1
|
Aryal A, Harmon AC, Noël A, Yu Q, Varner KJ, Dugas TR. AhR Activation at the Air-Blood Barrier Alters Systemic microRNA Release After Inhalation of Particulate Matter Containing Environmentally Persistent Free Radicals. Cardiovasc Toxicol 2025; 25:651-665. [PMID: 40214911 PMCID: PMC12018632 DOI: 10.1007/s12012-025-09989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Particulate matter containing environmentally persistent free radicals (EPFRs) is formed when organic pollutants are incompletely burned and adsorb to the surface of particles containing redox-active metals. Our prior studies showed that in mice, EPFR inhalation impaired vascular relaxation in a dose- and endothelium-dependent manner. We also observed that activation of the aryl hydrocarbon receptor (AhR) in the alveolar type-II (AT-II) cells that form the air-blood interface stimulates the release of systemic factors that promote endothelial dysfunction in vessels peripheral to the lung. AhR is a recognized regulator of microRNA (miRNA) biogenesis, and miRNA control diverse signaling pathways. We thus hypothesized that systemic EPFR-induced vascular endothelial dysfunction is initiated via AhR activation in AT-II cells, resulting in a systemic release of miRNA. Using a combustion reactor, we generated EPFR of two free radical concentrations-EPFRlo (1016-17 radicals/g particles) and EPFR (1018-19 radicals/g)-and exposed mice by inhalation. EFPR inhalation resulted in changes in a distinct array of miRNA in the plasma, and these miRNAs are linked to multiple systemic effects, including cardiovascular diseases and dysregulation of cellular and molecular pathways associated with cardiovascular dysfunction. We identified 17 miRNA in plasma that were altered dependent upon both AhR activation in AT-II cells and ~ 280 ug/m3 EPFR exposure. Using Ingenuity Pathway Analysis, we found that 5 of these miRNAs have roles in modulating endothelin-1 and endothelial nitric oxide signaling, known regulators of endothelial function. Furthermore, EPFR exposure reduced the expression of lung adherens and gap junction proteins in control mice but not AT-II-AhR deficient mice, and reductions in barrier function may facilitate miRNA release from the lungs. In summary, our findings support that miRNA may be systemic mediators promoting endothelial dysfunction mediated via EPFR-induced AhR activation at the air-blood interface.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Qingzhao Yu
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
2
|
Sahoo R, Pattnaik S, Mohanty B, Mir SA, Behera B. Aryl hydrocarbon receptor (AHR) signalling: A double-edged sword guiding both cancer progression and cancer therapy. Biochim Biophys Acta Gen Subj 2025; 1869:130805. [PMID: 40222634 DOI: 10.1016/j.bbagen.2025.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Aryl Hydrocarbon Receptor (AHR) reported to be associated with major carcinogenic signalling cascades which cause cell proliferations, metastasis and invasion as well as immune imbalance. AHR Participates in cellular processes not only through genomic pathways to cause genomic alterations but also via nongenomic pathways to alter various cytoplasmic proteins. In addition, AHR senses a wide range of ligands that modulate its downstream mechanisms that are intricated in cancer induction and prevention. Thus, AHR functions as a two-sided sword where some AHR ligands contribute to enhance cancer whereas few are useful for cancer treatment. Therefore, AHR represent as a regulatory point in cancer progression and treatment. There is a need to reinvestigate the regulatory role of AHR in major intracellular pathways and to explore the potential of AHR ligand for the design of cancer therapeutics. This review emphasizes the interaction of AHR with pro-carcinogenic signalling pathways that modulate cancer induction and progression. Furthermore, it also discusses about the current discovery of AHR ligands for cancer initiation or inhibition. This information could be useful for development of therapeutic strategies for the management of cancer by targeting AHR.
Collapse
Affiliation(s)
- Rahul Sahoo
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Sriya Pattnaik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Biswajit Mohanty
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India.
| |
Collapse
|
3
|
Zhang Y, Xu D, Song S, Wang G, Su H, Wu Y, Zhang Y, Liu H, Li Q, Wang X, Yu Z, Liu X. AKT/mTOR-mediated autophagic signaling is associated with TCDD-induced cleft palate. Reprod Toxicol 2024; 130:108731. [PMID: 39401686 DOI: 10.1016/j.reprotox.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
In utero exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can contribute to high rates of cleft palate (CP) formation, but the mechanistic basis for these effects remains uncertain. Here, multi-omics-based metabolomic and transcriptomic analyses were employed to characterize the etiological basis for TCDD-induced CP on gestational day 14.5 (GD14.5). These analyses revealed that TCDD-induced CP formation is associated with calcium, MAPK, PI3K-Akt, and mTOR pathway signaling. PI3K-Akt and mTOR signaling activity is closely linked with the maintenance of cellular proliferation and survival. Moreover, mTOR-mediated regulation of autophagic activity is essential for ensuring an appropriate balance between metabolic activity and growth. Murine embryonic palatal mesenchymal (MEPM) cell proliferation was thus characterized, autophagic activity in these cells was evaluated through electron microscopy and western immunoblotting was used to compare the levels of autophagy- and AKT/mTOR-related protein between the control and TCDD groups on GD14.5. These analyses indicated that MEPM cell proliferative and autophagic activity was inhibited in response to TCDD exposure with the concomitant activation of AKT/mTOR signaling, in line with the multi-omics data. Together, these findings suggested that following TCDD exposure, the activation of AKT/mTOR-related autophagic signaling may play a role in the loss of appropriate palatal cell homeostasis, culminating in the incidence of CP.
Collapse
Affiliation(s)
- Yaxin Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Dongliang Xu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qingfu Li
- Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiangdong Wang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China.
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
4
|
Zhang L, Long H, Zhang P, Liu B, Li S, Sun R, Diao T, Li F. Development and characterization of a novel injectable thyroid extracellular matrix hydrogel for enhanced thyroid tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1481295. [PMID: 39664883 PMCID: PMC11631613 DOI: 10.3389/fbioe.2024.1481295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Hypothyroidism, a condition characterized by decreased synthesis and secretion of thyroid hormones, significantly impacts intellectual development and physical growth. Current treatments, including hormone replacement therapy and thyroid transplantation, have limitations due to issues like hormone dosage control and immune rejection. Tissue engineering presents a potential solution by combining cells and biomaterials to construct engineered thyroid tissue. This study focuses on the development and characterization of a novel 3D injectable hydrogel derived from thyroid extracellular matrix (TEM) for thyroid tissue engineering. TEM hydrogels were prepared through decellularization of rat thyroid tissue, followed by extensive physicochemical and mechanical property evaluations. The TEM hydrogels exhibited properties similar to natural thyroid tissue, including high biocompatibility and a complex 3D ultrastructure. Thyroid hormone-secreting cells cultured in TEM hydrogels demonstrated superior viability, hormone secretion, and thyroid-related gene expression compared to those in traditional type I collagen hydrogels. The study also confirmed the significant retention of key growth factors and ECM proteins within the TEM hydrogels. The results indicate that TEM hydrogels can provide a biomimetic microenvironment, promoting the long-term survival and function of thyroid cells, thus holding great promise for the treatment of hypothyroidism. This research contributes a potential new avenue for thyroid tissue engineering, offering a promising alternative for hypothyroidism treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Houlong Long
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Peng Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Bin Liu
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Shuheng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Rong Sun
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Tongmei Diao
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Feng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| |
Collapse
|
5
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
6
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
7
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
8
|
Stukas D, Jasukaitiene A, Bartkeviciene A, Matthews J, Maimets T, Teino I, Jaudzems K, Gulbinas A, Dambrauskas Z. Targeting AHR Increases Pancreatic Cancer Cell Sensitivity to Gemcitabine through the ELAVL1-DCK Pathway. Int J Mol Sci 2023; 24:13155. [PMID: 37685961 PMCID: PMC10487468 DOI: 10.3390/ijms241713155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.
Collapse
Affiliation(s)
- Darius Stukas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Aldona Jasukaitiene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Arenida Bartkeviciene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| |
Collapse
|
9
|
Zárate LV, Miret NV, Nicola Candia AJ, Zappia CD, Pontillo CA, Chiappini FA, Monczor F, Candolfi M, Randi AS. Breast cancer progression and kynurenine pathway enzymes are induced by hexachlorobenzene exposure in a Her2-positive model. Food Chem Toxicol 2023; 177:113822. [PMID: 37169060 DOI: 10.1016/j.fct.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Breast cancer is one of the leading cancers among women worldwide. Given the evidence that pesticides play an important role in breast cancer, interest has grown in pesticide impact on disease progression. Hexachlorobenzene (HCB), an aryl hydrocarbon receptor (AhR) ligand, promotes triple-negative breast cancer cell migration and invasion. Estrogen receptor β (ERβ) inhibits cancer motility, while G protein-coupled ER (GPER) modulates the neoplastic transformation. Tryptophan is metabolized through the kynurenine pathway by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), with kynurenine signaling activation often predicting worse prognosis in cancer. In this context, we examined the HCB (0.005; 0.05; 0.5 and 5 μM) effect on LM3 cells, a human epidermal growth factor receptor 2 (HER2)-positive breast cancer model. Results show that HCB increases IDO and TDO mRNA levels and promotes cell viability, proliferation and migration through the AhR pathway. Moreover, HCB boosts mammosphere formation, vascular endothelial growth factor and cyclooxygenase-2 expression and reduces IL-10 levels. For some parameters, U-shaped or inverted U-shaped dose-response curves are shown. HCB alters ER levels, reducing ERβ while increasing GPER. These results demonstrate that exposure to environmentally relevant concentrations of HCB up-regulates the kynurenine pathway and dysregulates ERβ and GPER levels, collaborating in HER2-positive breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er Subsuelo, (CP 1121), Buenos Aires, Argentina.
| | - Alejandro J Nicola Candia
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Marianela Candolfi
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Li Z, Cheng Q, He Y, Wang S, Xie J, Zheng Y, Liu Y, Li L, Gao S, Yu C. Effect of Dan-Lou tablets on coronary heart disease revealed by microarray analysis integrated with molecular mechanism studies. Heliyon 2023; 9:e15777. [PMID: 37305453 PMCID: PMC10256850 DOI: 10.1016/j.heliyon.2023.e15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Dan-Lou tablets (DLT) effectively treat coronary heart disease (CHD). However, its pharmacological mechanism in CHD treatment requires further investigation. This study aimed to elucidate the underlying pharmacological mechanisms of DLT in the treatment of CHD through clinical trials, microarray research, bioinformatics analysis, and molecular mechanism research. In this study, DLT improved coagulation function, endothelial injury, and levels of lipids, metalloproteases, adhesion molecules, inflammatory mediators, and homocysteine. The results of molecular biology research demonstrated that DLT can increase the gene and protein expressions of meningioma expressed antigen 5 (MGEA5) and mouse doubleminute 2 (MDM2) and inhibited the gene and protein expressions of signal transcription and transcription activator 5 B (STAT5B), tropomyosin-1 (TPM1), and aromatic hydrocarbon receptor nuclear transpose (ARNT). The results indicate that DLT reduced the extent of vascular endothelial damage in CHD rats by reducing the expressions of STAT5B, TPM1, and MDM2; inhibiting the inflammatory reaction; and increasing the expressions of ARNT and MGEA5.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Li
- Corresponding author. No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Shan Gao
- Corresponding author. No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Chunquan Yu
- Corresponding author. No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| |
Collapse
|
11
|
Shi Y, Xiao Y, Yu J, Liu J, Liu L, Ding Y, Qiu X, Zhan Y, Tang R, Zeng Z, Xiao R. UVA1 irradiation attenuates collagen production via Ficz/AhR/MAPK signaling activation in scleroderma. Int Immunopharmacol 2023; 116:109764. [PMID: 36706594 DOI: 10.1016/j.intimp.2023.109764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Scleroderma is an autoimmune disease mainly characterized by progressive fibrosis of the skin. There are two types of scleroderma, namely localized scleroderma (LS) and systemic sclerosis (SSc); skin lesions in both types of scleroderma are histologically identical. Progressive skin sclerosis induces psychological and ecological burden for scleroderma patients. However, there is no effective treatment for scleroderma due to its unclear etiology. Aryl hydrocarbon receptor (AhR) is recognized as an environmental chemical effector that can respond to ultraviolet radiation, which has been demonstrated to participate in the pathogenesis of SSc in our previous study. In this study, we verify whether the anti-fibrosis effect of ultraviolet A1 (UVA1) phototherapy could be partially induced through Ficz/AhR/MAPK signaling activation for fibrotic lesions in both SSc and LS patients. This is the first study to show the association between the AhR pathway and the anti-fibrotic mechanism of UVA1 phototherapy, which provides additional evidence of the role of AhR in the fibrotic mechanism of systemic scleroderma from different perspectives. Ficz and other AhR agonists may replace UVA1 phototherapy as anti-fibrotic agents in scleroderma.
Collapse
Affiliation(s)
- Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan 570100, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Bérubé R, Garnier C, Lefebvre-Raine M, Gauthier C, Bergeron N, Triffault-Bouchet G, Langlois VS, Couture P. Early developmental toxicity of Atlantic salmon exposed to conventional and unconventional oils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114487. [PMID: 36587413 DOI: 10.1016/j.ecoenv.2022.114487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Atlantic salmon is an important species for Canadian culture and economy and its importance extends beyond Canada to Scandinavia and Western Europe. However, it is a vulnerable species facing decline due to habitat contamination and destruction. Existing and new Canadian pipeline projects pose a threat to salmonid habitat. The effects of diluted bitumen (dilbit), the main oil circulating in pipelines, are less studied than those of conventional oils, especially during the critical early embryonic developmental stage occurring in freshwater ecosystems. Therefore, this study aimed to compare the effects of water-accommodated fractions (WAF) of the Clearwater McMurray dilbit and the Lloydminster Heavy conventional oil on Atlantic salmon embryos exposed either from fertilization or from eyed stage. The dilbit contained the highest concentrations of low molecular weight (LMW) compounds (including BTEX and C6-C10), while the conventional oil contained the highest concentrations of PAHs. The Clearwater dilbit caused a higher percentage of mortality and malformations than the conventional oil at similar WAF concentrations. In addition, the embryos exposed from fertilization suffered a higher mortality rate, more developmental delays, and malformations than embryos exposed from the eyed stage, suggesting that early development is the most sensitive developmental stage to oil exposure. Gene expression and enzymatic activity of the detoxification phase I and II enzymes (CYP1A and GST) were measured. Data showed increases in both cyp1a expression and GST activity with increasing WAF concentrations, while gst expression was not affected by the exposures. Also, gene expression of proteins involved in the biotransformation of vitamin A and DNA damage repair were modified by the oil exposures. Overall, this study indicates that Atlantic salmon is mostly affected by oil exposure at the beginning of its development, during which embryos accumulate deformities that may impact their survival at later life stages.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Camille Garnier
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Molly Lefebvre-Raine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Charles Gauthier
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Normand Bergeron
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Gaëlle Triffault-Bouchet
- CEAEQ, Ministère de l'Environnement et de la Lutte contre les changements climatiques, 2700 rue Einstein, Québec, Canada
| | - Valérie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada.
| |
Collapse
|
13
|
Mechanistic Interrogation of Cell Transformation In Vitro: The Transformics Assay as an Exemplar of Oncotransformation. Int J Mol Sci 2022; 23:ijms23147603. [PMID: 35886950 PMCID: PMC9321586 DOI: 10.3390/ijms23147603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 12/19/2022] Open
Abstract
The Transformics Assay is an in vitro test which combines the BALB/c 3T3 Cell Transformation Assay (CTA) with microarray transcriptomics. It has been shown to improve upon the mechanistic understanding of the CTA, helping to identify mechanisms of action leading to chemical-induced transformation thanks to RNA extractions in specific time points along the process of in vitro transformation. In this study, the lowest transforming concentration of the carcinogenic benzo(a)pyrene (B(a)P) has been tested in order to find molecular signatures of initial events relevant for oncotransformation. Application of Enrichment Analysis (Metacore) to the analyses of the results facilitated key biological interpretations. After 72 h of exposure, as a consequence of the molecular initiating event of aryl hydrocarbon receptor (AhR) activation, there is a cascade of cellular events and microenvironment modification, and the immune and inflammatory responses are the main processes involved in cell response. Furthermore, pathways and processes related to cell cycle regulation, cytoskeletal adhesion and remodeling processes, cell differentiation and transformation were observed.
Collapse
|
14
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
15
|
Dai R, Huang C, Wu X, Ma X, Chu M, Bao P, Pei J, Guo X, Yan P, Liang C. Copy number variation (CNV) of the AHR gene in the Ashidan yak and its association with growth traits. Gene 2022; 826:146454. [PMID: 35367304 DOI: 10.1016/j.gene.2022.146454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023]
Abstract
Copy number variation (CNV) is a principal genomic structure variation affecting the gene expression through the dose-effect and change of gene regulatory region. It plays an important role in regulating the various complex traits of vertebrates. The aromatic hydrocarbon receptor (AHR) is a member of ligand-dependent transcription factors which belong to the alkaline helix-loop-helix PASS family. It is used as a conservative environmental sensor during biological evolution. This study, tracked the growth data (body weight, withers height, body length, chest girth) of 332 yaks in four stages (6, 12, 18, and 30 months) were tracked. The CNV of the yaks was analyzed using real-time quantitative PCR, and the correlation between CNV of AHR and yak growth traits was analyzed using the SPSS and R software. The AHR gene expression profiles were assessed in different tissues of the 18-month-old yak. The statistical analysis indicated the AHR-CNV of the Ashidan yak to significantly correlate with the body length (P < 0.05), and was found to be correlated with the withers height at 18 months old (P < 0.01) with extreme significance. To sum up, this study for the first time discussed the relationship between AHR-CNV and the growth traits of the Ashidan yak. The results indicated that the AHR gene might become a new molecular marker in the breeding yak.
Collapse
Affiliation(s)
- Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
16
|
Chiappini F, Ceballos L, Olivares C, Bastón JI, Miret N, Pontillo C, Zárate L, Singla JJ, Farina M, Meresman G, Randi A. Endocrine disruptor hexachlorobenzene induces cell migration and invasion, and enhances aromatase expression levels in human endometrial stromal cells. Food Chem Toxicol 2022; 162:112867. [PMID: 35181438 DOI: 10.1016/j.fct.2022.112867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Endometriosis is the presence and growth of endometrial tissue outside of the uterus. Previous studies have suggested that endocrine disrupting chemicals such as organochlorine pesticides could be a risk factor for endometriosis. Hexachlorobenzene (HCB) is a weak ligand of the aryl hydrocarbon receptor (AhR) and promotes metalloproteinase and cyclooxygenase-2 (COX-2) expression, as well as, c-Src activation in human endometrial stromal cells (T-HESC) and in rat endometriosis model. Our aim was to evaluate the effect of HCB exposure on oestrogen receptor (ER) ɑ and β, progesterone receptor (PR) and aromatase expression, as well as, on cell migration and invasion in T-HESC and primary cultures of endometrial stromal cells from eutopic endometria of control subjects (ESC). Results show that HCB increases ERɑ and aromatase protein levels and reduces PR content in both T-HESC and ESC. However, the pesticide only increases ERβ expression in ESC, without changes in T-HESC. Moreover, cell migration and invasion are promoted by pesticide exposure involving the AhR, c-Src, COX-2 and ER pathways in T-HESC. HCB also triggers ERɑ activation via phosphorylation in Y537 through AhR/c-Src pathway. Our results provide experimental evidence that HCB induces alterations associated with endometriosis, suggesting that these mechanisms could contribute to pesticide exposure-induced endometriosis development.
Collapse
Affiliation(s)
- Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Carla Olivares
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Laboratorio de Fisiopatología Endometrial, Buenos Aires, Argentina.
| | - Juan Ignacio Bastón
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Laboratorio de Fisiopatología Endometrial, Buenos Aires, Argentina.
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Lorena Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - José Javier Singla
- Universidad de Buenos Aires, Hospital de Clínicas "José de San Martín", Servicio de Ginecología, Buenos Aires, Argentina.
| | - Mariana Farina
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET, Laboratorio de Fisiopatología Placentaria, Buenos Aires, Argentina.
| | - Gabriela Meresman
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Laboratorio de Fisiopatología Endometrial, Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Hwang J, Newton EM, Hsiao J, Shi VY. Aryl Hydrocarbon Receptor/nuclear factor E2-related factor 2 (AHR/NRF2) Signaling: A Novel Therapeutic Target for Atopic Dermatitis. Exp Dermatol 2022; 31:485-497. [PMID: 35174548 DOI: 10.1111/exd.14541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Aryl hydrocarbon receptor (AHR)/nuclear factor-erythroid 2-related factor 2 (NRF2) modulation are emerging as novel targets in the treatment of atopic dermatitis and other inflammatory skin disorders. Agonist activation of this pathway has downstream effects on epidermal barrier function, immunomodulation, oxidative stress reduction, and cutaneous microbiome modulation. Tapinarof, a dual agonist of the AHR/NRF2 signaling pathway, has shown promise in phase 2 trials for atopic dermatitis. In this review, we summarize current knowledge of the AHR/NRF2 pathway and implications in skin disease process. We also review the therapeutic potential of current AHR agonists and propose future directions to address knowledge gaps.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, 808 S. Wood St. - 380 CME, Chicago, IL, 60612-7307, USA
| | - Edita M Newton
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| | - Jennifer Hsiao
- University of Southern California, Department of Dermatology, Ezralow Tower, 1441 Eastlake Avenue, Suite 5301, Los Angeles, CA, 90033, USA
| | - Vivian Y Shi
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
18
|
Liu J, Pi Z, Xiao Y, Zeng Z, Yu J, Zou P, Tang B, Qiu X, Tang R, Shi Y, Xiao R. Esomeprazole alleviates fibrosis in systemic sclerosis by modulating AhR/Smad2/3 signaling. Pharmacol Res 2022; 176:106057. [PMID: 34995795 DOI: 10.1016/j.phrs.2022.106057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 11/27/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease with the involvement of complex signaling pathways, such as TGF-β/Smad2/3. SSc can lead to severe multiple organ fibrosis, but no effective therapy is currently available because of its unclear pathogenesis. Exploring new treatments is the focus of recent research on SSc. Recent studies have implied a potential antifibrotic role of esomeprazole (ESO), but with currently unidentified mechanisms. Signaling of AhR, a ligand-dependent transcription factor, has been described as a key controller of fibrosis, tumorigenesis, and immune balance. Recently, it has been reported that ESO may be an exogenous agonist of AhR signaling, while no previous study has revealed the effects of ESO on SSc and its underlying mechanisms. In this study, we demonstrate that ESO suppresses the migration of SSc dermal fibroblasts, downregulates profibrotic markers, including COLIA1, α-SMA CTGF and MMP1, and limits collagen production potentially via the activation of AhR signaling. More importantly, ESO could block Smad2/3 phosphorylation concurrently with the reduction in collagen via AhR signaling. Moreover, our results from the bleomycin (BLM)-induced SSc model in skin and lung shows that ESO ameliorates fibrosis in vivo, which in keeping with our in vitro results. We conclude that ESO is a potential therapeutic drug for SSc fibrosis.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Bleomycin
- Cells, Cultured
- Collagen Type I, alpha 1 Chain/genetics
- Connective Tissue Growth Factor/genetics
- Cytokines/genetics
- Esomeprazole/pharmacology
- Esomeprazole/therapeutic use
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibrosis
- Humans
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/genetics
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Signal Transduction/drug effects
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
- Mice
Collapse
Affiliation(s)
- Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Puyu Zou
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
19
|
Harding JN, Gross M, Patel V, Potter S, Cormier SA. Association between particulate matter containing EPFRs and neutrophilic asthma through AhR and Th17. Respir Res 2021; 22:275. [PMID: 34702270 PMCID: PMC8549224 DOI: 10.1186/s12931-021-01867-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epidemiological data associate high levels of combustion-derived particulate matter (PM) with deleterious respiratory outcomes, but the mechanism underlying those outcomes remains elusive. It has been acknowledged by the World Health Organization that PM exposure contributes to more than 4.2 million all-cause mortalities worldwide each year. Current literature demonstrates that PM exacerbates respiratory diseases, impairs lung function, results in chronic respiratory illnesses, and is associated with increased mortality. The proposed mechanisms revolve around oxidative stress and inflammation promoting pulmonary physiological remodeling. However, our previous data found that PM is capable of inducing T helper cell 17 (Th17) immune responses via aryl hydrocarbon receptor (Ahr) activation, which was associated with neutrophilic invasion characteristic of steroid insensitive asthma. METHODS In the present study, we utilized a combination of microarray and single cell RNA sequencing data to analyze the immunological landscape in mouse lungs following acute exposure to combustion derived particulate matter. RESULTS We present data that suggest epithelial cells produce specific cytokines in the aryl hydrocarbon receptor (Ahr) pathway that inform dendritic cells to initiate the production of pathogenic T helper (eTh17) cells. Using single-cell RNA sequencing analysis, we observed that upon exposure epithelial cells acquire a transcriptomic profile indicative of increased Il-17 signaling, Ahr activation, Egfr signaling, and T cell receptor and co-stimulatory signaling pathways. Epithelial cells further showed, Ahr activation is brought on by Ahr/ARNT nuclear translocation and activation of tyrosine kinase c-src, Egfr, and subsequently Erk1/2 pathways. CONCLUSIONS Collectively, our data corroborates that PM initiates an eTh17 specific inflammatory response causing neutrophilic asthma through pathways in epithelial, dendritic, and T cells that promote eTh17 differentiation during initial PM exposure.
Collapse
Affiliation(s)
- Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Maureen Gross
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Vivek Patel
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
20
|
Greer JB, Magnuson JT, McGruer V, Qian L, Dasgupta S, Volz DC, Schlenk D. miR133b Microinjection during Early Development Targets Transcripts of Cardiomyocyte Ion Channels and Induces Oil-like Cardiotoxicity in Zebrafish ( Danio rerio) Embryos. Chem Res Toxicol 2021; 34:2209-2215. [PMID: 34558284 DOI: 10.1021/acs.chemrestox.1c00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that altered expression of a family of small noncoding RNAs (microRNAs, or miRs) regulates the expression of downstream mRNAs and is associated with diseases and developmental disorders. miR133b is highly expressed in mammalian cardiac and skeletal muscle, and aberrant expression is associated with cardiac disorders and electrophysiological changes in cardiomyocytes. Similarly, cardiac dysfunction has been observed in early life-stage mahi-mahi (Coryphaena hippurus) exposed to crude oil, a phenotype that has been associated with an upregulation of miR133b as well as subsequent downregulation of a delayed rectifier potassium channel (IKr) and calcium signaling genes that are important for proper heart development during embryogenesis. To examine the potential role of miR133b in oil-induced early life-stage cardiotoxicity in fish, cleavage-stage zebrafish (Danio rerio) embryos were either (1) microinjected with ∼3 nL of negative control miR (75 μM) or miR133b (75 μM) or (2) exposed to a treatment solution containing 5 μM benzo(a)pyrene (BaP), a model polycyclic aromatic hydrocarbon, as a positive control. At 72 h post fertilization (hpf), miR133b-injected fish exhibited BaP-like cardiovascular malformations, including a significantly increased pericardial area relative to negative control miR-injected embryos, as well as a significantly reduced eye area. qPCR revealed that miR133b microinjection decreased the abundance of cardiac-specific IKr kcnh6 at 5 hpf, which may contribute to action potential elongation in oil-exposed cardiomyocytes. Additionally, ryanodine receptor 2, a crucial calcium receptor in the sarcoplasmic reticulum, was also downregulated by miR133b. These results indicate that an oil-induced increase in miR133b may contribute to cardiac abnormalities in oil-exposed fish by targeting cardiac-specific genes essential for proper heart development.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington 98115, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Le Qian
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,College of Sciences, China Agricultural University, Beijing 100083, China
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Chen Y, Liu X, Liu X, Cui L, He Z, Gao Z, Liu L, Li Z, Wan Z, Yu Z. Correlation between TGF-β2/3 promoter DNA methylation and Smad signaling during palatal fusion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Exp Biol Med (Maywood) 2021; 246:2019-2028. [PMID: 34053232 PMCID: PMC8474981 DOI: 10.1177/15353702211012288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/28/2021] [Indexed: 01/10/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.
Collapse
Affiliation(s)
- Yao Chen
- School of Public Health, Xinxiang Medical University, Xinxiang
453003, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial
People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003,
China
- Department of Immunology, Medical College of Henan University of
Science and Technology, Luoyang 471003, China
| | - Xinxin Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Lingling Cui
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhan Gao
- The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou
450052, China
| | - Limin Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhitao Li
- Department of Immunology, Medical College of Henan University of
Science and Technology, Luoyang 471003, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang
453003, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| |
Collapse
|
23
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
24
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
25
|
Zhu X, Sun Q, Tan WS, Cai H. Reducing TGF-β1 cooperated with StemRegenin 1 promoted the expansion ex vivo of cord blood CD34 + cells by inhibiting AhR signalling. Cell Prolif 2021; 54:e12999. [PMID: 33522060 PMCID: PMC7941221 DOI: 10.1111/cpr.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE As an inhibitor of the AhR signalling pathway, StemRegenin 1 (SR1) not only promotes the expansion of CD34+ cells but also increases CD34- cell numbers. These CD34- cells influenced the ex vivo expansion of CD34+ cells. In this work, the effects of periodically removing CD34- cells combined with SR1 addition on the ex vivo expansion and biological functions of HSCs were investigated. MATERIALS AND METHODS CD34- cells were removed periodically with SR1 addition to investigate cell subpopulations, cell expansion, biological functions, expanded cell division mode and supernatant TGF-β1 contents. RESULTS After 10-day culture, the expansion of CD34+ cells in the CD34- cell removal plus SR1 group was significantly higher than that in the control group and the SR1 group. Moreover, periodically removing CD34- cells with SR1 addition improved the biological function of expanded CD34+ cells and significantly increased the percentage of self-renewal symmetric division of CD34+ cells. In addition, the concentration of total TGF-β1 and activated TGF-β1 in the supernatant was significantly lower than those in the control group and the SR1 group. RT-qPCR results showed that the periodic removal of CD34- cells with cooperation from SR1 further reduced the expression of AhR-related genes. CONCLUSIONS Periodic removal of CD34- cells plus cooperation with SR1 improved the expansion of CD34+ cells, maintained better biological function of expanded CD34+ cells and reduced the TGF-β1 contents by downregulating AhR signalling.
Collapse
Affiliation(s)
- Xuejun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
26
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
27
|
Microbiota-Mediated Immune Regulation in Atherosclerosis. Molecules 2021; 26:molecules26010179. [PMID: 33401401 PMCID: PMC7795654 DOI: 10.3390/molecules26010179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
There is a high level of interest in identifying metabolites of endogenously produced or dietary compounds generated by the gastrointestinal (GI) tract microbiota, and determining the functions of these metabolites in health and disease. There is a wealth of compelling evidence that the microbiota is linked with many complex chronic inflammatory diseases, including atherosclerosis. Macrophages are key target immune cells in atherosclerosis. A hallmark of atherosclerosis is the accumulation of pro-inflammatory macrophages in coronary arteries that respond to pro-atherogenic stimuli and failure of digesting lipids that contribute to foam cell formation in atherosclerotic plaques. This review illustrates the role of tryptophan-derived microbiota metabolites as an aryl hydrocarbon receptor (AhR) ligand that has immunomodulatory properties. Also, microbiota-dependent trimethylamine-N-oxide (TMAO) metabolite production is associated with a deleterious effect that promotes atherosclerosis, and metabolite indoxyl sulfate has been shown to exacerbate atherosclerosis. Our objective in this review is to discuss the role of microbiota-derived metabolites in atherosclerosis, specifically the consequences of microbiota-induced effects of innate immunity in response to atherogenic stimuli, and how specific beneficial/detrimental metabolites impact the development of atherosclerosis by regulating chronic endotoxemic and lipotoxic inflammation.
Collapse
|
28
|
Oluah NS, Aguzie IO, Ekechukwu NE, Madu JC, Ngene CI, Oluah C. Hematological and immunological responses in the African catfish Clarias gairepinus exposed to sublethal concentrations of herbicide Ronstar®. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110824. [PMID: 32544747 DOI: 10.1016/j.ecoenv.2020.110824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The aim of the study was to investigate the effects of sublethal concentrations (0.3, 0.6 and 1.2 mg L-1) of the herbicide Ronstar on the hematology and some immune parameters in Clarias gariepinus juvenile (mean weight and length 58.72 ± 2.46 g and 27.60 ± 1.62 cm, respectively). The hematological and some immune parameters were studied for 21 days in a static renewal bioassay system in which the water and the herbicide were changed daily. The erythrocyte count, hemoglobin concentration (Hb), and packed cell volume (PCV) were significantly (p < 0.05) reduced in the treatment groups. When compared with the control, there were significant (p < 0.05) leucocytosis, lymphocytosis, neutropenia and monocytopenia in the treatment groups. Both the mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV) were reduced ((p < 0.05) in the Ronstar-exposed fish. The result showed that the treated fish suffered hypochromic microcytic anemia. The total immunoglobulin and phagocytic indices (phagocytic capacity and phagocytic index) were significantly (p < 0.05) reduced in the treatment groups. while the respiratory burst was significantly (p < 0.05) increased in the treatment groups. The result showed that exposure to Ronstar had adverse effects on the hematology and immunocompetency of the fish.
Collapse
Affiliation(s)
- Ndubuisi Stanley Oluah
- Ecotoxicology Research Unit, Aquaculture and Marine Science Programme, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria.
| | - Ifeanyi Oscar Aguzie
- Ecotoxicology Research Unit, Aquaculture and Marine Science Programme, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Nkiru Esther Ekechukwu
- Ecotoxicology Research Unit, Aquaculture and Marine Science Programme, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Josephine Chinenye Madu
- Ecotoxicology Research Unit, Aquaculture and Marine Science Programme, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Chinedu Innocent Ngene
- Ecotoxicology Research Unit, Aquaculture and Marine Science Programme, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Chidinma Oluah
- Department of Medical Biochemistry, College of Medicine, University of Nigeria, Enugu Campus, Nigeria
| |
Collapse
|
29
|
Luo R, Yan Z, Yang Q, Huang X, Gao X, Wang P, Wang W, Xie K, Gun S. Inhibition of ssc-microRNA-140-5p ameliorates the Clostridium perfringens beta2 toxin-induced inflammatory response in IPEC-J2 cells via the ERK1/2 and JNK pathways by targeting VEGFA. Mol Immunol 2020; 127:12-20. [PMID: 32905904 DOI: 10.1016/j.molimm.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Piglet diarrhea and even death due to Clostridium perfringens (C. perfringens) type C infection have led to huge economic losses in the pig industry worldwide. C. perfringens beta2 (CPB2) toxin is the main virulence factor for this pathogen. MiR-140-5p can exacerbate toxin-induced toxicity of toxin to cells by promoting oxidative stress. However, the role of pig miR-140-5p (ssc-miR-140-5p) in piglet diarrhea caused by C. perfringens type C has not been studied. Here, we study investigated the function of ssc-miR-140-5p by generating an in vitro CPB2-induced injury model in intestinal porcine epithelial (IPEC-J2) cells. Our results revealed that transfection with an ssc-miR-140-5p inhibitor significantly increased the viability of CPB2-induced IPEC-J2 cells, decrease the release of lactate dehydrogenase (LDH) and reactive oxygen species (ROS), and inhibit inflammatory responses and apoptosis. In addition, vascular endothelial growth factor A (VEGFA) was identified as a direct target of ssc-miR-140-5p by luciferase reporter assay. Western blot analysis showed that inhibition of ssc-miR-140-5p could activate the ERK1/2 signaling pathway and inhibit the JNK signaling pathway. In summary, we showed that down-regulation of ssc-miR-140-5p ameliorated CPB2-induced inflammatory responses in IPEC-J2 cells via the ERK1/2 and JNK signaling pathways by targeting VEGFA.
Collapse
Affiliation(s)
- Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China.
| |
Collapse
|
30
|
Shi Y, Zeng Z, Yu J, Tang B, Tang R, Xiao R. The aryl hydrocarbon receptor: An environmental effector in the pathogenesis of fibrosis. Pharmacol Res 2020; 160:105180. [PMID: 32877693 DOI: 10.1016/j.phrs.2020.105180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a highly conserved transcription factor that can be activated by small molecules provided by dietary, plant, or microbial metabolites, and environmental pollutants. AhR is expressed in many cell types and engages in crosstalk with other signaling pathways, and therefore provides a molecular pathway that integrates environmental cues and metabolic processes. Fibrosis, which is defined as an aberrant extracellular matrix formation, is a reparative process in the terminal stage of chronic diseases. Both environmental and internal factors have been shown to participate in the pathogenesis of fibrosis; however, the underlying mechanisms still remain elusive. In this review, the potential role of AhR in the process of fibrosis, as well as potential opportunities and challenges in the development of AhR targeting therapeutics, are summarized.
Collapse
Affiliation(s)
- Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
31
|
Zárate LV, Pontillo CA, Español A, Miret NV, Chiappini F, Cocca C, Álvarez L, de Pisarev DK, Sales ME, Randi AS. Angiogenesis signaling in breast cancer models is induced by hexachlorobenzene and chlorpyrifos, pesticide ligands of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol 2020; 401:115093. [PMID: 32526215 DOI: 10.1016/j.taap.2020.115093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Breast cancer incidence is increasing globally and pesticides exposure may impact risk of developing this disease. Hexachlorobenzene (HCB) and chlorpyrifos (CPF) act as endocrine disruptors, inducing proliferation in breast cancer cells. Vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-2 (COX-2) and nitric oxide (NO) are associated with angiogenesis. Our aim was to evaluate HCB and CPF action, both weak aryl hydrocarbon receptor (AhR) ligands, on angiogenesis in breast cancer models. We used: (1) in vivo xenograft model with MCF-7 cells, (2) in vitro breast cancer model with MCF-7, and (3) in vitro neovasculogenesis model with endothelial cells exposed to conditioned medium from MCF-7. Results show that HCB (3 mg/kg) and CPF (0.1 mg/kg) stimulated vascular density in the in vivo model. HCB and CPF low doses enhanced VEGF-A and COX-2 expression, accompanied by increased levels of nitric oxide synthases (NOS), and NO release in MCF-7. HCB and CPF high doses intensified VEGF-A and COX-2 levels but rendered different effects on NOS, however, both pesticides reduced NO production. Moreover, our data indicate that HCB and CPF-induced VEGF-A expression is mediated by estrogen receptor and NO, while the increase in COX-2 is through AhR and NO pathways in MCF-7. In conclusion, we demonstrate that HCB and CPF environmental concentrations stimulate angiogenic switch in vivo. Besides, pesticides induce VEGF-A and COX-2 expression, as well as NO production in MCF-7, promoting tubulogenesis in endothelial cells. These findings show that pesticide exposure could stimulate angiogenesis, a process that has been demonstrated to contribute to breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Alejandro Español
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Laura Álvarez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - María E Sales
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
32
|
Pocar P, Berrini A, Di Giancamillo A, Fischer B, Borromeo V. Regulation of the aryl hydrocarbon receptor activity in bovine cumulus-oocyte complexes during in vitro maturation: The role of EGFR and post-EGFR ERK1/2 signaling cascade. Theriogenology 2020; 156:59-69. [PMID: 32679457 DOI: 10.1016/j.theriogenology.2020.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 10/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been extensively characterized as an environmental sensor with major roles in xenobiotic-induced toxicity. Evidence is accumulating that these functions serve as adaptive mechanisms overlapping its physiological roles. We previously described a critical role of constitutive AhR activation for the correct progress of mammalian oocyte maturation but the signaling pathway through which AhR controls maturation remains unclear. The aim of this study was to investigate whether the AhR interacts with the epidermal growth factor receptor (EGFR) and p42/44 extracellular regulated kinases (ERK1/2), both key factors in the signaling network that finely regulates the oocyte maturation. As experimental model we used bovine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM). Blocking ERK1/2 signaling in COCs during IVM with the specific EGFR inhibitor AG1478 or the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 downregulated the expression of the AhR-target gene Cyp1a1. Inhibition of AhR activity was associated with a reduction in the oocytes' ability to progress in meiosis resumption. In contrast, exposure to the AhR antagonist resveratrol reduced both CYP1A1 expression and the oocytes' maturation competence, without affecting ERK1/2 signaling. These findings strongly indicate the EGFR/ERKs signaling network as an upstream regulator of the AhR activation in COCs, offering a new understanding of the finely tuned physiological mechanism leading to oocyte maturation. This information may provide fresh opportunities for improving oocyte in vitro maturation, and therefore boosting the efficiency of assisted reproduction techniques in mammals.
Collapse
Affiliation(s)
- Paola Pocar
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy.
| | - Anna Berrini
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy
| | | | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, D-06097, Halle (Saale), Germany
| | - Vitaliano Borromeo
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy
| |
Collapse
|
33
|
Liu X, Li X, Tao Y, Li N, Ji M, Zhang X, Chen Y, He Z, Yu K, Yu Z. TCDD inhibited the osteogenic differentiation of human fetal palatal mesenchymal cells through AhR and BMP-2/TGF-β/Smad signaling. Toxicology 2019; 431:152353. [PMID: 31887333 DOI: 10.1016/j.tox.2019.152353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Exposure to environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes cleft palate at high rates, but little is known about the underlying biological mechanisms. In the present study, we cultured osteoblasts from human fetal palate mesenchymal cells (hFPMCs) to explore the effects of TCDD on osteogenic differentiation. The results showed that TCDD significantly decreased cell proliferation, alkaline phosphatase (ALP) activity and calcium deposition. RNA analyses and protein detection demonstrated that TCDD downregulated a wide array of pro-osteogenic biomarkers. Further investigation of the underlying molecular mechanisms revealed that exposure to TCDD activated aryl hydrocarbon receptor (AhR) signaling and inhibited BMP-2/TGF-β1/Smad pathway molecules. The inactivation of AhR signaling using CRISPR/Cas9-mediated AhR deletion or by genetic siRNA knockdown significantly blocked the effects induced by TCDD, suggesting a critical role of AhR activation in the TCDD-mediated inhibition of hFPMC osteogenic differentiation. The cotreatment with TGF-β1 or BMP-2 and TCDD significantly relieved the activation of AhR and rescued the impairment of osteogenesis caused by TCDD. Taken together, our findings indicated that TCDD inhibited the osteogenic differentiation of hFPMCs via crosstalk between AhR and BMP-2/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xue Li
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchang Tao
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, China
| | - Mengmeng Ji
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuli Zhang
- Division of Blood Vessel Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kailun Yu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
34
|
Le Goff M, Lagadic-Gossmann D, Latour R, Podechard N, Grova N, Gauffre F, Chevance S, Burel A, Appenzeller BMR, Ulmann L, Sergent O, Le Ferrec E. PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113171. [PMID: 31539851 DOI: 10.1016/j.envpol.2019.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
Collapse
Affiliation(s)
- Manon Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France; EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Remi Latour
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology-Lorraine University, Campus Aiguillettes, B.P. 70239, F-54506, Vandoeuvre-lès-Nancy, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, 1 A-B Thomas Edisson, Luxembourg
| | - Lionel Ulmann
- EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
35
|
Hawerkamp HC, Kislat A, Gerber PA, Pollet M, Rolfes KM, Soshilov AA, Denison MS, Momin AA, Arold ST, Datsi A, Braun SA, Oláh P, Lacouture ME, Krutmann J, Haarmann‐Stemmann T, Homey B, Meller S. Vemurafenib acts as an aryl hydrocarbon receptor antagonist: Implications for inflammatory cutaneous adverse events. Allergy 2019; 74:2437-2448. [PMID: 31269229 DOI: 10.1111/all.13972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, the BRAF inhibitor vemurafenib has been successfully established in the therapy of advanced melanoma. Despite its superior efficacy, the use of vemurafenib is limited by frequent inflammatory cutaneous adverse events that affect patients' quality of life and may lead to dose reduction or even cessation of anti-tumor therapy. To date, the molecular and cellular mechanisms of vemurafenib-induced rashes have remained largely elusive. METHODS In this study, we deployed immunohistochemistry, RT-qPCR, flow cytometry, lymphocyte activation tests, and different cell-free protein-interaction assays. RESULTS We here demonstrate that vemurafenib inhibits the downstream signaling of the canonical pathway of aryl hydrocarbon receptor (AhR) in vitro, thereby inducing the expression of proinflammatory cytokines (eg, TNF) and chemokines (eg, CCL5). In line with these results, we observed an impaired expression of AhR-regulated genes (eg, CYP1A1) and an upregulation of the corresponding proinflammatory genes in vivo. Moreover, results of lymphocyte activation tests showed the absence of drug-specific T cells in respective patients. CONCLUSION Taken together, we obtained no hint of an underlying sensitization against vemurafenib but found evidence suggesting that vemurafenib enhances proinflammatory responses by inhibition of canonical AhR signaling. Our findings contribute to our understanding of the central role of the AhR in skin inflammation and may point toward a potential role for topical AhR agonists in supportive cancer care.
Collapse
Affiliation(s)
- Heike C. Hawerkamp
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Andreas Kislat
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Peter A. Gerber
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Marius Pollet
- Leibniz‐Research Institute for Environmental Medicine Duesseldorf Germany
| | | | - Anatoly A. Soshilov
- Department of Environmental Toxicology University of California Davis CA USA
| | - Michael S. Denison
- Department of Environmental Toxicology University of California Davis CA USA
| | - Afaque A. Momin
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE) Thuwal Saudi Arabia
| | - Stefan T. Arold
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE) Thuwal Saudi Arabia
| | - Angeliki Datsi
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Stephan A. Braun
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Péter Oláh
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
- Department of Dermatology, Venereology and Oncodermatology University of Pécs Pécs Hungary
| | - Mario E. Lacouture
- Dermatology Service, Department of Medicine Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Jean Krutmann
- Leibniz‐Research Institute for Environmental Medicine Duesseldorf Germany
| | | | - Bernhard Homey
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty Heinrich‐Heine‐University Duesseldorf Germany
| |
Collapse
|
36
|
Role of the Aryl Hydrocarbon Receptor in Environmentally Induced Skin Aging and Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20236005. [PMID: 31795255 PMCID: PMC6928879 DOI: 10.3390/ijms20236005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
The skin is constantly exposed to a variety of environmental threats, including solar electromagnetic radiation, microbes, airborne particulate matter, and chemicals. Acute exposure to these environmental factors results in the activation of different signaling pathways that orchestrate adaptive stress responses to maintain cell and tissue homeostasis. Chronic exposure of skin to these factors, however, may lead to the accumulation of damaged macromolecules and loss of cell and tissue integrity, which, over time, may facilitate aging processes and the development of aging-related malignancies. One transcription factor that is expressed in all cutaneous cells and activated by various environmental stressors, including dioxins, polycyclic aromatic hydrocarbons, and ultraviolet radiation, is the aryl hydrocarbon receptor (AHR). By regulating keratinocyte proliferation and differentiation, epidermal barrier function, melanogenesis, and immunity, a certain degree of AHR activity is critical to maintain skin integrity and to adapt to acute stress situations. In contrast, a chronic activation of cutaneous AHR signaling critically contributes to premature aging and the development of neoplasms by affecting metabolism, extracellular matrix remodeling, inflammation, pigmentation, DNA repair, and apoptosis. This article provides an overview of the detrimental effects associated with sustained AHR activity in chronically stressed skin and pinpoints AHR as a promising target for chemoprevention.
Collapse
|
37
|
Matoba H, Takamoto M, Fujii C, Kawakubo M, Kasuga E, Matsumura T, Natori T, Misawa K, Taniguchi S, Nakayama J. Cecal Tumorigenesis in Aryl Hydrocarbon Receptor-Deficient Mice Depends on Cecum-Specific Mitogen-Activated Protein Kinase Pathway Activation and Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:453-468. [PMID: 31734232 DOI: 10.1016/j.ajpath.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor known as a dioxin receptor. Recently, Ahr-/- mice were revealed to develop cecal tumors with inflammation and Wnt/β-catenin pathway activation. However, whether β-catenin degradation is AhR dependent remains unclear. To determine whether other signaling pathways function in Ahr-/- cecal tumorigenesis, we investigated histologic characteristics of the tumors and cytokine/chemokine production in tumors and Ahr-/- peritoneal macrophages. AhR expression was also assessed in human colorectal carcinomas. Of the 28 Ahr-/- mice, 10 developed cecal lesions by 50 weeks of age, an incidence significantly lower than previously reported. Cecal lesions of Ahr-/- mice developed from serrated hyperplasia to adenoma/dysplasia-like neoplasia with enhanced proliferation. Macrophage and neutrophil infiltration into the lesions was also observed early in serrated hyperplasia, although adjacent mucosa was devoid of inflammation. Il1b, Il6, Ccl2, and Cxcl5 were up-regulated at lesion sites, whereas only IL-6 production increased in Ahr-/- peritoneal macrophages after lipopolysaccharide + ATP stimulation. Neither Myc (alias c-myc) up-regulation nor β-catenin nuclear translocation was observed, unlike previously reported. Interestingly, enhanced phosphorylation of extracellular signal-regulated kinase, Src, and epidermal growth factor receptor and Amphiregulin up-regulation at Ahr-/- lesion sites were detected. In human serrated lesions, however, AhR expression in epithelial cells was up-regulated despite morphologic similarity to Ahr-/- cecal lesions. Our results suggest novel mechanisms underlying Ahr-/- cecal tumorigenesis, depending primarily on cecum-specific mitogen-activated protein kinase pathway activation and inflammation.
Collapse
Affiliation(s)
- Hisanori Matoba
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Pathology, Ina Central Hospital, Ina, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense and Pathobiology, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan.
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eriko Kasuga
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | | | - Tatsuya Natori
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Ken Misawa
- Department of Pathology, Ina Central Hospital, Ina, Japan
| | - Shun'ichiro Taniguchi
- Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
38
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
39
|
Lai ZZ, Yang HL, Ha SY, Chang KK, Mei J, Zhou WJ, Qiu XM, Wang XQ, Zhu R, Li DJ, Li MQ. Cyclooxygenase-2 in Endometriosis. Int J Biol Sci 2019; 15:2783-2797. [PMID: 31853218 PMCID: PMC6909960 DOI: 10.7150/ijbs.35128] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
Endometriosis (EMS) is the most common gynecological disease in women of reproductive age, and it is associated with chronic pelvic pain, dyspareunia and infertility. As a consequence of genetic, immune and environmental factors, endometriotic lesions have high cyclooxygenase (COX)-2 and COX-2-derived prostaglandin E2 (PGE2) biosynthesis compared with the normal endometrium. The transcription of the PTGS2 gene for COX-2 is associated with multiple intracellular signals, which converge to cause the activation of mitogen-activated protein kinases (MAPKs). COX-2 expression can be regulated by several factors, such as estrogen, hypoxia, proinflammatory cytokines, environmental pollutants, metabolites and metabolic enzymes, and platelets. High concentrations of COX-2 lead to high cell proliferation, a low level of apoptosis, high invasion, angiogenesis, EMS-related pain and infertility. COX-2-derived PGE2 performs a crucial function in EMS development by binding to EP2 and EP4 receptors. These basic findings have contributed to COX-2-targeted treatment in EMS, including COX-2 inhibitors, hormone drugs and glycyrrhizin. In this review, we summarize the most recent basic research in detail and provide a short summary of COX-2-targeted treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Si-Yao Ha
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - We-Jie Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Xue-Min Qiu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Qiu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou 215008, People's Republic of China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
40
|
Hammond CL, Roztocil E, Phipps RP, Feldon SE, Woeller CF. Proton pump inhibitors attenuate myofibroblast formation associated with thyroid eye disease through the aryl hydrocarbon receptor. PLoS One 2019; 14:e0222779. [PMID: 31536596 PMCID: PMC6752849 DOI: 10.1371/journal.pone.0222779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Thyroid eye disease (TED) can lead to scar formation and tissue remodeling in the orbital space. In severe cases, the scarring process leads to sight-threatening pathophysiology. There is no known effective way to prevent scar formation in TED patients, or to reverse scarring once it occurs. In this study, we show that the proton pump inhibitors (PPIs), esomeprazole and lansoprazole, can prevent transforming growth factor beta (TGFβ)-mediated differentiation of TED orbital fibroblasts to myofibroblasts, a critical step in scar formation. Both PPIs prevent TGFβ-induced increases in alpha-smooth muscle actin (αSMA), calponin, and collagen production and reduce TED orbital fibroblast cell proliferation and migration. Esomeprazole and lansoprazole exert these effects through an aryl hydrocarbon receptor (AHR)-dependent pathway that includes reducing β-catenin/Wnt signaling. We conclude that PPIs are potentially useful therapies for preventing or treating TED by reducing the myofibroblast accumulation that occurs in the disease.
Collapse
Affiliation(s)
- Christine L. Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Richard P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
41
|
Csaba G. Aromatic hydrocarbon receptors in the immune system: Review and hypotheses. Acta Microbiol Immunol Hung 2019; 66:273-287. [PMID: 30803253 DOI: 10.1556/030.66.2019.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ah-receptors (AhRs) recognize and bind foreign environmental molecules as well as some target hormones of other nuclear receptors. As ligands activate transcription factors, they transmit the information on the presence of these molecules by binding to the DNA, which in turn activate xenobiotic metabolism genes. Cross talk with other nuclear receptors or some non-nuclear receptors also activates or inhibits endocrine processes. Immune cells have AhRs by which they are activated for physiological (immunity) or non-physiological (allergy and autoimmunity) processes. They can be imprinted by hormonal or pseudo-hormonal (environmental) factors, which could provoke pathological alterations for life (by faulty perinatal hormonal imprinting). The variety and amount of human-made new environmental molecules (endocrine disruptors) are enormously growing, so the importance of AhR functions is also expanding.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
42
|
Cirillo F, Lappano R, Bruno L, Rizzuti B, Grande F, Guzzi R, Briguori S, Miglietta AM, Nakajima M, Di Martino MT, Maggiolini M. AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:335. [PMID: 31370872 PMCID: PMC6676524 DOI: 10.1186/s13046-019-1337-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The chemical carcinogen 3-methylcholanthrene (3MC) binds to the aryl hydrocarbon receptor (AHR) that regulates the expression of cytochrome P450 (CYP) enzymes as CYP1B1, which is involved in the oncogenic activation of environmental pollutants as well as in the estrogen biosynthesis and metabolism. 3MC was shown to induce estrogenic responses binding to the estrogen receptor (ER) α and stimulating a functional interaction between AHR and ERα. Recently, the G protein estrogen receptor (GPER) has been reported to mediate certain biological responses induced by endogenous estrogens and environmental compounds eliciting an estrogen-like activity. METHODS Molecular dynamics and docking simulations were performed to evaluate the potential of 3MC to interact with GPER. SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) derived from breast tumor patients were used as model system. Real-time PCR and western blotting analysis were performed in order to evaluate the activation of transduction mediators as well as the mRNA and protein levels of CYP1B1 and cyclin D1. Co-immunoprecipitation studies were performed in order to explore the potential of 3MC to trigger the association of GPER with AHR and EGFR. Luciferase assays were carried out to determine the activity of CYP1B1 promoter deletion constructs upon 3MC exposure, while the nuclear shuttle of AHR induced by 3MC was assessed through confocal microscopy. Cell proliferation stimulated by 3MC was determined as biological counterpart of the aforementioned experimental assays. The statistical analysis was performed by ANOVA. RESULTS We first ascertained by docking simulations the ability of 3MC to interact with GPER. Thereafter, we established that 3MC activates the EGFR/ERK/c-Fos transduction signaling through both AHR and GPER in SkBr3 cells and CAFs. Then, we found that these receptors are involved in the up-regulation of CYP1B1 and cyclin D1 as well as in the stimulation of growth responses induced by 3MC. CONCLUSIONS In the present study we have provided novel insights regarding the molecular mechanisms by which 3MC may trigger a physical and functional interaction between AHR and GPER, leading to the stimulation of both SkBr3 breast cancer cells and CAFs. Altogether, our results indicate that 3MC may engage both GPER and AHR transduction pathways toward breast cancer progression.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF. Cal and Department of Physics, University of Calabria, 87036, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF. Cal and Department of Physics, University of Calabria, 87036, Rende, Italy.,Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036, Rende, Italy
| | - Sara Briguori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | | | - Miki Nakajima
- Drug Metabolism and Toxicology, WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy.
| |
Collapse
|
43
|
Miret NV, Pontillo CA, Zárate LV, Kleiman de Pisarev D, Cocca C, Randi AS. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. ENVIRONMENTAL RESEARCH 2019; 173:330-341. [PMID: 30951959 DOI: 10.1016/j.envres.2019.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Breast cancer incidence is increasing globally and exposure to endocrine disruptors has gained importance as a potential risk factor. Hexachlorobenzene (HCB) was once used as a fungicide and, despite being banned, considerable amounts are still released into the environment. HCB acts as an endocrine disruptor in thyroid, uterus and mammary gland and was classified as possibly carcinogenic to human. This review provides a thorough analysis of results obtained in the last 15 years of research and evaluates data from assays in mammary gland and breast cancer in diverse animal models. We discuss the effects of environmentally relevant HCB concentrations on the normal mammary gland and different stages of carcinogenesis, and attempt to elucidate its mechanisms of action at molecular level. HCB weakly binds to the aryl hydrocarbon receptor (AhR), activating both membrane (c-Src) and nuclear pathways. Through c-Src stimulation, AhR signaling interacts with other membrane receptors including estrogen receptor-α, insulin-like growth factor-1 receptor, epidermal growth factor receptor and transforming growth factor beta 1 receptors. In this way, several pathways involved in mammary morphogenesis and breast cancer development are modified, inducing tumor progression. HCB thus stimulates epithelial cell proliferation, preneoplastic lesions and alterations in mammary gland development as well as neoplastic cell migration and invasion, metastasis and angiogenesis in breast cancer. In conclusion, our findings support the hypothesis that the presence and bioaccumulation of HCB in high-fat tissues and during highly sensitive time windows such as pregnancy, childhood and adolescence make exposure a risk factor for breast tumor development.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, CP1113, Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Zhu Q, Huang C, Meng X, Li J. CYP1A2 contributes to alcohol-induced abnormal lipid metabolism through the PTEN/AKT/SREBP-1c pathway. Biochem Biophys Res Commun 2019; 513:509-514. [DOI: 10.1016/j.bbrc.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
|
45
|
Sane MS, Misra N, Quintanar NM, Jones CD, Mustafi SB. Biochemical characterization of pure dehydrated binate amniotic membrane: role of cytokines in the spotlight. Regen Med 2018; 13:689-703. [PMID: 30129890 DOI: 10.2217/rme-2018-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Placental allografts used for tissue regeneration differ in membrane compositions and processing techniques. A uniquely folded dehydrated binate amniotic membrane (DBAM) was biochemically characterized to evaluate its potential role in wound healing. METHODS Histology, Luminex-based immunoassay and standard in vitro cell biology techniques were employed. RESULTS Histological staining confirmed that the DBAM was chorion free with epithelial cell layer of the respective amnion membranes facing outward. DBAM had quantifiable levels of relevant cytokines that induced proliferation and migration while bolstering secretory activity of the cells. DBAM retained biological efficacy at a broad range of temperatures. CONCLUSION Cytokines in DBAM stimulate bone marrow stromal and stem cells that may lead to tissue regeneration and wound healing in a clinical setup.
Collapse
Affiliation(s)
- Mukta S Sane
- Department of Research & Development, Burst Biologics, 3501 West Elder Street, Ste #104, Boise, ID 83705, USA
| | - Neha Misra
- Department of Research & Development, Burst Biologics, 3501 West Elder Street, Ste #104, Boise, ID 83705, USA
| | - Nathan M Quintanar
- Department of Production, Burst Biologics, 3501 West Elder Street, Ste #104, Boise, ID 83705, USA
| | - Christopher D Jones
- Department of Research & Development, Burst Biologics, 3501 West Elder Street, Ste #104, Boise, ID 83705, USA.,Department of Production, Burst Biologics, 3501 West Elder Street, Ste #104, Boise, ID 83705, USA
| | - Soumyajit Banerjee Mustafi
- Department of Research & Development, Burst Biologics, 3501 West Elder Street, Ste #104, Boise, ID 83705, USA
| |
Collapse
|
46
|
Pollet M, Krutmann J, Haarmann-Stemmann T. Commentary: Usage of Mitogen-Activated Protein Kinase Small Molecule Inhibitors: More Than Just Inhibition! Front Pharmacol 2018; 9:935. [PMID: 30177882 PMCID: PMC6110190 DOI: 10.3389/fphar.2018.00935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
- Marius Pollet
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
47
|
Tan YQ, Chiu-Leung LC, Lin SM, Leung LK. The citrus flavonone hesperetin attenuates the nuclear translocation of aryl hydrocarbon receptor. Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:57-64. [PMID: 29763690 DOI: 10.1016/j.cbpc.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
The environmental polycyclic aromatic hydrocarbons (PAH) and dioxins are carcinogens and their adverse effects have been largely attributed to the activation of AhR. Hesperetin is a flavonone found abundantly in citrus fruits and has been shown to be a biologically active agent. In the present study, the effect of hesperetin on the nuclear translocation of AhR and the downstream gene expression was investigated in MCF-7 cells. Confocal microscopy indicated that 7, 12-dimethylbenz[α]anthracene (DMBA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) -induced nuclear translocation of AhR was deterred by hesperetin treatment. The reduced nuclear translocation could also be observed in Western analysis. Reporter-gene assay further illustrated that the induced XRE transactivation was weakened by the treatment of hesperetin. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay demonstrated that the gene expressions of CYP1A1, 1A2, and 1B1 followed the same pattern of AhR translocation. These results suggested that hesperetin counteracted AhR transactivation and suppressed the downstream gene expression.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/antagonists & inhibitors
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Active Transport, Cell Nucleus/drug effects
- Antineoplastic Agents, Phytogenic/metabolism
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Breast Neoplasms/chemically induced
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinogens, Environmental/chemistry
- Carcinogens, Environmental/toxicity
- Cytochrome P-450 CYP1A1/antagonists & inhibitors
- Cytochrome P-450 CYP1A1/chemistry
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1A2/chemistry
- Cytochrome P-450 CYP1A2/genetics
- Cytochrome P-450 CYP1A2/metabolism
- Cytochrome P-450 CYP1B1/antagonists & inhibitors
- Cytochrome P-450 CYP1B1/chemistry
- Cytochrome P-450 CYP1B1/genetics
- Cytochrome P-450 CYP1B1/metabolism
- Dietary Supplements
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter/drug effects
- Hesperidin/metabolism
- Humans
- MCF-7 Cells
- Microscopy, Confocal
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Polychlorinated Dibenzodioxins/antagonists & inhibitors
- Polychlorinated Dibenzodioxins/chemistry
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/metabolism
Collapse
Affiliation(s)
- Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | - Shu-Mei Lin
- Department of Food Science, National Chiayi University, Chiayi City, Taiwan
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
48
|
Tang H, Xu M, Shi F, Ye G, Lv C, Luo J, Zhao L, Li Y. Effects and Mechanism of Nano-Copper Exposure on Hepatic Cytochrome P450 Enzymes in Rats. Int J Mol Sci 2018; 19:2140. [PMID: 30041454 PMCID: PMC6073330 DOI: 10.3390/ijms19072140] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 12/14/2022] Open
Abstract
Although nano-copper is currently used extensively, the adverse effects on liver cytochrome P450 (CYP450) enzymes after oral exposure are not clear. In this study, we determined the effects and mechanisms of action of nano- and micro-copper on the expression and activity of CYP450 enzymes in rat liver. Rats were orally exposed to micro-copper (400 mg/kg), Cu ion (100 mg/kg), or nano-copper (100, 200 and 400 mg/kg) daily for seven consecutive days. Histopathological, inflammatory and oxidative stress were measured in the livers of all rats. The mRNA levels and activity of CYP450 enzymes, as well as the mRNA levels of select nuclear receptors, were determined. Exposure to nano-copper (400 mg/kg) induced significant oxidative stress and inflammation relative to the controls, indicated by increased levels of interleukin (IL)-2, IL-6, interferon (IFN)-γ, macrophage inflammatory protein (MIP-1), total antioxidant capacity (T-AOC), malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after exposure. The levels of mRNA expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AHR) were significantly decreased in 400 mg/kg nano-copper treated rats. Nano-copper activated the expression of the NF-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT)3 signaling pathways. Nano-copper decreased the mRNA expression and activity of CYP 1A2, 2C11, 2D6, 2E1 and 3A4 in a dose-dependent manner. The adverse effects of micro-copper are less severe than those of nano-copper on the CYP450 enzymes of rats after oral exposure. Ingestion of large amounts of nano-copper in animals severely affects the drug metabolism of the liver by inhibiting the expression of various CYP450 enzymes, which increases the risk of drug-drug interactions in animals.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Min Xu
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Fei Shi
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Ye
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Cheng Lv
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Luo
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- School of Medicine, Tongren Polytechnic College, Guizhou 554300, China.
| | - Ling Zhao
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yinglun Li
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
49
|
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11:1024-1038. [PMID: 29626198 DOI: 10.1038/s41385-018-0019-2] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 02/04/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Lamas
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Harry Sokol
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France. .,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France.
| |
Collapse
|
50
|
Procházková J, Strapáčová S, Svržková L, Andrysík Z, Hýžďalová M, Hrubá E, Pěnčíková K, Líbalová H, Topinka J, Kléma J, Espinosa JM, Vondráček J, Machala M. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett 2018; 292:162-174. [PMID: 29704546 DOI: 10.1016/j.toxlet.2018.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Zdeněk Andrysík
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Joaquín M Espinosa
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|