in sequence and function of those domains in the context of their invariant fold. Taking the intracellular receptor superfamily as a whole revealed a hierarchy of amino acid residues along the DNA interface that correlated with response element binding specificity. When only steroid receptors were considered, two additional sites appeared: the known dimer interface, and a novel putative interface suitably located to contact regulatory factors bound to the free face of palindromic response elements commonly used by steroid receptors. Surprisingly, retinoic acid receptors, not known to bind palindromic response elements, contain both of these surfaces, implying that they may dimerize at palindromic elements under some circumstances. This work extends Evolutionary Trace analysis of functional surfaces to protein-DNA interactions, suggests how coordinated exchange of trace residues may predictably switch binding specificity, and demonstrates how to detect functional surfaces that are not apparent from sequence comparison alone.
Collapse
Affiliation(s)
- O Lichtarge
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
39
|
Sairam MR, Jiang LG, Yarney TA, Khan H. Alternative splicing converts the G-protein coupled follitropin receptor gene into a growth factor type I receptor: implications for pleiotropic actions of the hormone. Mol Reprod Dev 1997; 48:471-9. [PMID: 9364441 DOI: 10.1002/(sici)1098-2795(199712)48:4<471::aid-mrd7>3.0.co;2-n] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pituitary follitropin (FSH) has pleiotropic actions on gonads, but it is not certain if all these events are mediated by a single receptor. A single gene for the FSH receptor undergoes extensive alternate splicing generating multiple transcripts, and several of these have been cloned and characterized from the sheep testis. In this study we have investigated the expression in HEK (human embryonic kidney) 293 cells of a cloned cDNA encoding the first eight exons of the FSH receptor along with a carboxyterminal extension that contributed a hypothetical single transmembrane domain. This cDNA, which lacked the conventional seven transmembrane motif of the full-length 695 residue wild-type receptor protein, was also efficiently expressed on the cell surface and exhibited high affinity and specificity for FSH binding. LH did not compete for FSH binding indicating that these structures contained all the motifs necessary for specific hormone recognition. Following hormone binding and affinity crosslinking the deduced M(r) of the expressed receptor was compatible with dimer formation. The expression of these altered FSH receptors on the cell surface was confirmed by immunohistochemistry, which revealed punctate labeling in a pattern comparable to that shown by cells transfected by wild-type receptor cDNA. Addition of FSH stimulated 3H-thymidine incorporation in transfected cells in a biphasic manner. By performing RT-PCR we could show that similar altered receptor transcripts were present in both the ovary and testis. Our results reveal for the first time that the seven transmembrane structure of FSH-receptor is not absolutely necessary for cell surface expression and hormone binding provided other compensating motifs are present in the protein structure for membrane insertion. Some of these features are typical of growth factor receptors. Our investigations also demonstrate that alternate splicing of the FSH receptor gene provides a mechanism for creating receptor diversity and suggest that multiple receptors could be involved in regulation of hormone action.
Collapse
Affiliation(s)
- M R Sairam
- Molecular Reproduction Research Laboratory, Clinical Research Institute of Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
40
|
Hunt JF, McCrea PD, Zaccaï G, Engelman DM. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. J Mol Biol 1997; 273:1004-19. [PMID: 9367787 DOI: 10.1006/jmbi.1997.1330] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assessment of the physical size of integral membrane protein complexes has generally been limited to samples solubilized in non-ionic detergent, a process which may introduce artifacts of unknown scope and severity. A system has been developed that allows observation of the small angle scattering profile of an integral membrane protein while incorporated in small unilamellar phospholipid vesicles. Contrast matching of isotopically substituted phospholipid eliminates the contribution of the bilayer to the observed scattering, resulting in a profile dependent only on the structure of the individual membrane protein complexes and their spatial arrangement in the vesicle. After appropriate compensation for their spatial arrangement, information about the molecular mass and radius of gyration of the individual complexes can be obtained. The validity of the approach has been established using monomeric bacteriorhodopsin as a model system.
Collapse
Affiliation(s)
- J F Hunt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
41
|
Gray GD, Hasslen SR, Ember JA, Carney DF, Herron MJ, Erlandsen SL, Nelson RD. Receptors for the chemoattractants C5a and IL-8 are clustered on the surface of human neutrophils. J Histochem Cytochem 1997; 45:1461-7. [PMID: 9358848 DOI: 10.1177/002215549704501103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used high-resolution field emission scanning electron microscopy with backscatter electron imaging to detect immunogold-labeled C5a and interleukin-8 (IL-8) receptors on human blood neutrophils. The receptors were labeled with receptor-specific antibodies in combination with secondary antibody conjugated to immunogold. When neutrophils were isolated in a "nonactivated" state, both of these receptor populations were expressed primarily in clusters on nonprojecting domains of the cell membrane. When these cells were double labeled for C5a and IL-8 receptors, intermixing of these receptor species in a common cluster was not found. When neutrophils were isolated in an "activated" state, by mixing the blood with N-formylmethionyl-leucyl-phenylalanine, the cells were seen to be elongated and ruffled at their anterior pole, but the C5a receptors did not disperse or redistribute on the surface of the peptide-activated cells. Analysis of the distribution of human C5a receptors expressed by transfected mouse L-cell fibroblasts showed the C5a receptors to be clustered, but expressed on nonprojecting and projecting domains of the cell surface. These observations provide new information on the topographical expression of leukocyte receptors involved in directing cell migration.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, CD/genetics
- Female
- Fibroblasts/chemistry
- Humans
- Male
- Mice
- Microscopy, Electron, Scanning
- Microscopy, Immunoelectron
- Neutrophil Activation/immunology
- Neutrophils/chemistry
- Neutrophils/ultrastructure
- Receptor, Anaphylatoxin C5a
- Receptors, Complement/analysis
- Receptors, Complement/genetics
- Receptors, Interleukin/analysis
- Receptors, Interleukin-8A
- Transfection
Collapse
Affiliation(s)
- G D Gray
- Department of Dermatology, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Whitbeck JC, Peng C, Lou H, Xu R, Willis SH, Ponce de Leon M, Peng T, Nicola AV, Montgomery RI, Warner MS, Soulika AM, Spruce LA, Moore WT, Lambris JD, Spear PG, Cohen GH, Eisenberg RJ. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 1997; 71:6083-93. [PMID: 9223502 PMCID: PMC191868 DOI: 10.1128/jvi.71.8.6083-6093.1997] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.
Collapse
Affiliation(s)
- J C Whitbeck
- School of Dental Medicine, Center for Oral Health Research, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Boger DL, Ozer RS, Andersson CM. Generation of targeted C2-symmetrical compound libraries by solution-phase combinatorial chemistry. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00330-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Perrot-Applanat M, Gualillo O, Pezet A, Vincent V, Edery M, Kelly PA. Dominant negative and cooperative effects of mutant forms of prolactin receptor. Mol Endocrinol 1997; 11:1020-32. [PMID: 9212050 DOI: 10.1210/mend.11.8.9954] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In addition to a long form of 591 amino acids (aa), two other forms of PRL receptor (PRLR), differing in the length of their cytoplasmic domains, have been identified in the rat. The Nb2 form, lacking 198 aa in the cytoplasmic domain, is able to transmit a lactogenic signal similar to the long form, whereas the short form of 291 aa is inactive. The ability of PRL to activate the promoter of the beta-casein gene or the lactogenic hormone responsive element fused to the luciferase reporter was assessed in Chinese hamster ovary cells or 293 fibroblasts transiently transfected with PRLR cDNAs. The function of the short form was examined after cotransfection of both the long and short forms. These results clearly show that the short form acts as a dominant negative inhibitor through the formation of inactive heterodimers, resulting in an inhibition of Janus kinase 2 (JAK2) activation. The present study also investigates the possible participation of cytoplasmic receptors in the signal transduction pathway, using cotransfection experiments and a new approach that selectively determines the contribution of cytoplasmic receptors in the process of signal transduction. We cotransfected Chinese hamster ovary cells with two cDNA constructs: a cytoplasmic (soluble) form of the receptor with a deleted signal peptide (delta-19), which is unable to bind PRL, and a functionally inactive receptor mutant (lacking box 1), which is anchored in the plasma membrane and able to bind PRL. This approach has allowed us to show that delta-19, lacking expression at the plasma membrane, can transduce the hormonal message, at least to a limited extent (up to 30% of wild type efficiency), providing that association/activation occurs with a PRL-PRLR complex initiated at the cell surface level; box 1 of the cytoplasmic form is necessary to rescue this partial transcriptional activity of the inactive mutant. This partial recovery is also parallel to the partial activation of JAK2, indicating that the signal transduction pathway implicated JAK2. Our results provide evidence that heterodimerization of receptors can be implicated either in the positive or in negative activation of gene transcription.
Collapse
Affiliation(s)
- M Perrot-Applanat
- INSERM Unité 344, Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Chen C, Brinkworth R, Waters MJ. The role of receptor dimerization domain residues in growth hormone signaling. J Biol Chem 1997; 272:5133-40. [PMID: 9030580 DOI: 10.1074/jbc.272.8.5133] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While there is a considerable amount of evidence that signal transduction by the growth hormone (GH) receptor requires receptor homodimerization, there has been no systematic study of the role of receptor dimerization domain residues in this process. In conjunction with the distances derived from the crystal structure of the hGH-hGH receptor (extracellular domain) complex, we have used a luciferase-based c-fos promoter reporter assay in transiently transfected Chinese hamster ovary (CHO) cells, and stable receptor expressing CHO cell populations to define the dimerization domain residues needed for effective signaling. In addition to alanine substitution, we have used both aspartate and lysine substitutions to allow us to provide evidence for proximity relations through charge complementation. Introduced cysteine substitutions were also used, but unlike the erythropoietin receptor, these were unable to generate constitutively active receptor. We conclude that serine 145, histidine 150, aspartate 152, tyrosine 200, and serine 201, but not leucine 146 or threonine 147 are required for effective signal transduction through the dimerization domain. This information may be valuable in designing small molecule antagonists of GH and other cytokines that block dimerization by binding to the dimerization domain.
Collapse
Affiliation(s)
- C Chen
- Physiology & Pharmacology Department and Centre for Molecular & Cellular Biology, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
46
|
Muthukumaran G, Kotenko S, Donnelly R, Ihle JN, Pestka S. Chimeric erythropoietin-interferon gamma receptors reveal differences in functional architecture of intracellular domains for signal transduction. J Biol Chem 1997; 272:4993-9. [PMID: 9030561 DOI: 10.1074/jbc.272.8.4993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Binding of interferon gamma (IFN-gamma) causes oligomerization of the two interferon gamma receptor (IFN-gammaR) subunits, receptor chain 1 (IFN-gammaR1, the ligand-binding chain) and the second chain of the receptor (IFN-gammaR2), and causes activation of two Jak kinases (Jak1 and Jak2). In contrast, the erythropoietin receptor (EpoR) requires only one receptor chain and one Jak kinase (Jak2). Chimeras between the EpoR and the IFN-gammaR1 and IFN-gammaR2 chains demonstrate that the architecture of the EpoR and the IFN-gammaR complexes differ significantly. Although IFN-gammaR1 alone cannot initiate signal transduction, the chimera EpoR/gammaR1 (extracellular/intracellular) generates slight responses characteristic of IFN-gamma in response to Epo and the EpoR/gammaR1. EpoR/gammaR2 heterodimer is a fully functional receptor complex. The results demonstrate that the configuration of the extracellular domains influences the architecture of the intracellular domains.
Collapse
Affiliation(s)
- G Muthukumaran
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 1997; 13:457-512. [PMID: 9442881 PMCID: PMC2899694 DOI: 10.1146/annurev.cellbio.13.1.457] [Citation(s) in RCA: 437] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.
Collapse
Affiliation(s)
- J J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.
| | | | | | | | | |
Collapse
|
49
|
Radhakrishnan R, Walter LJ, Hruza A, Reichert P, Trotta PP, Nagabhushan TL, Walter MR. Zinc mediated dimer of human interferon-alpha 2b revealed by X-ray crystallography. Structure 1996; 4:1453-63. [PMID: 8994971 DOI: 10.1016/s0969-2126(96)00152-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The human alpha-interferon (huIFN-alpha) family displays broad spectrum antiviral, antiproliferative and immunomodulatory activities on a variety of cell types. The diverse biological activities of the IFN-alpha's are conveyed to cells through specific interactions with cell-surface receptors. Despite considerable effort, no crystal structure of a member of this family has yet been reported, because the quality of the protein crystals have been unsuitable for crystallographic studies. Until now, structural models of the IFN-alpha's have been based on the structure of murine IFN-beta (muIFN-beta). These models are likely to be inaccurate, as the amino acid sequence of muIFN-beta differs significantly from the IFN-alpha's at proposed receptor-binding sites. Structural information on a huIFN-alpha subtype would provide an improved basis for modeling the structures of the entire IFN-alpha family. RESULTS The crystal structure of recombinant human interferon-alpha 2b (huIFN-alpha 2b) has been determined at 2.9 A resolution. HuIFN-alpha 2b exists in the crystal as a noncovalent dimer, which associates in a novel manner. Unlike other structurally characterized cytokines, extensive interactions in the dimer interface are mediated by a zinc ion (Zn2+). The overall fold of huIFN-alpha 2b is most similar to the structure of muIFN-beta. Unique to huIFN-alpha 2b is a 3(10) helix in the AB loop which is held to the core of the molecule by a disulfide bond. CONCLUSIONS The structure of huIFN-alpha 2b provides an accurate model for analysis of the > 15 related type 1 interferon molecules. HuIFN-alpha 2b displays considerable structural similarity with muIFN-beta, interleukin-10 and interferon-gamma, which also bind related class 2 cytokine receptors. From these structural comparisons and numerous studies on the effects of mutations on biological activity, we have identified protein surfaces that appear to be important in receptor activation. This study also reveals the potential biological importance of the huIFN-alpha 2b dimer.
Collapse
Affiliation(s)
- R Radhakrishnan
- Center for Macromolecular Crystallography, University of Alabama at Brimingham 35294, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Sundström M, Lundqvist T, Rödin J, Giebel LB, Milligan D, Norstedt G. Crystal structure of an antagonist mutant of human growth hormone, G120R, in complex with its receptor at 2.9 A resolution. J Biol Chem 1996; 271:32197-203. [PMID: 8943276 DOI: 10.1074/jbc.271.50.32197] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human growth hormone binds two receptor molecules and thereby induces signal transduction through receptor dimerization. At high concentrations, growth hormone acts as an antagonist because of a large difference in affinities at the respective binding sites. This antagonist action can be enhanced further by reducing binding in the low affinity binding site. A growth hormone antagonist mutant Gly-120 --> Arg, has been crystallized with its receptor as a 1:1 complex and the crystal structure determined at 2.9 A resolution. The 1:1 complex is remarkably similar to the native growth hormone-receptor 1:2 complex. A comparison between the two structures reveals only minimal differences in the conformations of the hormone or its receptor in the two complexes, including the angle between the two immunoglobulin-like domains of the receptor. Further, two symmetry-related 1:1 complexes in the crystal form a 2:2 complex with a large solvent inaccessible area between two receptor molecules. In addition, we present here a native human growth hormone-human growth hormone-binding protein 1:2 complex structure at 2.5 A resolution. One important difference between our structure and the previously published crystal structure at 2.8 A is revealed. Trp-104 in the receptor, a key residue in the hormone-receptor interaction, has an altered conformation in the low affinity site enabling a favorable hydrogen bond to be formed with Asp-116 of the hormone.
Collapse
Affiliation(s)
- M Sundström
- Department of Structural Biochemistry, Pharmacia and Upjohn, Preclinical Research and Development, S-112 87 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|