1
|
Zandona A, Jurić M, Jean L, Renard PY, Katalinić M. Assessment of cytotoxic properties of tetrahydroisoquinoline oximes in breast, prostate and glioblastoma cancer cells. Drug Chem Toxicol 2025:1-8. [PMID: 40226887 DOI: 10.1080/01480545.2025.2491534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Tetrahydroisoquinoline (THIQ) oximes have been investigated as antidotes for poisoning by toxic organophosphorus compounds. Recent studies have shown that some THIQ oximes induce cytotoxic effects and trigger apoptosis in various cell types. Since this pathway activation is desirable for anticancer drugs, we further explored the effects of three selected THIQ oximes on well-known cancer cell models: breast (MDA-MB-231 and MCF-7), prostate (PC-3) cancer and malignant glioblastoma (U251). The tested THIQ oximes were cytotoxic to breast cancer cells and, to a lesser extent, to glioblastoma cells, but not to PC-3 cells at concentrations up to 200 µM within a 24-h exposure period. The MCF-7 cells exhibited the highest sensitivity, with all three oximes affecting it in a time-dependent manner (IC50 from 7-74 µM). While the membrane integrity of affected cells was maintained after treatment with the tested THIQ oximes, they disrupted mitochondrial membrane potential and activated caspase 9 indicating triggering of the mitochondria-mediated apoptosis. Overall, these findings suggest that the THIQ oxime scaffold could be a foundation for developing targeted therapies, especially for breast cancer, and other derivatives may be worthier of exploration.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Matea Jurić
- Depatment of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ludovic Jean
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMen Institute UMR 6064, Rouen, France
- Université Paris Cité, CNRS, INSERM, CiTCoM, Paris, France
| | - Pierre-Yves Renard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMen Institute UMR 6064, Rouen, France
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
2
|
Lin CY, Fang JY, Hsiao CY, Lee CW, Alshetaili A, Lin ZC. Dual cell-penetrating peptide-conjugated polymeric nanocarriers for miRNA-205-5p delivery in gene therapy of cutaneous squamous cell carcinoma. Acta Biomater 2025; 196:332-349. [PMID: 40015353 DOI: 10.1016/j.actbio.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Despite the potential of microRNAs (miRNAs) in suppressing tumorigenesis, the main challenges are achieving tumor-specific selectivity and efficient delivery into cancer cells. In this study, miR-205-5p-loaded polymeric nanoparticles conjugated with dual cell-penetrating peptides (CPPs) were designed for targeting and treating cutaneous squamous cell carcinoma (cSCC). The CPPs, R9, and p28, demonstrated high cell-penetrating/targeting abilities and antitumor activity. The anti-cSCC effect of the nanocarriers was examined using in vitro cellular 2D and 3D models and in vivo spheroid-xenografted murine models. The average size of the dual CPP-conjugated nanocarriers was 193 nm with a zeta potential of 5.7 mV. These nanocarriers were readily internalized by A431 cells, resulting in decreased proliferation compared to naked agomiR and nanoparticles with a single CPP. The nanocarriers induced cell cycle arrest in the G0/G1 stage. By loading the miR-205-5p mimic, the dual CPP-conjugated nanoparticles enhanced cell apoptosis threefold compared to the control, activating caspases and poly(ADP-ribose) polymerase (PARP). The wound healing assay demonstrated that the nanocarriers significantly inhibited the migration and invasion of cSCC cells. Additionally, the CPP-conjugated nanocarriers penetrated cSCC 3D spheroids, reducing spheroidal size and proliferation. In vivo studies demonstrated that the intratumoral CPP-conjugated nanocarriers achieved a 30 % reduction in tumor volume than the PBS control. The number of Ki67-positive cells in the nanocarrier-treated tumor decreased fivefold than the untreated tumors. The nanoparticulate agomiR (1 μM) exhibited no cytotoxicity towards normal keratinocytes. No significant toxicity was observed in the skin and peripheral organs following subcutaneous administration of the nanoparticles in healthy mice. These findings demonstrate that miR-205-5p mimic delivery via dual CPP-conjugated nanocarriers can promote efficient and safe cSCC regression. STATEMENT OF SIGNIFICANCE: Cutaneous squamous cell carcinoma (cSCC) is a highly invasive skin malignancy with limited treatment options. This study introduces dual cell-penetrating peptide (CPP)-conjugated polymeric nanoparticles for delivering miR-205-5p, a tumor-suppressor microRNA, to cSCC cells. The nanosystem enhances cellular uptake, inhibits cell proliferation, and promotes apoptosis in both 2D and 3D tumor models. In vivo, the nanocarriers demonstrate significant antitumor efficacy with minimal toxicity, highlighting their potential as a targeted, non-invasive therapy. This research represents a promising advance in gene therapy for cSCC by combining nanotechnology and CPPs to address challenges in miRNA delivery and tumor targeting.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chien-Yu Hsiao
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiang-Wen Lee
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Chiayi, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan.
| |
Collapse
|
3
|
Zare R, ArabSolghar R, Behbahni AB, Zare F, Kheirandish A, Safari F. Exploring Caspase-3 overexpression in pheochromocytoma cells: Implications for cancer therapy. Tissue Cell 2025; 93:102720. [PMID: 39787941 DOI: 10.1016/j.tice.2024.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Malignant pheochromocytomas are infrequent tumors that have a poorer prognosis compared to their benign counterparts. The administration of chemotherapy to patients with pheochromocytoma can result in adverse side effects and a reduced life quality. Alternative and more targeted treatment strategies, such as gene therapy significantly improve the patients' survival rate and life expectancy. Caspase-3 is a key apoptosis regulator activated by cancer treatments. Recent research shows it also influences tumor relapse and angiogenesis, complicating its role in cancer progression. Further exploration of Caspase-3's diverse functions is needed to clarify its impact on cancer development. In this study, we established Caspase-3 over expressed pheochromocytoma cell line by the use of lentiviral vector technology. Caspase 3 over expression by up to 3fold led to increase in cell proliferation by up to 12 %. Moreover, increasing in Caspase 3 level of expression resulted in more invasiveness and metastasis. By this way, the wound closure percentage for PC-12 Casp3 + cells reached 76.2 %, which is significantly higher compared to the 52.8 % observed in mock cells. Casp3 + cells were also significantly more sensitive to cisplatin than mock cells with Ic50 of 158.4 μM and 219.5uM respectively according to MTT assay which confirmed by apoptosis assay. Hence, targeting Caspase-3 as a therapeutic approach may enhance the cancer cell sensitivity to chemotherapy, but also increase the cancer cell proliferation, metastases and invasion which may works as a double edge sword. CONCLUSION: understanding the effects of Caspase 3 over expression on cancer cells could inspire innovative therapies targeting its non-apoptotic actions, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Reihaneh Zare
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rita ArabSolghar
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad Behbahni
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Kheirandish
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Kiruthiga C, Jafni S, Preethi S, Kannan NR, Pandima Devi K. Oral toxicity assessment and the mitigation of lung carcinogenesis by phytol and α-bisabolol combination treatment in swiss albino mice: insights into redox enzyme modulation and caspase-dependent cell death mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3881-3894. [PMID: 39367984 DOI: 10.1007/s00210-024-03484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
This study examined the safety and potential anti-lung cancer effects of combinations of phytol and α-bisabolol in Swiss albino mice. Both acute and subacute toxicity assessments showed that the combination of phytol and α-bisabolol is safe, with no adverse effects observed at higher concentrations. Hematological, biochemical, and histopathological tests showed no signs of toxicity in the heart, lungs, liver, spleen, and kidneys. The LD50 was greater than 2000 mg/kg, indicating a large safety margin. Histopathological analysis confirmed cancer induction in the B(a)P-induced group, which had significantly altered relative lung weights. Lung weight increased slightly pre and post-treatment, but histopathology showed normal alveolar epithelium. GSH and SOD levels increased significantly in B(a)P-exposed groups, indicating an adaptive antioxidant response. CAT levels increased significantly in the post-treatment group, demonstrating the role of combination of phytol and α-bisabolol in protecting against B(a)P-induced oxidative damage. Upregulation of Bax and downregulation of Bcl-2 caused a pro-apoptotic environment, suggesting a way to inhibit malignant cell survival. Modulation of caspase-3 and caspase-9 showed the complexity of carcinogen-induced apoptotic signaling. In conclusion, phytol and α-bisabolol were found to be safe and organ-protective, and demonstrated no acute or subacute toxicity. They modulate antioxidant defenses and apoptotic pathways, which may help prevent and treat lung cancer.
Collapse
Affiliation(s)
| | - Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Shankar Preethi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | | | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
5
|
Lun J, Liu M, Zhang W, Huang G, Ma M, Jin W, Zhu Y, Qu Q, Lv W, Guo S. Influence of purslane extract on immuno-antioxidant status, intestinal barrier, and microbiota of chicks after experimental infection with Escherichia coli O78. Poult Sci 2025; 104:105106. [PMID: 40245541 DOI: 10.1016/j.psj.2025.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
This study focused on examining how Portulaca oleracea L. extract (POLE) influences production performance, antioxidant capacity, immunity, anti-apoptotic ability, and intestinal health in chicks exposed to Escherichia coli O78(E. coli). A 2 × 2 factorial design was used to randomly divide male chicks into 4 groups: (1) basal diet (CON group), (2) basal diet supplemented with 0.5 g/kg POL (CPOL group), (3) basal diet with E. coli challenge (ECON group), and (4) basal diet supplemented with 0.5 g/kg POL as well as E. coli challenge (EPOL group).The experiment lasted for 19 days. The POL supplementation was found to decrease the feed conversion ratio and liver and spleen indexes and increase the average daily gain and bursa indexes (P<0.05). Moreover, in chicks infected with E. coli, POL reduced the levels of serum DAO and caspase 8 (P<0.05). POL notably elevated the serum levels of immunoglobulins and IL-10, an anti-inflammatory cytokine, which also decreased the levels of proinflammatory cytokines TNF-α and IFN-γ. At the same time, dietary POL enhanced the mRNA expression of genes related to antioxidation and reduced the expression of genes associated with proinflammatory cytokines and apoptosis in the liver, spleen, jejunum, and ileum. In addition, dietary POL repaired the intestinal barrier and injury. More importantly, by boosting the abundance of beneficial bacteria such as Butyricicoccus and Blautia, and reducing harmful bacteria like Enterococcus and Escherichia, POL induced changes in the gut microbiota composition. Spearman's correlation study revealed that Dorea and Butyricoccus had a strong positive link with intestinal barrier function and antioxidant capacity, while Escherichia had a substantial positive correlation with pro-inflammatory cytokines. In summary, this study suggests adding POL to the diet as a beneficial supplement to enhance chick performance.
Collapse
Affiliation(s)
- Jianchi Lun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC; School of Animal Science and Technology, Foshan University, Foshan, PRC
| | - Wenbo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Ming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Wenxin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PRC
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PRC; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PRC.
| |
Collapse
|
6
|
Han Y, Sun Y, Peng S, Tang T, Zhang B, Yu R, Sun X, Guo S, Ma L, Li P, Yang P. PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury. Eur J Pharmacol 2025; 998:177505. [PMID: 40118329 DOI: 10.1016/j.ejphar.2025.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Cerebral ischemia is a prevalent cerebrovascular disorder, with the restoration of blocked blood vessels serving as the current standard clinical treatment. However, reperfusion can exacerbate neuronal damage and neurological dysfunction, resulting in cerebral ischemia-reperfusion (I/R) injury. Presently, clinical treatment strategies for cerebral I/R injury are limited, creating an urgent need to identify new effective therapeutic targets. The PI3K/AKT signaling pathway, a pro-survival pathway associated with cerebral I/R injury, has garnered significant attention. We conducted a comprehensive review of the literature on the PI3K/AKT pathway in the context of cerebral I/R. Our findings indicate that activation of the PI3K/AKT signaling pathway following cerebral I/R can alleviate oxidative stress, reduce endoplasmic reticulum stress (ERS), inhibit inflammatory responses, decrease neuronal apoptosis, autophagy, and pyroptosis, mitigate blood-brain barrier (BBB) damage, and promote neurological function recovery. Consequently, this pathway ultimately reduces neuronal death, alleviates brain tissue damage, decreases the volume of cerebral infarction, and improves behavioral impairments. These results suggest that the PI3K/AKT signaling pathway is a promising therapeutic target for further research and drug development, holding significant potential for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yiming Han
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yu Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shiyu Peng
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Tingting Tang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Beibei Zhang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Ruonan Yu
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xiaoyan Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shanshan Guo
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China; Staff Hospital of Henan Fifth Construction Group Co., Ltd, Zhengzhou, Henan, China
| | - Lijuan Ma
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Pengfei Yang
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| |
Collapse
|
7
|
Pey Adum KS, Haron NH, Md Toha Z, Arsad H. Transcriptome analysis and molecular docking reveal the activation of FOXO4, TNFSF15 and CASP9 in HeLa cells treated with DCM fraction from Clinacanthus nutans ( C. nutans). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-10. [PMID: 40094535 DOI: 10.1080/10286020.2025.2469691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Clinacanthus nutans (C. nutans) is a well-known herb in tropical Asia. Previous studies have reported the anticancer activity of C. nutans but the molecular mechanisms on cervical cancer are not fully understood. Therefore, our study aims to explore its effects on HeLa line and analyse the molecular interactions. Firstly, the RNA-Seq reads were processed for differentially expressed analyses. With Ingenuity Pathway Analysis (IPA) method, five cell death-related pathways with three significant genes (CASP9, FOXO4, TNFSF15) were identified. This study provides insight into the potential role of the DCM fraction of C. nutans mediating cell death mechanism in cervical cancer.
Collapse
Affiliation(s)
- Kristine Sandra Pey Adum
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Nor Hasyimah Haron
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Zaleha Md Toha
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| |
Collapse
|
8
|
Çelik FS, Şengül GF, Altveş S, Eroğlu Güneş C. Evaluation of the Apoptotic, Prooxidative and Therapeutic Effects of Odoroside A on Lung Cancer: An In Vitro Study Extended with In Silico Analyses of Human Lung Cancer Datasets. Life (Basel) 2025; 15:445. [PMID: 40141789 PMCID: PMC11944172 DOI: 10.3390/life15030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVE The apoptotic effects of odoroside A on lung cancer cells were studied in our project. We also supported and extended our experimentally-proven results via bioinformatics analysis on human lung cancer tissues. MATERIALS AND METHODS In vitro studies were conducted using the A549 cell line. Cell proliferation was evaluated through a CCK-8 assay. For gene expression analysis, the qRT-PCR method was used, while CASP3 protein levels were detected using Western blotting and ELISA. Moreover, the oxidant status of cells was determined by measuring TAS and TOS levels. To construct a protein-protein interaction network, STRING analysis was performed. For the determination of differential expression of apoptosis-related genes, the GEPIA tool was utilized. Kaplan-Meier plots with overall survival, disease-specific survival and progression free intervals were obtained from UCSC Xena to evaluate the prognostic value of caspases. RESULTS The gene expression levels of CASP3, CASP7, CASP8, CASP9, FAS, and FADD were elevated between 4-16 fold in Odo A-treated lung cancer cells compared to controls. CASP3 protein expression was significantly higher in Odo A-treated cancerous cells than the control group. Low TAS (0.5700 ± 0.0067 in Odo A vs. 0.6437 ± 0.0151 in control) and high TOS (0.82800 ± 0.0208 in Odo A vs. 0.6263 ± 0.0258 in control) levels as well as high OSI values (1.4531 ± 0.0414 in Odo A vs. 0.9748 ± 0.0539 in control) were obtained. Correlogram and protein-protein network analyses suggested strong correlations and interactions among target genes. Lastly, Kaplan-Meier analysis showed no prognostic value of caspases, but potential therapeutic targets in lung cancer. CONCLUSIONS Anti-cancer, prooxidative and therapeutic effects of Odo A on lung cancer cells were shown in our study. These data were supported and extended via computational analyses that we performed. In conclusion, Odo A could be used in clinics to treat patients with lung cancer.
Collapse
Affiliation(s)
- Fatma Seçer Çelik
- Department of Medical Biology and Genetics, Faculty of Medicine, Ankara Medipol University, 06050 Ankara, Turkey
| | - Göksemin Fatma Şengül
- Department of Medical Biochemistry, Faculty of Medicine, Ankara Medipol University, 06050 Ankara, Turkey;
| | - Safaa Altveş
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42005 Konya, Turkey;
| | - Canan Eroğlu Güneş
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, 42005 Konya, Turkey;
| |
Collapse
|
9
|
Gupta G, Afzal M, Moglad E, Goyal A, Almalki WH, Goyal K, Rana M, Ali H, Rekha1 A, Kazmi I, Alzarea SI, Singh SK. Parthanatos and apoptosis: unraveling their roles in cancer cell death and therapy resistance. EXCLI JOURNAL 2025; 24:351-380. [PMID: 40166425 PMCID: PMC11956527 DOI: 10.17179/excli2025-8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Cell death is a fundamental process that needs to be maintained to balance cellular functions and prevent disease. There are several cell death pathways; however, apoptosis and parthanatos are the most prominent and have important roles in cancer biology. As an extremely well-regulated process, apoptosis removes damaged or abnormal cells via caspase activation and mitochondrial involvement. Unlike in the healthy cells, the loss of ability to induce apoptosis in cancer permits tumor cells to survive and multiply out of control and contribute to tumor progression and therapy resistance. On the contrary, parthanatos is a caspase-independent metabolic collapse driven by poly (ADP-ribose) polymerase 1 (PARP1) overactivation, translocation of apoptosis-inducing factor (AIF), and complete DNA damage. Several cancer models are involved with parthanatos. Deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells by excessive ROS generation, PARP1 upregulation, and AIF nuclear translocation. Like in acute myeloid leukemia (AML), the cannabinoid derivative WIN-55 triggers parthanatos, and the effects can be reversed by PARP inhibitors such as olaparib. Developing cancer treatment strategies involving advanced cancer treatment strategies relies on the interplay between apoptosis and parthanatos. However, such apoptosis-based cancer therapies tend to develop resistance, so there is an urgent need to look into alternative pathways like parthanatos, which may not always trigger apoptosis. In overcoming apoptosis resistance, there is evidence that combining apoptosis-inducing agents, such as BH3 mimetics, with PARP inhibitors synergistically enhances cell death. Oxidative stress modulators have been found to promote the execution of parthanatic and apoptotic pathways and allow treatment. In this review, apoptosis and parthanatos are thoroughly compared at the molecular level, and their roles in cancer pathogenesis as related to cancer therapeutic potential are discussed. We incorporate recent findings to demonstrate that not only can parthanatos be used to manage therapy resistance and enhance cancer treatment via the combination of parthanatos and apoptosis but also that immunity and bone deposition can feasibly be employed against long-circulating cancer stem cells to treat diverse forms of metastatic cancers.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arcot Rekha1
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
10
|
Cui M, Zhang Y, Tang Y, Fan Q, Chen X, Li J, Qiao C, Chen X, Lin R, Yu X, Zhao C. Hepatotoxicity of Phytolacca acinosa Roxb mediated by phytolaccagenin via ferroptosis/PPAR/P53/arachidonic acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156433. [PMID: 39892312 DOI: 10.1016/j.phymed.2025.156433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The traditional Chinese medicine Phytolacca acinosa Roxb (PAR), known as Shanglu, possesses recognized therapeutic benefits against many diseases. PAR is also hepatotoxic, making it a major public health problem. However, the specific toxic substances and molecular mechanisms of PAR remain unclear. Therefore, appropriate animal models and methods are essential to confirm the toxic components and related mechanisms of PAR. METHODS L-02 cells and zebrafish larvae at 4 days post-fertilization (4 dpf) were used as models and treated with various concentrations of phytolaccagenin (Phy), esculentoside A (EsA), and esculentoside H (EsH). The hepatotoxicity of three samples was assessed based on liver phenotype, pathological assessments, and biochemical index in zebrafish and proliferative activity, apoptosis level, and biochemical index in L02 cells. The transcriptomic technique was used to explore the related signaling pathways and potential mechanisms in vitro and in zebrafish , and the findings were validated by RT-PCR. RESULTS The results of acute toxicity tests indicated that Phy exhibited substantially more severe hepatotoxicity than EsA, while EsH did not lead to any obvious toxic effects. Especially, under sublethal exposure ( CONCLUSION This study identified Phy as a key hepatotoxic component of PAR. Furthermore, using transcriptomic techniques, we preliminarily investigated the hepatotoxic mechanisms of Phy in vitro and in vivo. The results of the present study showed that Phy affects several signaling pathways, including those involved in lipid metabolism, oxidative stress, and apoptosis, finally leading to hepatotoxicity. These findings provide invaluable insights into the safe use of PAR in clinical settings.
Collapse
Affiliation(s)
- Muyao Cui
- Beijing University of Chinese Medicine, Beijing 100029, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yao Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Tang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiqi Fan
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolu Chen
- Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China; Traditional Chinese Medicine Processing Technology Inheritance Base of National Administration of Traditional Chinese Medicine, China
| | - Jiaqi Li
- Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China; Traditional Chinese Medicine Processing Technology Inheritance Base of National Administration of Traditional Chinese Medicine, China
| | - Chuanqi Qiao
- Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China; Traditional Chinese Medicine Processing Technology Inheritance Base of National Administration of Traditional Chinese Medicine, China
| | - Xue Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China; Traditional Chinese Medicine Processing Technology Inheritance Base of National Administration of Traditional Chinese Medicine, China.
| | - Xue Yu
- Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China; Traditional Chinese Medicine Processing Technology Inheritance Base of National Administration of Traditional Chinese Medicine, China.
| |
Collapse
|
11
|
Gyebi GA, Afolabi SO, Ogunyemi OM, Ibrahim IM, Olorundare OE, Adebayo JO, Koketsu M. Apoptotic Potential of Iloneoside from Gongronema latifolium Benth against Prostate Cancer Cells Using In Vitro and In Silico Approach. Cell Biochem Biophys 2025; 83:755-776. [PMID: 39302620 PMCID: PMC11870900 DOI: 10.1007/s12013-024-01507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
Prostate cancer is a major cause of cancer-related mortality in men worldwide. The anti-proliferative activity of Gongronema latifolium leaf extracts on some cancer cells has been reported. Herein, we investigated the growth inhibitory effect of the Gongronema latilolium leaf methanol extract and isolated pregnane (iloneoside) against prostate cancer cell lines using the MTT cell proliferation assay, apoptosis quantification, cell cycle analysis using flow cytometry and computational analysis molecular docking, molecular dynamics simulation (MDs), binding free energy computation and cluster analysis. In addition, UPLC-ESI-TOFMS chemical fingerprinting of previously isolated compounds was performed. The extract inhibited the growth of the cell lines with an IC50 of 49.3 µg/ml and 28.4 µg/ml for 24 h and 48 h, respectively, for PC3; and 43.7 µg/ml and 22.3 µg/ml for 24 h and 48 h, respectively, for DU145. Iloneoside demonstrated low inhibitory activities against PC3 and DU145 (IC50 > 80 μM). Apoptotic quantification and cell cycle analysis further showed that iloneoside induced apoptosis in a few cells at a dose of 200 uM. The ensemble-based molecular docking of the iloneoside to BCL-XL and BCL-2 proteins, and docking to MCL-1, BCL-A1 and BFL-1 proteins, respectively, presented binding energies of -7.22 ± 0.5, -8.12 ± 0.55, -7.1, -7.2 and -6.3 kcal/mol, while the MM/PBSA binding free energy was -25.72 ± 7.22 and -27.76 ± 11.32 kcal/mol for BCL-XL and BCL-2 proteins. Furthermore, iloneoside was stable during the 100 ns MDs analysis, while the clustering of the MDs trajectories showed that the interactions were strongly preserved. Iloneoside, in part, or in synergy with other constituents, may be responsible for the antiproliferative activities of the leaf, subject to further investigation.
Collapse
Affiliation(s)
- Gideon A Gyebi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa.
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-RL), Department of Biochemistry, Faculty of Science and Technology, Bingham University, Karu, Nigeria.
| | - Saheed O Afolabi
- Biomolecular Modeling and Nutraceuticals Laboratory, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oludare M Ogunyemi
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Olufunke E Olorundare
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mamoru Koketsu
- Faculty of Engineering, Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Du F, Zhang A, Qi X, Yin R, Jiang T, Li J. Novel Camptothecin Derivative 9c with Enhanced Antitumor Activity via NSA2-EGFR-P53 Signaling Pathway. Int J Mol Sci 2025; 26:1987. [PMID: 40076615 PMCID: PMC11900506 DOI: 10.3390/ijms26051987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Therapeutic challenges persist in the management of non-small cell lung cancer (NSCLC) in oncology. Camptothecins have demonstrated as crucial agents in tumor therapy; however, their efficacy is significantly hindered by adverse effects and drug resistance. Herein, we present a novel camptothecin derivative named 9c, which exhibits impressive anti-NSCLC potency surpassing the widely recognized camptothecin analog FL118 through a novel mechanism. Our findings demonstrated that 9c effectively inhibited tumor malignancy through cell cycle arrest and apoptosis induction with the transcriptional downregulation of anti-apoptotic genes including survivin, Mcl-1, Bcl-2, and XIAP. Mechanistically, 9c induced a wild-type p53 expression by destabilizing the NSA2-EGFR axis, thus delaying the cell cycle progression and ultimately triggering apoptosis. 9c significantly inhibited the growth of the NSCLC xenograft in vivo without observed side toxicity. Importantly, it complemented the therapeutic advantages of the novel drug AMG510 for addressing KRAS-mutant NSCLC. Collectively, these findings position 9c as a promising candidate with innovative approaches to combat NSCLC.
Collapse
Affiliation(s)
- Fu Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.D.); (A.Z.); (X.Q.); (R.Y.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National, Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
13
|
Deng X, Wang Y, Yang X, Yu Q, Huang R, Chen H, Li W, He Y. Synthesis, Structural Modification, and Antismall Cell Lung Cancer Activity of 3-Arylisoquinolines with Dual Inhibitory Activity on Topoisomerase I and II. J Med Chem 2025; 68:3518-3546. [PMID: 39844445 DOI: 10.1021/acs.jmedchem.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
To overcome the compensatory effect between Topo I and II, one of the reasons accounting for the resistance of SCLC patients, we are pioneering the use of 3-arylisoquinolines to develop dual inhibitors of Topo I/II for the management of SCLC. A total of 46 new compounds were synthesized. Compounds 3g (IC50 = 1.30 μM for NCI-H446 cells and 1.42 μM for NCI-H1048 cells) and 3x (IC50 = 1.32 μM for NCI-H446 cells and 2.45 μM for NCI-H1048 cells) were selected for detailed pharmacological investigation, due to their outstanding cytotoxicity and dual Topo I and II inhibitory activity. 3g and 3x effectively prevent SCLC cell proliferation, invasion, and migration in vitro, byinducing mitochondrial apoptosis and inhibiting the PI3K/Akt/mTOR pathway. Their in vivo tumor inhibition rate is comparable to etoposide with lower toxicity. These results indicated their potential therapeutic values as dual Topo I and II inhibitors for treating SCLC.
Collapse
Affiliation(s)
- Xuemei Deng
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yuying Wang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiongqi Yang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
14
|
Jones C, Carvalho MS, Jain A, Rodriguez-Lejarraga P, Pires F, Morgado J, Lanceros-Mendez S, Ferreira FC, Esteves T, Sanjuan-Alberte P. Wireless Stimulation of Barium Titanate@PEDOT Nanoparticles Toward Bioelectrical Modulation in Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8836-8848. [PMID: 39880384 PMCID: PMC11827599 DOI: 10.1021/acsami.4c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Cancer cells possess distinct bioelectrical properties, yet therapies leveraging these characteristics remain underexplored. Herein, we introduce an innovative nanobioelectronic system combining a piezoelectric barium titanate nanoparticle core with a conducting poly(3,4-ethylenedioxythiophene) shell (BTO@PEDOT NPs), designed to modulate cancer cell bioelectricity through noninvasive, wireless stimulation. Our hypothesis is that acting as nanoantennas, BTO@PEDOT NPs convert mechanical inputs provided by ultrasound (US) into electrical signals, capable of interfering with the bioelectronic circuitry of two human breast cancer cell lines, MCF-7 and MDA-MB-231. Upon US stimulation, the viability of MCF-7 and MDA-MB-231 cells treated with 200 μg mL-1 BTO@PEDOT NPs and US reduced significantly to 31% and 24%, respectively, while healthy human mammary fibroblasts (HMF) were unaffected by the treatment. Subsequent assays shed light on how this approach could interact with cell's bioelectrical mechanisms, namely, by increasing intracellular reactive oxygen species (ROS) and calcium concentrations. Furthermore, this system was able to polarize cancer cell membranes, halting their cell cycle and potentially harnessing their tumorigenic characteristics. These findings underscore the crucial role of bioelectricity in cancer progression and highlight the potential of nanobioelectronic systems as an emerging and promising strategy for cancer intervention.
Collapse
Affiliation(s)
- Catarina
Franco Jones
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Marta S. Carvalho
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Akhil Jain
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Paula Rodriguez-Lejarraga
- Basque
Center for Materials, Applications and Nanostructures, UPV/EHU Science
Park, BCMaterials, Leioa 48940, Spain
| | - Filipa Pires
- Department
of Bioengineering and Instituto de Telecomunicações
(IT), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Jorge Morgado
- Department
of Bioengineering and Instituto de Telecomunicações
(IT), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Senentxu Lanceros-Mendez
- Basque
Center for Materials, Applications and Nanostructures, UPV/EHU Science
Park, BCMaterials, Leioa 48940, Spain
- Centre
of
Physics Universities of Minho and Porto (CFUM-UP), University of Minho and Laboratory of Physics for Materials and Emergent
Technologies, LapMET, Campus de Gualtar, Braga 4710-057, Portugal
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Frederico Castelo Ferreira
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Teresa Esteves
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Paola Sanjuan-Alberte
- Department
of Bioengineering and iBB - Institute of Bioengineering and Biosciences,
Instituto Superior Técnico, Universidade
de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Associate
Laboratory i4HB−Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
15
|
Sochacka-Ćwikła A, Mączyński M. Oxazolo[5,4- d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis. Molecules 2025; 30:666. [PMID: 39942770 PMCID: PMC11820477 DOI: 10.3390/molecules30030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Oxazolo[5,4-d]pyrimidines have been found to exhibit a wide range of biological activities, including the inhibition of various enzymes and signaling pathways associated with carcinogenesis. The objective of this review is to demonstrate that the oxazolo[5,4-d]pyrimidine scaffold represents a valuable structure for the design of novel anticancer therapies. The article provides a comprehensive overview of the chemical structure and pharmacological properties of oxazolo[5,4-d]pyrimidine derivatives, drawing upon the literature and international patents from 1974 until the present. Notably, the review explores structure-activity relationships (SAR) with a view to enhancing the therapeutic efficacy of oxazolo[5,4-d]pyrimidines.
Collapse
Affiliation(s)
- Aleksandra Sochacka-Ćwikła
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland
| | | |
Collapse
|
16
|
Novohradsky V, Babu T, Kostrhunova H, Plaskow M, Markova L, Acharya S, Gibson D, Brabec V. Cisplatin-eugenol Pt(IV) prodrugs target colon cancer stem cells: A novel strategy for enhanced anticancer efficacy. Biomed Pharmacother 2025; 183:117854. [PMID: 39827811 DOI: 10.1016/j.biopha.2025.117854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting. This report introduces new prodrugs that combine antitumor cisplatin with axially coordinated eugenol, leveraging their synergistic action to target cancer stem cells. A third bioactive ligand, 4-phenylbutyrate or octanoate, was added to further enhance biological activity, creating 'triple action' prodrugs. These new platinum(IV) prodrugs offer a novel approach to cancer therapy by improving targeting, increasing efficacy, overcoming drug resistance, and reducing tumor invasiveness while sparing healthy tissue.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Menucha Plaskow
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Sourav Acharya
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel.
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic.
| |
Collapse
|
17
|
Verma M, Fatima S, Saeed M, Ansari IA. Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells. Mol Biotechnol 2025; 67:746-761. [PMID: 38502429 DOI: 10.1007/s12033-024-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Prostate cancer incidences are rising worldwide at an alarming rate. Drug resistance and relapse are two major challenges in the treatment of prostate cancer. Therefore, new multimodal, safe, and effective therapeutic agents are urgently required which could effectively mitigate the menace of tumor recurrence and chemo-resistance. Plant-derived products are increasingly being utilized due to their antioxidant, antibacterial, and anti-tumor potential. In the current study, 3-acetyl-11-keto-β-boswellic acid, a triterpenoid isolated from plant Boswellia, was utilized to ascertain its chemotherapeutic potential against human prostate cancer cells. Various in vitro assays including cell viability, nuclear staining, mitochondria potential, reactive oxygen species (ROS) generation, and quantification of apoptosis, were performed for the evaluation of the cytotoxic potential of AKBA. We observed that AKBA (10-50 µM) dose-dependently suppressed cell proliferation and caused programmed cell death in PC3 cells via both intrinsic and extrinsic pathway. Intriguingly, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin. To the best of our knowledge, this is the first study to document the synergistic chemosensitizing impact of AKBA when combined with doxorubicin in prostate cancer cells.This showcases the potential of AKBA in combinatorial therapy or adjuvant therapy for the management of prostate cancer. In sum, our results suggested that AKBA is a promising drug-like molecule against prostate cancer. Our investigation introduces a novel perspective, elucidating a previously unexplored dimension, and uncovering a compelling chemosensitizing phenomenon along with a strong synergistic effect arising from the concurrent application of these two agents.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
18
|
Samarasekera G, Go NE, Choutka C, Xu J, Takemon Y, Chan J, Chan M, Perera S, Aparicio S, Morin GB, Marra MA, Chittaranjan S, Gorski SM. Caspase 3 and caspase 7 promote cytoprotective autophagy and the DNA damage response during non-lethal stress conditions in human breast cancer cells. PLoS Biol 2025; 23:e3003034. [PMID: 39982959 PMCID: PMC11882052 DOI: 10.1371/journal.pbio.3003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/05/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025] Open
Abstract
Cell stress adaptation plays a key role in normal development and in various diseases including cancer. Caspases are activated in response to cell stress, and growing evidence supports their function in non-apoptotic cellular processes. A role for effector caspases in promoting stress-induced cytoprotective autophagy was demonstrated in Drosophila, but has not been explored in the context of human cells. We found a functionally conserved role for effector caspase 3 (CASP3) and caspase 7 (CASP7) in promoting starvation or proteasome inhibition-induced cytoprotective autophagy in human breast cancer cells. The loss of CASP3 and CASP7 resulted in an increase in PARP1 cleavage, reduction in LC3B and ATG7 transcript levels, and a reduction in H2AX phosphorylation, consistent with a block in autophagy and DNA damage-induced stress response pathways. Surprisingly, in non-lethal cell stress conditions, CASP7 underwent non-canonical processing at two calpain cleavage sites flanking a PARP1 exosite, resulting in stable CASP7-p29/p30 fragments. Expression of CASP7-p29/p30 fragment(s) could rescue H2AX phosphorylation in the CASP3 and CASP7 double knockout background. Strikingly, yet consistent with these phenotypes, the loss of CASP3 and CASP7 exhibited synthetic lethality with BRCA1 loss. These findings support a role for human caspases in stress adaptation through PARP1 modulation and reveal new therapeutic avenues for investigation.
Collapse
Affiliation(s)
- Gayathri Samarasekera
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy E. Go
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Courtney Choutka
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jing Xu
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Yuka Takemon
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michelle Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shivani Perera
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
19
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
20
|
Zheng Z, Zhou C, Yi F, Li J. OTUD6B-AS1: a multifaceted regulator of cancer with critical clinical implications. Am J Cancer Res 2025; 15:1-18. [PMID: 39949926 PMCID: PMC11815388 DOI: 10.62347/ehqk5961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
OTU Deubiquitinase 6B-Antisense Transcript 1 (OTUD6B-AS1), a novel long non-coding RNA (lncRNA), has recently emerged as a critical regulator in various tumors. Current research underscores its dual functionality, acting either as an oncogene or a tumor suppressor depending on the tumor context. In this work, we compile and discuss findings from a range of studies investigating the expression patterns of OTUD6B-AS1 in different cancers and its consequent effects on tumor behavior, both in vitro and in vivo. We delve into the mechanisms through which OTUD6B-AS1 influences cancer initiation and progression, focusing on its role in regulating essential cellular processes such as cell growth, migration, invasion, angiogenesis, ferroptosis, and treatment resistance. Operating through complex interactions with microRNAs (miRNAs), proteins, and pivotal signaling pathways - most notably Wnt/β-catenin - OTUD6B-AS1 exhibits variable roles across cancer types and cellular environments. Additionally, we assess the clinical relevance of OTUD6B-AS1 expression levels, evaluating its potential as a biomarker for cancer prognosis and diagnosis, as well as a target for therapeutic intervention. By consolidating existing knowledge, this work aims to highlight the clinical implications of OTUD6B-AS1 and encourage further research in oncology, ultimately contributing to the advancement of targeted cancer therapies.
Collapse
Affiliation(s)
- Zihan Zheng
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Chenchen Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330008, Jiangxi, China
| | - Fengyun Yi
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang UniversityNanchang 330008, Jiangxi, China
| | - Jian Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| |
Collapse
|
21
|
Ma L, Zhang J, Dai Z, Liao P, Guan J, Luo Z. Top 100 most-cited articles on apoptosis of non-small cell lung cancer over the past two decades: a bibliometrics analysis. Front Immunol 2025; 15:1512349. [PMID: 39872524 PMCID: PMC11770037 DOI: 10.3389/fimmu.2024.1512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Background Recently there has been an increasing number of studies have explored apoptosis mechanisms in lung cancer (LC). However, no researchers have conducted a bibliometric analysis of the most cited articles in this field. Objective To examine the top 100 most influential and cited publications on apoptosis in non-small cell lung cancer (NSCLC) from 2004 to 2023, summarizing research trends and key focus areas. Methods This study utilized the Web of Science Core Database (WOSCC) to research NSCLC apoptosis from 2004 to 2023, using keyword selection and manual screening for article searches. Bibliometrix package of R software 4.3.1 was used to generate distribution statistics for the top ten institutions, journals and authors. Citespace6.2. R6 was used to create the visualization maps for keyword co-occurrence and clustering. VOSviewer1.6.19 was used to conduct cluster analysis of publishing countries (regions), with data exported to SCImago Graphica for geographic visualization and cooperation analysis. VOSviewer1.6.19 was used to produced co-citation maps of institutions, journals, authors, and references. Results From 2004 to 2023, 13316 articles were retrieved, and the top 100 most cited were chosen. These were authored by 934 individuals from 269 institutions across 18 countries and appeared in 45 journals. Citations ranged from 150 to 1,389, with a median of 209.5. The most influential articles appeared in 2005 and 2007 (n=13). The leading countries (regions), institutions, journals and authors were identified as the United States (n=60), Harvard University (n=64), CANCER RESEARCH (n=15), SUN M and YANG JS (n=6). The top five keywords were "expression", "activation", "apoptosis", "pathway" and "gefitinib". This study indicates that enhancing apoptosis through circular RNA regulation and targeting the Nrf2 signaling pathway could become a key research focus in recent years. Conclusion Apoptosis has been the subject of extensive research over many years, particularly in relation to its role in the pathogenesis, diagnosis, and treatment of NSCLC. This study aims to identify highly influential articles and forecast emerging research trends, thereby offering insights into novel therapeutic targets and strategies to overcome drug resistance. The findings are intended to serve as a valuable reference for scholars engaged in this field of study.
Collapse
Affiliation(s)
- Leshi Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi Dai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Liao
- Department of Oncology, Chongqing Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Jieshan Guan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, Shenshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei, China
| | - Zhijie Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Zaer SJ, Aghamaali M, Najafi S, Hosseini SS, Amini M, Doustvandi MA, Mozammel N, Baradaran B, Mokhtarzadeh AA. MicroRNA-143 overexpression enhances the chemosensitivity of A172 glioblastoma cells to carmustine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:533-542. [PMID: 39007927 DOI: 10.1007/s00210-024-03287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
As an aggressive malignancy, glioblastoma multiforme (GBM) is the most common type of brain tumor. The existing treatments have shown limited achievement in increasing the overall survival of patients. Therefore, identifying the key molecules involved in GBM will provide new potential therapeutic targets. Carmustine is an alkylating agent used as a supplementary therapeutic option for GBM. However, the extensive use of carmustine has been limited by uncertainty about its efficacy. MicroRNAs (miRNAs) are essential in post-transcriptional gene regulation. Many aberrantly expressed miRNAs have been detected in various types of human cancer, including GBM. In this study, we evaluated the potential therapeutic effect of miR-143 in combination with carmustine on GBM cells. A172 cells were transfected with miR-143 mimics and then treated with carmustine. To assess the cell viability, apoptosis induction, and cell cycle progression, the MTT assay, Annexin V/PI apoptosis assay, and flow cytometry were used, respectively. Furthermore, qRT-PCR assay was applied to evaluate the expression level of genes related to apoptosis. The obtained results evidenced that miR-143 transfection could promote the sensitivity of A172 cells to carmustine and enhance carmustine-induced apoptosis via modulating the expression levels of Caspase-3, Caspase-9, Bax, and Bcl-2. Also, our results revealed that combination therapy could effectively diminish cell cycle progression in A172 cells. In conclusion, these results confirmed that miR-143 could enhance carmustine-mediated suppression of cell proliferation and improve the chemosensitivity of A172 cells to this chemotherapeutic agent. Therefore, miR-143 combination therapy may be a promising GBM treatment approach.
Collapse
Affiliation(s)
- Sheyda Jodeiry Zaer
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nazila Mozammel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Mfotie Njoya E, van Dyk H, Nambooze J, Chukwuma CI, Brink A, Makhafola TJ. Insight into the molecular mechanism of anti-breast cancer therapeutic potential of substituted salicylidene-based compounds using cell-based assays and molecular docking studies. Eur J Pharmacol 2024; 985:177129. [PMID: 39542411 DOI: 10.1016/j.ejphar.2024.177129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Targeting oxidative stress and inflammatory signaling pathways is an effective cancer prevention and therapy approach. The mechanism of action of synthesized salicylidene-based compounds was investigated in regulating key molecular targets of breast cancer development. Compounds (1), (4), (5), and (7) were found to be more cytotoxic to MCF-7 and 4T1 cells compared to non-cancerous Chang liver cells, while these compounds were cytotoxic to MDA-MB-231 cells, but with poor selectivity. The colony formation assay indicated that bioactive compounds induced significant damage to breast cancer cells, as observed by a reduction in the number of colonies compared to control cells. By inducing a concentration and time-dependent increase of luminescence and fluorescence of phosphatidylserine, and activating the expression of caspases-3, -7, -8, -9 in breast cancer cells, (1) and (7) have shown to induce caspase-dependent apoptosis. The downregulation of NF-kB-p65 and an upregulation of TP53 expression after exposure to bioactive compounds, demonstrated the suppression of two key targets of breast cancer development. Molecular docking studies revealed that selected protein targets strongly interact with bioactive compounds, and the estimated inhibition constants (Ki) of JAK2, STAT3, COX-2, HPV31 E6, EGFR1, TP53, and PARP1 were significantly decreased compared to acetylsalicylic acid. This could be a clear indication that these protein targets are implicated with antiproliferative efficacy, thereby warranting the potential of (1) and (7) to be used as anti-breast cancer drug candidates.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa
| | - Hannah van Dyk
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9301, Free State, South Africa
| | - Jennifer Nambooze
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9301, Free State, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa
| | - Alice Brink
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9301, Free State, South Africa
| | - Tshepiso Jan Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, Free State, South Africa.
| |
Collapse
|
24
|
Szymanowska A, Radomska D, Czarnomysy R, Mojzych M, Kotwica-Mojzych K, Bielawski K, Bielawska A. The activity of pyrazolo[4,3- e][1,2,4]triazine and pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine sulphonamide derivatives in monolayer and spheroid breast cancer cell cultures. J Enzyme Inhib Med Chem 2024; 39:2343352. [PMID: 38700244 PMCID: PMC11073428 DOI: 10.1080/14756366.2024.2343352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Hekmatshoar Y, Karabay AZ, Ozkan T, Koc A, Sunguroglu A. Methylsulfonylmethane induces caspase-dependent apoptosis in acute myeloid leukemia cell lines. Fundam Clin Pharmacol 2024; 38:1094-1102. [PMID: 39114894 DOI: 10.1111/fcp.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous ailment in both biological and clinical concepts. Numerous efforts have been devoted to discover natural compounds for combating cancer, which showed great potential in cancer management. Methylsulfonylmethane (MSM), an organosulfur dietary supplement, is utilized for improving various clinical conditions, particularly osteoarthritis. MSM can exert antitumor activity in a wide range of cancers. OBJECTIVES The molecular mechanisms of action underlying antileukemic activity of MSM remain unclear. In this regard, we aimed to investigate the anticancer properties of MSM on human AML cell lines (U937 and HL60) with focus on underlying cell death mechanism. METHODS Anticancer activity of the MSM was examined employing MTT assay, Annexin V-PE/7AAD staining, caspase3/7 activity test, and real-time qPCR. Both cell lines were treated with different concentrations (50-400 mM) of MSM for 24 h. Pretreatment of the cells with a caspase inhibitor (i.e., Z-VAD-fmk) was performed for the assessment of apoptosis induction. RESULTS The results of MTT assay revealed that in both cell lines, the MSM markedly reduced cell viability in comparison to the control cells. Additionally, findings of Annexin V-7AAD staining revealed that MSM induced apoptosis and activated caspase 3/7 in both cell lines markedly. Real-time quantitative PCR results also supported the induction of apoptosis in AML cells. MSM altered the expression levels of various apoptotic genes (BAX, BAD, and BIM). CONCLUSION Overall, our results indicated that MSM could induce apoptosis in AML cell lines in a dose-dependent manner, which therefore could be utilized as an antileukemic agent.
Collapse
Affiliation(s)
- Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
26
|
Sunoqrot S, Abusulieh S, Sabbah D. Polymeric Nanoparticles Potentiate the Anticancer Activity of Novel PI3Kα Inhibitors Against Triple-Negative Breast Cancer Cells. Biomedicines 2024; 12:2676. [PMID: 39767583 PMCID: PMC11727162 DOI: 10.3390/biomedicines12122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Dysregulation in phosphoinositide-3-kinase alpha (PI3Kα) signaling is implicated in the development of various cancers, including triple-negative breast cancer (TNBC). We have previously synthesized a series of N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamides as targeted inhibitors against PI3Kα. Herein, two drug candidates, R7 and R11, were selected to be further investigated as a nanoparticle (NP) formulation against TNBC. Methods: R7 and R11 were entrapped in D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) polymeric NPs by nanoprecipitation. Following their physicochemical characterization, the anticancer activity of the compounds and their NP formulations was evaluated in the TNBC cell line MDA-MB-231 by conducting viability, uptake, and apoptosis assays, as well as penetration assays in a multicellular tumor spheroid model. Results: The NPs exhibited a particle size of 100-200 nm, excellent drug loading efficiencies, and sustained release under physiologic conditions. Viability assays revealed superior potency for the NP formulations, with IC50 values of 20 µM and 30 µM for R7- and R11-loaded NPs, respectively, compared to the free compounds, which exhibited IC50 values of 280 µM and 290 µM for R7 and R11, respectively. These results were attributed to the inherent antiproliferative activity of TPGS, as evidenced by the cytotoxicity of the drug-free NPs, as well as the enhanced cellular uptake enabled by the NP vehicle, as demonstrated by fluorescence microscopy imaging and flow cytometry measurements. Further investigations showed that the NPs promoted apoptosis via a mitochondrial-dependent pathway that involved the activation of proapoptotic caspases. Moreover, the NP formulations enhanced the penetration ability of the free compounds in multicellular tumor spheroids, causing a time- and concentration-dependent disruption of the spheroids. Conclusions: Our findings highlight the important role nanotechnology can play in improving the biopharmaceutical properties of new drug candidates and facilitating their in vivo translation.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | | |
Collapse
|
27
|
Alkhaldi O, Abusulieh S, Abusara OH, Sunoqrot S. Development of Mitoxantrone-Loaded Quercetin Nanoparticles for Breast Cancer Therapy with Potential for Synergism with Bioactive Natural Products. Int J Pharm 2024; 665:124674. [PMID: 39245083 DOI: 10.1016/j.ijpharm.2024.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems have caused a paradigm shift in cancer treatment by enabling drug targeting, sustaining drug release, and reducing systemic toxicity of chemotherapy. Here we developed a novel NP formulation for the anticancer drug mitoxantrone (MTZ) by loading it into an emerging nanomaterial derived from the plant polyphenol quercetin (QCT). QCT was partially oxidized to produce amphiphilic oxQCT which was co-assembled with poly(ethylene glycol) (PEG) and MTZ by nanoprecipitation to form MTZ NPs. The optimal NPs exhibited an average diameter of 128 nm, a polydispersity index of 0.22, and a drug loading efficiency of 76%. While only a small fraction of the loaded drug was released at physiologic pH, a significantly higher fraction was released at acidic pH. The anticancer activity of MTZ NPs was assessed in MCF-7 and MDA-MB-231 breast cancer cell lines, alone and in combination with the bioactive natural products curcumin (CUR) and thymoquinone (TQ). In cell viability assays, MTZ NPs were slightly less potent than free MTZ, most likely due to their sustained release properties, but their cytotoxicity was greatly enhanced in the presence of TQ (in MCF-7 cells) as well as CUR (in MDA-MB-231 cells). The results were corroborated by apoptosis assays such as mitochondrial membrane potential measurement, acridine orange/ethidium bromide staining, in addition to caspase activity assays. The assays revealed that the NPs' proapoptotic effect was enhanced in the presence of CUR or TQ, depending on the cell line. Our work presents a promising nanocarrier platform for MTZ with the potential to enhance its bioactivity against breast cancer when combined with bioactive natural products.
Collapse
Affiliation(s)
- Otrujja Alkhaldi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| |
Collapse
|
28
|
Indongo G, Madanan AS, Varghese S, Shkhair AI, Abraham MK, Rajeevan G, Kala AB, George S. Exploring Selective Fluorescence Turn-On Sensing of Caspase-3 with Molybdenum Disulfide Quenched Copper Nanoclusters: FRET Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61599-61608. [PMID: 39475561 DOI: 10.1021/acsami.4c10967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensing caspase-3 activity is essential for understanding the role of apoptosis in cancer dynamics, controlling therapeutic strategies, and improving patient care in cancer treatment. In this study, we demonstrate a highly sensitive recombinant human caspase-3 (rhC3) detection technique in biological fluids. This technique uses a copper nanocluster stabilized with bovine serum albumin (BSA-CuNCs) as a metal-based fluorescent biosensor, conjugated with anti-human caspase-3 (ahC3). To turn its fluorescence off, molybdenum disulfide nanosheets (MoS2 NSs) are added; this partnership is termed ahC3@BSA-CuNCs/MoS2 nanocouple. In the presence of rhC3, the energy transfer process is affected by strong ahC3/rhC3 interactions. When in close proximity, the rhC3 molecules cause detachment of the nanocluster from the MoS2 NS surface by attracting the ahC3 component of the nanocluster. This increases the distance between the nanocluster and quencher with a consequent restoration of intensity. As the concentration of rhC3 increases, the fluorescence intensity of the system also increases. A proportional response is seen in the concentration between 0.1 and 1.3 ng/mL with a very low limit of detection of 2.75 pg/mL and a quantification limit of 8.60 pg/mL. A simple filter paper strip was made to visually identify the presence of rhC3 under UV light.
Collapse
Affiliation(s)
- Geneva Indongo
- Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
29
|
Tsai SC, Chang PC, Lin YT, Huang PT, Chen JYF, Lin C, Wu BN, Chang HM, Wu WJ, Chang CI, Lee CH. Repurposing of the Antipsychotic Trifluoperazine Induces SLC7A11/GPX4- Mediated Ferroptosis of Oral Cancer via the ROS/Autophagy Pathway. Int J Biol Sci 2024; 20:6090-6113. [PMID: 39664583 PMCID: PMC11628333 DOI: 10.7150/ijbs.99859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Ferroptosis, a mode of cell death characterized by iron-dependent phospholipid peroxidation, has a substantial therapeutic potential for the treatment of various cancers. This study investigated the effects of trifluoperazine (TFP), an FDA-approved drug traditionally utilized for mental health disorder, on oral cancer cells, with a particular focus on the mechanisms involved in its potential anti-tumor properties. Our findings indicate that TFP significantly elevates the levels of lipid-derived reactive oxygen species (ROS) and induces ferroptotic cell death in oral cancer cells through pathways involving autophagy, the SLC7A11/GPX4 axis, and mitochondrial damage. Additionally, molecular docking analyses revealed that TFP acts as an inhibitor of GPX4. The elevated expression level of GPX4 in oral cancer biopsies was also found to correlate with a poor prognosis. Together, these results provide evidence that TFP selectively induces GPX4-mediated, autophagy-dependent ferroptosis, thereby exerting anti-cancer effects against oral cancer and preventable death.
Collapse
Affiliation(s)
- Sheng-Chieh Tsai
- Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Po-Chih Chang
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City 804201, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital/Kaohsiung Medical University, Taiwan
- Ph. D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University; Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Yu Tong Lin
- Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | | | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
| | - Chang‑Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bin-Nan Wu
- Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
| | - Hui-Min Chang
- Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Wan-Ju Wu
- Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung City 91201, Taiwan
- Research Centre for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung City 91201, Taiwan
| | - Chien-Hsing Lee
- Division of Pharmacology and Traditional Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung City 91201, Taiwan
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| |
Collapse
|
30
|
Chai AWY, Tan YH, Ooi S, Yee PS, Yee SM, Lightfoot H, Barthorpe S, Garnett MJ, Cheong SC. High TNF and NF-κB Pathway Dependency Are Associated with AZD5582 Sensitivity in OSCC via CASP8-Dependent Apoptosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2919-2932. [PMID: 39360810 PMCID: PMC11551840 DOI: 10.1158/2767-9764.crc-24-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 11/12/2024]
Abstract
SIGNIFICANCE Mechanistically guided drug repurposing has been made possible by systematically integrating pharmacologic and CRISPR-Cas9 screen data. Our study discovers the biomarker and cell death mechanisms underpinning sensitivity toward AZD5582, an antagonist of the inhibitor of apoptosis family protein. Our findings have important implications for improving future trial design for patients with OSCC using this emerging drug class.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Yee Hua Tan
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Shiyin Ooi
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Pei San Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Shi Mun Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Howard Lightfoot
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Syd Barthorpe
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Mathew J. Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Sok Ching Cheong
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Jotatsu Y, Arbiser JL, Moriwaki M, Hirata Y, Takeda S, Takada I, Chen KC, Sung SY, Shigemura K. Dibenzolium induces apoptosis and inhibits epithelial-mesenchymal transition (EMT) in bladder cancer cell lines. Sci Rep 2024; 14:25501. [PMID: 39462108 PMCID: PMC11513011 DOI: 10.1038/s41598-024-75908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Bladder cancer treatments are highly aggressive and have strong side effects. Safer and more effective treatments are needed. In this study, Dibenzolium (DIB), a potent NADPH oxidase inhibitor, was evaluated for its anti-tumor effects. KK-47 (non-invasive), T24 and 5637 (invasive) cells were used in experiments. Cell proliferation, apoptosis and wound healing assays and western blotting were conducted. In addition, DIB was intratumorally administered to mice bearing KK-47, T24 and 5637 tumors, and tumor size and weight were observed over time. After removing tumors, immunohistochemistry (IHC) staining was conducted. Cell proliferation was significantly suppressed in all cell lines, and apoptotic cells increased in the KK-47 and T24 cell lines after DIB. Wound healing was suppressed in all cell lines by DIB. In KK-47 and T24, DIB increased the protein expression of the epithelial marker E-cadherin. In vivo, DIB safely suppressed tumor growth in all cell lines-bearing mice. Cleaved-Caspase-3 and E-cadherin expression increased in KK-47 and T24 tumors after DIB. In conclusion, DIB inhibited tumor growth by inducing apoptosis through the Caspase-3 pathway and reduced migration and invasion by suppressing epithelial mesenchymal transition (EMT) in bladder cancer similarly shown as our previous study of prostate cancer.
Collapse
Affiliation(s)
- Yura Jotatsu
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe, 654-0142, Japan
| | | | - Michika Moriwaki
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe, 654-0142, Japan
| | - Yuto Hirata
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe, 654-0142, Japan
| | - Shunya Takeda
- Department of Medical Device Engineering, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Kobe, 650-0017, Japan
| | - Ichiro Takada
- Department of Urology, Teikyo University Hospital, Teikyo University Graduate School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kuan-Chou Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Road, Taipei, 235, Taiwan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing st., Taipei, 110, Taiwan
| | - Katsumi Shigemura
- Department of Medical Device Engineering, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Kobe, 650-0017, Japan.
- Department of Urology, Teikyo University Hospital, Teikyo University Graduate School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
32
|
Liu T, Zhang Y, Zhao H, Wu Q, Xin J, Pan Q. Mycoplasma hyopneumoniae inhibits the unfolded protein response to prevent host macrophage apoptosis and M2 polarization. Infect Immun 2024; 92:e0005124. [PMID: 39133018 PMCID: PMC11475852 DOI: 10.1128/iai.00051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Enzootic pneumonia caused by Mycoplasma hyopneumoniae (M. hyopneumoniae) has inflicted substantial economic losses on the global pig industry. The progression of M. hyopneumoniae induced-pneumonia is associated with lung immune cell infiltration and extensive proinflammatory cytokine secretion. Our previous study established that M. hyopneumoniae disrupts the host unfolded protein response (UPR), a process vital for the survival and immune function of macrophages. In this study, we demonstrated that M. hyopneumoniae targets the UPR- and caspase-12-mediated endoplasmic reticulum (ER)-associated classical intrinsic apoptotic pathway to interfere with host cell apoptosis signaling, thereby preserving the survival of host tracheal epithelial cells (PTECs) and alveolar macrophages (PAMs) during the early stages of infection. Even in the presence of apoptosis inducers, host cells infected with M. hyopneumoniae exhibited an anti-apoptotic potential. Further analyses revealed that M. hyopneumoniae suppresses the three UPR branches and their induced apoptosis. Interestingly, while UPR activation typically drives host macrophages toward an M2 polarization phenotype, M. hyopneumoniae specifically obstructs this process to maintain a proinflammatory phenotype in the host macrophages. Overall, our findings propose that M. hyopneumoniae inhibits the host UPR to sustain macrophage survival and a proinflammatory phenotype, which may be implicated in its pathogenesis in inducing host pneumonia.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanjun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
33
|
Agrawal S, Podber A, Gillespie M, Dietz N, Hansen LA, Nandipati KC. Regulation of pro-apoptotic and anti-apoptotic factors in obesity-related esophageal adenocarcinoma. Mol Biol Rep 2024; 51:1049. [PMID: 39395071 PMCID: PMC11470870 DOI: 10.1007/s11033-024-09931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Obesity is a risk factor for esophageal adenocarcinoma (EAC). It was reported that obesity -associated inflammation correlates with insulin resistance and increased risk of EAC. The objective of the study is to investigate the role of obesity associated inflammatory mediators in the development of EAC. METHODS We included 23 obese and nonobese patients with EAC or with or without Barrett's esophagus (BE) after IRB approval. We collected 23 normal, 10 BE, and 19 EAC tissue samples from endoscopy or esophagectomy. The samples were analyzed for the expression levels of pro-apoptotic and anti-apoptotic factors, PKC-δ, cIAP2, FLIP, IGF-1, Akt, NF-kB and Ki67 by immunofluorescence and RT-PCR. We compared the expression levels between normal, BE, and EAC tissue using Students' t-test between two groups. RESULTS Our results showed decreased gene and protein expression of pro-apoptotic factors (bad, bak and bax) and increased expression of anti-apoptotic factors (bcl-2, Bcl-xL) in BE and EAC compared to normal tissues. There was increased gene and protein expression of PKC-δ, cIAP2, FLIP, NF-kB, IGF-1, Akt, and Ki67 in BE and EAC samples compared to normal esophagus. Further, an increased folds changes in mRNA expression of proapoptotic factors, antiapoptotic factors, PKC-δ, IGF-1, Akt, and Ki-67 was associated with obesity. CONCLUSION Patients with EAC had increased expression of cIAP2 and FLIP, and PKC-δ which is associated with inhibition of apoptosis and possible progression of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Swati Agrawal
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Anna Podber
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Megan Gillespie
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Nick Dietz
- Department of Pathology, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Laura A Hansen
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Kalyana C Nandipati
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA.
| |
Collapse
|
34
|
Bangash AA, Alvi SS, Bangash MA, Ahsan H, Khan S, Shareef R, Villanueva G, Bansal D, Ahmad M, Kim DJ, Chauhan SC, Hafeez BB. Honey Targets Ribosome Biogenesis Components to Suppress the Growth of Human Pancreatic Cancer Cells. Cancers (Basel) 2024; 16:3431. [PMID: 39410048 PMCID: PMC11475701 DOI: 10.3390/cancers16193431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer (PanCa) is one of the deadliest cancers, with limited therapeutic response. Various molecular oncogenic events, including dysregulation of ribosome biogenesis, are linked to the induction, progression, and metastasis of PanCa. Thus, the discovery of new therapies suppressing these oncogenic events and ribosome biogenesis could be a novel therapeutic approach for the prevention and treatment of PanCa. The current study was designed to investigate the anti-cancer effect of honey against PanCa. Our results indicated that honey markedly inhibited the growth and invasive characteristics of pancreatic cancer cells by suppressing the mRNA expression and protein levels of key components of ribosome biogenesis, including RNA Pol-I subunits (RPA194 and RPA135) along with its transcriptional regulators, i.e., UBTF and c-Myc. Honey also induced nucleolar stress in PanCa cells by reducing the expression of various nucleolar proteins (NCL, FBL, and NPM). Honey-mediated regulation on ribosome biogenesis components and nucleolar organization-associated proteins significantly arrested the cell cycle in the G2M phase and induced apoptosis in PanCa cells. These results, for the first time, demonstrated that honey, being a natural remedy, has the potential to induce apoptosis and inhibit the growth and metastatic phenotypes of PanCa by targeting ribosome biogenesis.
Collapse
Affiliation(s)
- Aun Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sahir Sultan Alvi
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Muhammad Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Haider Ahsan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shiza Khan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rida Shareef
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Georgina Villanueva
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Divyam Bansal
- Department of Kinesiology, Rice University, Houston, TX 77251, USA;
| | - Mudassier Ahmad
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Dae Joon Kim
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal Bin Hafeez
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
35
|
Altıntop MD, Ertorun İ, Akalın Çiftçi G, Özdemir A. Design, synthesis and biological evaluation of a new series of imidazothiazole-hydrazone hybrids as dual EGFR and Akt inhibitors for NSCLC therapy. Eur J Med Chem 2024; 276:116698. [PMID: 39047611 DOI: 10.1016/j.ejmech.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In search of small molecules for targeted therapy of non-small cell lung carcinoma (NSCLC), an efficient four-step synthetic route was followed for the synthesis of new imidazothiazole-hydrazone hybrids, which were assessed for their cytotoxic effects on human lung adenocarcinoma (A549) and human lung fibroblast (CCD-19Lu) cells. Among them, compounds 4, 6, 13, 16, 17 and 21 exhibited selective cytotoxic activity against A549 cell line. In vitro mechanistic studies were performed to assess their effects on apoptosis, caspase-3, cell cycle, EGFR and Akt in A549 cells. Compounds 6, 16, 17 and 21 promoted apoptotic cell death more than erlotinib. According to the in vitro data, it is quite clear that compound 6 promotes apoptosis through caspase-3 activation and arrests the cell cycle at the G0/G1 phase in A549 cells. Compounds 16 and 17 arrested the cell cycle at the S phase, whereas compounds 4, 13 and 21 caused the cell cycle arrest at the G2/M phase. The most effective EGFR inhibitor in this series was found as compound 13, followed by compounds 17 and 16. Furthermore, Akt inhibitory effects of compounds 16 and 17 in A549 cells were close to that of GSK690693. In particular, it can be concluded that the cytotoxic and apoptotic effects of compounds 16 and 17 are associated with their inhibitory effects on both EGFR and Akt. Molecular docking studies suggest that compounds 16 and 17 interact with crucial amino acid residues in the binding sites of human EGFR (PDB ID: 1M17) and Akt2 (PDB ID: 3D0E). Based on the in silico data, both compounds are predicted to possess favorable oral bioavailability and drug-likeness. Further studies are required to benefit from these compounds as anticancer agents for targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - İpek Ertorun
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| |
Collapse
|
36
|
Hou J, Cao R, Wang S, Ma J, Xu J, Guo Y. Bucidarasin A suppresses the proliferation and metastasis of HCC by targeting the FAK and STAT3 pathways. Chem Biol Interact 2024; 402:111191. [PMID: 39121898 DOI: 10.1016/j.cbi.2024.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health concern, with high rates of morbidity and mortality. Bucidarasin A, a natural diterpenoid, has been shown to exert notable cytotoxic effects across a range of tumor cell lines. However, the underlying mechanisms responsible for this cytotoxicity remain unclear. In this study, we sought to elucidate the antitumor mechanisms of bucidarasin A, a natural diterpenoid derived from Casearia graveolens, with a particular focus on its effects on HCC. Furthermore, we employed surface plasmon resonance (SPR), molecular docking, and cellular thermal shift assay (CETSA) to gain further insight into the target protein of bucidarasin A. Our findings revealed that bucidarasin A exhibited pronounced cytotoxicity towards HepG2 cells. In vitro analysis indicated that bucidarasin A interrupted the cell cycle at the S phase and inhibited the proliferation and metastasis of HepG2 cells by modulating the FAK and STAT3 signaling pathways. Moreover, in vivo studies demonstrated that bucidarasin A not only exhibited antitumor effects but also impeded neovascularization, a finding that was corroborated by SPR interactions between vascular endothelial growth factor (VEGF) and bucidarasin A. This research substantiated that bucidarasin A, a clerodane diterpenoid, held promise as a therapeutic candidate against HCC, showcasing substantial antitumor efficacy both in vitro and in vivo through direct targeting of the STAT3 and FAK signaling pathways.
Collapse
Affiliation(s)
- Jiantong Hou
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, PR China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, PR China
| | - Sibei Wang
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, PR China
| | - Jun Ma
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, PR China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemistry Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
37
|
Hasan Mujahid M, Upadhyay TK, Upadhye V, Sharangi AB, Saeed M. Phytocompound identification of aqueous Zingiber officinale rhizome (ZOME) extract reveals antiproliferative and reactive oxygen species mediated apoptotic induction within cervical cancer cells: an in vitro and in silico approach. J Biomol Struct Dyn 2024; 42:8733-8760. [PMID: 37639378 DOI: 10.1080/07391102.2023.2247089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
The prevalence of cervical cancer in women is in the fourth position among various other types of cancer globally. Many established therapies, including surgery, chemotherapy, and immunomodulation, are present, but high levels of side effects cause mortality and morbidity among the patients. Zingiber officinale rhizome (ZOME) has been potentially used to cure a variety of ailments and diseases. The aqueous ZOME extract also contains ample phytochemical constituents having anticancer effects on different cancers. The cell viability of HeLa cells was evaluated using MTT assay with IC50 at 97 µg/mL. Furthermore, a significant level of ROS generation causes the apoptosis of the cells. Nuclear staining dye DAPI and Hoechst 33342 showed DNA's fragmented and condensed form. Propidium Iodide staining showed necrotic or late-apoptotic cells. While acidic organelle dye LysoTracker and MitoTracker dye along with dual staining showed significant results. In silico studies were carried out using identified phytochemicals from GC-MS analysis with pharmacokinetics properties (ADMET), and targeted toward receptor proteins for molecular docking. Ligands with high docked scores were subjected to molecular dynamics simulations at 310 K for 100 ns. In vitro and in silico investigations in our studies showed that aqueous ZOME extract can be used as an efficient therapy against cervical cancer treatment as it showed significant cytotoxic and antiproliferative effects toward the HeLa cell line.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Vijay Upadhye
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur, West Bengal, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
38
|
Chen L, Guo P, Zhai L, Yu L, Zhu D, Hu X, Li Z, Chen Y, Sun Q, Sun L, Luo H, Tang H. Nrf2 affects DNA damage repair and cell apoptosis through regulating HR and the intrinsic Caspase-dependent apoptosis pathway in TK6 cells exposed to hydroquinone. Toxicol In Vitro 2024; 100:105901. [PMID: 39029599 DOI: 10.1016/j.tiv.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Hydroquinone (HQ) is one of benzene metabolites that can cause oxidative stress damage and Homologous recombination repair (HR). A good deal of reactive oxygen species (ROS) generated by oxidative stress can trigger apoptotic signaling pathways. The nuclear factor erythroid 2-related factor 2 (Nrf2) can regulate the cell response to oxidative stress damage. The aim of this study was to explore whether Nrf2 participate in HQ-induced apoptosis and its mechanism. The findings displayed that HQ triggered HR, promoted Nrf2 transfer into the cell nucleus and induced cell apoptosis, while Nrf2 deficient elevated cell apoptosis, attenuated the expression of PARP1 and RAD51. We also observed that Nrf2 deficient triggered Caspase-9. Thus, we speculated that Nrf2 might participate in HQ-induced cell apoptosis through Caspase-9 dependent pathways. Meanwhile, Nrf2 participated in HQ-induced DNA damage repair by regulating the level of PARP1 and RAD51.
Collapse
Affiliation(s)
- Lin Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Pu Guo
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lu Zhai
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lingxue Yu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Delong Zhu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyi Hu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhuanzhuan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lei Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Luo
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
39
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
40
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
41
|
Shenoy TN, Abdul Salam AA. Therapeutic potential of dietary bioactive compounds against anti-apoptotic Bcl-2 proteins in breast cancer. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39257284 DOI: 10.1080/10408398.2024.2398636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women worldwide. One of its defining features is resistance to apoptosis, driven by aberrant expression of apoptosis-related proteins, notably the overexpression of anti-apoptotic Bcl-2 proteins. These proteins enable breast cancer cells to evade apoptosis and develop resistance to chemotherapy, underscoring their critical role as therapeutic targets. Diet plays a significant role in breast cancer risk, potentially escalating or inhibiting cancer development. Recognizing the limitations of current treatments, extensive research is focused on exploring bioactive compounds derived from natural sources such as plants, fruits, vegetables, and spices. These compounds are valued for their ability to exert potent anticancer effects with minimal toxicity and side effects. While literature extensively covers the effects of various dietary compounds in inducing apoptosis in cancer cells, comprehensive information specifically on how dietary bioactive compounds modulate anti-apoptotic Bcl-2 protein expression in breast cancer is limited. This review aims to provide a comprehensive understanding of the interaction between Bcl-2 proteins and caspases in the regulation of apoptosis, as well as the impact of dietary bioactive compounds on the modulation of anti-apoptotic Bcl-2 in breast cancer. It further explores how these interactions influence breast cancer progression and treatment outcomes.
Collapse
Affiliation(s)
- Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
42
|
Vanli S, Kurtoglu F, Alan BS, Akcakavak G, Ozdemir O. Investigation of the effects of Theranekron and Sorafenib treatments on carcinogenesis, apoptosis and biochemical profile in hepatocellular carcinoma in rats. Toxicol Mech Methods 2024; 34:750-760. [PMID: 38577837 DOI: 10.1080/15376516.2024.2332909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to investigate the effects of Tarantula cubensis alcohol extract (TCAE, Theranekron) and Sorafenib (S) treatments on carcinogenesis, apoptosis and biochemical profile of rats with experimentally induced hepatocellular carcinoma (HCC). In the presented study, 58 male rats were divided into 7 groups; Negative Control (NC, n = 6), NC + TCAE (NCT, n = 6), NC + Sorafenib (NCS, n = 6), Positive Control (PC, n = 10), Positive Control + TCAE (PCT, n = 10), Positive Control + Sorafenib (PCS, n = 10), Positive Control + TCAE + Sorafenib (PCTS, n = 10). The active ingredients Diethylnitrosamine (DEN, 120 mg/kg, single dose) and Nitrosomorpholine (NMOR, 50 ppm, 21 weeks orally) were used to induce HCC in rats. At the end of the experiment, the animals were euthanized under appropriate conditions and samples were collected for biochemical and pathological investigations. In the PC group, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) levels were higher (p < 0.001) and urea levels were lower (p < 0.001) compared to all other groups. Treatment groups reorganized the relevant markers (ALT, AST, GGT, and urea). A significant increase was detected in Caspase-10, Caspase-3 and Granzyme-B (GrzB) (p < 0.001) in blood and Caspase-10 and GrzB (p < 0.05) in liver tissue in PCT, PCS and PCTS groups compared to the PC group. Histopathological examination revealed that the PC group showed cancer morphology, and the treatment groups caused a decrease in tumor incidence and size. Our current findings suggest that the mechanism of action of TCAE in HCC is through the NKs/CTLs-GrzB-Casp10-Casp3 signaling pathway and can be used in combination with chemotherapy drugs for the development of future drug designs.
Collapse
Affiliation(s)
- Serdar Vanli
- Ministry of Agriculture and Forestry, Ilgin District Directorate of Agriculture and Forestry, Konya, Turkey
| | - Firuze Kurtoglu
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Beyza S Alan
- Department of Biochemistry, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| | - Gokhan Akcakavak
- Department of Pathology, Faculty of Veterinary Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Ozgur Ozdemir
- Department of Pathology, Faculty of Veterinary Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
43
|
Xu R, Jiang Z, Meng X, Xing L, Aladan W, Chi B, Dang T, Chai J. Cellular communication network 1 promotes CASP2 mRNA expression but suppresses its protein translation in esophageal adenocarcinoma. J Cell Commun Signal 2024; 18:e12046. [PMID: 39524140 PMCID: PMC11544643 DOI: 10.1002/ccs3.12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Induction of apoptosis in tumor cells is one of the best ways to cure cancer. While most apoptosis requires a chain of caspase activation, CASP2 can do this all by itself. The matricellular protein cellular communication network 1 (CCN1) is known for supporting some cancer growth but suppressing others. Esophageal adenocarcinoma (EAC) belongs to the latter. CCN1 is capable of inducing TRAIL-mediated apoptosis in EAC cells. This study found that CCN1 upregulated CASP2 transcription but not its translation in EAC cells because, on one hand, CCN1 downregulated p16 and p21, which increased RB1 phosphorylation allowing E2F1 to transcribe more CASP2 mRNA, on the other hand, CCN1 also upregulated HuR, which is bound to CASP2 mRNA species and blocked its protein translation. As a result, CASP2 contributed nothing to CCN1-induced EAC cell apoptosis. On the contrary, CCN1 promoted CASP3, not only in its transcription but also in its translation and activation, which established the basis for CCN1-induced EAC cell apoptosis.
Collapse
Affiliation(s)
- Ruize Xu
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Zhenyu Jiang
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Lingling Xing
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Wula Aladan
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Baoxing Chi
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Tong Dang
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| |
Collapse
|
44
|
Szmurło A, Dopytalska K, Szczerba M, Szymańska E, Petniak A, Kocki M, Kocki J, Walecka I. The Role of Caspases in Melanoma Pathogenesis. Curr Issues Mol Biol 2024; 46:9480-9492. [PMID: 39329914 PMCID: PMC11430040 DOI: 10.3390/cimb46090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Melanoma (malignant melanoma, MM) is an aggressive malignant skin cancer with an increasing incidence rate. The complete pathogenesis of MM in not clear. Due to DNA damage, mutations, dysregulation of growth factors, inactivation of tumor suppressor genes, and activation of oncogenes, excessive uncontrolled growth of abnormal melanocytes occurs in melanomas. Caspases are a group of proteolytic enzymes that participate in several processes important in regulating mechanisms at the cellular level. They play a role in cell homeostasis and programmed cell death (apoptosis) and in the regulation of non-apoptotic cell death processes. Dysregulation of caspase activation plays a role in the etiology of cancers, including melanoma. Caspases can initiate and execute apoptosis and are involved in regulating cell death and controlling tumor growth. These enzymes also inhibit tumor growth by cleaving and inactivating proteins that are involved in cell proliferation and angiogenesis. Moreover, caspases are involved in the activation of immune processes through the processing and presentation of tumor antigens, which facilitates recognition of the tumor by the immune system. The role of caspases in melanoma is complex, and they may inhibit melanoma growth and progression. This work aims to review the current knowledge of the role of individual caspases in melanoma pathogenesis.
Collapse
Affiliation(s)
- Agnieszka Szmurło
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
| | - Klaudia Dopytalska
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
| | - Michał Szczerba
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
| | - Elżbieta Szymańska
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland
| | - Marcin Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland
| | - Irena Walecka
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
| |
Collapse
|
45
|
Dutra MJ, Malta IS, de Almeida Lança ML, de Vasconcellos LMR, Adorno-Farias D, Jara JA, Kaminagakura E. Effects of artemisinin and cisplatin on the malignant progression of oral leukoplakia. In vitro and in vivo study. J Cancer Res Clin Oncol 2024; 150:390. [PMID: 39154308 PMCID: PMC11330948 DOI: 10.1007/s00432-024-05924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.
Collapse
Affiliation(s)
- Mateus José Dutra
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Isabella Souza Malta
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Maria Leticia de Almeida Lança
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Daniela Adorno-Farias
- Oral Medicine and Pathology Department, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Antonio Jara
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
| |
Collapse
|
46
|
Kumar KBV, Varadaraju KR, Shivaramu PD, Kumar CMH, Prakruthi HR, Shekara BMC, Shreevatsa B, Wani TA, Prakasha KC, Kollur SP, Shivamallu C. Bactericidal, anti-hemolytic, and anticancerous activities of phytofabricated silver nanoparticles of glycine max seeds. Front Chem 2024; 12:1427797. [PMID: 39364440 PMCID: PMC11447554 DOI: 10.3389/fchem.2024.1427797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Soybean is a rich source of bioactive components with good nutritional support and is easily available. In the treatment of cancer, green synthesis of silver nanoparticles (AgNPs) from plant-based samples has gained attentions due to its potency and feasibility. In the present study, using soybean extracts (GM), silver nanoparticles are synthesized and analyzed for their anticancer potency. Methods The synthesized GM-AgNPs were characterized via UV-Vis spectroscopy, Fourier transform-infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) techniques for further analysis. Antibacterial activity was evaluated using the disc method and anti-hemolysis activity using the in vitro method, followed by anticancer property evaluation by cytotoxicity, cell migration, apoptosis, and cell cycle. Results and discussion Our results showed that the synthesized GM-AgNPs were spiral-shaped with a size range of 5-50 nm. The antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae showed the maximum zone of inhibition at 250 μg/mL in comparison with gentamicin. On exploring the anti-hemolysis efficiency, at 200 μg/mL, GM-AgNPs showed no hemolysis in comparison to the extract which showed 40% hemolysis. On analysis of GM-AgNPs against the breast cancer cell line, the nanoparticles displayed the IC50 value of 74.04 μg/mL. Furthermore, at the IC50 concentration, cancer cell migration was reduced. The mechanism of action of GM-AgNPs confirmed the initiation of apoptosis and cell cycle arrest in the sub-G0/G1 (growth phase) phase by 48.19%. In gene expression and protein expression analyses, Bax and Bcl-2 were altered to those of normal physiology.
Collapse
Affiliation(s)
- K B Vijendra Kumar
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | | | - Prasanna D Shivaramu
- Department of Applied Sciences, Vishveshvaraya Technical University, Chikkaballapura, India
| | - C M Hemanth Kumar
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | - H R Prakruthi
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | - B M Chandra Shekara
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - K C Prakasha
- Department of Chemistry, KLE Society's PC Jabin Science College, Huballi, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
47
|
Zhang J, He W, Liu D, Zhang W, Qin H, Zhang S, Cheng A, Li Q, Wang F. Phosphoenolpyruvate carboxykinase 2-mediated metabolism promotes lung tumorigenesis by inhibiting mitochondrial-associated apoptotic cell death. Front Pharmacol 2024; 15:1434988. [PMID: 39193344 PMCID: PMC11347759 DOI: 10.3389/fphar.2024.1434988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background It is unknown how cancer cells override apoptosis and maintain progression under nutrition-deprived conditions within the tumor microenvironment. Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting reaction in gluconeogenesis, which is an essential metabolic alteration that is required for the proliferation of cancer cells under glucose-limited conditions. However, if PCK-mediated gluconeogenesis affects apoptotic cell death of non small cell lung cancer (NSCLC) and its potential mechanisms remain unknown. Methods RNA-seq, Western blot and RT-PCR were performed in A549 cell lines cultured in medium containing low or high concentrations of glucose (1 mM vs. 20 mM) to gain insight into how cancer cells rewire their metabolism under glucose-restriction conditions. Stable isotope tracing metabolomics technology (LC-MS) was employed to allow precise quantification of metabolic fluxes of the TCA cycle regulated by PCK2. Flow Cytometry was used to assess the rates of early and later apoptosis and mitochondrial ROS in NSCLC cells. Transwell assays and luciferase-based in vivo imaging were used to determine the role of PCK2 in migration and invasion of NSCLC cells. Xenotransplants on BALB/c nude mice to evaluate the effects of PCK2 on tumor growth in vivo. Western blot, Immunohistochemistry and TUNEL assays to evaluate the protein levels of mitochondrial apoptosis. Results This study report that the mitochondrial resident PCK (PCK2) is upregulated in dependent of endoplasmic reticulum stress-induced expression of activating transcription factor 4 (ATF4) upon glucose deprivation in NSCLC cells. Further, the study finds that PCK2-mediated metabolism is required to decrease the burden of the TCA cycles and oxidative phosphorylation as well as the production of mitochondrial reactive oxygen species. These metabolic alterations in turn reduce the activation of Caspase9-Caspase3-PARP signal pathway which drives apoptotic cell death. Importantly, silencing PCK2 increases apoptosis of NSCLC cells under low glucose condition and inhibits tumor growth both in vitro and in vivo. Conclusion In summary, PCK2-mediated metabolism is an important metabolic adaptation for NSCLC cells to acquire resistance to apoptosis under glucose deprivation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjuan He
- School of Medicine, Tongji University, Shanghai, China
| | | | - Wenyu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Huan Qin
- School of Medicine, Tongji University, Shanghai, China
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ailan Cheng
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
48
|
McKeown JP, Byrne AJ, Bright SA, Charleton CE, Kandwal S, Čmelo I, Twamley B, McElligott AM, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Biochemical Evaluation of Ethanoanthracenes and Related Compounds: Antiproliferative and Pro-Apoptotic Effects in Chronic Lymphocytic Leukemia (CLL). Pharmaceuticals (Basel) 2024; 17:1034. [PMID: 39204139 PMCID: PMC11359702 DOI: 10.3390/ph17081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow and spleen. We report the synthesis and antiproliferative effects of a series of novel ethanoanthracene compounds in CLL cell lines. Structural modifications were achieved via the Diels-Alder reaction of 9-(2-nitrovinyl)anthracene and 3-(anthracen-9-yl)-1-arylprop-2-en-1-ones (anthracene chalcones) with dienophiles, including maleic anhydride and N-substituted maleimides, to afford a series of 9-(E)-(2-nitrovinyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones, 9-(E)-3-oxo-3-phenylprop-1-en-1-yl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones and related compounds. Single-crystal X-ray analysis confirmed the structures of the novel ethanoanthracenes 23f, 23h, 24a, 24g, 25f and 27. The products were evaluated in HG-3 and PGA-1 CLL cell lines (representative of poor and good patient prognosis, respectively). The most potent compounds were identified as 20a, 20f, 23a and 25n with IC50 values in the ranges of 0.17-2.69 µM (HG-3) and 0.35-1.97 µM (PGA-1). The pro-apoptotic effects of the potent compounds 20a, 20f, 23a and 25n were demonstrated in CLL cell lines HG-3 (82-95%) and PGA-1 (87-97%) at 10 µM, with low toxicity (12-16%) observed in healthy-donor peripheral blood mononuclear cells (PBMCs) at concentrations representative of the compounds IC50 values for both the HG-3 and PGA-1 CLL cell lines. The antiproliferative effect of the selected compounds, 20a, 20f, 23a and 25n, was mediated through ROS flux with a marked increase in cell viability upon pretreatment with the antioxidant NAC. 25n also demonstrated sub-micromolar activity in the NCI 60 cancer cell line panel, with a mean GI50 value of 0.245 µM. This ethanoanthracene series of compounds offers potential for the further development of lead structures as novel chemotherapeutics to target CLL.
Collapse
Affiliation(s)
- James P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Clara E. Charleton
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Ivan Čmelo
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 P3X2 Dublin, Ireland
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
49
|
Chiu FC, Kuo HM, Yu CL, Selvam P, Su IL, Tseng CC, Yuan CH, Wen ZH. Marine-derived antimicrobial peptide piscidin-1 triggers extrinsic and intrinsic apoptosis in oral squamous cell carcinoma through reactive oxygen species production and inhibits angiogenesis. Free Radic Biol Med 2024; 220:28-42. [PMID: 38679300 DOI: 10.1016/j.freeradbiomed.2024.04.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cancer of the head and neck encompasses a wide range of cancers, including oral and oropharyngeal cancers. Oral cancer is often diagnosed at advanced stages and has a dismal prognosis. Piscidin-1, a marine antimicrobial peptide (AMP) containing approximately 22 amino acids, also exhibits significant anticancer properties. We investigated the possible anti-oral cancer effects of piscidin-1 and clarified the mechanisms underlying these effects. We treated the oral squamous cell carcinoma cell lines OC2 and SCC4 with piscidin-1. Cell viability and the expression of different hallmark apoptotic molecules, including reactive oxygen species (ROS), were tested using the appropriate MTT assay, flow cytometry and western blotting assays, and human umbilical vein endothelial cell (HUVEC) wound healing, migration, and tube formation (angiogenesis) assays. Piscidin-1 increases cleaved caspase 3 levels to induce apoptosis. Piscidin-1 also increases ROS levels and intensifies oxidative stress in the endoplasmic reticulum and mitochondria, causing mitochondrial dysfunction. Additionally, it decreases the oxygen consumption rates and activity of mitochondrial complexes I-V. As expected, the antioxidants MitoTEMPOL and N-acetylcysteine reduce piscidin-1-induced ROS generation and intracellular calcium accumulation. Piscidin-1 also inhibits matrix metalloproteinase (MMP)-2/-9 expression in HUVECs, affecting migration and tube formation angiogenesis. We demonstrated that piscidin-1 can promote apoptosis via both intrinsic and extrinsic apoptotic pathways and findings indicate that piscidin-1 has anti-proliferative and anti-angiogenic properties in oral cancer treatment. Our study on piscidin-1 thus provides a basis for future translational anti-oral cancer drug research and a new theoretical approach for anti-oral cancer clinical research.
Collapse
Affiliation(s)
- Fu-Ching Chiu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833301, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - I-Li Su
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung, 92842, Taiwan
| | - Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
| | - Chien-Han Yuan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan; Department of Otolaryngology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
50
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|