1
|
Xu S, Zhang Y, Li J, Zhang X, Wang W. External stimuli-responsive drug delivery to the posterior segment of the eye. Drug Deliv 2025; 32:2476140. [PMID: 40126105 PMCID: PMC11934192 DOI: 10.1080/10717544.2025.2476140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Posterior segment eye diseases represent the leading causes of vision impairment and blindness globally. Current therapies still have notable drawbacks, including the need for frequent invasive injections and the associated risks of severe ocular complications. Recently, the utility of external stimuli, such as light, ultrasound, magnetic field, and electric field, has been noted as a promising strategy to enhance drug delivery to the posterior segment of the eye. In this review, we briefly summarize the main physiological barriers against ocular drug delivery, focusing primarily on the recent advancements that utilize external stimuli to improve treatment outcomes for posterior segment eye diseases. The advantages of these external stimuli-responsive drug delivery strategies are discussed, with illustrative examples highlighting improved tissue penetration, enhanced control over drug release, and targeted drug delivery to ocular lesions through minimally invasive routes. Finally, we discuss the challenges and future perspectives in the translational research of external stimuli-responsive drug delivery platforms, aiming to bridge existing gaps toward clinical use.
Collapse
Affiliation(s)
- Shuting Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Xinyu Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Fan S, Tang Y, Hu X, Qin M, Zhao Y, Chen X, Zou H, Gao H, Li P, Xu H, Yuan R. Efficacy and safety of ultrasound combined with microbubbles for treating retinal artery occlusion in rats. J Control Release 2025; 382:113703. [PMID: 40189055 DOI: 10.1016/j.jconrel.2025.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Retinal artery occlusion (RAO) is an eye emergency that results in severe and permanent visual impairment. The effectiveness of conventional treatment on retinal artery recanalization and vision improvement is uncertain. Ultrasound combined with microbubbles (USMB) technology is a minimally invasive transvascular drug delivery technique that has been used to investigate the treatment of stroke, myocardial infarction ,and obstructive vascular disease. The aim of this study was to investigate the efficacy and safety of USMB in the treatment of RAO. RAO model was induced by photochemical thrombosis. Normal rat eyes were treated with ultrasound at different mechanical index (MI) of 0.2,0.4 and 0.8, to explore its safety. RAO rats were randomly divided into RAO group, RAO + USMB group and RAO + US (Ultrasound) group to explore the effectiveness of the USMB in the treatment of RAO. A set of relevant ophthalmic in vivo imaging techniques was used to explore the natural history of RAO model rats while assessing tolerance and efficacy to USMB treatment. We found that blocked retinal arteries recanalized within 4-24 h in the RAO model. Retinal edema peaks within 4-24 h and resolves within 3-7 days. Blood flow density (BFD) began to recover 4 h after model induction. USMB did not cause irreversible retinal damage when the MI was below 0.4. Treatment with USMB at an MI of 0.2 significantly reduced retinal edema in RAO rats 1 day after model induction and prevented further retinal atrophy. In addition, USMB significantly increased BFD in RAO rats within 4 h and promoted the recovery of visual function. USMB can be a safe and effective treatment for RAO with protective effects on the neuroretina.
Collapse
Affiliation(s)
- Sen Fan
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yonghong Tang
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xinying Hu
- Department of Ophthalmology, Jiangyin People's Hospital, Medical School of Southeast University, Jiangyin, Jiangsu, China
| | - Mingmin Qin
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuancheng Zhao
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaofan Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huan Zou
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hui Gao
- 953rd Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Peijing Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Rongdi Yuan
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Wang Y, Li H, Meijlink B, Beurskens R, Johnson BRG, Kooiman K. Dependence of endothelial drug delivery on monodisperse microbubble dynamics. J Control Release 2025:113867. [PMID: 40409374 DOI: 10.1016/j.jconrel.2025.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Ultrasound insonification of microbubbles has been shown to increase vascular permeability to locally enhance drug delivery. For more effective and controllable therapeutic outcomes, uniform acoustic responses from microbubbles and a deeper understanding of the biophysical mechanisms of drug delivery are critical. In this study, we investigated the impact of monodisperse microbubble size and their dynamics on cellular responses and drug delivery outcomes in endothelial cells. Monodisperse microbubbles with radii of 1.5, 2.2, 2.7, and 2.9 μm were produced using a microfluidic flow-focusing device. Upon insonification (2 MHz, 220 kPa peak negative pressure, 10 cycles), the microbubble oscillation was captured in real-time at 10 million frames per second using ultra-high-speed imaging, while confocal microscopy was employed to observe cellular responses in both 2D and 3D. For the 65 microbubbles studied, the 2.2 μm microbubbles, i.e., corresponding to the resonant radius at 2 MHz ultrasound, exhibited the highest sonoporation rate (75 %), induced the largest membrane perforations (a median value of 78 μm2) and highest intracellular drug uptake. The 1.5 μm microbubbles achieved a comparable sonoporation rate (73 %), yet with significantly smaller membrane perforations (a median value of 20 μm2), lower intracellular drug uptake, and highest occurrence of transendothelial drug delivery pathways (64 %). Mechanistically, microbubble-generated shear stress was identified as the significant factor driving sonoporation, while normal stress did not show significance. In conclusion, our study highlights the importance of carefully selecting the microbubbles size to maximize microbubble-mediated drug delivery outcomes and facilitate safe translation of monodisperse microbubbles into clinical practice.
Collapse
Affiliation(s)
- Yuchen Wang
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam 3015 GD, the Netherlands.
| | - Hongchen Li
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam 3015 GD, the Netherlands
| | - Bram Meijlink
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam 3015 GD, the Netherlands
| | - Robert Beurskens
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam 3015 GD, the Netherlands
| | - Benjamin R G Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Klazina Kooiman
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam 3015 GD, the Netherlands
| |
Collapse
|
4
|
De Clerck K, De Smedt S, Remaut K, Peynshaert K. Toward successful retinal drug delivery after intravitreal injection: Current strategies to overcome the inner limiting membrane. J Control Release 2025; 384:113849. [PMID: 40393532 DOI: 10.1016/j.jconrel.2025.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/23/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The global prevalence of retinal disorders leading to vision impairment and blindness is rising to significant numbers and is estimated to continuously increase in the coming years. Although many groundbreaking therapies are available in the expanding field of retinal gene and cell therapy, troublesome delivery after intravitreal (IVT) injection is currently complicating their clinical translation. In this regard, the inner limiting membrane (ILM), the basement membrane located between the vitreous and the retina, is recognized as the main obstacle hindering retinal entry. Overcoming this barrier might hence advance a plethora of potent therapeutics currently available but failing to enter the retina. Aware of the importance to address this drug delivery issue, this review will discuss the current proposed methods to tackle the ILM barrier. First, we will provide an overview of ILM characteristics in health and disease after which we will reflect on the relevance of the ILM barrier role for emerging advanced therapeutic strategies. Seeing the significance of ILM removal for those therapeutics, the current proposed surgical, pharmacological and physical strategies to bypass the ILM will furthermore be highlighted to encourage the entire field of retinal drug delivery after IVT injection forward.
Collapse
Affiliation(s)
- Kaat De Clerck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Chiu TY, Zho YJ, Ho YJ. Evaluating Immune Activation Feasibility in Pancreatic Ductal Adenocarcinoma via Oxygen Bubble-Induced Anti-Vascular Therapy. Pharmaceutics 2025; 17:645. [PMID: 40430936 PMCID: PMC12114744 DOI: 10.3390/pharmaceutics17050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Anti-vascular therapy presents a potential strategy for activating anti-tumor immunity. Disrupted vascular debris provides effective antigens that activate dendritic cells, leading to subsequent immune responses. However, the resulting tumor hypoxia following vascular disruption may contribute to immune suppression, thereby hindering effective immune activation. Ultrasound-stimulated microbubble cavitation can locally disrupt tumor vessels through mechanical effects to achieve physical anti-vascular therapy. Therefore, this study designed oxygen-loaded nanobubbles (ONBs) to combine anti-vascular effects with local oxygen release under ultrasound stimulation. The feasibility of enhancing anti-tumor immune activation by alleviating tumor hypoxia was evaluated. Methods: A murine pancreatic subcutaneous solid tumor model was used to evaluate the efficacy of anti-vascular therapy-associated immunotherapy. Results: After ONB treatment, tumor perfusion was reduced to 52 ± 5%, which resulted in a subsequent 57 ± 11% necrosis and a 29 ± 4% reduction in hypoxia, demonstrating the anti-vascular effect and reoxygenation, respectively. However, subsequent immune responses exhibited no significant activation in intratumoral cytokine expression or splenic immune cell composition. Primary tumors exhibited a 15.7 ± 5.0% increase in necrosis following ONB treatment, but distant tumor growth was not significantly inhibited. Conclusions: These results highlighted a crucial issue regarding the complex correlations between vessel disruption, antigen production, oxygen delivery, hypoxia, and immunity when combining anti-vascular therapy with immunotherapy.
Collapse
Affiliation(s)
- Tzu-Yun Chiu
- Department of Biological Science and Technology, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Jia Zho
- Institute of Molecular Medicine and Bioengineering, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
6
|
Engelen Y, Demuynck R, Ramon J, Breckpot K, De Smedt S, Lajoinie GPR, Braeckmans K, Krysko DV, Lentacker I. Immunogenic cell death as interplay between physical anticancer modalities and immunotherapy. J Control Release 2025:113721. [PMID: 40368187 DOI: 10.1016/j.jconrel.2025.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Current cancer treatment strategies in practice nowadays often face limitations in effectiveness due to factors such as resistance, recurrence, or suboptimal outcomes. Traditional approaches like chemotherapy often come with severe systemic side effects due to their non-specific action, prompting the development of more targeted therapies. Among these, physical ablation techniques such as radiotherapy (RT) and focused ultrasound (FUS) have gained attention for their ability to precisely target malignant tissues, reduce physical and mental stress for the patients, and minimize recovery time. These therapies also aim to stimulate the immune system through a process referred to as immunogenic cell death (ICD), enhancing the body's ability to fight cancer, explaining abscopal effects. RT has been the most established of the abovementioned techniques for decades, and will not be included in the review. While initially focused on complete tumor ablation, these techniques are now shifting towards milder, more controlled applications that induce ICD without extensive tissue damage. This review explores how physical ablation therapies can harness ICD to boost anticancer immunity, emphasizing their potential to complement immunotherapies and improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Y Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - R Demuynck
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - S De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - G P R Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - D V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Guerassimoff L, De Smedt SC, Sauvage F, Baudoin M. Acoustic tweezers for targeted drug delivery. Adv Drug Deliv Rev 2025; 220:115551. [PMID: 39988259 DOI: 10.1016/j.addr.2025.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/15/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Acoustic tweezers are a highly promising technology for targeted drug delivery thanks to their unique capabilities: (i) they can effectively operate in both in vitro and in vivo environments, (ii) they can manipulate a wide range of particle sizes and materials, and (iii) they can exert forces several orders of magnitude larger than competing techniques while remaining safe for biological tissues. In particular, tweezers capable of selectively capturing and manipulating objects in 3D with a single beam, known as 'single beam tweezers', open new perspectives for delivering drug carriers to precise locations. In this review, we first introduce the fundamental physical principles underlying the manipulation of particles using acoustic tweezers and highlight the latest advancements in the field. We then discuss essential considerations for the design of drug delivery carriers suitable for use with acoustic tweezers. Finally, we summarise recent promising studies that explore the use of acoustic tweezers for in vitro, ex vivo, and in vivo drug delivery.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Michael Baudoin
- Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Unité Mixte de Recherche 8520, Institut d'Electronique, de Microélectronique et de Nanotechnologie, 59000 Lille, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
8
|
Zhou Z, Chen Y, Ba Y, Xu H, Zuo A, Liu S, Zhang Y, Weng S, Ren Y, Luo P, Cheng Q, Zuo L, Zhu S, Zhou X, Zhang C, Chen Y, Han X, Pan T, Liu Z. Revolutionising Cancer Immunotherapy: Advancements and Prospects in Non-Viral CAR-NK Cell Engineering. Cell Prolif 2025; 58:e13791. [PMID: 39731215 PMCID: PMC11969250 DOI: 10.1111/cpr.13791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis. Consequently, there has been a surge in the development of non-viral transfection technologies to overcome these challenges in NK cell engineering. Non-viral approaches for CAR-NK cell generation are becoming increasingly essential. Cutting-edge techniques such as trogocytosis, electroporation, lipid nanoparticle (LNP) delivery, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) gene editing and transposons not only enhance the efficiency and safety of CAR-NK cell engineering but also open new avenues for novel therapeutic possibilities. Additionally, the infusion of technologies already successful in CAR T-cell therapy into the CAR-NK paradigm holds immense potential for further advancements. In this review, we present an overview of the potential of NK cells in cancer immunotherapies, as well as non-viral transfection technologies for engineering NK cells.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peng Luo
- The Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Lulu Zuo
- Center of Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shanshan Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xing Zhou
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuhan Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yukang Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Zhou Y, Liu Q, Cong H, Liao L. Advancements in the management of overactive bladder in women using nano-botulinum toxin type A: A narrative review. Curr Urol 2025; 19:77-83. [PMID: 40314015 PMCID: PMC12042194 DOI: 10.1097/cu9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 05/03/2025] Open
Abstract
Intravesical injections of botulinum toxin type A (BTX-A) are effective for treating refractory overactive bladder (OAB) in women. However, the adverse effects linked to the injections, such as hematuria, pain, and infection, and need for repeated injections can lower patient compliance and make the treatment inconvenient. Hence, urologists are actively pursuing less invasive and more convenient methods for the intravesical delivery of BTX-A. Advances in nanotechnology have facilitated noninvasive intravesical drug delivery. Currently, liposomes, hydrogels, nanoparticles, and many other forms of carriers can be used to enhance bladder wall permeability. This facilitates the entry of BTX-A into the bladder wall, allowing it to exert its effects. In this review, the feasibility and efficacy of liposomes, thermosensitive hydrogels, and hyaluronic acid-phosphatidylethanolamine for the treatment of OAB in women are discussed along with recent animal experiments on the use of nanotechnology-delivered BTX-A for the treatment of OAB in female rat models. Although the clinical efficacy of nanocarrier-encapsulated BTX-A for the treatment of OAB in women has not yet matched that of direct urethral muscle injection of BTX-A, improvements in certain symptoms indicate the potential of bladder instillation of nanocarrier-encapsulated BTX-A for future clinical applications. Consequently, further research on nanomaterials is warranted to advance the development of nanocarriers for the noninvasive delivery of BTX-A in the bladder.
Collapse
Affiliation(s)
- Yongheng Zhou
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Qinggang Liu
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Huiling Cong
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Limin Liao
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Bai Z, Li Z, Shao Y. Subcellular Cavitation Bubbles Induce Cellular Mechanolysis and Collective Wound Healing in Ultrasound-Inflicted Cell Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410760. [PMID: 39887946 PMCID: PMC11923933 DOI: 10.1002/advs.202410760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/21/2024] [Indexed: 02/01/2025]
Abstract
Focused ultrasound (FUS) has been widely adopted in medical and life science researches. Although various physical and biological effects of FUS have been well-documented, there is still a lack of understanding and direct evidence on the biological mechanism of therapeutic cell ablation caused by high-intensity ultrasound (HIFU) and the subsequent wound healing responses. This study develops an enclosed cell culture device that synergistically combines non-invasive FUS stimulation and real-time, on-the-fly live-cell imaging, providing an in vitro platform to explore short and long-term biological effects of ultrasound. The process, mechanism, and wound healing response of cell ablation induced by HIFU are elucidated, revealing a unique mechanism, termed ultrasound-inflicted cellular mechanolysis, that is mediated by growing subcellular cavitation air bubbles under confined contact with cells. This provides a previously unappreciated mechanism for understanding the biomechanical principles of ultrasound-based ablative therapy. A post-ablation phantom layer is also revealed that serves as a guiding cue for collective cell migration during wound healing, thereby providing a biomimetic model for studying wound healing after HIFU-inflicted damage. Together, this study provides theoretical and technological basis for advancing the understanding of the biological effects of ultrasound-based ablative therapy and inspiring clinically relevant applications in the future.
Collapse
Affiliation(s)
- Ziyue Bai
- Institute of Biomechanics and Medical EngineeringApplied Mechanics LaboratoryDepartment of Engineering MechanicsSchool of Aerospace EngineeringTsinghua UniversityBeijing100084China
| | - Zaimeng Li
- Institute of Fluid MechanicsDepartment of Engineering MechanicsSchool of Aerospace EngineeringTsinghua UniversityBeijing100084China
| | - Yue Shao
- Institute of Biomechanics and Medical EngineeringApplied Mechanics LaboratoryDepartment of Engineering MechanicsSchool of Aerospace EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
11
|
Blöck J, Li H, Collado-Lara G, Kooiman K, Rix A, Chen J, Hark C, Radermacher H, Porte C, Kiessling F. The Compression-Dominated Ultrasound Response of Poly( n-butyl cyanoacrylate) Hard-Shelled Microbubbles Induces Significant Sonoporation and Sonopermeation Effects In Vitro. ACS APPLIED BIO MATERIALS 2025; 8:1240-1250. [PMID: 39900350 PMCID: PMC11836932 DOI: 10.1021/acsabm.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
The process of locally increasing the permeability of cell membranes or cell layers is referred to as sonoporation or sonopermeation, respectively, and opens up perspectives for drug delivery in cancer treatment by facilitating enhanced local drug accumulation. These effects are mediated by ultrasound-activated microbubbles in close proximity to cells. Here, the selection of ultrasound settings according to the intended effect on the biological tissue remains a challenge, especially for broadly size-distributed microbubbles, which show a heterogeneous response to ultrasound. For this purpose, we have analyzed the general response of narrower size-distributed poly(n-butyl cyanoacrylate) hard-shelled microbubbles to ultrasound via ultra-high-speed imaging and evaluated their ability to stimulate sonoporation and sonopermeation in vitro compared to lipid soft-shelled microbubbles. Ultra-high-speed imaging of hard-shelled microbubbles revealed either a compression-dominated or compression-only response at peak negative acoustic pressures higher than 165 kPa and an onset of bursting at 500 kPa. The in vitro experiments demonstrated that the hard-shelled microbubbles induced significant sonoporation and sonopermeation effects, also when only compressing at 300 kPa peak neagtive pressure. Compared to soft-shelled microbubbles, the effects were less prominent, which was attributed to differences in their ultrasound responses and size distributions. This in vitro validation of hard-shelled microbubbles qualifies them for future in vivo applications, which would benefit from their narrow size distribution, thereby allowing more control of their therapeutic effect by suitably adjusting the ultrasound parameters.
Collapse
Affiliation(s)
- Julia Blöck
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Hongchen Li
- Biomedical
Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam , The Netherlands
| | - Gonzalo Collado-Lara
- Biomedical
Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam , The Netherlands
| | - Klazina Kooiman
- Biomedical
Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam , The Netherlands
| | - Anne Rix
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Junlin Chen
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Christopher Hark
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Harald Radermacher
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Céline Porte
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, RWTH
Aachen University Hospital, Forckenbeckstraße 55, 52070 Aachen, Germany
| |
Collapse
|
12
|
Desai O, Köster M, Kloos D, Lachmann N, Hauser H, Poortinga A, Wirth D. Ultrasound-triggered drug release in vivo from antibubble-loaded macrophages. J Control Release 2025; 378:365-376. [PMID: 39653149 DOI: 10.1016/j.jconrel.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/22/2024]
Abstract
Nanoparticles have proven to be attractive carriers in therapeutic drug delivery since they can encapsulate, protect and stabilize a plethora of different drugs, thereby improving therapeutic efficacy and reducing side effects. However, specific targeting of drug-loaded nanoparticles to the tissue of interest and a timely and spatially controlled release of drugs on demand still represent a challenge. Recently, gas-filled microparticles, so-called antibubbles, have been developed which can efficiently encapsulate liquid drug droplets. Here, we show that antibubbles are efficiently taken up by macrophages in vitro and are stably maintained for more than 48 h without compromising antibubble integrity and macrophage viability. We show that application of diagnostic ultrasound induces the disintegration of both antibubbles and carrier cells while not affecting non-loaded macrophages. Using 4-hydroxytamoxifen as a model drug, we show ultrasound-mediated drug release upon adoptive transfer of antibubble-loaded macrophages in mice. Together with the ability of macrophages to accumulate in inflamed tissues, antibubble-loaded macrophages represent an attractive tool for targeted delivery of drugs and its ultrasound-mediated spatial and temporal drug release, highlighting the therapeutic perspective of this strategy.
Collapse
Affiliation(s)
- Omkar Desai
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany; iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Albert Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Dagmar Wirth
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
13
|
Einen C, Snipstad S, Wesche HF, Nordlund V, Devold EJ, Amini N, Hansen R, Sulheim E, Davies CDL. Impact of the tumor microenvironment on delivery of nanomedicine in tumors treated with ultrasound and microbubbles. J Control Release 2025; 378:656-670. [PMID: 39701458 DOI: 10.1016/j.jconrel.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The delivery of nanoparticles to tumors has been shown preclinically to be improved by microbubble-mediated ultrasound. However, the mechanisms and biological effects are not fully understood. In this study, we explored the influence of the tumor microenvironment on nanoparticle uptake and microdistribution both with and without ultrasound and microbubble treatment. Three murine tumor models, KPC (pancreatic ductal adenocarcinoma), 4T1 (triple negative mammary carcinoma) and CT26 (colon carcinoma), were characterized with respect to extracellular matrix composition, tumor stiffness and perfusion. KPC and 4T1 tumors presented higher levels of collagen and hyaluronic acid and were stiffer compared to CT26, whereas all three tumors had similar levels of sulfated glycosaminoglycans. Furthermore, the 4T1 tumors appeared poorly vascularized with a lower cell density compared to KPC and CT26. All three tumors presented similar nanoparticle uptake, but extravasated nanoparticles traveled significantly shorter in KPC tumors compared to 4T1 and CT26. The effect of ultrasound and microbubble treatment on the tumor uptake and penetration of polymer nanoparticles into the extracellular matrix were evaluated using a treatment protocol previously shown to increase nanoparticle delivery to tumors. Interestingly, we found a significant increase in nanoparticle uptake in the soft CT26 tumor, but no effect of the ultrasound treatment in the stiff KPC and 4T1 tumors, suggesting that tumor stiffness is an important parameter for treatment with ultrasound and microbubbles. Ultrasound treatment resulted in a modest but not statistically significant improvement in nanoparticle penetration through the extracellular matrix. In tumors demonstrating increased uptake of nanoparticles following ultrasound treatment, the uptake correlated positively with blood volume. These findings emphasize the importance of taking the tumor microenvironment into consideration when optimizing ultrasound parameters for delivery of nanomedicine.
Collapse
Affiliation(s)
- Caroline Einen
- Porelab and Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Håkon F Wesche
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veronica Nordlund
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ella J Devold
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | |
Collapse
|
14
|
Chen Z, Ye K, Wu H, Peng L, Chen Z. Thumb-sized 3D-Printed cymbal microneedle array (CyMA) for enhanced transdermal drug delivery. Eur J Pharm Biopharm 2025; 207:114629. [PMID: 39824326 DOI: 10.1016/j.ejpb.2025.114629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Transdermal drug delivery presents a compelling alternative to both needle injection and oral ingestion of medication, as it enhances patient adherence and convenience through its non-invasive and painless administration method. The use of microneedles penetrates the barrier of the stratum corneum, facilitating the sustained delivery of drugs across the skin. However, their efficacy has been limited by the slow diffusion of molecules and often requires external triggers. Herein, a lightweight and minimized 3D-printed microneedle array is introduced, employing a cymbal-type ultrasound transducer, as the external engine for deeper and faster transdermal drug delivery. A theoretical finite element model was developed and the optimization design was conducted for structural parameters. The optimized assembled prototype was fabricated using high-precision 3D printing and weighs only 20 g. In vivo experiments using a diabetic mouse model demonstrate that local insulin delivery with CyMA achieves systemic effects comparable to intraperitoneal administration. Such compact and effective microneedle delivery technology offers considerable promise therapeutic applications on the skin and intraoral use.
Collapse
Affiliation(s)
- Ziyan Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kai Ye
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Huayi Wu
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lanyuan Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
15
|
Zhang XH, Song BL, Yi NB, Zhang GX, Zheng WF, Cheng DB, Qiao ZY, Wang H. Programmable Morphology-Adaptive Peptide Nanoassembly for Enhanced Catalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417089. [PMID: 39686823 DOI: 10.1002/adma.202417089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/08/2024] [Indexed: 12/18/2024]
Abstract
Nanocatalytic therapy holds significant promise in cancer treatment by exploiting the high oxidative stress within tumor cells. However, efficiently delivering nanocatalytic agents to tumor tissues and maximizing their catalytic activity in situ remain critical challenges. Morphology-adaptive delivery systems, capable of adjusting their physical form in response to physiological conditions, offer unique spatiotemporal control for navigating complex biological environments like the tumor microenvironment. While designing systems that undergo multiple shape transformations often involves complex stimuli-responsive mechanisms, making programmable responses through simple designs highly desirable yet challenging. Here, FeFKC, an innovative adaptive material is introduced that achieves multi-step morphological transformations at the tissue level and amplifies catalytic activity through a straightforward design. As the microenvironmental pH decreases during drug delivery, FeFKC dynamically transitions between single chains, nanoparticles, and nanofibers. This programmable shape-shifting facilitates deep tumor penetration, enhanced cellular uptake, and lysosomal escape, significantly improving its catalytic efficiency in nanocatalytic tumor therapy. In vivo studies demonstrate that FeFKC achieves impressive tumor suppression efficacy of up to 95% without notable biosafety concerns. The findings highlight the potential of adaptive nanomaterials with programmable shape-transforming capabilities to overcome biological barriers and enhance catalytic therapy, opening new avenues for cancer treatment and other complex diseases.
Collapse
Affiliation(s)
- Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ben-Li Song
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning-Bo Yi
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
| | - Guang-Xu Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wen-Fu Zheng
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Li Y, Liu R, Zhao Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025; 17:109. [PMID: 39861756 PMCID: PMC11769103 DOI: 10.3390/pharmaceutics17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases. This exploration details the transport mechanisms across the BBB, focusing on RMT and its use of natural ligands for drug delivery. Furthermore, the review examines macromolecular ligands such as antibodies, peptides, and aptamers that leverage RMT for effective BBB traversal. Advancements in macromolecules-based delivery systems for brain diseases are summarized, emphasizing their therapeutic potential and limitations. Finally, emerging RMT strategies, including viral vectors, exosomes, and boron neutron capture therapy, are discussed for their precision in brain-targeted treatments. This comprehensive overview underscores the potential of RMT-based approaches to revolutionize brain disease therapy.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
17
|
Sotoudehbagha P, Flores AC, Hartmann T, Pattilachan T, Razavi M. Bone-targeted ultrasound-responsive nanobubbles for siRNA delivery to treat osteoporosis in mice. BIOMATERIALS ADVANCES 2025; 166:214078. [PMID: 39447239 DOI: 10.1016/j.bioadv.2024.214078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
This project aimed to study the efficacy of a bone-targeted ultrasound-responsive nanobubble (NB) platform to deliver gene-silencing cathepsin K (CTSK) siRNA into the bone for osteoporosis treatment using in vitro and in vivo studies. To this end, characterization of CTSK siRNA loaded NB functionalized with alendronate (NB-CTSK siRNA-AL) was performed using transmission electron microscopy (TEM) imaging, and a release profile was obtained through fluorescent spectroscopy. In vitro studies were conducted by culturing NB-CTSK siRNA-AL with osteoclasts to evaluate siRNA uptake, CTSK expression, and the expression of tartrate-resistant acid phosphatase (TRAP). A control group and an NB-CTSK siRNA-AL treated group of ovariectomized (OVX) mice (n = 4) were tested. The OVX group that received treatment underwent weekly sessions for 4 weeks, during which they were exposed to low-intensity pulsed ultrasound (LIPUS) stimulation following administration of NB-CTSK siRNA-AL, prior to being sacrificed. Both groups underwent a series of tests to evaluate the bone targeting, safety, and efficacy of the nanoplatform. These tests included biodistribution studies conducted at 4 h and 24 h post-injection, a 3-point bending test of the femurs, nano-computed tomography analysis, as well as Hematoxylin & Eosin histological staining, Masson's Trichrome staining, and CTSK staining. The biodistribution showed the accumulation of NB-CTSK siRNA-AL in the bone and liver. Results showed that the OVX mice treated with NB-CTSK siRNA-AL had increased distal cortical bone thickness (174.4 ± 5.28 μm vs. 144.3 ± 10.66 μm, p > 0.05)) and bone volume fraction (16.5 ± 3.96 % vs. 6.55 ± 0.13 % (p > 0.05)). A reduced collagen degradation and downregulated CTSK expression were evident in the staining procedures. No adverse effects were recorded within histological assessments on the liver, kidney, and heart post-treatment. Morphology was shown to be normal and healthy within muscle cells post-LIPUS stimulation of NB-CTSK siRNA-AL. From these results, it can be concluded that an ultrasound-mediated NB-CTSK siRNA-AL can serve as a reliable, safe CTSK siRNA carrier to bone-specific targets for in vivo osteoporosis treatment.
Collapse
Affiliation(s)
- Pedram Sotoudehbagha
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Abel Córdova Flores
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Thomas Hartmann
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Tara Pattilachan
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA; Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
18
|
Yazdan M, Naghib SM. Smart Ultrasound-responsive Polymers for Drug Delivery: An Overview on Advanced Stimuli-sensitive Materials and Techniques. Curr Drug Deliv 2025; 22:283-309. [PMID: 38288800 DOI: 10.2174/0115672018283792240115053302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2025]
Abstract
In recent years, a notable advancement has occurred in the domain of drug delivery systems via the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| |
Collapse
|
19
|
Ćwiklińska A, Przewodowska D, Koziorowski D, Szlufik S. Innovative Approaches to Brain Cancer: The Use of Magnetic Resonance-guided Focused Ultrasound in Glioma Therapy. Cancers (Basel) 2024; 16:4235. [PMID: 39766134 PMCID: PMC11674718 DOI: 10.3390/cancers16244235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a wide group of common brain tumors, with the most aggressive type being glioblastoma multiforme (GBM), with a 5-year survival rate of less than 5% and a median survival time of approximately 12-14 months. The standard treatment of GBM includes surgical excision, radiotherapy, and chemotherapy with temozolomide (TMZ). However, tumor recurrence and progression are common. Therefore, more effective treatment for GBM should be found. One of the main obstacles to the treatment of GBM and other gliomas is the blood-brain barrier (BBB), which impedes the penetration of antitumor chemotherapeutic agents into glioblastoma cells. Nowadays, one of the most promising novel methods for glioma treatment is Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Low-intensity FUS causes the BBB to open transiently, which allows better drug delivery to the brain tissue. Under magnetic resonance guidance, ultrasound waves can be precisely directed to the tumor area to prevent side effects in healthy tissues. Through the open BBB, we can deliver targeted chemotherapeutics, anti-tumor agents, immunotherapy, and gene therapy directly to gliomas. Other strategies for MRgFUS include radiosensitization, sonodynamic therapy, histotripsy, and thermal ablation. FUS can also be used to monitor the treatment and progression of gliomas using blood-based liquid biopsy. All these methods are still under preclinical or clinical trials and are described in this review to summarize current knowledge and ongoing trials.
Collapse
Affiliation(s)
| | | | | | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| |
Collapse
|
20
|
Meijlink B, Collado-Lara G, Bishard K, Conboy JP, Langeveld SAG, Koenderink GH, van der Steen AFW, de Jong N, Beekers I, Trietsch SJ, Kooiman K. Characterizing Microbubble-Mediated Permeabilization in a Vessel-on-a-Chip Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407550. [PMID: 39648449 DOI: 10.1002/smll.202407550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Indexed: 12/10/2024]
Abstract
Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, spatial distribution, and amount of vascular permeability increase. Accurate models are necessary for insights into the mechanism so a microvessel-on-a-chip is developed with a membrane-free extravascular space. Using these microvessels-on-a-chip, distinct differences between 2 MHz ultrasound treatments are shown with 10 or 1000 cycles. The onset rate is slower for 10 than 1000 cycles, while both cycle lengths increase the permeability in spot-wise patterns without affecting microvessel viability. Significantly less vascular permeability increase and sonoporation are induced for 10 versus 1000 cycles at 750 kPa (i.e., the highest studied peak negative acoustic pressure (PNP)). The PNP threshold for vascular permeability increases is 750 versus 550 kPa for 10 versus 1000 cycles, while this is 750 versus 220 kPa for sonoporation. Vascular permeability increases do not correlate with αvβ3-targeted microbubble behavior, while sonoporation correlates with αvβ3-targeted microbubble clustering. In conclusion, the further mechanistic unraveling of vascular permeability increase by ultrasound-activated microbubbles in a developed microvessel-on-a-chip model aids the safe and efficient development of microbubble-mediated drug transport.
Collapse
Affiliation(s)
- Bram Meijlink
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | | | - James P Conboy
- Department of Bionanoscience, Delft University of Technology, Building 58, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Simone A G Langeveld
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Delft University of Technology, Building 58, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Building 22, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Building 22, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Inés Beekers
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Health, ORTEC B.V., Houtsingel 5, Zoetermeer, 2719 EA, The Netherlands
| | | | - Klazina Kooiman
- Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| |
Collapse
|
21
|
Wang X, Tan Y, Gao L, Gao H. Study on ultrasound-enhanced molecular transport in articular cartilage. Drug Deliv Transl Res 2024; 14:3621-3639. [PMID: 39145819 DOI: 10.1007/s13346-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Local intra-articular administration with minimal side effects and rapid efficacy is a promising strategy for treating osteoarthritis(OA). Most drugs are rapidly cleared from the joint space by capillaries and lymphatic vessels before free diffusion into cartilage. Ultrasound, as a non-invasive therapy, enhances molecular transport within cartilage through the mechanisms of microbubble cavitation and thermal effects. This study investigated the mass transfer behavior of solute molecules with different molecular weights (479 Da, 40 kDa, 150 kDa) within porcine articular cartilage under low-frequency ultrasound conditions of 40 kHz and ultrasound intensities of 0.189 W/cm2 and 0.359 W/cm2. The results revealed that under the conditions of 0.189 W/cm2 ultrasound intensity, the mass transfer concentration of solute molecules were higher compared to passive diffusion, and with an increase in ultrasound intensity to 0.359 W/cm2, the mass transfer effect within the cartilage was further enhanced. Ultrasound promotes molecular transport in different layers of cartilage. Under static conditions, after 2 h of mass transfer, the concentration of small molecules in the superficial layer is lower than that in the middle layer. After applying ultrasound at 0.189 W/cm2, the molecular concentration in the superficial layer significantly increases. Under conditions of 0.359 W/cm2, after 12 h of mass transfer, the concentration of medium and large molecules in the deep layer region increased by more than two times. In addition, this study conducted an assessment of damage to porcine articular cartilage under ultrasound exposure, revealing the significant potential of low-frequency, low-intensity ultrasound in drug delivery and treatment of OA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China.
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
22
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
23
|
Meijlink B, van der Kooij HR, Wang Y, Li H, Huveneers S, Kooiman K. Ultrasound-activated microbubbles mediate F-actin disruptions and endothelial gap formation during sonoporation. J Control Release 2024; 376:1176-1189. [PMID: 39500409 DOI: 10.1016/j.jconrel.2024.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Locally opening up the endothelial barrier in a safe and controlled way is beneficial for drug delivery into the extravascular tissue. Although ultrasound-induced microbubble oscillations can affect the endothelial barrier integrity, the mechanism remains unknown. Here we uncover a new role for F-actin in microbubble-mediated endothelial gap formation. Unique simultaneous high-resolution confocal microscopy and ultra-high-speed camera imaging (10 million frames per second) reveal that single oscillating microbubbles (radius 1.3-3.8 μm; n = 48) induce sonoporation in all cells in which F-actin remodeling occurred. F-actin disruption only mainly resulted in tunnel formation (75 %), while F-actin stress fiber severing and recoil mainly resulted in cell-cell contact opening within 15 s upon treatment (54 %) and tunnel formation (15 %). F-actin stress fiber severing occurred when the fibers were within reach of the microbubble's maximum radius during oscillation, requiring normal forces of ≥230 nN. In the absence of F-actin stress fibers, oscillating microbubbles induced F-actin remodeling but no cell-cell contact opening. Together, these findings reveal a novel mechanism of microbubble-mediated transendothelial drug delivery, which associates with the underlying cytoskeletal F-actin organization.
Collapse
Affiliation(s)
- Bram Meijlink
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - H Rhodé van der Kooij
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Yuchen Wang
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Hongchen Li
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Stephan Huveneers
- Dept. Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Klazina Kooiman
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Wang L, Liu Z, Ji P, Ma J, Mou K, Zhou T, Liang Y, Zhang B, Wei M, Yang G, Sun W, Gong L, Yuan L. Ultrasound Guided Local Delivery of Bioorthogonal PDL1 Degrader for Enhanced Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405549. [PMID: 39511869 DOI: 10.1002/smll.202405549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy involving PDL1 degradation holds great potential in anti-tumor treatment. Optimal design of PDL1 degraders and subsequent efficient delivery into tumors are essential for expected efficacy, especially when abnormal tumor vasculature is considered. Herein, a nanodroplet-based novel drug delivery platform termed as NDsmTx (nanodroplet-based therapeutics) for ultrasound targeted delivery of PDL1 degrader is designed. Briefly, the shell of the NDsmTx is armed with RGD and mPD1 (a bioorthogonal PD1 mutant produced by genetic codon expansion technology can covalently bind PDL1), and the core is composed of perfluorohexane (PFH, C6F14). The RGD on the NDsmTx recognizes αvβ3 expressed by tumor vasculature, making NDsmTx accumulated in tumor practical and visible by low-frequency ultrasound (LFUS). In turn, inertial cavitation induced by LFUS facilitates mPD1 on the nanodroplet debris penetrating the tumor, where mPD1 covalently binds PDL1 and initiates a lysosomal degradation process. Through both in vitro and in vivo study, the superior performance of NDsmTx in degrading PDL1 and boosting anti-tumor immunity is confirmed. In conclusion, NDsmTx emerge as an alternative to existing PDL1 blockers in tumor immunotherapy.
Collapse
Affiliation(s)
- Lantian Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Jiao Ma
- Department of Pathology, Helmholtz Sino-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Ke Mou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Tian Zhou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Yuan Liang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Bin Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Mengying Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Li Gong
- Department of Pathology, Helmholtz Sino-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China
| |
Collapse
|
25
|
Dauba A, Spitzlei C, Bautista KJB, Jourdain L, Selingue E, VanTreeck KE, Mattern JA, Denis C, Ouldali M, Arteni AA, Truillet C, Larrat B, Tsuruta J, Durham PG, Papadopoulou V, Dayton PA, Tsapis N, Novell A. Low-boiling-point perfluorocarbon nanodroplets for adaptable ultrasound-induced blood-brain barrier opening. J Control Release 2024; 376:441-456. [PMID: 39419451 DOI: 10.1016/j.jconrel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Low-boiling point perfluorocarbon nanodroplets (NDs) are valued as effective sonosensitive agents, encapsulating a liquid perfluorocarbon that would instantaneously vaporize at body temperature without the NDs shell. Those NDs have been explored for both therapeutic and diagnostic purposes. Here, phospholipid-shelled nanodroplets containing octafluoropropane (C3F8) or decafluorobutane (C4F10) formed by condensation of microbubbles were thoroughly characterized before blood-brain (BBB) permeabilization. Transmission electron microscopy (TEM) and cryo-TEM were employed to confirm droplet formation while providing high-resolution insights into the droplet surface and lipid arrangement assessed from electron density observation after condensation. The vaporization threshold of NDs was determined with a high-speed camera, and the frequency signal emitted by the freshly vaporized bubbles was analyzed using cavitation detection. C3F8 NDs exhibited vaporization at 0.3 MPa (f0 = 1.5 MHz, 50 cycles), and emitted signals at 2 f0 and 1.5 f0 from 0.45 MPa onwards (f0 = 1.5 MHz, 50 cycles), while broadband noise was measured starting from 0.55 MPa. NDs with the higher boiling point C4F10 vaporized at 1.15 MPa and emitted signals at 2 f0 from 0.65 MPa and 1.5 f0 from 0.9 MPa, while broadband noise was detected starting from 0.95 MPa. Both ND formulations were used to permeabilize the BBB in healthy mice using tailored ultrasound sequences, allowing for the identification of optimal applications for each NDs type. C3F8 NDs proved suitable and safe for permeabilizing a large area, potentially the entire brain, at low acoustic pressure. Meanwhile, C4F10 droplets facilitated very localized (400 μm isotropic) permeabilization at higher pressure. This study prompts a closer examination of the structural rearrangements occurring during the condensation of microbubbles into NDs and highlights the potential to tailor solutions for different brain pathologies by choosing the composition of the NDs and adjusting the ultrasound sequence.
Collapse
Affiliation(s)
- Ambre Dauba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Claire Spitzlei
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Laurène Jourdain
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - Kelly E VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob A Mattern
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - James Tsuruta
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Phillip G Durham
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France.
| |
Collapse
|
26
|
Guo J, Shu X, Yu S, Guo C, Shen G, Chen L, Zhou J, Xiao J, Guo H, Chen Y, Zeng Z, Wang P. Injectable hydrogel microsphere-bomb for MRSA-infected chronic osteomyelitis. J Control Release 2024; 376:337-353. [PMID: 39413850 DOI: 10.1016/j.jconrel.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Biofilm and bone tissue defect induced by the bacterial infection severely impede chronic osteomyelitis treatment. It is critical to break though the densely and obstinate biofilm so that the target drugs can deliver to the infected bone more effectively. Herein, an acoustically responsive multifunctional hydrogel microsphere-bomb (EMgel) was designed and prepared by microfluidic technology, which could be injected to the focus of bone infection, and blasted into the nidus deeply to destroy the bacterial biofilm matrix barrier under penetrating ultrasound, so the encapsulated natural polyphenolic EGCG and bioactive MoS2 released to repair the damaged bone. The results proved the hydrogel microsphere-bomb exhibited controlling drug release, favorable antibacterial (as high as 99 %), high biofilm resistance, fascinating antioxidation, good cytocompatibility, and osteogenic differentiation. The acoustically responsive microsphere-bomb further proved their fantastic ability to eradicate biofilm and promote bone regeneration in the Methicillin-resistant Staphylococcus aureus (MRSA) infected chronic osteomyelitis model due to the synergy effects of EGCG and bioactive MoS2. Especially, immunohistochemical staining showed lower inflammatory reaction and higher expression of OCN in EMgel group treated with ultrasound wave. This study presents a new design of hydrogel microsphere-based intelligence drug delivery for osteomyelitis treatment, which exhibit great promising potential for dealing with chronic orthopedic infections, drug delivery system and tissue engineering.
Collapse
Affiliation(s)
- Jiayi Guo
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xian Shu
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Guangxin Shen
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong Province, Foshan 528031, China
| | - Longsheng Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jiayi Zhou
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yi Chen
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| | - Ping Wang
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
27
|
Lei W, Chang S, Tian F, Zou X, Hu J, Qian S. Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 109:107005. [PMID: 39098097 PMCID: PMC11345312 DOI: 10.1016/j.ultsonch.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Experimental studies have shown that ultrasonic cavitation can reversibly open the blood-brain barrier (BBB) to assist drug delivery. Nevertheless, the majority of the present study focused on experimental aspects of BBB opening. In this study, we developed a three-bubble-liquid-solid model to investigate the dynamic behavior of multiple bubbles within the blood vessels, and elucidate the physical mechanism of drug molecules through endothelial cells under ultrasonic cavitation excitation. The results showed that the large bubbles have a significant inhibitory effect on the movement of small bubbles, and the vibration morphology of intravascular microbubbles was affected by the acoustic parameters, microbubble size, and the distance between the microbubbles. The ultrasonic cavitation can significantly enhance the unidirectional flux of drug molecules, and the unidirectional flux growth rate of the wall can reach more than 5 %. Microjets and shock waves emitted from microbubbles generate different stress distribution patterns on the vascular wall, which in turn affects the pore size of the vessel wall and the permeability of drug molecules. The vibration morphology of microbubbles is related to the concentration, arrangement and scale of microbubbles, and the drug permeation impact can be enhanced by optimizing bubble size and acoustic parameters. The results offer an extensive depiction of the factors influencing the blood-brain barrier opening through ultrasonic cavitation, and the model may provide a potential technique to actively regulate the penetration capacity of drugs through endothelial layer of the neurovascular system by regulating BBB opening.
Collapse
Affiliation(s)
- Weirui Lei
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shuai Chang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang 421001, China.
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
28
|
Gentier A, Aizaz M, Halder M, Florea A, Dijkgraaf I, Mottaghy FM, Hackeng T, Kooi ME. Why Current Detection of Vascular Calcification Falls Short and How to Improve on It. TH OPEN 2024; 8:e340-e349. [PMID: 39734622 PMCID: PMC11679638 DOI: 10.1055/a-2495-1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Vascular calcification is a common phenomenon in various vascular diseases, where its presence heralds increased occurrence of adverse disease events, which invariably lead to increased morbidity and mortality in patients. Although the impact of calcification has become apparent, adequate and early detection of the most damaging form of early microcalcification is still in its infancy, preventing reliable identification of locations that would benefit from intervention. In this review, we will provide an overview of the current state-of-the-art noninvasive calcification imaging and its persisting limitations. We discuss promising approaches that may address these limitations in the future. In this context particular attention will be paid to imaging modalities such as CT, PET, and ultrasonography and molecular and cellular mechanisms and agents involved in physiological bone formation.
Collapse
Affiliation(s)
- Anouk Gentier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mueez Aizaz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maurice Halder
- Department for Renal and Hypertensive, Rheumatological and Immunological Diseases (Department of Medicine II), RWTH Aachen, Medical Faculty, Aachen, Germany
| | - Alexandru Florea
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Tilman Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Eline Kooi
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
29
|
Moosavifar M, Barmin RA, Rama E, Rix A, Gumerov RA, Lisson T, Bastard C, Rütten S, Avraham‐Radermacher N, Koehler J, Pohl M, Kulkarni V, Baier J, Koletnik S, Zhang R, Dasgupta A, Motta A, Weiler M, Potemkin II, Schmitz G, Kiessling F, Lammers T, Pallares RM. Polymeric Microbubble Shell Engineering: Microporosity as a Key Factor to Enhance Ultrasound Imaging and Drug Delivery Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404385. [PMID: 39207095 PMCID: PMC11516050 DOI: 10.1002/advs.202404385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Microbubbles (MB) are widely used as contrast agents for ultrasound (US) imaging and US-enhanced drug delivery. Polymeric MB are highly suitable for these applications because of their acoustic responsiveness, high drug loading capability, and ease of surface functionalization. While many studies have focused on using polymeric MB for diagnostic and therapeutic purposes, relatively little attention has thus far been paid to improving their inherent imaging and drug delivery features. This study here shows that manipulating the polymer chemistry of poly(butyl cyanoacrylate) (PBCA) MB via temporarily mixing the monomer with the monomer-mimetic butyl cyanoacetate (BCC) during the polymerization process improves the drug loading capacity of PBCA MB by more than twofold, and the in vitro and in vivo acoustic responses of PBCA MB by more than tenfold. Computer simulations and physisorption experiments show that BCC manipulates the growth of PBCA polymer chains and creates nanocavities in the MB shell, endowing PBCA MB with greater drug entrapment capability and stronger acoustic properties. Notably, because BCC can be readily and completely removed during MB purification, the resulting formulation does not include any residual reagent beyond the ones already present in current PBCA-based MB products, facilitating the potential translation of next-generation PBCA MB.
Collapse
Affiliation(s)
- Mirjavad Moosavifar
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Roman A. Barmin
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Elena Rama
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Anne Rix
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Rustam A. Gumerov
- DWI – Leibniz Institute for Interactive MaterialsRWTH Aachen University52074AachenGermany
| | - Thomas Lisson
- Chair for Medical EngineeringRuhr University Bochum44780BochumGermany
| | - Céline Bastard
- DWI – Leibniz Institute for Interactive MaterialsRWTH Aachen University52074AachenGermany
| | - Stephan Rütten
- Electron Microscope FacilityRWTH Aachen University Hospital52074AachenGermany
| | - Noah Avraham‐Radermacher
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University Hospital52074AachenGermany
| | - Jens Koehler
- DWI – Leibniz Institute for Interactive MaterialsRWTH Aachen University52074AachenGermany
| | - Michael Pohl
- DWI – Leibniz Institute for Interactive MaterialsRWTH Aachen University52074AachenGermany
| | - Vedangi Kulkarni
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Jasmin Baier
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Susanne Koletnik
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Rui Zhang
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Alessandro Motta
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Marek Weiler
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Igor I. Potemkin
- DWI – Leibniz Institute for Interactive MaterialsRWTH Aachen University52074AachenGermany
| | - Georg Schmitz
- Chair for Medical EngineeringRuhr University Bochum44780BochumGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Twan Lammers
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Roger M. Pallares
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| |
Collapse
|
30
|
Guo Y, Lee H, Kim C, Park C, Yamamichi A, Chuntova P, Gallus M, Bernabeu MO, Okada H, Jo H, Arvanitis C. Ultrasound frequency-controlled microbubble dynamics in brain vessels regulate the enrichment of inflammatory pathways in the blood-brain barrier. Nat Commun 2024; 15:8021. [PMID: 39271721 PMCID: PMC11399249 DOI: 10.1038/s41467-024-52329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Microbubble-enhanced ultrasound provides a noninvasive physical method to locally overcome major obstacles to the accumulation of blood-borne therapeutics in the brain, posed by the blood-brain barrier (BBB). However, due to the highly nonlinear and coupled behavior of microbubble dynamics in brain vessels, the impact of microbubble resonant effects on BBB signaling and function remains undefined. Here, combined theoretical and prospective experimental investigations reveal that microbubble resonant effects in brain capillaries can control the enrichment of inflammatory pathways that are sensitive to wall shear stress and promote differential expression of a range of transcripts in the BBB, supporting the notion that microbubble dynamics exerted mechanical stress can be used to establish molecular, in addition to spatial, therapeutic windows to target brain diseases. Consistent with these findings, a robust increase in cytotoxic T-cell accumulation in brain tumors was observed, demonstrating the functional relevance and potential clinical significance of the observed immuno-mechano-biological responses.
Collapse
Grants
- N/A Focused Ultrasound Foundation (Focused Ultrasound Surgery Foundation)
- HL151358 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35NS105068 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL139757 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32HL166146 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01CA273878 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- GA 3535/1-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- F32 HL167625 NHLBI NIH HHS
- R01 HL158571 NHLBI NIH HHS
- HL119798 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL168383 NHLBI NIH HHS
- EP/X025705/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- 17 CVD 03 Fondation Leducq
- R37CA239039 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- Ians Friends Foundation
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
Collapse
Affiliation(s)
- Yutong Guo
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
- Stanford University, Department of Radiology, Stanford, USA
| | - Hohyun Lee
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
| | - Chulyong Kim
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
| | - Christian Park
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA
| | - Akane Yamamichi
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Pavlina Chuntova
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Marco Gallus
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Miguel O Bernabeu
- The University of Edinburgh, Centre for Medical Informatics, Usher Institute, Edinburgh, United Kingdom
- The University of Edinburgh, The Bayes Centre, Edinburgh, United Kingdom
| | - Hideho Okada
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, USA
| | - Hanjoong Jo
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA
- Emory University, Department of Medicine, Atlanta, USA
| | - Costas Arvanitis
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA.
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA.
| |
Collapse
|
31
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
32
|
Pakdaman Zangabad R, Lee H, Zhang X, Sait Kilinc M, Arvanitis CD, Levent Degertekin F. A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1087-1096. [PMID: 39088497 PMCID: PMC11558552 DOI: 10.1109/tuffc.2024.3436918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has 12.3 - [Formula: see text] receive sensitivity with 0.085 - [Formula: see text] minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 [Formula: see text] area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs' harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.
Collapse
|
33
|
He Y, Feng Y, Qiu D, Lin M, Jin H, Hu Z, Huang X, Ma S, He Y, Lai M, Jin W, Liu J. Regulation of IFP in solid tumours through acoustic pressure to enhance infiltration of nanoparticles of various sizes. J Drug Target 2024; 32:964-976. [PMID: 38884143 DOI: 10.1080/1061186x.2024.2367579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Numerous nanomedicines have been developed recently that can accumulate selectively in tumours due to the enhanced permeability and retention (EPR) effect. However, the high interstitial fluid pressure (IFP) in solid tumours limits the targeted delivery of nanomedicines. We were previously able to relieve intra-tumoural IFP by low-frequency non-focused ultrasound (LFNFU) through ultrasonic targeted microbubble destruction (UTMD), improving the targeted delivery of FITC-dextran. However, the accumulation of nanoparticles of different sizes and the optimal acoustic pressure were not evaluated. In this study, we synthesised Cy5.5-conjugated mesoporous silica nanoparticles (Cy5.5-MSNs) of different sizes using a one-pot method. The Cy5.5-MSNs exhibited excellent stability and biosafety regardless of size. MCF7 tumour-bearing mice were subjected to UTMD over a range of acoustic pressures (0.5, 0.8, 1.5 and 2.0 MPa), and injected intravenously with Cy5.5-MSNs. Blood perfusion, tumour IFP and intra-tumoural accumulation of Cy5.5-MSNs were analysed. Blood perfusion and IFP initially rose, and then declined, as acoustic pressure intensified. Furthermore, UTMD significantly enhanced the accumulation of differentially sized Cy5.5-MSNs in tumour tissues compared to that of the control group, and the increase was sevenfold higher at an acoustic pressure of 1.5 MPa. Taken together, UTMD enhanced the infiltration and accumulation of Cy5.5-MSNs of different sizes in solid tumours by reducing intra-tumour IFP.
Collapse
Affiliation(s)
- Yangcheng He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Danxai Qiu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - MinHua Lin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Xue Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Suihong Ma
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yan He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Meiqi Lai
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Wenhui Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
van den Broek MRP, Versluis M, van den Berg A, Segers T. Functionalized monodisperse microbubble production: microfluidic method for fast, controlled, and automated removal of excess coating material. MICROSYSTEMS & NANOENGINEERING 2024; 10:120. [PMID: 39214967 PMCID: PMC11364838 DOI: 10.1038/s41378-024-00760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Functionalized monodisperse microbubbles have the potential to boost the sensitivity and efficacy of molecular ultrasound imaging and targeted drug delivery using bubbles and ultrasound. Monodisperse bubbles can be produced in a microfluidic flow focusing device. However, their functionalization and sequential use require removal of the excess lipids from the bubble suspension to minimize the use of expensive ligands and to avoid competitive binding and blocking of the receptor molecules. To date, excess lipid removal is performed by centrifugation, which is labor intensive and challenging to automate. More importantly, as we show, the increased hydrostatic pressure during centrifugation can reduce bubble monodispersity. Here, we introduce a novel automated microfluidic 'washing' method. First, bubbles are injected in a microfluidic chamber 1 mm in height where they are left to float against the top wall. Second, lipid-free medium is pumped through the chamber to remove excess lipids while the bubbles remain located at the top wall. Third, the washed bubbles are resuspended and removed from the device into a collection vial. We demonstrate that the present method can (i) reduce the excess lipid concentration by 4 orders of magnitude, (ii) be fully automated, and (iii) be performed in minutes while the size distribution, functionality, and acoustic response of the bubbles remain unaffected. Thus, the presented method is a gateway to the fully automated production of functionalized monodisperse microbubbles.
Collapse
Affiliation(s)
- M R P van den Broek
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - M Versluis
- Physics of Fluids Group, University of Twente, Enschede, The Netherlands
| | - A van den Berg
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - T Segers
- BIOS/Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
35
|
He Y, Chen Z, Liu Q, Li Z, Wen D, Zhang H, Zhang M, Jiang D, Li H, Wen L, Chen G. Reversible opening of the blood-labyrinth barrier by low-pressure pulsed ultrasound and microbubbles for the treatment of inner ear diseases. J Control Release 2024; 372:318-330. [PMID: 38906419 DOI: 10.1016/j.jconrel.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Systemic drug administration provides convenience and non-invasive benefits for preventing and treating inner ear diseases. However, the blood-labyrinth barrier (BLB) restricts the transport of drugs to inner ear tissues. Ultrasound can stimulate specific areas and penetrate tissues, with the potential to overcome physiological barriers. We present a novel strategy based on low-pressure pulsed ultrasound assisted by microbubbles (USMB) to transiently open the BLB and deliver therapeutics into the inner ear. A pulsed ultrasound device with adjustable pressure was established; the generated ultrasound was transmitted through the external auditory canal into the guinea pig's inner ear. We observed that the application of microbubbles allowed the use of safe and efficient ultrasound conditions to penetrate the BLB. We found that USMB-mediated BLB opening seemed to be associated with a reduced expression of the tight junction proteins zonula occludens-1 and occludin. Following intravenous administration, hydrophilic dexamethasone sodium phosphate (DSP), hydrophobic curcumin (CUR), as well as drug-loaded nanoparticles (Fe3O4@CUR NPs) could be efficiently delivered into the inner ear. We observed better drug accumulation in the perilymph of the inner ear, resulting in less drug (cisplatin)-induced ototoxicity. Furthermore, physiological, hematological, and histological studies showed that the modulation of the BLB by low-pressure USMB was a safe process without significant adverse effects. We conclude that USMB could become a promising strategy for the systematic delivery of therapeutics in the treatment of inner ear diseases.
Collapse
Affiliation(s)
- Yuanwei He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ziyu Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinglang Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyang Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dingsheng Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd, Zhongshan 528437, China
| | - Di Jiang
- Department of Otolaryngology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523000, China
| | - Huaan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
37
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
38
|
Marathe D, Bhuvanashree VS, Mehta CH, T. A, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci 2024; 2024:1247450. [PMID: 38938593 PMCID: PMC11208788 DOI: 10.1155/2024/1247450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.
Collapse
Affiliation(s)
- Divya Marathe
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudeva Sampriya Bhuvanashree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ashwini T.
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
39
|
Anchordoquy T, Artzi N, Balyasnikova IV, Barenholz Y, La-Beck NM, Brenner JS, Chan WCW, Decuzzi P, Exner AA, Gabizon A, Godin B, Lai SK, Lammers T, Mitchell MJ, Moghimi SM, Muzykantov VR, Peer D, Nguyen J, Popovtzer R, Ricco M, Serkova NJ, Singh R, Schroeder A, Schwendeman AA, Straehla JP, Teesalu T, Tilden S, Simberg D. Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions. ACS NANO 2024; 18:13983-13999. [PMID: 38767983 PMCID: PMC11214758 DOI: 10.1021/acsnano.4c00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.
Collapse
Affiliation(s)
- Thomas Anchordoquy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Yechezkel Barenholz
- Membrane and Liposome Research Lab, IMRIC, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| | - Jacob S Brenner
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163 Genova, Italy
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Alberto Gabizon
- The Helmsley Cancer Center, Shaare Zedek Medical Center and The Hebrew University of Jerusalem-Faculty of Medicine, Jerusalem, 9103102, Israel
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College (WCMC), New York, New York 10065, United States
- Department of Biomedical Engineering, Texas A&M, College Station, Texas 7784,3 United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Madison Ricco
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J Serkova
- Department of Radiology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Anna A Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48108; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48108, United States
| | - Joelle P Straehla
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02115 United States
- Koch Institute for Integrative Cancer Research at MIT, Cambridge Massachusetts 02139 United States
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Scott Tilden
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
40
|
Zhao P, Wu T, Tian Y, You J, Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv Drug Deliv Rev 2024; 209:115323. [PMID: 38653402 DOI: 10.1016/j.addr.2024.115323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 200000, China
| | - Jia You
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
41
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
42
|
Hahmann J, Ishaqat A, Lammers T, Herrmann A. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angew Chem Int Ed Engl 2024; 63:e202317112. [PMID: 38197549 DOI: 10.1002/anie.202317112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
Collapse
Affiliation(s)
- Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
43
|
Li P, Tan X, Dan Q, Hu A, Hu Z, Yang X, Bai J, Chen X, Li B, Cheng G, Liu L, Chen Y, Sun D, Shuai X, Zheng T. MnO 2/Ce6 microbubble-mediated hypoxia modulation for enhancing sono-photodynamic therapy against triple negative breast cancer. Biomater Sci 2024; 12:1465-1476. [PMID: 38318975 DOI: 10.1039/d3bm00931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Sono-photodynamic therapy (SPDT) has emerged as a promising treatment modality for triple negative breast cancer (TNBC). However, the hypoxic tumor microenvironment hinders the application of SPDT. Herein, in this study, a multifunctional platform (MnO2/Ce6@MBs) was designed to address this issue. A sono-photosensitizer (Ce6) and a hypoxia modulator (MnO2) were loaded into microbubbles and precisely released within tumor tissues under ultrasound irradiation. MnO2in situ reacted with the excess H2O2 and H+ and produced O2 within the TNBC tumor, which alleviated hypoxia and augmented SPDT by increasing ROS generation. Meanwhile, the reaction product Mn2+ was able to achieve T1-weighted MRI for enhanced tumor imaging. Additionally, Ce6 and microbubbles served as a fluorescence imaging contrast agent and a contrast-enhanced ultrasound imaging agent, respectively. In in vivo anti-tumor studies, under the FL/US/MR imaging guidance, MnO2/Ce6@MBs combined with SPDT significantly reversed tumor hypoxia and inhibited tumor growth in 4T1-tumor bearing mice. This work presents a theragnostic system for reversing tumor hypoxia and enhancing TNBC treatment.
Collapse
Affiliation(s)
- Ping Li
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xiao Tan
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
- Zunyi Medical University, Zunyi 563000, P.R. China
| | - Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Azhen Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Zhengming Hu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xiaoting Yang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Jianhua Bai
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xiaoyu Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Bowei Li
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Li Liu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| | - Xintao Shuai
- Sun Yat-sen University, Guangzhou 510000, P.R. China.
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, P.R. China.
| |
Collapse
|
44
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 PMCID: PMC11700473 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
45
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
46
|
Fernandez JL, Snipstad S, Bjørkøy A, Davies CDL. Real-Time Multiphoton Intravital Microscopy of Drug Extravasation in Tumours during Acoustic Cluster Therapy. Cells 2024; 13:349. [PMID: 38391962 PMCID: PMC10887035 DOI: 10.3390/cells13040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Optimising drug delivery to tumours remains an obstacle to effective cancer treatment. A prerequisite for successful chemotherapy is that the drugs reach all tumour cells. The vascular network of tumours, extravasation across the capillary wall and penetration throughout the extracellular matrix limit the delivery of drugs. Ultrasound combined with microbubbles has been shown to improve the therapeutic response in preclinical and clinical studies. Most studies apply microbubbles designed as ultrasound contrast agents. Acoustic Cluster Therapy (ACT®) is a novel approach based on ultrasound-activated microbubbles, which have a diameter 5-10 times larger than regular contrast agent microbubbles. An advantage of using such large microbubbles is that they are in contact with a larger part of the capillary wall, and the oscillating microbubbles exert more effective biomechanical effects on the vessel wall. In accordance with this, ACT® has shown promising therapeutic results in combination with various drugs and drug-loaded nanoparticles. Knowledge of the mechanism and behaviour of drugs and microbubbles is needed to optimise ACT®. Real-time intravital microscopy (IVM) is a useful tool for such studies. This paper presents the experimental setup design for visualising ACT® microbubbles within the vasculature of tumours implanted in dorsal window (DW) chambers. It presents ultrasound setups, the integration and alignment of the ultrasound field with the optical system in live animal experiments, and the methodologies for visualisation and analysing the recordings. Dextran was used as a fluorescent marker to visualise the blood vessels and to trace drug extravasation and penetration into the extracellular matrix. The results reveal that the experimental setup successfully recorded the kinetics of extravasation and penetration distances into the extracellular matrix, offering a deeper understanding of ACT's mechanisms and potential in localised drug delivery.
Collapse
Affiliation(s)
- Jessica Lage Fernandez
- Department of Physics, Norwegian University of Science and Technology, 7034 Trondheim, Norway; (S.S.); (A.B.); (C.d.L.D.)
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, 7034 Trondheim, Norway; (S.S.); (A.B.); (C.d.L.D.)
- Cancer Clinic, St. Olavs Hospital, 7030 Trondheim, Norway
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, 7034 Trondheim, Norway; (S.S.); (A.B.); (C.d.L.D.)
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology, 7034 Trondheim, Norway; (S.S.); (A.B.); (C.d.L.D.)
| |
Collapse
|
47
|
Oratis AT, Dijs K, Lajoinie G, Versluis M, Snoeijer JH. A unifying Rayleigh-Plesset-type equation for bubbles in viscoelastic media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1593-1605. [PMID: 38393739 DOI: 10.1121/10.0024984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Understanding the ultrasound pressure-driven dynamics of microbubbles confined in viscoelastic materials is relevant for multiple biomedical applications, ranging from contrast-enhanced ultrasound imaging to ultrasound-assisted drug delivery. The volumetric oscillations of spherical bubbles are analyzed using the Rayleigh-Plesset equation, which describes the conservation of mass and momentum in the surrounding medium. Several studies have considered an extension of the Rayleigh-Plesset equation for bubbles embedded into viscoelastic media, but these are restricted to a particular choice of constitutive model and/or to small deformations. Here, we derive a unifying equation applicable to bubbles in viscoelastic media with arbitrary complex moduli and that can account for large bubble deformations. To derive this equation, we borrow concepts from finite-strain theory. We validate our approach by comparing the result of our model to previously published results and extend it to show how microbubbles behave in arbitrary viscoelastic materials. In particular, we use our viscoelastic Rayleigh-Plesset model to compute the bubble dynamics in benchmarked viscoelastic liquids and solids.
Collapse
Affiliation(s)
- Alexandros T Oratis
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Faculty of Science and Technology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| | - Kay Dijs
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Faculty of Science and Technology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Faculty of Science and Technology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Faculty of Science and Technology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| | - Jacco H Snoeijer
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Faculty of Science and Technology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| |
Collapse
|
48
|
Bai L, Luo T, Tang J, Zhang J, Tan X, Tang J, Huang L, Dong X, Li N, Li P, Liu Z. Ultrasound-Induced Tumor Perfusion Changes and Doxorubicin Delivery: A Study on Pulse Length and Pulse Repetition Frequency. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:253-263. [PMID: 37853950 DOI: 10.1002/jum.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To investigate the appropriate combination of pulse length (PL) and pulse repetition frequency (PRF) when performing ultrasound stimulated microbubble (USMB) to enhance doxorubicin (DOX) delivery to tumors. METHODS A total of 48 tumor-bearing mice were divided into four groups, namely groups A-D. The mice in groups B-D were treated with chemotherapy and USMB treatment with different combinations of PL and PRF, and group A was control. Contrast-enhanced ultrasound imaging was conducted to analyze tumor blood perfusion. Fluorescence microscopy and high-performance liquid chromatography were used to qualitatively and quantitatively analyse DOX release. The structural changes of tumors were observed under light microscope and transmission electron microscope. Furthermore, another 24 tumor-bearing mice were treated with sonochemotherapy and some related inflammatory factors were measured to explore the underlying mechanism. RESULTS With PL of three cycles and PRF of 2 kHz, the tumor perfusion area ratio increased by 26.67%, and the DOX concentration was 4.69 times higher than the control (P < .001). With PL of 34.5 cycles and PRF of 200 Hz, the tumor perfusion area ratio decreased by 12.7% and DOX did not exhibit increased extravasation compared with the control. Microvascular rupture and hemorrhage were observed after long PL and low PRF treatment. While vasodilation and higher levels of some vasodilator inflammatory factors were found after treatment with short PL and high PRF. CONCLUSIONS USMB treatment using short PL and high PRF could enhance tumor blood perfusion and increase DOX delivery, whereas long PL and low PRF could not serve the same purpose.
Collapse
Affiliation(s)
- Luhua Bai
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xi Tan
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Junhui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Leidan Huang
- Department of Ultrasound, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoxiao Dong
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Peijing Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
49
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
50
|
Moradi Kashkooli F, Hornsby TK, Kolios MC, Tavakkoli JJ. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1913. [PMID: 37475577 DOI: 10.1002/wnan.1913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|