1
|
Xiu J, Xue R, Duan X, Yao F, Liu X, Meng F, Xiong C, Huang J. Mechanical characterization of nonlinear elasticity of growing intestinal organoids with a microinjection method. Acta Biomater 2025; 196:271-280. [PMID: 40032216 DOI: 10.1016/j.actbio.2025.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Mechanical properties of intestinal organoids are crucial for intestinal development, homeostatic renewal, and pathogenesis. However, characterizing these properties remains challenging. Here, we developed a microinjection-based method to quantify the growth time-dependent nonlinear elasticity of intestinal organoids. With aid of the neo-Hookean hyperelastic constitutive model, we discovered that the global elastic modulus of intestinal organoids increased linearly during the early stages of culture, followed by a sharp rise, indicating a time-dependent nonlinear hardening behaviour during growth. The global modulus of intestinal organoids was found to correlate with the cell phenotype ratio, revealing a significant relationship between mechanical properties and biological phenotypes. Furthermore, we developed a biomechanical model on the basis of the unsteady Bernoulli equation to quantitatively explore the global mechanical responses of intestinal organoids, which showed good agreement with the experimental data. The work not only elucidated the mechanical response and modulus characteristics of small intestinal organoids from a biomechanical perspective, but also presented a new microinjection-based methodology for quantifying the mechanical properties of organoids, offering significant potential for various organoid-related applications. STATEMENT OF SIGNIFICANCE: Mechanical properties of intestinal organoids are essential for intestinal development, homeostatic renewal, and pathogenesis. However, how to quantitatively characterize their global mechanical properties remains challenging. Here, we developed a new microinjection-based experimental platform to quantify spatiotemporal dynamics of mechanical responses and global elasticity of intestinal organoids. Unlike traditional nanoindentation methods, the proposed characterization technique can quantitatively measure the global mechanical properties of organoids, which is crucial for detecting the inherent relationship between the global mechanical properties and the biological phenotypes of organoids. Likewise, it established a methodological foundation for revealing the mechanobiological characteristics associated with the growth and development of various organoids. This can enhance our understanding of mechanobiological mechanisms of organoids and is beneficial for various organoid-related applications.
Collapse
Affiliation(s)
- Jidong Xiu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Fangyun Yao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Fanlu Meng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Gao Q, Wang M, Hou X, Li M, Li L. Substrate stiffness modulates osteogenic and adipogenic differentiation of osteosarcoma through PIEZO1 mediated signaling pathway. Cell Signal 2025; 127:111601. [PMID: 39798771 DOI: 10.1016/j.cellsig.2025.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Most osteosarcoma (OS) cases exhibit poor differentiation at the histopathological level. Disruption of the normal osteogenic differentiation process results in the unregulated proliferation of precursor cells, which is a critical factor in the development of OS. Differentiation therapy aims to slow disease progression by restoring the osteogenic differentiation process of OS cells and is considered a new approach to treating OS. However, there are currently few studies on the mechanism of differentiation of OS, which puts the development of differentiation therapeutic drugs into a bottleneck. Substrate stiffness can regulate differentiation in mesenchymal stem cells. Evidence supports that mesenchymal stem cells and osteoblast precursors are the origin of OS. In this study, we simulated different stiffnesses in vitro to investigate the mechanism of substrate stiffness affecting differentiation of OS. We demonstrate that Piezo type mechanosensitive ion channel component 1 (PIEZO1) plays a critical regulatory role in sensing substrate stiffness in osteogenic and adipogenic differentiation of OS. When OS cells are cultured on the stiff substrate, integrin subunit beta 1 (ITGB1) increases and cooperates with PIEZO1 to promote Yes-Associated Protein (YAP) entering the nucleus, and may inhibit EZH2, thereby inhibiting H3K27me3 and increasing RUNX2 expression, and cells differentiate toward osteogenesis. Our results provide new insights for research on differentiation treatment of OS and are expected to help identify new targets for future drug design.
Collapse
Affiliation(s)
- Qingyuan Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiangyi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
3
|
Choisez A, Ishihara S, Ishii T, Xu Y, Firouzjah SD, Haga H, Nagatomi R, Kusuyama J. Matrix stiffness regulates the triad communication of adipocytes/macrophages/endothelial cells through CXCL13. J Lipid Res 2024; 65:100620. [PMID: 39151591 PMCID: PMC11406362 DOI: 10.1016/j.jlr.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
Adipose tissue remodeling and plasticity are dynamically regulated by the coordinated functions of adipocytes, macrophages, and endothelial cells and extracellular matrix (ECM) that provides stiffness networks in adipose tissue component cells. Inflammation and fibrosis are crucial exogenous factors that dysregulate adipose tissue functions and drastically change the mechanical properties of the ECM. Therefore, communication among the ECM and adipose tissue component cells is necessary to understand the multifaceted functions of adipose tissues. To obtain in vivo stiffness, we used genipin as a crosslinker for collagen gels. Meanwhile, we isolated primary adipocytes, macrophages, and endothelial cells from C57BL/6J mice and incubated these cells in the differentiation media on temperature-responsive culture dishes. After the differentiation, these cell sheets were transferred onto genipin-crosslinked collagen gels with varying matrix stiffness. We found that inflammatory gene expressions were induced by hard matrix, whereas antiinflammatory gene expressions were promoted by soft matrix in all three types of cells. Interestingly, the coculture experiments of adipocytes, macrophages, and endothelial cells showed that the effects of soft or hard matrix stiffness stimulation on adipocytes were transmitted to the distant adipose tissue component cells, altering their gene expression profiles under normal matrix conditions. Finally, we identified that a hard matrix induces the secretion of CXCL13 from adipocytes, and CXCL13 is one of the important transmitters for stiffness communication with macrophages and endothelial cells. These findings provide insight into the mechanotransmission into distant cells and the application of stiffness control for chronic inflammation in adipose tissues with metabolic dysregulation.
Collapse
Affiliation(s)
- Arthur Choisez
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takuro Ishii
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai, Japan
| | - Sepideh D Firouzjah
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryoichi Nagatomi
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
4
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
6
|
Islam MS, Molley TG, Hung TT, Sathish CI, Putra VDL, Jalandhra GK, Ireland J, Li Y, Yi J, Kruzic JJ, Kilian KA. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37643902 DOI: 10.1021/acsami.3c07021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
Collapse
Affiliation(s)
- Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - C I Sathish
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vina D L Putra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Jake Ireland
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yancheng Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiabao Yi
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
8
|
Li D, Janmey PA, Wells RG. Local fat content determines global and local stiffness in livers with simple steatosis. FASEB Bioadv 2023; 5:251-261. [PMID: 37287868 PMCID: PMC10242205 DOI: 10.1096/fba.2022-00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023] Open
Abstract
Fat accumulation during liver steatosis precedes inflammation and fibrosis in fatty liver diseases, and is associated with disease progression. Despite a large body of evidence that liver mechanics play a major role in liver disease progression, the effect of fat accumulation by itself on liver mechanics remains unclear. Thus, we conducted ex vivo studies of liver mechanics in rodent models of simple steatosis to isolate and examine the mechanical effects of intrahepatic fat accumulation, and found that fat accumulation softens the liver. Using a novel adaptation of microindentation to permit association of local mechanics with microarchitectural features, we found evidence that the softening of fatty liver results from local softening of fatty regions rather than uniform softening of the liver. These results suggest that fat accumulation itself exerts a softening effect on liver tissue. This, along with the localized heterogeneity of softening within the liver, has implications in what mechanical mechanisms are involved in the progression of liver steatosis to more severe pathologies and disease. Finally, the ability to examine and associate local mechanics with microarchitectural features is potentially applicable to the study of the role of heterogeneous mechanical microenvironments in both other liver pathologies and other organ systems.
Collapse
Affiliation(s)
- David Li
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- NSF Science and Technology Center for Engineering MechanoBiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul A. Janmey
- NSF Science and Technology Center for Engineering MechanoBiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PhysiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca G. Wells
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- NSF Science and Technology Center for Engineering MechanoBiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
He F, Yang C, Liu H, Wang J. Changes in the mechanical properties of human mesenchymal stem cells during differentiation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220607. [PMID: 36636310 PMCID: PMC9810430 DOI: 10.1098/rsos.220607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A thorough understanding of the changes in mechanical property behind intracellular biophysical and biochemical processes during differentiation of human mesenchymal stem cells (hMSCs) is helpful to direct and enhance the commitment of cells to a particular lineage. In this study, displacement creep of the mesenchymal cell lineages (osteogenic, chondrogenic and adipogenic hMSCs) were determined by using atomic force microscopy, which was then used to determine their mechanical properties. We found that at any stages of differentiation, the mesenchymal cell lineages are linear viscoelastic materials and well matched with a simple power-law creep compliance. In addition, the viscoelasticity of mesenchymal cell lineages showed different trends during differentiation. The adipogenic hMSCs showed continuous softening at all stages. The osteogenic and chondrogenic hMSCs only continuously soften and become more fluid-like in the early stage of differentiation, and get stiffened and less fluid-like in the later stage. These findings will help more accurately imitate cellular biomechanics in the microenvironment, and provided an important reference in the biophysics biomimetic design of stem cell differentiation.
Collapse
Affiliation(s)
- Fei He
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Chendong Yang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Haoye Liu
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
10
|
Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, Escolano JC, Müller T, Braun J, Wabitsch M, Tschöp M, Sack I, Brankatschk M, Guck J, Stemmer K, Taubenberger AV. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep 2022; 12:10325. [PMID: 35725987 PMCID: PMC9209483 DOI: 10.1038/s41598-022-13324-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.
Collapse
Affiliation(s)
- Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Petra Kotzbeck
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Torsten Müller
- JPK Instruments/Bruker, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Wabitsch
- Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marko Brankatschk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Molecular Cell Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Li X, Jin Y, Shi J, Sun X, Ouyang Q, Luo C. A high throughput microfluidic system with large ranges of applied pressures for measuring the mechanical properties of single fixed cells and differentiated cells. BIOMICROFLUIDICS 2022; 16:034102. [PMID: 35547183 PMCID: PMC9075862 DOI: 10.1063/5.0085876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 05/05/2023]
Abstract
The mechanical properties of cells are of great significance to their normal physiological activities. The current methods used for the measurement of a cell's mechanical properties have the problems of complicated operation, low throughput, and limited measuring range. Based on micropipette technology, we designed a double-layer micro-valve-controlled microfluidic chip with a series of micropipette arrays. The chip has adjustment pressure ranges of 0.03-1 and 0.3-10 kPa and has a pressure stabilization design, which can achieve a robust measurement of a single cell's mechanical properties under a wide pressure range and is simple to operate. Using this chip, we measured the mechanical properties of the cells treated with different concentrations of paraformaldehyde (PFA) and observed that the viscoelasticity of the cells gradually increased as the PFA concentration increased. Then, this method was also used to characterize the changes in the mechanical properties of the differentiation pathways of stem cells from the apical papilla to osteogenesis.
Collapse
Affiliation(s)
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Xiaoqiang Sun
- The Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
12
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
13
|
Meng H, Chowdhury TT, Gavara N. The Mechanical Interplay Between Differentiating Mesenchymal Stem Cells and Gelatin-Based Substrates Measured by Atomic Force Microscopy. Front Cell Dev Biol 2021; 9:697525. [PMID: 34235158 PMCID: PMC8255986 DOI: 10.3389/fcell.2021.697525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional methods to assess hMSCs differentiation typically require long-term culture until cells show marked expression of histological markers such as lipid accumulation inside the cytoplasm or mineral deposition onto the surrounding matrix. In parallel, stem cell differentiation has been shown to involve the reorganization of the cell’s cytoskeleton shortly after differentiation induced by soluble factors. Given the cytoskeleton’s role in determining the mechanical properties of adherent cells, the mechanical characterization of stem cells could thus be a potential tool to assess cellular commitment at much earlier time points. In this study, we measured the mechanical properties of hMSCs cultured on soft gelatin-based hydrogels at multiple time points after differentiation induction toward adipogenic or osteogenic lineages. Our results show that the mechanical properties of cells (stiffness and viscosity) and the organization of the actin cytoskeleton are highly correlated with lineage commitment. Most importantly, we also found that the mechanical properties and the topography of the gelatin substrate in the vicinity of the cells are also altered as differentiation progresses toward the osteogenic lineage, but not on the adipogenic case. Together, these results confirm the biophysical changes associated with stem cell differentiation and suggest a mechanical interplay between the differentiating stem cells and their surrounding extracellular matrix.
Collapse
Affiliation(s)
- Hongxu Meng
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Tina T Chowdhury
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.,Unit of Biophysics and Bioengineering, Medical School, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
15
|
Influence of Mesenchymal Stem Cell Sources on Their Regenerative Capacities on Different Surfaces. Cells 2021; 10:cells10020481. [PMID: 33672328 PMCID: PMC7927066 DOI: 10.3390/cells10020481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Current gold-standard strategies for bone regeneration do not achieve the optimal recovery of bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells-such as mesenchymal stem cells (MSCs)-and bioactive ceramic scaffolds-such as calcium phosphate-based (CaPs) bioceramics-seem promising. The biological properties of MSCs are influenced by the tissue source. This study aims to define the optimal MSC source and construct (i.e., the MSC-CaP combination) for clinical application in bone regeneration. A previous iTRAQ analysis generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. MSCs were isolated from adipose tissue, bone marrow, and dental pulp, then cultured both on a plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate), to compare their biological features. On plastic, MSCs isolated from dental pulp (DPSCs) presented the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs demonstrated the greatest capacity to colonise the bioceramics. Furthermore, the results demonstrated a trend that DPSCs had the most robust increase in ALP activity. Regarding CaPs, β-tricalcium phosphate obtained the best viability results, while hydroxyapatite had the highest ALP activity values. Therefore, we propose DPSCs as suitable MSCs for cell-based bone regeneration strategies.
Collapse
|
16
|
Tabatabaei M, Tafazzoli-Shadpour M, Khani MM. Altered mechanical properties of actin fibers due to breast cancer invasion: parameter identification based on micropipette aspiration and multiscale tensegrity modeling. Med Biol Eng Comput 2021; 59:547-560. [PMID: 33559086 DOI: 10.1007/s11517-021-02318-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022]
Abstract
The biophysical properties of cells change with cancer invasion to fulfill their metastatic behavior. Cell softening induced by cancer is highly associated with alterations in cytoskeleton fibers. Changes in the mechanical properties of cytoskeletal fibers have not been quantified due to technical limitations. In this study, we used the micropipette aspiration technique to calculate and compare the viscoelastic properties of non-invasive and invasive breast cancer cells. We evaluated the mechanical properties of actin fibers and microtubules of two cancerous cell lines by using multiscale tensegrity modeling and an optimization method. Cancer invasion caused altered viscoelastic behavior of cells and the results of modeling showed changes in mechanical properties of major cytoskeleton fibers. The stiffness and viscosity constant of actin fibers in non-invasive cells were 1.28 and 2.27 times higher than those of the invasive cells, respectively. However, changes in mechanical properties of microtubules were minor. Immunofluorescent staining of fibers and their quantified distributions confirmed altered actin distribution among two cell lines, in contrast to microtubule distribution. This study highlights the function of cytoskeletal fibers in cancer progression, which could be of interest in designing therapeutic strategies to target cancer progress. Firstly, the viscoelastic behavior of non-invasive and invasive cells is examined with micropipette aspiration tests. A tensegrity model of cells is developed to mimic the viscoelastic behavior of cells, and tensegrity element stiffness is evaluated in an optimization procedure based on micropipette aspiration tests. Finally, by using immunofluorescent staining and confocal imaging, mechanical properties of actin filaments and microtubules of cancer cells are investigated during the course of metastasis.
Collapse
Affiliation(s)
- Mohammad Tabatabaei
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohammad Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ombid RJL, Oyong GG, Cabrera EC, Espulgar WV, Saito M, Tamiya E, Pobre RF. In-vitro study of monocytic THP-1 leukemia cell membrane elasticity with a single-cell microfluidic-assisted optical trapping system. BIOMEDICAL OPTICS EXPRESS 2020; 11:6027-6037. [PMID: 33150003 PMCID: PMC7587289 DOI: 10.1364/boe.402526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
We studied the elastic profile of monocytic THP-1 leukemia cells using a microfluidic-assisted optical trap. A 2-µm fused silica bead was optically trapped to mechanically dent an immobilized single THP-1 monocyte sieved on a 15-µm microfluidic capture chamber. Cells treated with Zeocin and untreated cells underwent RT-qPCR analysis to determine cell apoptosis through gene expression in relation to each cell's deformation profile. Results showed that untreated cells with 43.05 ± 6.68 Pa are more elastic compared to the treated cells with 15.81 ± 2.94 Pa. THP-1 monocyte's elastic modulus is indicative of cell apoptosis shown by upregulated genes after Zeocin treatment. This study clearly showed that the developed technique can be used to distinguish between cells undergoing apoptosis and cells not undergoing apoptosis and which may apply to the study of other cells and other cell states as well.
Collapse
Affiliation(s)
- Ric John L. Ombid
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Optics and Instrumentation Physics Laboratory, Physics Department, DLSU, Manila, Philippines
| | - Glenn G. Oyong
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Molecular Science Unit Laboratory, CENSER, DLSU, Manila, Philippines
| | - Esperanza C. Cabrera
- Biology Department, DLSU, Manila, Philippines
- Molecular Science Unit Laboratory, CENSER, DLSU, Manila, Philippines
| | - Wilfred V. Espulgar
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center, Osaka University, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center, Osaka University, Osaka 565-0871, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Romeric F. Pobre
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Optics and Instrumentation Physics Laboratory, Physics Department, DLSU, Manila, Philippines
| |
Collapse
|
18
|
Guo A, Wang B, Lyu C, Li W, Wu Y, Zhu L, Bi R, Huang C, Li JJ, Du Y. Consistent apparent Young's modulus of human embryonic stem cells and derived cell types stabilized by substrate stiffness regulation promotes lineage specificity maintenance. CELL REGENERATION 2020; 9:15. [PMID: 32880028 PMCID: PMC7467757 DOI: 10.1186/s13619-020-00054-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Apparent Young's modulus (AYM), which reflects the fundamental mechanical property of live cells measured by atomic force microscopy and is determined by substrate stiffness regulated cytoskeletal organization, has been investigated as potential indicators of cell fate in specific cell types. However, applying biophysical cues, such as modulating the substrate stiffness, to regulate AYM and thereby reflect and/or control stem cell lineage specificity for downstream applications, remains a primary challenge during in vitro stem cell expansion. Moreover, substrate stiffness could modulate cell heterogeneity in the single-cell stage and contribute to cell fate regulation, yet the indicative link between AYM and cell fate determination during in vitro dynamic cell expansion (from single-cell stage to multi-cell stage) has not been established. RESULTS Here, we show that the AYM of cells changed dynamically during passaging and proliferation on substrates with different stiffness. Moreover, the same change in substrate stiffness caused different patterns of AYM change in epithelial and mesenchymal cell types. Embryonic stem cells and their derived progenitor cells exhibited distinguishing AYM changes in response to different substrate stiffness that had significant effects on their maintenance of pluripotency and/or lineage-specific characteristics. On substrates that were too rigid or too soft, fluctuations in AYM occurred during cell passaging and proliferation that led to a loss in lineage specificity. On a substrate with 'optimal' stiffness (i.e., 3.5 kPa), the AYM was maintained at a constant level that was consistent with the parental cells during passaging and proliferation and led to preservation of lineage specificity. The effects of substrate stiffness on AYM and downstream cell fate were correlated with intracellular cytoskeletal organization and nuclear/cytoplasmic localization of YAP. CONCLUSIONS In summary, this study suggests that optimal substrate stiffness regulated consistent AYM during passaging and proliferation reflects and contributes to hESCs and their derived progenitor cells lineage specificity maintenance, through the underlying mechanistic pathways of stiffness-induced cytoskeletal organization and the downstream YAP signaling. These findings highlighted the potential of AYM as an indicator to select suitable substrate stiffness for stem cell specificity maintenance during in vitro expansion for regenerative applications.
Collapse
Affiliation(s)
- Anqi Guo
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bingjie Wang
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yaozu Wu
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, 63130, USA
| | - Lu Zhu
- Institute of Systems Engineering, Academy of Military Sciences, Beijing, 100071, China
| | - Ran Bi
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jiao Jiao Li
- Kolling Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanan Du
- Department of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Lim HG, Liu HC, Yoon CW, Jung H, Kim MG, Yoon C, Kim HH, Shung KK. Investigation of cell mechanics using single-beam acoustic tweezers as a versatile tool for the diagnosis and treatment of highly invasive breast cancer cell lines: an in vitro study. MICROSYSTEMS & NANOENGINEERING 2020; 6:39. [PMID: 34567652 PMCID: PMC8433385 DOI: 10.1038/s41378-020-0150-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 05/27/2023]
Abstract
Advancements in diagnostic systems for metastatic cancer over the last few decades have played a significant role in providing patients with effective treatment by evaluating the characteristics of cancer cells. Despite the progress made in cancer prognosis, we still rely on the visual analysis of tissues or cells from histopathologists, where the subjectivity of traditional manual interpretation persists. This paper presents the development of a dual diagnosis and treatment tool using an in vitro acoustic tweezers platform with a 50 MHz ultrasonic transducer for label-free trapping and bursting of human breast cancer cells. For cancer cell detection and classification, the mechanical properties of a single cancer cell were quantified by single-beam acoustic tweezers (SBAT), a noncontact assessment tool using a focused acoustic beam. Cell-mimicking phantoms and agarose hydrogel spheres (AHSs) served to standardize the biomechanical characteristics of the cells. Based on the analytical comparison of deformability levels between the cells and the AHSs, the mechanical properties of the cells could be indirectly measured by interpolating the Young's moduli of the AHSs. As a result, the calculated Young's moduli, i.e., 1.527 kPa for MDA-MB-231 (highly invasive breast cancer cells), 2.650 kPa for MCF-7 (weakly invasive breast cancer cells), and 2.772 kPa for SKBR-3 (weakly invasive breast cancer cells), indicate that highly invasive cancer cells exhibited a lower Young's moduli than weakly invasive cells, which indicates a higher deformability of highly invasive cancer cells, leading to a higher metastasis rate. Single-cell treatment may also be carried out by bursting a highly invasive cell with high-intensity, focused ultrasound.
Collapse
Affiliation(s)
- Hae Gyun Lim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Hsiao-Chuan Liu
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Chi Woo Yoon
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Hayong Jung
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Min Gon Kim
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Hyung Ham Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - K. Kirk Shung
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
20
|
Yen MH, Chen YH, Liu YS, Lee OKS. Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy. Biochem Biophys Res Commun 2020; 526:827-832. [PMID: 32273088 DOI: 10.1016/j.bbrc.2020.03.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Mechanical properties of biological tissues are increasingly recognized as an important parameter for the indication of disease states as well as tissue homeostasis and regeneration. Multipotent mesenchymal stromal/stem cells (MSCs), which play important roles in bone formation and remodeling, are potential cell sources for regenerative medicine. However, the cellular mechanical properties of differentiating MSCs corresponding to the substrate stiffness has not been sufficiently studied. In this study, we used Atomic Force Microscopy (AFM) to measure changes of stiffness of human MSCs cultured in rigid Petri dish and on polyacrylamide (PA) substrates during osteogenic differentiation. The results showed that the Young's modulus of MSC cytoplasmic outer region increased over time during osteogenesis. There is a strong linear correlation between the osteogenic induction time and the Young's modulus of the cells cultured in rigid Petri dishes in the first 15 days after the induction; the Young's modulus approaches to a plateau after day 15. On the other hand, the Young's moduli of MSCs cultured on PA gels with stiffness of 7 kPa and 42 kPa also increase over time during osteogenic differentiation, but the inclination of such increase is much smaller than that of MSCs differentiating in rigid dishes. Herein, we established a protocol of AFM measurement to evaluate the maturation of stem cell osteogenic differentiation at the single cell level and could encourage further AFM applications in tissue engineering related to mechanobiology.
Collapse
Affiliation(s)
- Meng-Hua Yen
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan.
| | - Yu-Han Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Shiuan Liu
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Physiology and Pharmacology, Chang Gung University College of Medicine, and Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, and Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, Summers C, Guck J, Chilvers ER. The mechanics of myeloid cells. Biol Cell 2020; 112:103-112. [DOI: 10.1111/boc.201900084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen R Bashant
- Department of MedicineUniversity of Cambridge Cambridge UK
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | - Nicole Toepfner
- Center for Molecular and Cellular BioengineeringBiotechnology Center, Technische Universität Dresden Dresden Germany
- Department of PediatricsUniversity Clinic Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | | | - Nehal N Mehta
- National Heart Lung and Blood InstituteNational Institutes of Health Bethesda MD USA
| | - Mariana J Kaplan
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | | | - Jochen Guck
- Max‐Planck‐Institut für die Physik des Lichts & Max‐Planck‐Zentrum für Physik und Medizin Erlangen Germany
| | | |
Collapse
|
22
|
White CM, Haidekker MA, Kisaalita WS. Ratiometric Nanoviscometers: Applications for Measuring Cellular Physical Properties in 3D Cultures. SLAS Technol 2020; 25:234-246. [PMID: 31997709 DOI: 10.1177/2472630319901262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.
Collapse
Affiliation(s)
- Charles McRae White
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - Mark A Haidekker
- School of Electrical and Computer Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther 2019; 10:377. [PMID: 31805987 PMCID: PMC6896503 DOI: 10.1186/s13287-019-1498-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into several tissues, such as bone, cartilage, and fat. Glucocorticoids affect a variety of biological processes such as proliferation, differentiation, and apoptosis of various cell types, including osteoblasts, adipocytes, or chondrocytes. Glucocorticoids exert their function by binding to the glucocorticoid receptor (GR). Physiological concentrations of glucocorticoids stimulate osteoblast proliferation and promote osteogenic differentiation of MSCs. However, pharmacological concentrations of glucocorticoids can not only induce apoptosis of osteoblasts and osteocytes but can also reduce proliferation and inhibit the differentiation of osteoprogenitor cells. Several signaling pathways, including the Wnt, TGFβ/BMP superfamily and Notch signaling pathways, transcription factors, post-transcriptional regulators, and other regulators, regulate osteoblastogenesis and adipogenesis of MSCs mediated by GR. These signaling pathways target key transcription factors, such as Runx2 and TAZ for osteogenesis and PPARγ and C/EBPs for adipogenesis. Glucocorticoid-induced osteonecrosis and osteoporosis are caused by various factors including dysfunction of bone marrow MSCs. Transplantation of MSCs is valuable in regenerative medicine for the treatment of osteonecrosis of the femoral head, osteoporosis, osteogenesis imperfecta, and other skeletal disorders. However, the mechanism of inducing MSCs to differentiate toward the osteogenic lineage is the key to an efficient treatment. Thus, a better understanding of the molecular mechanisms behind the imbalance between GR-mediated osteoblastogenesis and adipogenesis of MSCs would not only help us to identify the pathogenic causes of glucocorticoid-induced osteonecrosis and osteoporosis but also promote future clinical applications for stem cell-based tissue engineering and regenerative medicine. Here, we primarily review the signaling mechanisms involved in adipogenesis and osteogenesis mediated by GR and discuss the factors that control the adipo-osteogenic balance.
Collapse
|
24
|
Sun S, Adyshev D, Dudek S, Paul A, McColloch A, Cho M. Cholesterol-dependent Modulation of Stem Cell Biomechanics: Application to Adipogenesis. J Biomech Eng 2019; 141:2729412. [PMID: 30901381 DOI: 10.1115/1.4043253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/08/2022]
Abstract
Cell mechanics has been shown to regulate stem cell differentiation. We have previously reported that altered cell stiffness of mesenchymal stem cells can delay or facilitate biochemically directed differentiation. One of the factors that can affect the cell stiffness is cholesterol. However, the effect of cholesterol on differentiation of human mesenchymal stem cells (hMSCs) remains elusive. In this paper, we demonstrate that cholesterol is involved in the modulation of the cell stiffness and subsequent adipogenic differentiation. Rapid cytoskeletal actin reorganization was evident and correlated with the cell's Young's modulus measured using atomic force microscopy (AFM). In addition, the level of membrane-bound cholesterol was found to increase during adipogenic differentiation and inversely varied with the cell stiffness. Furthermore, cholesterol played a key role in the regulation of the cell morphology and biomechanics, suggesting its crucial involvement in mechanotransduction. To better understand the underlying mechanisms, we investigated the effect of cholesterol on the membrane-cytoskeleton linker proteins (ezrin and moesin). Cholesterol depletion was found to up-regulate the ezrin expression which promoted cell spreading, increased Young's modulus, and hindered adipogenesis. In contrast, cholesterol enrichment increased the moesin expression, decreased Young's modulus, and induced cell rounding and facilitated adipogenesis. Taken together, cholesterol appears to regulate the stem cell mechanics and adipogenesis through the membrane-associated linker proteins.
Collapse
Affiliation(s)
- Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Djanybek Adyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Steve Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Amit Paul
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| |
Collapse
|
25
|
Parandakh A, Anbarlou A, Tafazzoli-Shadpour M, Ardeshirylajimi A, Khani MM. Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces 2019; 173:194-201. [PMID: 30292932 DOI: 10.1016/j.colsurfb.2018.09.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Substrate stiffness and topography are two powerful means by which mesenchymal stem cells (MSCs) activities can be modulated. The effects of substrate stiffness on the MSCs mechanical properties were investigated previously, however, the role of substrate topography in this regard is not yet well understood. Moreover, in vessel wall, these two physical cues act simultaneously to regulate cellular function, hence it is important to investigate their cooperative effects on cellular activity. Herein, we investigated the combined effects of substrate stiffness, substrate topography and culture time on the mechanical behavior of MSCs. The MSCs were cultured on the stiff and soft substrates with or without micro-grooved topography for 10 days and their viscoelastic properties and smooth muscle (SM) gene expression were investigated on days 2, 6 and 10. In general, substrate topography significantly interacted with substrate stiffness as well as culture time in the modulation of cell viscoelastic behavior and SM gene expression. The micro-grooved, stiff substrates resulted in the maximum cell stiffness and gene expression of α-actin and h1-calponin, and these values were detected to be minimum in the smooth, soft substrates. The findings can be helpful in the mechano-regulation of MSCs for vascular tissue engineering applications.
Collapse
Affiliation(s)
- Azim Parandakh
- Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Azadeh Anbarlou
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Parandakh A, Tafazzoli-Shadpour M, Ardeshirylajimi A, Khojasteh A, Khani MM. The effects of short-term uniaxial strain on the mechanical properties of mesenchymal stem cells upon TGF-β1 stimulation. In Vitro Cell Dev Biol Anim 2018; 54:677-686. [DOI: 10.1007/s11626-018-0289-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
|
27
|
Mohammadkarim A, Tabatabaei M, Parandakh A, Mokhtari-Dizaji M, Tafazzoli-Shadpour M, Khani MM. Radiation therapy affects the mechanical behavior of human umbilical vein endothelial cells. J Mech Behav Biomed Mater 2018; 85:188-193. [PMID: 29908486 DOI: 10.1016/j.jmbbm.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/21/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022]
Abstract
Radiation therapy has been widely utilized as an effective method to eliminate malignant tumors and cancerous cells. However, subjection of healthy tissues and the related networks of blood vessels adjacent to the tumor area to irradiation is inevitable. The aim of this study was to investigate the consequent effects of fractionation radiotherapy on the mechanical characteristics of human umbilical vein endothelial cells (HUVECs) through alterations in cytoskeleton organization and cell and nucleus morphology. In order to simulate the clinical condition of radiotherapy, the HUVECs were exposed to the specific dose of 2 Gy for 1-4 times among four groups with incremental total dose from 2 Gy up to 8 Gy. Fluorescence staining was performed to label F-actin filaments and nuclei. Micropipette aspiration and standard linear solid model were employed to evaluate the elastic and viscoelastic characteristics of the HUVECs. Radiotherapy significantly increased cell elastic moduli. Due to irradiation, instantaneous and equilibrium Young's modulus were also increased. Radiotherapy diminished HUVECs viscoelastic behavior and shifted their creep compliance curves downward. Furthermore, gamma irradiation elevated the nuclei sizes and to a lesser extent the cells sizes resulting in the accumulation of F-actin filaments within the rest of cell body. Endothelial stiffening correlates with endothelial dysfunction, hence the results may be helpful when the consequent effects of radiotherapy are the focus of concern.
Collapse
Affiliation(s)
- Alireza Mohammadkarim
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Tabatabaei
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azim Parandakh
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Graf C, Nordmeyer D, Sengstock C, Ahlberg S, Diendorf J, Raabe J, Epple M, Köller M, Lademann J, Vogt A, Rancan F, Rühl E. Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1506-1519. [PMID: 29272915 DOI: 10.1021/acs.langmuir.7b03126] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cellular uptake and dissolution of trigonal silver nanoprisms (edge length 42 ± 15 nm, thickness 8 ± 1 nm) and mostly spherical silver nanoparticles (diameter 70 ± 25 nm) in human mesenchymal stem cells (hMSC's) and human keratinocytes (HaCaT cells) were investigated. Both particles are stabilized by polyvinylpyrrolidone (PVP), with the prisms additionally stabilized by citrate. The nanoprisms dissolved slightly in pure water but strongly in isotonic saline or at pH 4, corresponding to the lowest limit for the pH during cellular uptake. The tips of the prisms became rounded within minutes due to their high surface energy. Afterward, the dissolution process slowed down due to the presence of both PVP stabilizing Ag{100} sites and citrate blocking Ag{111} sites. On the contrary, nanospheres, solely stabilized by PVP, dissolved within 24 h. These results correlate with the finding that particles in both cell types have lost >90% of their volume within 24 h. hMSC's took up significantly more Ag from nanoprisms than from nanospheres, whereas HaCaT cells showed no preference for one particle shape. This can be rationalized by the large cellular interaction area of the plateletlike nanoprisms and the bending stiffness of the cell membranes. hMSC's have a highly flexible cell membrane, resulting in an increased uptake of plateletlike particles. HaCaT cells have a membrane with a 3 orders of magnitude higher Young's modulus than for hMSC. Hence, the energy gain due to the larger interaction area of the nanoprisms is compensated for by the higher energy needed for cell membrane deformation compared to that for spheres, leading to no shape preference.
Collapse
Affiliation(s)
- Christina Graf
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| | - Daniel Nordmeyer
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| | - Christina Sengstock
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Sebastian Ahlberg
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Jörg Diendorf
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen , 45117 Essen, Germany
| | - Jörg Raabe
- Swiss Light Source, Paul Scherrer Institut , 5232 Villigen, Switzerland
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen , 45117 Essen, Germany
| | - Manfred Köller
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum , 44789 Bochum, Germany
| | - Jürgen Lademann
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | - Eckart Rühl
- Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
29
|
Urbanska M, Winzi M, Neumann K, Abuhattum S, Rosendahl P, Müller P, Taubenberger A, Anastassiadis K, Guck J. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development 2017; 144:4313-4321. [DOI: 10.1242/dev.155218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.
Collapse
Affiliation(s)
- Marta Urbanska
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Maria Winzi
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Shada Abuhattum
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
- JPK Instruments AG, Colditzstraße 34-36, Berlin 12099, Germany
| | - Philipp Rosendahl
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Paul Müller
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Anna Taubenberger
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Jochen Guck
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| |
Collapse
|
30
|
Kräter M, Jacobi A, Otto O, Tietze S, Müller K, Poitz DM, Palm S, Zinna VM, Biehain U, Wobus M, Chavakis T, Werner C, Guck J, Bornhauser M. Bone marrow niche-mimetics modulate HSPC function via integrin signaling. Sci Rep 2017; 7:2549. [PMID: 28566689 PMCID: PMC5451425 DOI: 10.1038/s41598-017-02352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
Collapse
Affiliation(s)
- Martin Kräter
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Angela Jacobi
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, 17489, Germany
| | - Stefanie Tietze
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Katrin Müller
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - David M Poitz
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Sandra Palm
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Valentina M Zinna
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Ulrike Biehain
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Manja Wobus
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Saxony, 01307, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martin Bornhauser
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany.
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany.
| |
Collapse
|
31
|
Tsouknidas A, Jimenez-Rojo L, Karatsis E, Michailidis N, Mitsiadis TA. A Bio-Realistic Finite Element Model to Evaluate the Effect of Masticatory Loadings on Mouse Mandible-Related Tissues. Front Physiol 2017; 8:273. [PMID: 28536534 PMCID: PMC5422518 DOI: 10.3389/fphys.2017.00273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Mice are arguably the dominant model organisms for studies investigating the effect of genetic traits on the pathways to mammalian skull and teeth development, thus being integral in exploring craniofacial and dental evolution. The aim of this study is to analyse the functional significance of masticatory loads on the mouse mandible and identify critical stress accumulations that could trigger phenotypic and/or growth alterations in mandible-related structures. To achieve this, a 3D model of mouse skulls was reconstructed based on Micro Computed Tomography measurements. Upon segmenting the main hard tissue components of the mandible such as incisors, molars and alveolar bone, boundary conditions were assigned on the basis of the masticatory muscle architecture. The model was subjected to four loading scenarios simulating different feeding ecologies according to the hard or soft type of food and chewing or gnawing biting movement. Chewing and gnawing resulted in varying loading patterns, with biting type exerting a dominant effect on the stress variations experienced by the mandible and loading intensity correlating linearly to the stress increase. The simulation provided refined insight on the mechanobiology of the mouse mandible, indicating that food consistency could influence micro evolutionary divergence patterns in mandible shape of rodents.
Collapse
Affiliation(s)
- Alexander Tsouknidas
- Laboratory of Mechanical Engineering Systems, Department of Mechanical Engineering, University of Western MacedoniaKozani, Greece.,Physical Metallurgy Laboratory, Department of Mechanical Engineering, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Lucia Jimenez-Rojo
- Orofacial Development and Regeneration, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| | | | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Department of Mechanical Engineering, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, ZZM, University of ZurichZurich, Switzerland
| |
Collapse
|
32
|
Virjula S, Zhao F, Leivo J, Vanhatupa S, Kreutzer J, Vaughan TJ, Honkala AM, Viehrig M, Mullen CA, Kallio P, McNamara LM, Miettinen S. The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells. J Mech Behav Biomed Mater 2017; 72:38-48. [PMID: 28448920 DOI: 10.1016/j.jmbbm.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentiation and mechanical properties of hASCs. Tailor-made, pneumatic cell stretching devices were used to expose hASCs to cyclic equiaxial stretching in osteogenic medium. Cell attachment and focal adhesions were visualised using immunocytochemical vinculin staining on days 3 and 6, and the proliferation and alkaline phosphatase activity, as a sign of early osteogenic differentiation, were analysed on days 0, 6 and 10. Furthermore, the mechanical properties of hASCs, in terms of apparent Young's modulus and normalised contractility, were obtained using a combination of atomic force microscopy based indentation and computational approaches. Our results indicated that cyclic equiaxial stretching delayed proliferation and promoted osteogenic differentiation of hASCs. Stretching also reduced cell size and intensified focal adhesions and actin cytoskeleton. Moreover, cell stiffening was observed during osteogenic differentiation and especially under mechanical stimulation. These results suggest that cyclic equiaxial stretching modifies cell morphology, focal adhesion formation and mechanical properties of hASCs. This could be exploited to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Sanni Virjula
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Feihu Zhao
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Joni Leivo
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Joose Kreutzer
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Anna-Maija Honkala
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Marlitt Viehrig
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Conleth A Mullen
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Pasi Kallio
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| |
Collapse
|
33
|
Sharma P, Bolten ZT, Wagner DR, Hsieh AH. Deformability of Human Mesenchymal Stem Cells Is Dependent on Vimentin Intermediate Filaments. Ann Biomed Eng 2017; 45:1365-1374. [PMID: 28091965 DOI: 10.1007/s10439-016-1787-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/31/2016] [Indexed: 01/04/2023]
Abstract
Mesenchymal stem cells (MSCs) are being studied extensively due to their potential as a therapeutic cell source for many load-bearing tissues. Compression of tissues and the subsequent deformation of cells are just one type physical strain MSCs will need to withstand in vivo. Mechanotransduction by MSCs and their mechanical properties are partially controlled by the cytoskeleton, including vimentin intermediate filaments (IFs). Vimentin IF deficiency has been tied to changes in mechanosensing and mechanical properties of cells in some cell types. However, how vimentin IFs contribute to MSC deformability has not been comprehensively studied. Investigating the role of vimentin IFs in MSC mechanosensing and mechanical properties will assist in functional understanding and development of MSC therapies. In this study, we examined vimentin IFs' contribution to MSCs' ability to deform under external deformation using RNA interference. Our results indicate that a deficient vimentin IF network decreases the deformability of MSCs, and that this may be caused by the remaining cytoskeletal network compensating for the vimentin IF network alteration. Our observations introduce another piece of information regarding how vimentin IFs are involved in the complex role the cytoskeleton plays in the mechanical properties of cells.
Collapse
Affiliation(s)
- Poonam Sharma
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Zachary T Bolten
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Diane R Wagner
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Department of Orthopaedics, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
34
|
Beerling E, Oosterom I, Voest E, Lolkema M, van Rheenen J. Intravital characterization of tumor cell migration in pancreatic cancer. INTRAVITAL 2016; 5:e1261773. [PMID: 28243522 PMCID: PMC5226006 DOI: 10.1080/21659087.2016.1261773] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/04/2023]
Abstract
Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior.
Collapse
Affiliation(s)
- Evelyne Beerling
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, the Netherlands
| | - Ilse Oosterom
- University Medical Center Utrecht , Utrecht, the Netherlands
| | - Emile Voest
- Cancer Genomics Netherlands, The Netherlands Cancer Institute , Amsterdam, the Netherlands
| | - Martijn Lolkema
- University Medical Center Utrecht , Utrecht, the Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
35
|
Quan FS, Kim KS. Medical applications of the intrinsic mechanical properties of single cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:865-871. [PMID: 27542404 DOI: 10.1093/abbs/gmw081] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications because they are closely related to the biological processes of cells and, ultimately, human health conditions. In this article, we provide a brief review of the intrinsic mechanical properties of single cells related to cancer and aging. The mechanical properties can be used as biomarkers for early cancer diagnosis because cancer cells have a lower Young's modulus, indicating higher elasticity or softness than their counterpart normal cells. The metastatic potential of cancer cells is inversely correlated with their elastic properties. Aging induces stiffness through an increased amount of cytoskeletal fiber. Changes in the mechanical properties also show potential for drug screening. Although there are several challenges to be met before clinical applications can be made, such mechanical properties of single cells may provide new approaches to human diseases.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| |
Collapse
|
36
|
Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation. Sci Rep 2016; 6:31547. [PMID: 27526936 PMCID: PMC4985743 DOI: 10.1038/srep31547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.
Collapse
|
37
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
38
|
Sliogeryte K, Botto L, Lee DA, Knight MM. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Osteoarthritis Cartilage 2016; 24:912-20. [PMID: 26706702 DOI: 10.1016/j.joca.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 12/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte dedifferentiation is known to influence cell mechanics leading to alterations in cell function. This study examined the influence of chondrocyte dedifferentiation in monolayer on cell viscoelastic properties and associated changes in actin organisation, bleb formation and membrane-actin cortex interaction. METHOD Micropipette aspiration was used to estimate the viscoelastic properties of freshly isolated articular chondrocytes and the same cells after passage in monolayer. Studies quantified the cell membrane-actin cortex adhesion by measuring the critical pressure required for membrane detachment and bleb formation. We then examined the expression of ezrin, radixin and moesin (ERM) proteins which are involved in linking the membrane and actin cortex and combined this with theoretical modelling of bleb dynamics. RESULTS Dedifferentiated chondrocytes at passage 1 (P1) were found to be stiffer compared to freshly isolated chondrocytes (P0), with equilibrium modulus values of 0.40 and 0.16 kPa respectively. The critical pressure increased from 0.59 kPa at P0 to 0.74 kPa at P1. Dedifferentiated cells at P1 exhibited increased cortical F-actin organisation and increased expression of total and phosphorylated ERM proteins compared to cells at P0. Theoretical modelling confirmed the importance of membrane-actin cortex adhesion in regulating bleb formation and effective cellular elastic modulus. CONCLUSION This study demonstrates that chondrocyte dedifferentiation in monolayer strengthens membrane-actin cortex adhesion associated with increased F-actin organisation and up-regulation of ERM protein expression. Thus dedifferentiated cells have reduced susceptibility to bleb formation which increases cell modulus and may also regulate other fundamental aspects of cell function such as mechanotransduction and migration.
Collapse
Affiliation(s)
- K Sliogeryte
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom; Laboratoire Physico-chimie Curie-UMR 168, Institut Curie, Centre de Recherche, Paris, F-75248, France
| | - L Botto
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - D A Lee
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - M M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom.
| |
Collapse
|
39
|
Willoughby NA, Bock H, Hoeve MA, Pells S, Williams C, McPhee G, Freile P, Choudhury D, De Sousa PA. A scalable label-free approach to separate human pluripotent cells from differentiated derivatives. BIOMICROFLUIDICS 2016; 10:014107. [PMID: 26858819 PMCID: PMC4714989 DOI: 10.1063/1.4939946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/01/2016] [Indexed: 05/24/2023]
Abstract
The broad capacity of pluripotent human embryonic stem cells (hESC) to grow and differentiate demands the development of rapid, scalable, and label-free methods to separate living cell populations for clinical and industrial applications. Here, we identify differences in cell stiffness, expressed as cell elastic modulus (CEM), for hESC versus mesenchymal progenitors, osteoblast-like derivatives, and fibroblasts using atomic force microscopy and data processing algorithms to characterize the stiffness of cell populations. Undifferentiated hESC exhibited a range of CEMs whose median was nearly three-fold lower than those of differentiated cells, information we exploited to develop a label-free separation device based on the principles of tangential flow filtration. To test the device's utility, we segregated hESC mixed with fibroblasts and hESC-mesenchymal progenitors induced to undergo osteogenic differentiation. The device permitted a throughput of 10(6)-10(7) cells per min and up to 50% removal of specific cell types per single pass. The level of enrichment and depletion of soft, pluripotent hESC in the respective channels was found to rise with increasing stiffness of the differentiating cells, suggesting CEM can serve as a major discriminator. Our results demonstrate the principle of a scalable, label-free, solution for separation of heterogeneous cell populations deriving from human pluripotent stem cells.
Collapse
Affiliation(s)
- N A Willoughby
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - H Bock
- Institute for Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh, United Kingdom
| | - M A Hoeve
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - S Pells
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - C Williams
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - G McPhee
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - P Freile
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - D Choudhury
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - P A De Sousa
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
40
|
Single-Cell Mechanical Properties: Label-Free Biomarkers for Cell Status Evaluation. SERIES IN BIOENGINEERING 2016. [DOI: 10.1007/978-3-662-49118-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Sliogeryte K, Thorpe SD, Wang Z, Thompson CL, Gavara N, Knight MM. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration. J Biomech 2015; 49:310-7. [PMID: 26792287 PMCID: PMC4769141 DOI: 10.1016/j.jbiomech.2015.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 10/25/2022]
Abstract
The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology.
Collapse
Affiliation(s)
- Kristina Sliogeryte
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.
| | - Zhao Wang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Clare L Thompson
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Nuria Gavara
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Subbiah R, Suhaeri M, Hwang MP, Kim W, Park K. Investigation of the changes of biophysical/mechanical characteristics of differentiating preosteoblasts in vitro. Biomater Res 2015; 19:24. [PMID: 26561531 PMCID: PMC4641340 DOI: 10.1186/s40824-015-0046-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Topography, stiffness, and composition of biomaterials play a crucial role in cell behaviors. In this study, we have investigated biochemical (gene markers), biophysical (roughness), and biomechanical (stiffness) changes during the osteogenic differentiation of preosteoblasts on gelatin matrices. RESULTS Our results demonstrate that gelatin matrices offer a favorable microenvironment for preosteoblasts as determined by focal adhesion and filopodia formation. The osteogenic differentiation potential of preosteoblasts on gelatin matrices is confirmed by qualitative (Alizarin red, von kossa staining, immunofluorescence, and gene expression) and quantitative analyses (alkaline phosphatase activity and calcium content). The biomechanical and biophysical properties of differentiating preosteoblasts are analyzed using atomic force microscopy (AFM) and micro indentation. The results show sequential and significant increases in preosteoblasts roughness and stiffness during osteogenic differentiation, both of which are directly proportional to the progress of osteogenesis. Cell proliferation, height, and spreading area seem to have no direct correlation with differentiation; however, they may be indirectly related to osteogenesis. CONCLUSIONS The increased stiffness and roughness is attributed to the mineralized bone matrix and enhanced osteogenic extracellular matrix protein. This report indicates that biophysical and biomechanical aspects during in vitro cellular/extracellular changes can be used as biomarkers for the analysis of cell differentiation.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon, 305-350 Korea
| | - Muhammad Suhaeri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon, 305-350 Korea
| | - Mintai Peter Hwang
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 Korea
| | - Woojun Kim
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon, 305-350 Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 Korea ; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon, 305-350 Korea
| |
Collapse
|
43
|
Lee JH, Park HK, Kim KS. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2015; 473:752-7. [PMID: 26403968 DOI: 10.1016/j.bbrc.2015.09.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2015] [Indexed: 01/07/2023]
Abstract
Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation.
Collapse
Affiliation(s)
- Jin-Ho Lee
- School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Healthcare Industry Research Institute, Kyung Hee University, Seoul, Republic of Korea; Program of Medical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Program of Medical Engineering, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Jhala D, Vasita R. A Review on Extracellular Matrix Mimicking Strategies for an Artificial Stem Cell Niche. POLYM REV 2015. [DOI: 10.1080/15583724.2015.1040552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
46
|
Tsimbouri PM. Adult Stem Cell Responses to Nanostimuli. J Funct Biomater 2015; 6:598-622. [PMID: 26193326 PMCID: PMC4598673 DOI: 10.3390/jfb6030598] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.
Collapse
Affiliation(s)
- Penelope M Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
47
|
Manokawinchoke J, Limjeerajarus N, Limjeerajarus C, Sastravaha P, Everts V, Pavasant P. Mechanical Force-induced TGFB1 Increases Expression of SOST/POSTN by hPDL Cells. J Dent Res 2015; 94:983-9. [PMID: 25870205 DOI: 10.1177/0022034515581372] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the response of human periodontal ligament (hPDL) fibroblasts to an intermittent compressive force and its effect on the expression of SOST, POSTN, and TGFB1. A computerized cell compressive force loading apparatus was introduced, and hPDL cells were subjected to intermittent compressive force. The changes in messenger RNA (mRNA) and protein expression were monitored by real-time polymerase chain reaction and Western blot analysis, respectively. An increased expression of SOST, POSTN, and TGFB1 was observed in a time-dependent fashion. Addition of cycloheximide, a transforming growth factor (TGF)-β inhibitor (SB431542), or a neutralizing antibody against TGF-β1 attenuated the force-induced expression of SOST and POSTN as well as sclerostin and periostin, indicating a role of TGF-β1 in the pressure-induced expression of these proteins. Enzyme-linked immunosorbent assay analysis revealed an increased level of TGF-β1 in the cell extracts but not in the medium, suggesting that intermittent compressive force promoted the accumulation of TGF-β1 in the cells or their surrounding matrix. In conclusion, an intermittent compressive force regulates SOST/POSTN expression by hPDL cells via the TGF-β1 signaling pathway. Since these proteins play important roles in the homeostasis of the periodontal tissue, our results indicate the importance of masticatory forces in this process.
Collapse
Affiliation(s)
- J Manokawinchoke
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - N Limjeerajarus
- Graduate School, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand
| | - C Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - P Sastravaha
- Department of Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - V Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands
| | - P Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
48
|
Khani MM, Tafazzoli-Shadpour M, Goli-Malekabadi Z, Haghighipour N. Mechanical characterization of human mesenchymal stem cells subjected to cyclic uniaxial strain and TGF-β1. J Mech Behav Biomed Mater 2015; 43:18-25. [PMID: 25545439 DOI: 10.1016/j.jmbbm.2014.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/30/2014] [Accepted: 12/10/2014] [Indexed: 11/17/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have shown promising potential in the field of regenerative medicine particularly in vascular tissue engineering. Optimal growing of MSCs into specific lineage requires a thorough understanding of the role of mechanobiology in MSC metabolism. Although effects of external physical cues (mechanical stimuli through external loading and scaffold properties) on regulation of MSC differentiation into Smooth muscle (SM) lineage have attracted widespread attention, fewer studies are available on mechanical characterization of single engineered MSCs which is vital in tissue development through proper mechanotransductive cell-environment interactions. In this study, we investigated effects of uniaxial tensile strain and transforming growth factor-β1 (TGF-β1) stimulations on mechanical properties of engineered MSCs and their F-actin cytoskeleton organization. Micropipette aspiration technique was used to measure mechanical properties of MSCs including mean Young׳s modulus (E) and the parameters of standard linear viscoelastic model. Compared to control samples, MSCs treated by uniaxial strain either with or without TGF-β1 indicated significant increases in E value and considerable drop in creep compliance curve, while samples treated by TGF-β1 alone met significant decreases in E value and considerable rise in creep compliance curve. Among treated samples, uniaxial tensile strain accompanied by TGF-β1 stimulation not only caused higher stimulation in MSC differentiation towards SM phenotype at transcriptional level, but also created more structural integrity in MSCs due to formation of thick bundled F-actin fibers. Results can be applied in engineering of MSCs towards functional target cells and consequently tissue development.
Collapse
Affiliation(s)
- Mohammad-Mehdi Khani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Zahra Goli-Malekabadi
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | |
Collapse
|
49
|
Labriola NR, Darling EM. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J Biomech 2015; 48:1058-66. [PMID: 25683518 DOI: 10.1016/j.jbiomech.2015.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 11/16/2022]
Abstract
Adipose-derived stem/stromal cells (ASCs) respond heterogeneously when exposed to lineage-specific induction medium. Variable responses at the single-cell level can be observed in the production of lineage-specific metabolites, expression of mRNA transcripts, and adoption of mechanical phenotypes. Understanding the relationship between the biological and mechanical characteristics for individual ASCs is crucial for interpreting how cellular heterogeneity affects the differentiation process. The goal of the current study was to monitor the gene expression of peroxisome proliferator receptor gamma (PPARG) in adipogenically differentiating ASC populations over two weeks, while also characterizing the expression-associated mechanical properties of individual cells using atomic force microscopy (AFM). Results showed that ASC mechanical properties did not change significantly over time in either adipogenic or control medium; however, cells expressing PPARG exhibited significantly greater compliance and fluidity compared to those lacking expression in both adipogenic and control media environments. The percent of PPARG+ cells in adipogenic samples increased over time but stayed relatively constant in controls. Previous reports of a slow, gradual change in cellular mechanical properties are explained by the increase in the number of positively differentiating cells in a sample rather than being reflective of actual, single-cell mechanical property changes. Cytoskeletal remodeling was more prevalent in adipogenic samples than controls, likely driving the adoption of a more compliant mechanical phenotype and upregulation of PPARG. The combined results reinforce the importance of understanding single-cell characteristics, in the context of heterogeneity, to provide more accurate interpretations of biological phenomena such as stem cell differentiation.
Collapse
Affiliation(s)
- Nicholas R Labriola
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States; Department of Molecular Pharmacology, Physiology, & Biotechnology, Department of Orthopaedics, School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
50
|
Zhang Q, Li Y, Sun H, Zeng L, Li X, Yuan B, Ning C, Dong H, Chen X. hMSCs bridging across micro-patterned grooves. RSC Adv 2015. [DOI: 10.1039/c5ra06414g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
hMSCs spanned across a groove with 100 μm width.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Yuli Li
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Hao Sun
- Bruker Nano Surfaces Division
- Bruker (Beijing) Scientific Technology Co. Ltd
- Beijing 100081
- P.R. China
| | - Lei Zeng
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Xian Li
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Bo Yuan
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Chengyun Ning
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Hua Dong
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Xiaofeng Chen
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| |
Collapse
|