1
|
Jeong H, Kim SH, Kim J, Jeon D, Uhm C, Oh H, Cho K, Park IH, Oh J, Kim JJ, Jeong SH, Park JH, Park JW, Yun JW, Seo JY, Shin JS, Goldenring JR, Seong JK, Nam KT. Post-COVID-19 Effects on Chronic Gastritis and Gastric Cellular and Molecular Characteristics in Male Mice. Cell Mol Gastroenterol Hepatol 2025:101511. [PMID: 40157534 DOI: 10.1016/j.jcmgh.2025.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUNDS & AIMS Since the Omicron variant emerged as a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, COVID-19-associated mortality has decreased remarkably. Nevertheless, patients with a history of SARS-CoV-2 infection have been suffering from an aftereffect commonly known as 'long COVID,' affecting diverse organs. However, the effect of SARS-CoV-2 on gastric cells and disease progression was not previously known. We aimed to investigate whether SARS-CoV-2 infection affects stomach cells and if post-COVID-19 conditions can lead to severe gastric disease. METHODS Stomach specimens obtained from male K18-hACE2 mice 7 days after SARS-CoV-2 infection were subjected to a transcriptomic analysis for molecular profiling. To investigate the putative role of SARS-CoV-2 in gastric carcinogenesis, K18-hACE2 mice affected by nonlethal COVID-19 were also inoculated with Helicobacter pylori SS1. RESULTS Despite the lack of viral dissemination and pathologic traits in the stomach, SARS-CoV-2 infection caused dramatic changes to the molecular profile and some immune subsets in this organ. Notably, the gene sets related to metaplasia and gastric cancer were significantly enriched after viral infection. As a result, chronic inflammatory responses and preneoplastic transitions were promoted in these mice. CONCLUSION SARS-CoV-2 infection indirectly leads to profound and post-acute COVID-19 alterations in the stomach at the cellular and molecular levels, resulting in adverse outcomes following co-infection with SARS-CoV-2 and H. pylori. Our results show that 2 prevalent pathogens of humans elicit a negative synergistic effect and provide evidence of the risk of severe chronic gastritis in the post-COVID-19 era.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghun Jeon
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Ho Jeong
- Gyeongsang National University College of Medicine, Seoul, South Korea
| | - Ji-Ho Park
- Gyeongsang National University College of Medicine, Seoul, South Korea
| | - Jun Won Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, Brain Korea 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea; BIO-MAX Institute, Seoul National University, Seoul, South Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea.
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Ye Q, Zhu Y, Ma Y, Wang Z, Xu G. Emerging role of spasmolytic polypeptide-expressing metaplasia in gastric cancer. J Gastrointest Oncol 2024; 15:2673-2683. [PMID: 39816029 PMCID: PMC11732338 DOI: 10.21037/jgo-24-508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer (GC) ranks among the top five most diagnosed cancers globally, with particularly high incidence and mortality rates observed in Asian regions. Despite certain advancements achieved through early screening and treatment strategies in many countries, GC continues to pose a significant public health challenge. Approximately 20% of patients infected with Helicobacter pylori develop precancerous lesions, among which metaplasia is the most critical. Except for intestinal metaplasia (IM), which is characterized by goblet cells appearing in the stomach glands, one type of mucous cell metaplasia, spasmolytic polypeptide-expressing metaplasia (SPEM), has attracted much attention. SPEM represents a specific epithelial cell alteration within the gastric mucosa, characterized by the expressing trefoil factor 2 (TFF2) in basal glands, resembling the basal metaplasia of deep antral gland cells. It primarily arises from the transdifferentiation of mature chief cells, mucous neck cells (MNCs), or isthmus stem cells. SPEM is commonly regarded as a precursor lesion in the development of gastric inflammation and subsequent carcinogenesis. The formation of SPEM is intricately associated with chronic gastric inflammation, Helicobacter pylori infection, and various other environmental and genetic factors. Recently, with the profound exploration of the biological and molecular mechanisms underlying SPEM, a deeper understanding of its role in GC initiation and progression has emerged. This review summarizes the role, molecular mechanisms, and clinical significance of SPEM in the onset and progression of GC.
Collapse
Affiliation(s)
- Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichun Ma
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhangding Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Lahner E. Primary antibody deficiency, pernicious anaemia and gastric cancer: An intriguing triangular relationship. Dig Liver Dis 2024; 56:1758-1759. [PMID: 38910074 DOI: 10.1016/j.dld.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Edith Lahner
- Sapienza University of Rome, Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Gastroenterology Unit, Via Grottarossa 1035, 00189 Rome, Italy.
| |
Collapse
|
4
|
Bali P, Lozano-Pope I, Hernandez J, Estrada MV, Corr M, Turner MA, Bouvet M, Benner C, Obonyo M. TRIF-IFN-I pathway in Helicobacter-induced gastric cancer in an accelerated murine disease model and patient biopsies. iScience 2024; 27:109457. [PMID: 38558931 PMCID: PMC10981133 DOI: 10.1016/j.isci.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a known cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the underlying mechanisms by which H. pylori infection triggers these disorders are still not clearly understood. Gastric cancer is a slow progressing disease, which makes it difficult to study. We have developed an accelerated disease progression mouse model, which leverages mice deficient in the myeloid differentiation primary response 88 gene (Myd88-/-) infected with Helicobacter felis (H. felis). Using this model and gastric biopsy samples from patients, we report that activation of the Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-β (TRIF)-type I interferon (IFN-I) signaling pathway promotes Helicobacter-induced disease progression toward severe gastric pathology and gastric cancer development. Further, results implicated downstream targets of this pathway in disease pathogenesis. These findings may facilitate stratification of Helicobacter-infected patients and thus enable treatment prioritization of patients.
Collapse
Affiliation(s)
- Prerna Bali
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ivonne Lozano-Pope
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan Hernandez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Monica V. Estrada
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Maripat Corr
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael A. Turner
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael Bouvet
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marygorret Obonyo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Chong Y, Yu D, Lu Z, Nie F. Role and research progress of spasmolytic polypeptide‑expressing metaplasia in gastric cancer (Review). Int J Oncol 2024; 64:33. [PMID: 38299264 PMCID: PMC10836494 DOI: 10.3892/ijo.2024.5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Gastric cancer ranks as one of the most prevalent cancers worldwide. While the incidence of gastric cancer in Western countries has notably diminished over the past century, it continues to be a leading cause of cancer‑related mortality on a global scale. The majority of gastric cancers in humans are attributed to chronic Helicobacter pylori infection and the progression of gastric cancer is often preceded by gastritis, atrophy, metaplasia and dysplasia. However, the precise mechanisms underlying the development of gastric cancer remain ambiguous, including the formation of gastric polyps and precancerous lesions. In humans, two types of precancerous metaplasia have been identified in relation to gastric malignancies: Intestinal metaplasia and spasmolytic polypeptide‑expressing metaplasia (SPEM). The role of SPEM in the induction of gastric cancer has gained recent attention and its link with early‑stage human gastric cancer is increasingly evident. To gain insight into SPEM, the present study reviewed the role and research progress of SPEM in gastric cancer.
Collapse
Affiliation(s)
- Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
6
|
Hong X, Li H, Lin Y, Luo L, Xu W, Kang J, Li J, Huang B, Xu Y, Pan H, Guo S. Efficacy and potential therapeutic mechanism of Weiwei decoction on Spasmolytic polypeptide-expressing metaplasia in Helicobacter pylori-infected and Atp4a-knockout mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117062. [PMID: 37598768 DOI: 10.1016/j.jep.2023.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spasmolytic polypeptide-expressing metaplasia (SPEM) is characterized by mucus cell morphologies at the base of gastric glands, which is considered advanced SPEM when accompanied with an increase in transcripts associated with intestinal-type gastric cancer. Weiwei decoction (WWD) was modified from "Si-Jun-Zi Tang," which has been used for thousands of years in China against gastric atrophy and metaplasia. AIM OF THE STUDY To investigate the effects and potential mechanisms of WWD against advanced SPEM. MATERIALS AND METHODS Liquid chromatography-mass spectrometry was employed to analyze the constituents of WWD. Five-month-infected Helicobacter pylori (H. pylori) Sydney strain 1 C57BL/6J mice and 6-week-old ATPase H+/K+ transporting subunit alpha-knockout mice (Atp4a-/-) were given folic acid (1.95 mg/kg) or WWD (13.65 g/kg, 27.30 g/kg, 54.60 g/kg) by gavage for one month. RESULTS WWD demonstrated beneficial effects on gastric mucosal pathology and mucus secretion. In H. pylori-infected mice, WWD effectively reduced the expression of GSII and inhibited the mRNA levels of key markers associated with advanced SPEM, including Clu, Cftr, Wfdc2, Dmbt1, and Gpx2. Similarly, in Atp4a-/- mice, WWD significantly decreased the expressions of GSII and Clusterin, and inhibited the mRNA levels of Wfdc2, Cftr, Dmbt1, and Gpx2. Notably, WWD restored the expression of markers for chief cells (PGC, GIF) and parietal cells (ATP4A), particularly in the medium- and high-dose groups, indicating its potential anti-atrophy effect on H. pylori-infected and Atp4a-/- mice. WWD administration resulted in a decline in TFF2 expression to baseline levels, suggesting that the mucous protection mediated by TFF2 was unaffected. Furthermore, the infiltration of CD163+F4/80+ M2 macrophages in the gastric mucosa of H. pylori-infected mice was reduced after WWD treatment, indicating a potential modulatory role of WWD on M2 macrophages. CONCLUSION WWD exerted protective effects against SPEM in H. pylori-infected and Atp4a-/- mice. The optimal doses of WWD were found to be medium doses in H. pylori-infected mice and high doses in Atp4a-/- mice. These effects include inhibition of transcripts associated with intestinal-type gastric adenocarcinoma, restoration of ATP4A and PGC expression, and reduction of M2 macrophage infiltration. These findings provide valuable insights into the therapeutic effects of WWD on advanced SPEM and highlight its potential as a treatment option.
Collapse
Affiliation(s)
- Xinxin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Haiwen Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yandan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liuru Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weijun Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jianyuan Kang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jingwei Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Huafeng Pan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
7
|
Wang YK, Ran DM, Li YY, Zhu CY, Zhang RB, Jiang B, Wang SN. Histopathological features of glandular atrophy of the lamina propria of the gastric mucosa during its occurrence and development. BMC Gastroenterol 2023; 23:395. [PMID: 37968594 PMCID: PMC10652481 DOI: 10.1186/s12876-023-03033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
OBJECTIVE To explore the histopathological features of glandular atrophy of the lamina propria of gastric mucosa during its occurrence and development. METHOD We performed detailed histological observation and immunohistochemical examination on the endoscopic biopsy and ESD endoscopic resection specimens of 896 patients with glandular atrophy of the lamina propria of gastric mucosa. The EnVision two-step method was used for immunohistochemical staining, and the slices were incubated with primary antibody CK7, CK20, villin, CDX2, MUC5AC, MUC6, p53 and ki-67. Hematoxylin staining was performed and observed under the microscope and statistically analyzed. RESULTS In the initial stage of glandular atrophy of the lamina propria, the proliferation area of the deep gastric pits, and the isthmus and neck of the gastric glands are characterized by roughly normal structure of the glandular structure, increased mesenchyme, and widened space between glands. Subsequently, the gland becomes smaller in volume and less in number, especially at the base, in the gastric glandular part of the gastric unit. The disease at this stage has higher incidence, and occurs more often in the elderly who account for 64.0% (573/896) of our study group. The disease in this stage may exhibit some lesions that are physiologic (age-related degeneration) while others are pathological. Therefore, this condition is called simple glandular atrophy of the lamina propria of the gastric mucosa. When the gastric mucosal epithelium is subjected to infection or repeated infections, chemical stimuli, immune factors, and genetic factors, it can lead to the proliferation and transformation of stem cells in the proliferation area of the deep gastric pits, and the isthmus and neck of the gastric glands, forming single ducts, multiple ducts, or a proliferation of patchy cells. Then, atypical hyperplasia (intraepithelial neoplasia) presents, finally leading to gastric adenocarcinoma. CONCLUSION Understanding the histopathological characteristics of glandular atrophy of the lamina propria of gastric mucosa is of great significance in controlling the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Yang-Kun Wang
- Department of Pathology, The Fourth People's Hospital of Longgang District, Shenzhen, 518123, China
| | - Dong-Mei Ran
- Department of Pathology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Ying-Ying Li
- Shenzhen Polytechnic, Xili Lake, Xilihu Town, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Chao-Ya Zhu
- Third Affiliated Hospital of Zhengzhou University, Shenzhen, 450052, China
| | - Ren-Bing Zhang
- Department of Pathology, Shenzhen Longgang District People's Hospital, Shenzhen, 518172, China
| | - Bo Jiang
- Department of Pathology, No. 990 Hospital of the PLA Joint Logistics Support Force, Zhumadian, 463000, China
| | - Su-Nan Wang
- Shenzhen Polytechnic, Xili Lake, Xilihu Town, Nanshan District, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
8
|
Bali P, Lozano-Pope I, Hernandez J, Estrada MV, Corr M, Turner MA, Bouvet M, Benner C, Obonyo M. Activation of the TRIF pathway and downstream targets results in the development of precancerous lesions during infection with Helicobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543598. [PMID: 37333238 PMCID: PMC10274671 DOI: 10.1101/2023.06.04.543598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Helicobacter pylori ( H. pylori) infection is an established cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the mechanism by which infection with H. pylori causes these disorders is still not clearly understood. This is due to insufficient knowledge of pathways that promote H. pylori -induced disease progression. We have established a Helicobacter -induced accelerated disease progression mouse model, which involves infecting mice deficient in the myeloid differentiation primary response 88 gene ( Myd88 -/- ) with H. felis . Using this model, we report here that that progression of H. felis -induced inflammation to high-grade dysplasia was associated with activation of type I interferon (IFN-I) signaling pathway and upregulation of related downstream target genes, IFN-stimulated genes (ISGs). These observations were further corroborated by the enrichment of ISRE motifs in the promoters of upregulated genes. Further we showed that H. felis -induced inflammation in mice deficient in Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-β (TRIF, Trif Lps 2 ) did not progress to severe gastric pathology, indicating a role of the TRIF signaling pathway in disease pathogenesis and progression. Indeed, survival analysis in gastric biopsy samples from gastric cancer patients illustrated that high expression of Trif was significantly associated with poor survival in gastric cancer.
Collapse
|
9
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, Zang J, Huang Y. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS) -NRF2- Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med 2023; 202:46-61. [PMID: 36990300 DOI: 10.1016/j.freeradbiomed.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.
Collapse
Affiliation(s)
- Xin Zeng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Meihua Yang
- Departments of Neurology, Washington University School of Medicine and Barnes-Jewish Hospital, Saint Louis, 63110, MO, USA
| | - Tingbo Ye
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinmei Feng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohui Xu
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huaan Yang
- Department of Urologic Surgery, Yubei District People's Hospital, Chongqing, 401120, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Molecular Biology for Infectious Diseases, Chongqing Medical University, Chongqing, 40016, China
| | - Liming Bao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Rui Li
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Bingqian Xue
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinbao Zang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Huang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
10
|
Liu X, Ma Z, Deng Z, Yi Z, Tuo B, Li T, Liu X. Role of spasmolytic polypeptide-expressing metaplasia in gastric mucosal diseases. Am J Cancer Res 2023; 13:1667-1681. [PMID: 37293144 PMCID: PMC10244109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM) is a trefoil factor 2-expressing metaplasia in the fundic glands that resembles the fundic metaplasia of deep antral glandular cells and arises mainly from transdifferentiation of mature chief cells as well as mucous neck cells or isthmic stem cells. SPEM participates in the regulation of gastric mucosal injury, including focal and diffuse injury. This review focuses on the origin, models, and regulatory mechanisms of SPEM and on its role in the development of gastric mucosal injury. We hope to provide new prospects for the prevention and treatment of gastric mucosal diseases from the perspective of cell differentiation and transformation.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| |
Collapse
|
11
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
12
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
13
|
Inflammation and Gastric Cancer. Diseases 2022; 10:diseases10030035. [PMID: 35892729 PMCID: PMC9326573 DOI: 10.3390/diseases10030035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer remains a major killer globally, although its incidence has declined over the past century. It is the fifth most common cancer and the third most common reason for cancer-related deaths worldwide. Gastric cancer is the outcome of a complex interaction between environmental, host genetic, and microbial factors. There is significant evidence supporting the association between chronic inflammation and the onset of cancer. This association is particularly robust for gastrointestinal cancers in which microbial pathogens are responsible for the chronic inflammation that can be a triggering factor for the onset of those cancers. Helicobacter pylori is the most prominent example since it is the most widespread infection, affecting nearly half of the world’s population. It is well-known to be responsible for inducing chronic gastric inflammation progressing to atrophy, metaplasia, dysplasia, and eventually, gastric cancer. This review provides an overview of the association of the factors playing a role in chronic inflammation; the bacterial characteristics which are responsible for the colonization, persistence in the stomach, and triggering of inflammation; the microbiome involved in the chronic inflammation process; and the host factors that have a role in determining whether gastritis progresses to gastric cancer. Understanding these interconnections may improve our ability to prevent gastric cancer development and enhance our understanding of existing cases.
Collapse
|
14
|
Liu X, Li T, Ma Z, Riederer B, Yuan D, Zhu J, Li Y, An J, Wen G, Jin H, Yang X, Seidler U, Tuo B. SLC26A9 deficiency causes gastric intraepithelial neoplasia in mice and aggressive gastric cancer in humans. Cell Oncol (Dordr) 2022; 45:381-398. [PMID: 35426084 PMCID: PMC9187568 DOI: 10.1007/s13402-022-00672-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Solute carrier family 26 member (SLC26A9) is a Cl- uniporter with very high expression levels in the gastric mucosa. Here, we describe morphological and molecular alterations in gastric mucosa of slc26a9-/- mice and in selective parietal cell-deleted slc26a9fl/fl/Atp4b-Cre mice and correlate SLC26A9 expression levels with morphological and clinical parameters in a cohort of gastric cancer (GC) patients. METHODS The expression patterns of genes related to transport and enzymatic function, proliferation, apoptosis, inflammation, barrier integrity, metaplasia and neoplasia development were studied by immunohistochemistry (IHC), quantitative RT-PCR, in situ hybridization and RNA microarray analysis. SLC26A9 expression and cellular/clinical phenotypes were studied in primary human GC tissues and GC cell lines. RESULTS We found that both complete and parietal cell-selective Slc26a9 deletion in mice caused spontaneous development of gastric premalignant and malignant lesions. Dysregulated differentiation of gastric stem cells in an inflammatory environment, activated Wnt signaling, cellular hyperproliferation, apoptosis inhibition and metaplasia were observed. Analysis of human gastric precancerous and cancerous tissues revealed that SLC26A9 expression progressively decreased from atrophic gastritis to GC, and that downregulation of SLC26A9 was correlated with patient survival. Exogenous expression of SLC26A9 in GC cells induced upregulation of the Cl-/HCO3- exchanger AE2, G2/M cell cycle arrest and apoptosis and suppressed their proliferation, migration and invasion. CONCLUSIONS Our data indicate that SLC26A9 deletion in parietal cells is sufficient to trigger gastric metaplasia and the development of neoplastic lesions. In addition, we found that SLC26A9 expression decreases during human gastric carcinogenesis, and that exogenous SLC26A9 expression in GC cells reduces their malignant behavior.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China.
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Yunhua Li
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China.
| |
Collapse
|
15
|
Zhao Y, Deng Z, Ma Z, Zhang M, Wang H, Tuo B, Li T, Liu X. Expression alteration and dysfunction of ion channels/transporters in the parietal cells induces gastric diffused mucosal injury. Biomed Pharmacother 2022; 148:112660. [PMID: 35276516 DOI: 10.1016/j.biopha.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Gastric mucosal injuries include focal and diffused injuries, which do and do not change the cell differentiation pattern. Parietal cells loss is related to the occurrence of gastric mucosal diffused injury, with two phenotypes of spasmolytic polypeptide-expressing metaplasia and neuroendocrine cell hyperplasia, which is the basis of gastric cancer and gastric neuroendocrine tumor respectively. Multiple ion channels and transporters are located and expressed in the parietal cells, which is not only regulate the gastric acid-base homeostasis, but also regulate the growth and development of parietal cells. Therefore, alteration and dysregulation of ion channels and transporters in the parietal cells impairs the morphology and physiological functions of stomach, resulted in gastric diffused mucosal damage. In this review, multiple ion channels and transporters in parietal cells, including K+ channels, aquaporins, Cl- channels, Na+/H+ transporters, and Cl-/HCO3- transporters are described, and their roles in gastric diffused mucosal injury are discussed. We hope to drive researcher's attention to focus on the role of ion channels/transporters loss in the parietal cells induced gastric diffused mucosal injury.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
16
|
Mommersteeg M, Simovic I, Yu B, van Nieuwenburg S, Bruno IM, Doukas M, Kuipers E, Spaander M, Peppelenbosch M, Castaño-Rodríguez N, Fuhler G. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022; 14:2015238. [PMID: 34965181 PMCID: PMC8726742 DOI: 10.1080/19490976.2021.2015238] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H.pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H.pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H.pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H.pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H.pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.
Collapse
Affiliation(s)
- M.C. Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I. Simovic
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia
| | - B. Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S.A.V. van Nieuwenburg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I, M.J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - E.J. Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia,CONTACT N. Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - G.M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands,G.M. Fuhler PhD Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Zhang T, Zhang B, Tian W, Ma X, Wang F, Wang P, Wei Y, Liu L, Tang X. A Bibliometric Analysis of Atrophic Gastritis From 2011 to 2021. Front Med (Lausanne) 2022; 9:843395. [PMID: 35252276 PMCID: PMC8891522 DOI: 10.3389/fmed.2022.843395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 01/14/2023] Open
Abstract
Background Atrophic gastritis (AG), which is characterized by a decreased number or disappearance of the glandular structures and secretory dysfunction, is linked to chronically inflamed stomach. It has been estimated that the annual incidence of gastric cancer (GC) is 0.1% for patients with AG. Early eradication of Helicobacter pylori (H. pylori) can reduce the risk of GC development. Additionally, the follow-up and management of AG are necessary to prevent GC. Exploring novel methods of the automatized analysis of data for apprehending knowledge in any medical field is encouraged, especially when a body of literature suggests the necessity of doing so. Accordingly, herein, we aim to systematically review the current foci and status of AG research using bibliometric analysis. Methods Articles and reviews related to AG published from 2011 to 2021 in the Web of Science Core Collection were retrieved. Microsoft Office Excel 2019 and GraphPad Prism were used to show the annual number of publications and scientific productivity of authors through time. CiteSpace and VOSviewer were used to generate network maps about the collaborations among countries, institutions, and authors as well as reveal hotspots of AG research. The relationships among the author's keywords, cited references, and the top authors were summarized by a Sankey plot (three-fields plot). Results A total of 1,432 publications were included in the present study. China remained the most productive country, with the highest number of publications (377, 26.32%). Vanderbilt University contributed the most publications of any single institution (56, 3.91%). James R Goldenring was the most active and influential scholar, with the highest number of publications and greatest centrality. The most prolific journal in this field was World Journal of Gastroenterology (62, 4.32%). Gastroenterology (997, 69.62%) was the most co-cited journal. Exploring the origin of gastric metaplasia, especially spasmolytic polypeptide-expressing metaplasia (SPEM) was a major topic in AG research. Conclusions This bibliometric study provides a comprehensive analysis of the scientific progress of AG over the past decade. Metaplasia is a hot topic and could be a promising area of research in the coming years.
Collapse
Affiliation(s)
- Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Lin Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xudong Tang
| |
Collapse
|
18
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
19
|
Sáenz JB, Vargas N, Cho CJ, Mills JC. Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCI Insight 2022; 7:153511. [PMID: 35132959 PMCID: PMC8855806 DOI: 10.1172/jci.insight.153511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
Cells recognize both foreign and host-derived double-stranded RNA (dsRNA) via a signaling pathway that is usually studied in the context of viral infection. It has become increasingly clear that the sensing and handling of endogenous dsRNA is also critical for cellular differentiation and development. The adenosine RNA deaminase, ADAR1, has been implicated as a central regulator of the dsRNA response, but how regulation of the dsRNA response might mediate cell fate during injury and whether such signaling is cell intrinsic remain unclear. Here, we show that the ADAR1-mediated response to dsRNA was dramatically induced in 2 distinct injury models of gastric metaplasia. Mouse organoid and in vivo genetic models showed that ADAR1 coordinated a cell-intrinsic, epithelium-autonomous, and interferon signaling–independent dsRNA response. In addition, dsRNA accumulated within a differentiated epithelial population (chief cells) in mouse and human stomachs as these cells reprogrammed to a proliferative, reparative (metaplastic) state. Finally, chief cells required ADAR1 to reenter the cell cycle during metaplasia. Thus, cell-intrinsic ADAR1 signaling is critical for the induction of metaplasia. Because metaplasia increases cancer risk, these findings support roles for ADAR1 and the response to dsRNA in oncogenesis.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nancy Vargas
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine.,Department of Pathology and Immunology; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
A tumour-resident Lgr5 + stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat Cell Biol 2021; 23:1299-1313. [PMID: 34857912 DOI: 10.1038/s41556-021-00793-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/12/2021] [Indexed: 12/31/2022]
Abstract
Gastric cancer is among the most prevalent and deadliest of cancers globally. To derive mechanistic insight into the pathways governing this disease, we generated a Claudin18-IRES-CreERT2 allele to selectively drive conditional dysregulation of the Wnt, Receptor Tyrosine Kinase and Trp53 pathways within the gastric epithelium. This resulted in highly reproducible metastatic, chromosomal-instable-type gastric cancer. In parallel, we developed orthotopic cancer organoid transplantation models to evaluate tumour-resident Lgr5+ populations as functional cancer stem cells via in vivo ablation. We show that Cldn18 tumours accurately recapitulate advanced human gastric cancer in terms of disease morphology, aberrant gene expression, molecular markers and sites of distant metastases. Importantly, we establish that tumour-resident Lgr5+ stem-like cells are critical to the initiation and maintenance of tumour burden and are obligatory for the establishment of metastases. These models will be invaluable for deriving clinically relevant mechanistic insights into cancer progression and as preclinical models for evaluating therapeutic targets.
Collapse
|
21
|
Matsuo J, Douchi D, Myint K, Mon NN, Yamamura A, Kohu K, Heng DL, Chen S, Mawan NA, Nuttonmanit N, Li Y, Srivastava S, Ho SWT, Lee NYS, Lee HK, Adachi M, Tamura A, Chen J, Yang H, Teh M, So JBY, Yong WP, Tan P, Yeoh KG, Chuang LSH, Tsukita S, Ito Y. Iqgap3-Ras axis drives stem cell proliferation in the stomach corpus during homoeostasis and repair. Gut 2021; 70:1833-1846. [PMID: 33293280 PMCID: PMC8458072 DOI: 10.1136/gutjnl-2020-322779] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Tissue stem cells are central regulators of organ homoeostasis. We looked for a protein that is exclusively expressed and functionally involved in stem cell activity in rapidly proliferating isthmus stem cells in the stomach corpus. DESIGN We uncovered the specific expression of Iqgap3 in proliferating isthmus stem cells through immunofluorescence and in situ hybridisation. We performed lineage tracing and transcriptomic analysis of Iqgap3 +isthmus stem cells with the Iqgap3-2A-tdTomato mouse model. Depletion of Iqgap3 revealed its functional importance in maintenance and proliferation of stem cells. We further studied Iqgap3 expression and the associated gene expression changes during tissue repair after tamoxifen-induced damage. Immunohistochemistry revealed elevated expression of Iqgap3 in proliferating regions of gastric tumours from patient samples. RESULTS Iqgap3 is a highly specific marker of proliferating isthmus stem cells during homoeostasis. Iqgap3+isthmus stem cells give rise to major cell types of the corpus unit. Iqgap3 expression is essential for the maintenance of stem potential. The Ras pathway is a critical partner of Iqgap3 in promoting strong proliferation in isthmus stem cells. The robust induction of Iqgap3 expression following tissue damage indicates an active role for Iqgap3 in tissue regeneration. CONCLUSION IQGAP3 is a major regulator of stomach epithelial tissue homoeostasis and repair. The upregulation of IQGAP3 in gastric cancer suggests that IQGAP3 plays an important role in cancer cell proliferation.
Collapse
Affiliation(s)
- Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Khine Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Naing Naing Mon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuyoshi Kohu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dede Liana Heng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sabirah Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nur Astiana Mawan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Napat Nuttonmanit
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Shamaine Wei Ting Ho
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Nicole Yee Shin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Hong Kai Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Makoto Adachi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Tamura
- Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan,Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan,Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore,Genome Institute of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore,Department of Gastroenterology and Hepatology, National University Hospital, Singapore
| | | | - Sachiko Tsukita
- Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan .,Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
22
|
Molecular Landscapes of Gastric Pre-Neoplastic and Pre-Invasive Lesions. Int J Mol Sci 2021; 22:ijms22189950. [PMID: 34576114 PMCID: PMC8468646 DOI: 10.3390/ijms22189950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric carcinoma (GC) represents one of the most common and most lethal malignancies worldwide. The histopathological characterization of GC precursor lesions has provided great knowledge about gastric carcinogenesis, with the consequent introduction of effective strategies of primary and secondary prevention. In recent years, a large amount of data about the molecular events in GC development is emerging, flanking the histomorphological descriptions. In this review, we describe the landscape of molecular alterations in gastric pre-invasive lesions with a glance at their potential use in the diagnostic and therapeutic decision-making process.
Collapse
|
23
|
Jeong H, Lee B, Kim KH, Cho SY, Cho Y, Park J, Lee Y, Oh Y, Hwang BR, Jang AR, Park JH, Park JH, Jeong SH, Lee D, Lee YC, Lim KM, Goldenring JR, Nam KT. WFDC2 Promotes Spasmolytic Polypeptide-Expressing Metaplasia Through the Up-Regulation of IL33 in Response to Injury. Gastroenterology 2021; 161:953-967.e15. [PMID: 34116028 PMCID: PMC8380710 DOI: 10.1053/j.gastro.2021.05.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS WAP 4-disulfide core domain protein 2 (WFDC2), also known as human epididymis protein 4, is a small secretory protein that is highly expressed in fibrosis and human cancers, particularly in the ovaries, lungs, and stomach. However, the role of WFDC2 in carcinogenesis is not fully understood. The present study aimed to investigate the role of WFDC2 in gastric carcinogenesis with the use of preneoplastic metaplasia models. METHODS Three spasmolytic polypeptide-expressing metaplasia (SPEM) models were established in both wild-type and Wfdc2-knockout mice with DMP-777, L635, and high-dose tamoxifen, respectively. To reveal the functional role of WFDC2, we performed transcriptomic analysis with DMP-777-treated gastric corpus specimens. RESULTS Wfdc2-knockout mice exhibited remarkable resistance against oxyntic atrophy, SPEM emergence, and accumulation of M2-type macrophages in all 3 SPEM models. Transcriptomic analysis revealed that Wfdc2-knockout prevented the up-regulation of interleukin-33 (IL33) expression in the injured mucosal region of SPEM models. Notably, supplementation of recombinant WFDC2 induced IL33 production and M2 macrophage polarization, and ultimately promoted SPEM development. Moreover, long-term treatment with recombinant WFDC2 was able to induce SPEM development. CONCLUSIONS WFDC2 expressed in response to gastric injury promotes SPEM through the up-regulation of IL33 expression. These findings provide novel insights into the role of WFDC2 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jeongeun Park
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yeseul Oh
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Ram Hwang
- Department of Internal Medicine, Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Ah-Ra Jang
- Laboratory of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea.
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Up-regulation of Aquaporin 5 Defines Spasmolytic Polypeptide-Expressing Metaplasia and Progression to Incomplete Intestinal Metaplasia. Cell Mol Gastroenterol Hepatol 2021; 13:199-217. [PMID: 34455107 PMCID: PMC8593616 DOI: 10.1016/j.jcmgh.2021.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Metaplasia in the stomach is highly associated with development of intestinal-type gastric cancer. Two types of metaplasias, spasmolytic polypeptide-expressing metaplasia (SPEM) and intestinal metaplasia (IM), are considered precancerous lesions. However, it remains unclear how SPEM and IM are related. Here we investigated a new lineage-specific marker for SPEM cells, aquaporin 5 (AQP5), to assist in the identification of these 2 metaplasias. METHODS Drug- or Helicobacter felis (H felis) infection-induced mouse models were used to identify the expression pattern of AQP5 in acute or chronic SPEM. Gene-manipulated mice treated with or without drug were used to investigate how AQP5 expression is regulated in metaplastic lesions. Metaplastic samples from transgenic mice and human gastric cancer patients were evaluated for AQP5 expression. Immunostaining with lineage-specific markers was used to differentiate metaplastic gland characteristics. RESULTS Our results revealed that AQP5 is a novel lineage-specific marker for SPEM cells that are localized at the base of metaplastic glands initially and expand to dominate glands after chronic H felis infection. In addition, AQP5 expression was up-regulated early in chief cell reprogramming and was promoted by interleukin 13. In humans, metaplastic corpus showed highly branched structures with AQP5-positive SPEM. Human SPEM cells strongly expressing AQP5 were present at the bases of incomplete IM glands marked by TROP2 but were absent from complete IM glands. CONCLUSIONS AQP5-expressing SPEM cells are present in pyloric metaplasia and TROP2-positive incomplete IM and may be an important component of metaplasia that can predict a higher risk for gastric cancer development.
Collapse
|
25
|
Wada Y, Nakajima S, Kushima R, Takemura S, Mori N, Hasegawa H, Nakayama T, Mukaisho KI, Yoshida A, Umano S, Yamamoto K, Sugihara H, Murakami K. Pyloric, pseudopyloric, and spasmolytic polypeptide-expressing metaplasias in autoimmune gastritis: a case series of 22 Japanese patients. Virchows Arch 2021; 479:169-178. [PMID: 33515301 PMCID: PMC8298345 DOI: 10.1007/s00428-021-03033-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
There are two types of pyloric gland-like metaplasia in the corpus of stomach: pyloric and pseudopyloric metaplasias. They show the same morphology as the original pyloric glands in H&E staining. Pseudopyloric metaplasia is positive for pepsinogen (PG) I immunohistochemically, whereas pyloric metaplasia is negative. Recently, spasmolytic polypeptide-expressing metaplasia (SPEM) is proposed for pyloric gland-like metaplasia mainly in animal experiments. SPEM expresses trefoil factor family 2 (TFF2) and is often considered synonymous with pseudopyloric metaplasia. We reviewed consecutive 22 Japanese patients with autoimmune gastritis (AIG) to investigate TFF2 expression in pyloric and pseudopyloric metaplasias by counting all pyloric gland-like glands in biopsy specimens taken from greater curvature of the middle corpus according to the Updated Sydney System. Pyloric metaplasia was seen in all the 22 cases, and pseudopyloric metaplasia was found in 15 cases. Of 1567 pyloric gland-like glands in all the cases, 1381 (88.1%) glands were pyloric metaplasia glands, and the remaining 186 (11.9%) glands were pseudopyloric metaplasia glands. TFF2 expression was observed in pyloric or pseudopyloric metaplasia glands in 20 cases. TFF2 expression was recognized in 409 of 1381 (26.9%) pyloric metaplasia glands and 27 of 186 (14.5%) pseudopyloric metaplasia glands (P<0.01, chi-square test). In conclusion, SPEM was not always the same as pseudopyloric metaplasia in human AIG, and the majority of metaplasia in AIG was not pseudopyloric but pyloric metaplasia.
Collapse
Affiliation(s)
- Yasuhiro Wada
- Department of Pathology, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.,Department of Gastroenterology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Shigemi Nakajima
- Department of Gastroenterology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Ryoji Kushima
- Department of Pathology, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| | - Shizuki Takemura
- Division of Diagnostic Pathology, Kusatsu General Hospital, Kusatsu, Shiga, Japan.,Department of Pathology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Naoko Mori
- Department of Gastroenterology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Hasegawa
- Department of Gastroenterology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takahisa Nakayama
- Department of Pathology, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ken-Ichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Akiko Yoshida
- Department of Pathology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinji Umano
- Department of Pathology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazuo Yamamoto
- Department of Gastroenterology, Japan Community Healthcare Organization (JCHO) Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroyuki Sugihara
- Department of Pathology, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| |
Collapse
|
26
|
Waldum HL. Clinical consequences of controversies in gastric physiology. Scand J Gastroenterol 2020; 55:752-758. [PMID: 32515242 DOI: 10.1080/00365521.2020.1771758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies on the regulation of gastric acid secretion started more than 100 years ago at an early phase of experimental physiology. In nearly the whole last century there were disputes about the interpretation of the findings: the interaction between the three principle gastric acid secretagogues acetylcholine, gastrin and histamine, the cell producing the relevant histamine which turned out to be the ECL cell, the ability of the ECL cell to divide and thus develop into tumours, the classification of gastric carcinomas and the mechanism for Helicobacter pylori carcinogenesis. The elucidation of the central role of the ECL cell and thus its main regulator, gastrin, solve all these controversies, and gives a solid base for handling upper gastrointestinal diseases.
Collapse
Affiliation(s)
- Helge L Waldum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Histological changes associated with pyloric and pseudopyloric metaplasia after Helicobacter pylori eradication. Virchows Arch 2020; 477:489-496. [PMID: 32356024 DOI: 10.1007/s00428-020-02805-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Pyloric metaplasia (PM) and pseudopyloric metaplasia (PPM) are metaplastic changes resulting in pyloric-type glands in the gastric oxyntic mucosa that mainly occur in chronic gastritis caused by Helicobacter pylori (H. pylori) infection. Focusing on PM and PPM, we classified the histological changes in gastric mucosa according to the Updated Sydney System, using 314 biopsy specimens of gastric greater curvature of the middle body before H. pylori eradication (HPE). Next, the numbers of PM and PPM glands were counted in 47 specimens, and subjects were followed up over 10 years after HPE. PPM was recognized jointly with inflammation, activity, atrophy, and intestinal metaplasia, but PM was recognized more frequently than PPM as atrophy and intestinal metaplasia progressed. Both PM and PPM regressed significantly within 6 years after HPE. Additionally, we demonstrated that PM and PPM are not always coincident with spasmolytic polypeptide-expressing metaplasia (SPEM). In conclusion, PM and PPM are considered different modulations of the same line of differentiation, which are both reversible, with PM potentially emerging from PPM upon progression.
Collapse
|
28
|
Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch 2019; 476:353-365. [PMID: 31836926 DOI: 10.1007/s00428-019-02724-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Thirty years have passed since a possible association of Epstein-Barr virus (EBV) with gastric carcinoma was reported. We now know EBV-associated gastric carcinoma to be a specific subtype of gastric carcinoma. Global epigenetic methylation and counteraction of the antitumour microenvironment are two major characteristics of this subtype of gastric carcinoma. Recent development of therapeutic modalities for gastric carcinoma, such as endoscopic mucosal dissection and immune checkpoint inhibitor therapy, has made the presence of EBV infection a biomarker for the treatment of gastric carcinoma. This review presents a portrait of EBV-associated gastric carcinoma from initiation to maturity that we define as the 'gastritis-infection-cancer sequence', followed by its molecular abnormalities and interactions with immune checkpoint molecules and the microenvironment. EBV non-coding RNAs (microRNA and circular RNA) and exosomes derived from EBV-infected cells that were previously behind the scenes are now recognized for their roles in EBV-associated gastric carcinoma. The virus utilizes cellular machinery skilfully to control infected cells and their microenvironment. We should thus strive to understand virus-host interactions more fully in the following years to overcome this virus-driven subtype of gastric carcinoma.
Collapse
|
29
|
Que J, Garman KS, Souza RF, Spechler SJ. Pathogenesis and Cells of Origin of Barrett's Esophagus. Gastroenterology 2019; 157:349-364.e1. [PMID: 31082367 PMCID: PMC6650338 DOI: 10.1053/j.gastro.2019.03.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
In patients with Barrett's esophagus (BE), metaplastic columnar mucosa containing epithelial cells with gastric and intestinal features replaces esophageal squamous mucosa damaged by gastroesophageal reflux disease. This condition is estimated to affect 5.6% of adults in the United States, and is a major risk factor for esophageal adenocarcinoma. Despite the prevalence and importance of BE, its pathogenesis is incompletely understood and there are disagreements over the cells of origin. We review mechanisms of BE pathogenesis, including transdifferentiation and transcommitment, and discuss potential cells of origin, including basal cells of the squamous epithelium, cells of esophageal submucosal glands and their ducts, cells of the proximal stomach, and specialized populations of cells at the esophagogastric junction (residual embryonic cells and transitional basal cells). We discuss the concept of metaplasia as a wound-healing response, and how cardiac mucosa might be the precursor of the intestinal metaplasia of BE. Finally, we discuss shortcomings in current diagnostic criteria for BE that have important clinical implications.
Collapse
Affiliation(s)
- Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, New York, New York.
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine. Durham, NC
| | - Rhonda F. Souza
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center at Dallas, and Center for Esophageal Research, Department of Medicine, Baylor Scott & White Research Institute, Dallas, TX
| | - Stuart Jon Spechler
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas; Center for Esophageal Research, Department of Medicine, Baylor Scott & White Research Institute, Dallas, Texas.
| |
Collapse
|
30
|
Jin RU, Mills JC. The cyclical hit model: how paligenosis might establish the mutational landscape in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2019; 35:363-370. [PMID: 31021922 PMCID: PMC11960809 DOI: 10.1097/mog.0000000000000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this review, we explore a paligenosis-based model to explain Barrett's esophagus development and progression: 'the cyclical hit model.' RECENT FINDINGS Genomic analyses have highlighted the high mutational burden of esophageal adenocarcinoma, Barrett's esophagus, and even normal esophageal epithelium. Somatic mutations in key genes including TP53 occur early in the neoplastic progression sequence of Barrett's esophagus, whereas chromosomal amplification resulting in oncogene activation occurs as a critical late event. Paligenosis is a shared injury response mechanism characterized by activation of autophagy, expression of progenitor markers, and increased mTORC signaling-induced cell-cycle reentry. In the setting of chronic injury/inflammation, cycles of paligenosis may allow accumulation of mutations until eventually the mutational burden, in concert perhaps with mutations in key driver oncogenes, finally alters the cell's ability to redifferentiate, leading to the emergence of a potential neoplastic clone. SUMMARY Under conditions of chronic gastroesophageal refluxate exposure, the normal esophageal squamous epithelium might undergo multiple cycles of paligenosis, allowing initially silent mutations to accumulate until key events impart mutant clones with an oncogenic survival advantage.
Collapse
Affiliation(s)
- Ramon U. Jin
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Depart-Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Norollahi SE, Alipour M, Rashidy-Pour A, Samadani AA, Larijani LV. Regulatory Fluctuation of WNT16 Gene Expression Is Associated with Human Gastric Adenocarcinoma. J Gastrointest Cancer 2019; 50:42-47. [PMID: 29110228 DOI: 10.1007/s12029-017-0022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Gastric cancer is one of the most serious and lethal kinds of cancer in the world. It is a multi-step, multi-factor, and elaborated process that is associated to gene abnormal expression. This study intended to investigate the WNT16 gene's expression in human gastric tumor and the margin tissues of the stomach (normal tissues). METHODS Correspondingly, 40 samples (20 tumoral tissues and 20 non tumoral or margins tissues) were investigated in Imam Khomeini Hospital in Sari City, Mazandaran Province, Iran. In this way, real-time PCR, Taqman assay was employed to evaluate the upregulation and downregulation of this gene in both tissues in triplicate form. The GAPDH gene was selected as housekeeping gene. RESULTS Conspicuously, the results have shown a remarkable modification in tumoral tissues, and the gene expression increased significantly in tumoral tissue. CONCLUSIONS Conclusively, the upregulation of WNTt16 gene expression in tumoral tissues was impressive and the P value was 0.005 and the SE range was 0.064-142.154.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Faculty of Medicine, Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Alipour
- Department of Biology, Islamic Azad University of Babol, Babol, Iran
| | - Ali Rashidy-Pour
- Faculty of Medicine, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Faculty of Medicine, Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Faculty of Medicine, Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Faculty of Medicine, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Laleh Vahedi Larijani
- Faculty of Medicine, Department of Pathology, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
32
|
Yu S, Yang M, Lim KM, Cho Y, Kim H, Lee K, Jeong SH, Coffey RJ, Goldenring JR, Nam KT. Expression of LRIG1, a Negative Regulator of EGFR, Is Dynamically Altered during Different Stages of Gastric Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2912-2923. [PMID: 30248341 DOI: 10.1016/j.ajpath.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 is a transmembrane protein that antagonizes epidermal growth factor receptor signaling in epithelial tissues. LRIG1 is down-regulated in various epithelial cancers, including bladder, breast, and colorectal cancer, suggesting that it functions as a tumor suppressor. However, its role in gastric carcinogenesis is not well understood. Here, we investigated the changes in LRIG1 expression during the stages of gastric cancer. We used a DMP-777-induced spasmolytic polypeptide-expressing metaplasia mouse model and a tissue array of human gastric cancer lesions. The effects of LRIG1 knockdown were also assessed using the human gastric cancer cell line SNU638 in a xenograft model. LRIG1 expression varied over the course of gastric carcinogenesis, increasing in spasmolytic polypeptide-expressing metaplasia lesions but disappearing in intestinal metaplasia and cancer lesions, and the increase was concurrent with the up-regulation of epidermal growth factor receptor. In addition, LRIG1 knockdown promoted the tumorigenic potential in vitro, which was manifested as increased proliferation, invasiveness, and migration as well as increased tumor size in vivo in the xenograft model. Furthermore, LRIG1 expression was determined to be a positive prognostic biomarker for the survival of gastric cancer patients. Collectively, our findings indicate that LRIG1 expression is closely related wto gastric carcinogenesis and may play a vital role as a tumor suppressor through the modulation of epidermal growth factor receptor activity.
Collapse
Affiliation(s)
- Sungsook Yu
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijeong Yang
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunji Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University, Changwon, Republic of Korea
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Section of Surgical Science, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Liu X, Li T, Tuo B. Physiological and Pathophysiological Relevance of the Anion Transporter Slc26a9 in Multiple Organs. Front Physiol 2018; 9:1197. [PMID: 30233393 PMCID: PMC6127633 DOI: 10.3389/fphys.2018.01197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023] Open
Abstract
Transepithelial Cl- and HCO3- transport is crucial for the function of all epithelia, and HCO3- is a biological buffer that maintains acid-base homeostasis. In most epithelia, a series of Cl-/HCO3- exchangers and Cl- channels that mediate Cl- absorption and HCO3- secretion have been detected in the luminal and basolateral membranes. Slc26a9 belongs to the solute carrier 26 (Slc26) family of anion transporters expressed in the epithelia of multiple organs. This review summarizes the expression pattern and functional diversity of Slc26a9 in different systems based on all investigations performed thus far. Furthermore, the physical and functional interactions between Slc26a9 and cystic fibrosis transmembrane conductance regulator (CFTR) are discussed due to their overlapping expression pattern in multiple organs. Finally, we focus on the relationship between slc26a9 mutations and disease onset. An understanding of the physiological and pathophysiological relevance of Slc26a9 in multiple organs offers new possibilities for disease therapy.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| |
Collapse
|
34
|
Abstract
Chronic injury and inflammation in the esophagus can cause a change in cellular differentiation known as metaplasia. Most commonly, the differentiation changes manifest as Barrett's esophagus (BE), characterized by the normal stratified squamous epithelium converting into a cuboidal-columnar, glandular morphology. BE cells can phenotypically resemble specific normal cell types of the stomach or intestine, or they can have overlapping phenotypes in disorganized admixtures. The stomach can also undergo metaplasia characterized by aberrant gastric or intestinal differentiation patterns. In both organs, it has been argued that metaplasia may represent a recapitulation of the embryonic or juvenile gastrointestinal tract, as cells access a developmental progenitor genetic program that can help repair damaged tissue. Here, we review the normal development of esophagus and stomach, and describe how BE represents an intermixing of cells resembling gastric pseudopyloric (SPEM) and intestinal metaplasia. We discuss a cellular process recently termed "paligenosis" that governs how mature, differentiated cells can revert to a proliferating progenitor state in metaplasia. We discuss the "Cyclical Hit" theory in which paligenosis might be involved in the increased risk of metaplasia for progression to cancer. However, somatic mutations might occur in proliferative phases and then be warehoused upon redifferentiation. Through years of chronic injury and many rounds of paligenosis and dedifferentiation, eventually a cell with a mutation that prevents dedifferentiation may arise and clonally expand fueling stable metaplasia and potentially thereafter acquiring additional mutations and progressing to dysplasia and cancer.
Collapse
Affiliation(s)
- Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Lee C, Lee H, Hwang SY, Moon CM, Hong SN. IL-10 Plays a Pivotal Role in Tamoxifen-Induced Spasmolytic Polypeptide-Expressing Metaplasia in Gastric Mucosa. Gut Liver 2018. [PMID: 28642451 PMCID: PMC5669594 DOI: 10.5009/gnl16454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Gastric cancer evolves in the pathologic mucosal milieu, and its development is characterized by both the loss of acid-secreting parietal cells and mucosal cell metaplasia, called spasmolytic polypeptide-expressing metaplasia (SPEM). Cytokines, such as interleukin (IL)-10, IL-1β, and IL-6, play a key role in gastric carcinogenesis. However, changes in the cytokine profile of SPEM have not been evaluated. Methods To induce SPEM in mouse stomachs, C57BL/6 mice were intraperitoneally injected with tamoxifen and sacrificed at 3, 10, and 21 days after treatment. RNA-sequencing (RNA-seq) and a multiplex bead array were used to measure cytokines in the stomachs of tamoxifen-treated/control mice. Results The administration of tamoxifen led to the rapid development and histological normalization of SPEM 3 and 10 days after administration, respectively. RNA-seq revealed that the expression of IL-10 was decreased 3 days after tamoxifen administration. The multiplex assay identified a significant decline in IL-10 levels 3 days after tamoxifen treatment (58.38±34.44 pg/mL vs 94.09±4.98 pg/mL, p=0.031), which normalized at 10 and 21 days after tamoxifen treatment. Immunofluorescence staining confirmed that IL-10 expression was markedly decreased at the time of SPEM development and subsequently returned to normal, accompanied by a reversal in histologic changes. Conclusions IL-10 may play a pivotal role in the tamoxifen-induced acute development of gastric SPEM.
Collapse
Affiliation(s)
- Chansu Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hyuk Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seo Yun Hwang
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Chang Mo Moon
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Sáenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:257-273. [PMID: 29463907 PMCID: PMC6016373 DOI: 10.1038/nrgastro.2018.5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subjected to countless daily injuries, the stomach still functions as a remarkably efficient digestive organ and microbial filter. In this Review, we follow the lead of the earliest gastroenterologists who were fascinated by the antiseptic and digestive powers of gastric secretions. We propose that it is easiest to understand how the stomach responds to injury by stressing the central role of the most important gastric secretion, acid. The stomach follows two basic patterns of adaptation. The superficial response is a pattern whereby the surface epithelial cells migrate and rapidly proliferate to repair erosions induced by acid or other irritants. The stomach can also adapt through a glandular response when the source of acid is lost or compromised (that is, the process of oxyntic atrophy). We primarily review the mechanisms governing the glandular response, which is characterized by a metaplastic change in cellular differentiation known as spasmolytic polypeptide-expressing metaplasia (SPEM). We propose that the stomach, like other organs, exhibits marked cellular plasticity: the glandular response involves reprogramming mature cells to serve as auxiliary stem cells that replace lost cells. Unfortunately, such plasticity might mean that the gastric epithelium undergoes cycles of differentiation and de-differentiation that increase the risk of accumulating cancer-predisposing mutations.
Collapse
Affiliation(s)
- José B. Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| |
Collapse
|
37
|
Abstract
Metaplasia is the replacement of one differentiated somatic cell type with another differentiated somatic cell type in the same tissue. Typically, metaplasia is triggered by environmental stimuli, which may act in concert with the deleterious effects of microorganisms and inflammation. The cell of origin for intestinal metaplasia in the oesophagus and stomach and for pancreatic acinar-ductal metaplasia has been posited through genetic mouse models and lineage tracing but has not been identified in other types of metaplasia, such as squamous metaplasia. A hallmark of metaplasia is a change in cellular identity, and this process can be regulated by transcription factors that initiate and/or maintain cellular identity, perhaps in concert with epigenetic reprogramming. Universally, metaplasia is a precursor to low-grade dysplasia, which can culminate in high-grade dysplasia and carcinoma. Improved clinical screening for and surveillance of metaplasia might lead to better prevention or early detection of dysplasia and cancer.
Collapse
Affiliation(s)
- Veronique Giroux
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Hirata Y, Sezaki T, Tamura-Nakano M, Oyama C, Hagiwara T, Ishikawa T, Fukuda S, Yamada K, Higuchi K, Dohi T, Kawamura YI. Fatty acids in a high-fat diet potentially induce gastric parietal-cell damage and metaplasia in mice. J Gastroenterol 2017; 52:889-903. [PMID: 27873093 DOI: 10.1007/s00535-016-1291-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Obesity is associated with risk of adenocarcinoma in the proximal stomach. We aimed to identify the links between dietary fat and gastric premalignant lesions. METHODS C57BL/6 mice were fed high fat diet (HFD), and gastric mucosa was histologically analysed. Morphological changes were also analysed using an electron microscope. Transcriptome analysis of purified parietal cells was performed, and non-parietal gastric corpus epithelial cells were subjected to single-cell gene-expression profiling. Composition of gastric contents of HFD-fed mice was compared with that of the HFD itself. Lipotoxicity of free fatty acids (FFA) was examined in primary culture and organoid culture of mouse gastric epithelial cells in vitro, as well as in vivo, feeding FFA-rich diets. RESULTS During ~8-20 weeks of HFD feeding, the parietal cells of the stomach displayed mitochondrial damage, and a total of 23% of the mice developed macroscopically distinct metaplastic lesions in the gastric corpus mucosa. Transcriptome analysis of parietal cells indicated that feeding HFD enhanced pathways related to cell death. Histological analysis and gene-expression profiling indicated that the lesions were similar to previously reported precancerous lesions identified as spasmolytic polypeptide-expressing metaplasia. FFAs, including linoleic acid with refluxed bile acids were detected in the stomachs of the HFD-fed mice. In vitro, FFAs impaired mitochondrial function and decreased the viability of parietal cells. In vivo, linoleic acid-rich diet, but not stearic acid-rich diet induced parietal-cell loss and metaplastic changes in mice. CONCLUSIONS Dietary lipids induce parietal-cell damage and may lead to the development of precancerous metaplasia.
Collapse
Affiliation(s)
- Yuki Hirata
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.,2nd Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Takuhito Sezaki
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Teruki Hagiwara
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Kazuhiko Yamada
- Department of Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazuhide Higuchi
- 2nd Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Taeko Dohi
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| | - Yuki I Kawamura
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| |
Collapse
|
39
|
Merchant JL, Ding L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 2017; 3:201-210. [PMID: 28275687 PMCID: PMC5331830 DOI: 10.1016/j.jcmgh.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
Since its initial discovery in Drosophila, Hedgehog (HH) signaling has long been associated with foregut development. The mammalian genome expresses 3 HH ligands, with sonic hedgehog (SHH) levels highest in the mucosa of the embryonic foregut. More recently, interest in the pathway has shifted to improving our understanding of its role in gastrointestinal cancers. The use of reporter mice proved instrumental in our ability to probe the expression pattern of SHH ligand and the cell types responding to canonical HH signaling during homeostasis, inflammation, and neoplastic transformation. SHH is highly expressed in parietal cells and is required for these cells to produce gastric acid. Furthermore, myofibroblasts are the predominant cell type responding to HH ligand in the uninfected stomach. Chronic infection caused by Helicobacter pylori and associated inflammation induces parietal cell atrophy and the expansion of metaplastic cell types, a precursor to gastric cancer in human subjects. During Helicobacter infection in mice, canonical HH signaling is required for inflammatory cells to be recruited from the bone marrow to the stomach and for metaplastic development. Specifically, polarization of the invading myeloid cells to myeloid-derived suppressor cells requires the HH-regulated transcription factor GLI1, thereby creating a microenvironment favoring wound healing and neoplastic transformation. In mice, GLI1 mediates the phenotypic shift to gastric myeloid-derived suppressor cells by directly inducing Schlafen 4 (slfn4). However, the human homologs of SLFN4, designated SLFN5 and SLFN12L, also correlate with intestinal metaplasia and could be used as biomarkers to predict the subset of individuals who might progress to gastric cancer and benefit from treatment with HH antagonists.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- DAMP, damage-associated molecular pattern
- DAMPs
- GLI, glioma-associated protein
- GLI1
- Gr-MDSC, granulocytic myeloid-derived suppressor cell
- HH, hedgehog
- HHIP, hedgehog-interacting protein
- IFN, interferon
- IL, interleukin
- MDSC, myeloid-derived suppressor cell
- MDSCs
- Metaplasia
- Mo-MDSC, monocytic myeloid-derived suppressor cell
- PTCH, Patched
- SHH
- SHH, sonic hedgehog
- SLFN4, Schlafen 4
- SMO, Smoothened
- SP, spasmolytic polypeptide
- SPEM
- SPEM, spasmolytic polypeptide–expressing mucosa
- SST, somatostatin
- TLR, Toll-like receptor
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200. fax: (734) 763-4686.University of Michigan109 Zina Pitcher PlaceAnn ArborMichigan 48109-2200
| | - Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Sousa JF, Nam KT, Petersen CP, Lee HJ, Yang HK, Kim WH, Goldenring JR. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 2016; 65:914-24. [PMID: 25800782 PMCID: PMC4922252 DOI: 10.1136/gutjnl-2014-308759] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. DESIGN We performed miRNA profiling using a quantitative reverse transcription-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. RESULTS We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were downregulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by downregulation of NR2F2. CONCLUSIONS The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Josane F. Sousa
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Ki Taek Nam
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea 120-752,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Christine P. Petersen
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Hyuk-Joon Lee
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - James R. Goldenring
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| |
Collapse
|
41
|
Graham DY, Matsueda S, Shiotani A. Changing the natural history of metachronous gastric cancer after H. pylori eradication. JAPANESE JOURNAL OF HELICOBACTER RESEARCH 2015; 16:42-50. [PMID: 28042524 PMCID: PMC5193137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metachronous gastric cancer occurs frequently following endoscopic removal of an early gastric cancer. H. pylori eradication significantly reduces that risk. While, the pathogenesis of this phenomenon remains unclear, it is clear that the natural history of metachronous gastric cancer is altered following H. pylori eradication. Genetic instability of host cells induced by inflammation, H. pylori, host or environmental factors can result in the production of malignant cells. H. pylori eradication reduces and alters the inflammation, and can reverse epigenetic damage and abnormal expression of miRNA's. Fundamentally, H. pylori eradication stops the progression and may reverse some of the damage to the mucosa resulting in improved acid secretion and improving the gastric microbiome. Because the risk of developing metachronous cancer varies among patients, prospective research is needed to identify reliable biomarkers to predict development of metachronous cancer as well as to define surveillance methods, intervals, and duration. Some candidate examples of prognostic or predictive biomarkers for the prediction of subsequent risk include the presence or absence, titers, and changes in anti-H. pylori IgG and or anti-CagA antibodies, serum pepsinogens, gastrin, and miRNAs.
Collapse
Affiliation(s)
- David Y Graham
- Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX, 77030 USA
| | - Satoko Matsueda
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka, 839-0863 Japan
| | - Akiko Shiotani
- Department of Internal Medicine, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
42
|
Shiotani A, Haruma K, Graham DY. Metachronous gastric cancer after successful Helicobacter pylori eradication. World J Gastroenterol 2014; 20:11552-9. [PMID: 25206262 PMCID: PMC4155348 DOI: 10.3748/wjg.v20.i33.11552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/30/2013] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
The high incidence of gastric cancer in Japan initially resulted in establishment of a country-wide gastric cancer screening program to detect early and treatable cancers. In 2013 countrywide Helicobacter pylori (H. pylori) eradication was approved coupled with endoscopy to assess for the presence of chronic gastritis. Current data support the notion that cure of the infection in those with non-atrophic gastritis will prevent development of gastric cancer. However, while progression to more severe damage is halted in those who have already developed, atrophic gastritis/gastric atrophy remain at risk for subsequent development of gastric cancer. That risk is directly related to the extent and severity of atrophic gastritis. Methods to stratify cancer risk include those based on endoscopic assessment of the atrophic border, histologic grading, and non-invasive methods based on serologic testing of pepsinogen levels. Continued surveillance is required because those with atrophic gastritis/gastric atrophy retain considerable gastric cancer risk even after H. pylori eradication. Those who have already experienced a resectable early gastric cancer are among those at highest risk as metachronous lesions are frequent even after H. pylori eradication. We review the role of H. pylori and effect of H. pylori eradication indicating the incidence and the predictive factors on development of metachronous cancer after endoscopic therapy of early gastric cancer. Studies to refine risk markers to stratify for risk, surveillance methods, intervals, and duration after successful H. pylori eradication, and whether adjuvant therapy would change risk are needed.
Collapse
|
43
|
Graham DY. Helicobacter pylori eradication and metachronous gastric cancer. Clin Gastroenterol Hepatol 2014; 12:801-3. [PMID: 24211292 DOI: 10.1016/j.cgh.2013.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Affiliation(s)
- David Y Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center, and Baylor College of Medicine Houston, Texas
| |
Collapse
|
44
|
Gastric cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Yakirevich E, Resnick MB. Pathology of gastric cancer and its precursor lesions. Gastroenterol Clin North Am 2013; 42:261-84. [PMID: 23639640 DOI: 10.1016/j.gtc.2013.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastric cancers are a histologically heterogenous group of neoplasms arising from unique epidemiologic and molecular backgrounds. There is accumulating evidence that the intestinal type of gastric adenocarcinoma develops through a multistep process beginning with chronic gastritis triggered primarily by Helicobacter pylori and progressing through atrophy, intestinal metaplasia, and dysplasia (intraepithelial neoplasia) to carcinoma. Loss of E-cadherin expression resulting from CDH1 gene alterations is the primary carcinogenetic event in hereditary diffuse gastric cancer. Proximal gastric adenocarcinomas likely result from either gastroesophageal reflux or H pylori gastritis. This article provides an update of the histologic, immunohistochemical, and molecular pathways of gastric cancer and its precursors.
Collapse
Affiliation(s)
- Evgeny Yakirevich
- Department of Pathology, Rhode Island Hospital, Providence, RI 02903, USA
| | | |
Collapse
|
46
|
Khurana SS, Riehl TE, Moore BD, Fassan M, Rugge M, Romero-Gallo J, Noto J, Peek RM, Stenson WF, Mills JC. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem 2013; 288:16085-97. [PMID: 23589310 DOI: 10.1074/jbc.m112.445551] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The stem cell in the isthmus of gastric units continually replenishes the epithelium. Atrophy of acid-secreting parietal cells (PCs) frequently occurs during infection with Helicobacter pylori, predisposing patients to cancer. Atrophy causes increased proliferation of stem cells, yet little is known about how this process is regulated. Here we show that CD44 labels a population of small, undifferentiated cells in the gastric unit isthmus where stem cells are known to reside. Loss of CD44 in vivo results in decreased proliferation of the gastric epithelium. When we induce PC atrophy by Helicobacter infection or tamoxifen treatment, this CD44(+) population expands from the isthmus toward the base of the unit. CD44 blockade during PC atrophy abrogates the expansion. We find that CD44 binds STAT3, and inhibition of either CD44 or STAT3 signaling causes decreased proliferation. Atrophy-induced CD44 expansion depends on pERK, which labels isthmal cells in mice and humans. Our studies delineate an in vivo signaling pathway, ERK → CD44 → STAT3, that regulates normal and atrophy-induced gastric stem/progenitor-cell proliferation. We further show that we can intervene pharmacologically at each signaling step in vivo to modulate proliferation.
Collapse
Affiliation(s)
- Shradha S Khurana
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Speer AL, Alam DA, Sala FG, Ford HR, Bellusci S, Grikscheit TC. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis. PLoS One 2012; 7:e49127. [PMID: 23133671 PMCID: PMC3486796 DOI: 10.1371/journal.pone.0049127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022] Open
Abstract
The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.
Collapse
Affiliation(s)
- Allison L. Speer
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Denise Al Alam
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Frederic G. Sala
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Henri R. Ford
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
| | - Saverio Bellusci
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- University of Giessen Lung Center, Department of Internal Medicine II, Giessen, Germany
| | - Tracy C. Grikscheit
- Children's Hospital Los Angeles, Department of Pediatric Surgery/Developmental Biology and Regenerative Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sousa JF, Ham AJL, Whitwell C, Nam KT, Lee HJ, Yang HK, Kim WH, Zhang B, Li M, LaFleur B, Liebler DC, Goldenring JR. Proteomic profiling of paraffin-embedded samples identifies metaplasia-specific and early-stage gastric cancer biomarkers. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1560-72. [PMID: 22944598 PMCID: PMC3483808 DOI: 10.1016/j.ajpath.2012.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/18/2012] [Accepted: 07/05/2012] [Indexed: 12/17/2022]
Abstract
Early diagnosis and curative resection are the predominant factors associated with increased survival in patients with gastric cancer. However, most gastric cancer cases are still diagnosed at later stages. Since most pathologic specimens are archived as FFPE samples, the ability to use them to generate expression profiles can greatly improve cancer biomarker discovery. We sought to uncover new biomarkers for stomach preneoplastic metaplasias and neoplastic lesions by generating proteome profiles using FFPE samples. We combined peptide isoelectric focusing and liquid chromatography-tandem mass spectrometry analysis to generate proteomic profiles from FFPE samples of intestinal-type gastric cancer, metaplasia, and normal mucosa. The expression patterns of selected proteins were analyzed by immunostaining first in single tissue sections from normal stomach, metaplasia, and gastric cancer and later in larger tissue array cohorts. We detected 60 proteins up-regulated and 87 proteins down-regulated during the progression from normal mucosa to metaplasia to gastric cancer. Two of the up-regulated proteins, LTF and DMBT1, were validated as specific markers for spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia, respectively. In cancers, significantly lower levels of DMBT1 or LTF correlated with more advanced disease and worse prognosis. Thus, proteomic profiling using FFPE samples has led to the identification of two novel markers for stomach metaplasias and gastric cancer prognosis.
Collapse
Affiliation(s)
- Josane F. Sousa
- Nashville Veterans Affairs Medical Center and the Epithelial Biology Center and the Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Amy-Joan L. Ham
- Department of Biochemistry, Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University, Nashville, Tennessee
- Department of Pharmaceutical, Social, and Administrative Sciences, Belmont University College of Pharmacy, Nashville, Tennessee
| | - Corbin Whitwell
- Department of Biochemistry, Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University, Nashville, Tennessee
| | - Ki Taek Nam
- Nashville Veterans Affairs Medical Center and the Epithelial Biology Center and the Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee
| | - Ming Li
- Division of Cancer Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Bonnie LaFleur
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Daniel C. Liebler
- Department of Biochemistry, Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University, Nashville, Tennessee
| | - James R. Goldenring
- Nashville Veterans Affairs Medical Center and the Epithelial Biology Center and the Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
49
|
Syu LJ, El-Zaatari M, Eaton KA, Liu Z, Tetarbe M, Keeley TM, Pero J, Ferris J, Wilbert D, Kaatz A, Zheng X, Qiao X, Grachtchouk M, Gumucio DL, Merchant JL, Samuelson LC, Dlugosz AA. Transgenic expression of interferon-γ in mouse stomach leads to inflammation, metaplasia, and dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2114-25. [PMID: 23036899 DOI: 10.1016/j.ajpath.2012.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 02/08/2023]
Abstract
Gastric adenocarcinoma is one of the leading causes of cancer mortality worldwide. It arises through a stepwise process that includes prominent inflammation with expression of interferon-γ (IFN-γ) and multiple other pro-inflammatory cytokines. We engineered mice expressing IFN-γ under the control of the stomach-specific H(+)/K(+) ATPase β promoter to test the potential role of this cytokine in gastric tumorigenesis. Stomachs of H/K-IFN-γ transgenic mice exhibited inflammation, expansion of myofibroblasts, loss of parietal and chief cells, spasmolytic polypeptide expressing metaplasia, and dysplasia. Proliferation was elevated in undifferentiated and metaplastic epithelial cells in H/K-IFN-γ transgenic mice, and there was increased apoptosis. H/K-IFN-γ mice had elevated levels of mRNA for IFN-γ target genes and the pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-α. Intracellular mediators of IFN-γ and IL-6 signaling, pSTAT1 and pSTAT3, respectively, were detected in multiple cell types within stomach. H/K-IFN-γ mice developed dysplasia as early as 3 months of age, and 4 of 39 mice over 1 year of age developed antral polyps or tumors, including one adenoma and one adenocarcinoma, which expressed high levels of nuclear β-catenin. Our data identified IFN-γ as a pivotal secreted factor that orchestrates complex changes in inflammatory, epithelial, and mesenchymal cell populations to drive pre-neoplastic progression in stomach; however, additional alterations appear to be required for malignant conversion.
Collapse
Affiliation(s)
- Li-Jyun Syu
- Department of Dermatology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. J Transl Med 2012; 92:883-95. [PMID: 22411066 PMCID: PMC3584162 DOI: 10.1038/labinvest.2012.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SMAD proteins are downstream effectors of the TGF-β signaling pathway. Smad3-null mice develop colorectal cancer by 6 months of age. In this study, we have examined whether the loss of Smad3 promotes gastric neoplasia in mice. The stomachs of Smad3⁻/⁻ mice were compared with age-matched Smad3 heterozygous and wild-type mice. E-cadherin, Ki-67, phosphoSTAT3, and TFF2/SP expression was analyzed by immunohistochemisty. The short hairpin RNA (ShRNA)-mediated knockdown of Smad3 in AGS and MKN28 cells was also performed. In addition, we examined alterations in DCLK1-expressing cells. Smad3⁻/⁻ mouse stomachs at 6 months of age revealed the presence of exophytic growths along the lesser curvature in the proximal fundus. Six-month-old Smad3⁻/⁻ mouse stomachs showed metaplastic columnar glands initiating from the transition zone junction between the forestomach and the glandular epithelium along the lesser curvature. Ten-month-old Smad3⁻/⁻ mice all exhibited invasive gastric neoplastic changes with increased Ki-67, phosphoSTAT3 expression, and aberrant cytosolic E-cadherin staining in papillary glands within the invading submucosal gland. The shRNA-mediated knockdown of Smad3 in AGS and MKN28 cells promoted the expression of phosphoSTAT3. DCLK1-expressing cells, which also stained for the tuft cell marker acetylated-α-tubulin, were observed in 10-month-old Smad3⁻/⁻ mice within tumors and in fundic invasive lesions. In conclusion, Smad3-null mice develop gastric tumors in the fundus, which arise from the junction between the forestomach and the glandular epithelium and progress to prominent invasive tumors over time. Smad3-null mice represent a novel model of fundic gastric tumor initiated from forestomach/glandular transition zone along the lesser curvature.
Collapse
|