1
|
Ramesh A, Roy S, Slezak T, Fuller J, Graves H, Mamedov MR, Marson A, Kossiakoff AA, Adams EJ. Mapping the extracellular molecular architecture of the pAg-signaling complex with α-Butyrophilin antibodies. Sci Rep 2025; 15:12162. [PMID: 40204806 PMCID: PMC11982570 DOI: 10.1038/s41598-025-94347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Target cells trigger Vγ9Vδ2 T cell activation by signaling the intracellular accumulation of phospho-antigen metabolites (pAgs) through Butyrophilin (BTN)-3A1 and BTN2A1 to the Vγ9Vδ2 T cell receptor (TCR). An incomplete understanding of the molecular dynamics in this signaling complex hampers Vγ9Vδ2 T cell immunotherapeutic efficacy. A panel of engineered α-BTN3A1 and α-BTN2A1 antibody (mAb) reagents was used to probe the roles of BTN3A1 and BTN2A1 in pAg signaling. Modified α-BTN3A1 mAbs with increased inter-Fab distances establish that tight clustering of BTN3A1 is not necessary to stimulate Vγ9Vδ2 T cell activation, and that antagonism may occur through occlusion of a critical binding interaction between BTN3A1 and a yet unknown co-receptor. Finally, a panel of additional α-BTN2A1 antagonists utilize different biophysical mechanisms to compete with Vγ9Vδ2 TCRs for BTN2A1 binding. The complex structures of BTN2A1 ectodomain and Fabs from three antagonist mAbs provide molecular insights into BTN2A1 epitopes critical for pAg-signaling.
Collapse
MESH Headings
- Butyrophilins/immunology
- Butyrophilins/metabolism
- Butyrophilins/chemistry
- Humans
- Signal Transduction
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amrita Ramesh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Tomasz Slezak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - James Fuller
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Hortencia Graves
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Murad R Mamedov
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Fulford TS, Soliman C, Castle RG, Rigau M, Ruan Z, Dolezal O, Seneviratna R, Brown HG, Hanssen E, Hammet A, Li S, Redmond SJ, Chung A, Gorman MA, Parker MW, Patel O, Peat TS, Newman J, Behren A, Gherardin NA, Godfrey DI, Uldrich AP. Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers. Nat Immunol 2024; 25:1355-1366. [PMID: 39014161 DOI: 10.1038/s41590-024-01892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.
Collapse
MESH Headings
- Butyrophilins/metabolism
- Butyrophilins/immunology
- Butyrophilins/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Humans
- Protein Binding
- Protein Multimerization
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, CD/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Lymphocyte Activation/immunology
- Models, Molecular
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Thomas S Fulford
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Caroline Soliman
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca G Castle
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Marc Rigau
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrichs-Wilhelms University of Bonn, Bonn, Germany
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olan Dolezal
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Rebecca Seneviratna
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Hamish G Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Eric Hanssen
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Hammet
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Shihan Li
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Chung
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Gorman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas S Peat
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Janet Newman
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| | - Adam P Uldrich
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Tyler CJ, Hoti I, Griffiths DD, Cuff SM, Andrews R, Keisker M, Ahmed R, Hansen HP, Lindsay JO, Stagg AJ, Moser B, McCarthy NE, Eberl M. IL-21 conditions antigen-presenting human γδ T-cells to promote IL-10 expression in naïve and memory CD4 + T-cells. DISCOVERY IMMUNOLOGY 2024; 3:kyae008. [PMID: 38903247 PMCID: PMC11187773 DOI: 10.1093/discim/kyae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Direct interaction between T-cells exerts a major influence on tissue immunity and inflammation across multiple body sites including the human gut, which is highly enriched in 'unconventional' lymphocytes such as γδ T-cells. We previously reported that microbial activation of human Vγ9/Vδ2+ γδ T-cells in the presence of the mucosal damage-associated cytokine IL-15 confers the ability to promote epithelial barrier defence, specifically via induction of IL-22 expression in conventional CD4+ T-cells. In the current report, we assessed whether other cytokines enriched in the gut milieu also functionally influence microbe-responsive Vγ9/Vδ2 T-cells. When cultured in the presence of IL-21, Vγ9/Vδ2 T-cells acquired the ability to induce expression of the immunoregulatory cytokine IL-10 in both naïve and memory CD4+ T-cells, at levels surpassing those induced by monocytes or monocyte-derived DCs. These findings identify an unexpected influence of IL-21 on Vγ9/Vδ2 T-cell modulation of CD4+ T-cell responses. Further analyses suggested a possible role for CD30L and/or CD40L reverse signalling in mediating IL-10 induction by IL-21 conditioned Vγ9/Vδ2 T-cells. Our findings indicate that the local microenvironment exerts a profound influence on Vγ9/Vδ2 T-cell responses to microbial challenge, leading to induction of distinct functional profiles among CD4+ T-cells that may influence inflammatory events at mucosal surfaces. Targeting these novel pathways may offer therapeutic benefit in disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Christopher J Tyler
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Inva Hoti
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Daniel D Griffiths
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Maximilian Keisker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hinrich P Hansen
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - James O Lindsay
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Gastroenterology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Andrew J Stagg
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
5
|
Singh K, Cogan S, Elekes S, Murphy DM, Cummins S, Curran R, Najda Z, Dunne MR, Jameson G, Gargan S, Martin S, Long A, Doherty DG. SARS-CoV-2 spike and nucleocapsid proteins fail to activate human dendritic cells or γδ T cells. PLoS One 2022; 17:e0271463. [PMID: 35834480 PMCID: PMC9282473 DOI: 10.1371/journal.pone.0271463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
γδ T cells are thought to contribute to immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanisms by which they are activated by the virus are unknown. Using flow cytometry, we investigated if the two most abundant viral structural proteins, spike and nucleocapsid, can activate human γδ T cell subsets, directly or in the presence of dendritic cells (DC). Both proteins failed to induce interferon-γ production by Vδ1 or Vδ2 T cells within fresh mononuclear cells or lines of expanded γδ T cells generated from healthy donors, but the same proteins stimulated CD3+ cells from COVID-19 patients. The nucleocapsid protein stimulated interleukin-12 production by DC and downstream interferon-γ production by co-cultured Vδ1 and Vδ2 T cells, but protease digestion and use of an alternative nucleocapsid preparation indicated that this activity was due to contaminating non-protein material. Thus, SARS-CoV-2 spike and nucleocapsid proteins do not have stimulatory activity for DC or γδ T cells. We propose that γδ T cell activation in COVID-19 patients is mediated by immune recognition of viral RNA or other structural proteins by γδ T cells, or by other immune cells, such as DC, that produce γδ T cell-stimulatory ligands or cytokines.
Collapse
Affiliation(s)
- Kiran Singh
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Sita Cogan
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Stefan Elekes
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Dearbhla M. Murphy
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Sinead Cummins
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Rory Curran
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Margaret R. Dunne
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Gráinne Jameson
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Siobhan Gargan
- Discipline of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Seamus Martin
- Molecular Cell Biology Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Discipline of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
8
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
9
|
Keane JT, Posey AD. Chimeric Antigen Receptors Expand the Repertoire of Antigenic Macromolecules for Cellular Immunity. Cells 2021; 10:cells10123356. [PMID: 34943864 PMCID: PMC8699116 DOI: 10.3390/cells10123356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
T-cell therapies have made significant improvements in cancer treatment over the last decade. One cellular therapy utilizing T-cells involves the use of a chimeric MHC-independent antigen-recognition receptor, typically referred to as a chimeric antigen receptor (CAR). CAR molecules, while mostly limited to the recognition of antigens on the surface of tumor cells, can also be utilized to exploit the diverse repertoire of macromolecules targetable by antibodies, which are incorporated into the CAR design. Leaning into this expansion of target macromolecules will enhance the diversity of antigens T-cells can target and may improve the tumor-specificity of CAR T-cell therapy. This review explores the types of macromolecules targetable by T-cells through endogenous and synthetic antigen-specific receptors.
Collapse
Affiliation(s)
- John T. Keane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Avery D. Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
10
|
Rosso DA, Rosato M, Iturrizaga J, González N, Shiromizu CM, Keitelman IA, Coronel JV, Gómez FD, Amaral MM, Rabadan AT, Salamone GV, Jancic CC. Glioblastoma cells potentiate the induction of the Th1-like profile in phosphoantigen-stimulated γδ T lymphocytes. J Neurooncol 2021; 153:403-415. [PMID: 34125375 DOI: 10.1007/s11060-021-03787-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells. METHODS Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas. RESULTS HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment. CONCLUSION GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.
Collapse
Affiliation(s)
- David A Rosso
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juan Iturrizaga
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno González
- Instituto de Investigaciones Biomédicas (INBIOMED) - Universidad de Buenos Aires - CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene A Keitelman
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juan V Coronel
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando D Gómez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra T Rabadan
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela V Salamone
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina C Jancic
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina. .,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Amadi M, Visentin S, Tosato F, Fogar P, Giacomini G, Res G, Bonadies L, Zaramella P, Plebani M, Cosmi E, Baraldi E. Neonatal lymphocyte subpopulations analysis and maternal preterm premature rupture of membranes: a pilot study. Clin Chem Lab Med 2021; 59:1688-1698. [PMID: 34087965 DOI: 10.1515/cclm-2021-0375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Preterm premature rupture of membranes (pPROM) causes preterm delivery, and increases maternal T-cell response against the fetus. Fetal inflammatory response prompts maturation of the newborn's immunocompetent cells, and could be associated with unfavorable neonatal outcome. The aims were (1) to examine the effects of pPROM on the newborn's and mother's immune system and (2) to assess the predictive value of immune system changes in neonatal morbidity. METHODS Mother-newborn pairs (18 mothers and 23 newborns) who experienced pPROM and controls (11 mothers and 14 newborns), were enrolled. Maternal and neonatal whole blood samples underwent flow cytometry to measure lymphocyte subpopulations. RESULTS pPROM-newborns had fewer naïve CD4 T-cells, and more memory CD4 T-cells than control newborns. The effect was the same for increasing pPROM latency times before delivery. Gestational age and birth weight influenced maturation of the newborns' lymphocyte subpopulations and white blood cells, notably cytotoxic T-cells, regulatory T-cells, T-helper cells (absolute count), and CD4/CD8 ratio. Among morbidities, fewer naïve CD8 T-cells were found in bronchopulmonary dysplasia (BPD) (p=0.0009), and more T-helper cells in early onset sepsis (p=0.04). CONCLUSIONS pPROM prompts maturation of the newborn's T-cell immune system secondary to antigenic stimulation, which correlates with pPROM latency. Maternal immunity to inflammatory conditions is associated with a decrease in non-major histocompatibility complex (MHC)-restricted cytotoxic cells.
Collapse
Affiliation(s)
- Margherita Amadi
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Silvia Visentin
- Obstetrics and Gynecology Clinic, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Francesca Tosato
- Department of Laboratory Medicine, Padova University Hospital, Padova, Italy
| | - Paola Fogar
- Department of Laboratory Medicine, Padova University Hospital, Padova, Italy
| | - Giulia Giacomini
- Obstetrics and Gynecology Clinic, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giulia Res
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, Padova University Hospital, Padova, Italy
| | - Erich Cosmi
- Obstetrics and Gynecology Clinic, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Taher NAB, Kelly LA, Al-Harbi AI, O'Dea MI, Zareen Z, Ryan E, Molloy EJ, Doherty DG. Altered distributions and functions of natural killer T cells and γδ T cells in neonates with neonatal encephalopathy, in school-age children at follow-up, and in children with cerebral palsy. J Neuroimmunol 2021; 356:577597. [PMID: 33964735 DOI: 10.1016/j.jneuroim.2021.577597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
We enumerated conventional and innate lymphocyte populations in neonates with neonatal encephalopathy (NE), school-age children post-NE, children with cerebral palsy and age-matched controls. Using flow cytometry, we demonstrate alterations in circulating T, B and natural killer cell numbers. Invariant natural killer T cell and Vδ2+ γδ T cell numbers and frequencies were strikingly higher in neonates with NE, children post-NE and children with cerebral palsy compared to age-matched controls, whereas mucosal-associated invariant T cells and Vδ1 T cells were depleted from children with cerebral palsy. Upon stimulation ex vivo, T cells, natural killer cells and Vδ2 T cells from neonates with NE more readily produced inflammatory cytokines than their counterparts from healthy neonates, suggesting that they were previously primed or activated. Thus, innate and conventional lymphocytes are numerically and functionally altered in neonates with NE and these changes may persist into school-age.
Collapse
Affiliation(s)
- Nawal A B Taher
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Alhanouf I Al-Harbi
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Mary I O'Dea
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland; Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Zunera Zareen
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland
| | - Emer Ryan
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland; Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Derek G Doherty
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
13
|
Tyler CJ, Guzman M, Lundborg LR, Yeasmin S, Perez-Jeldres T, Yarur A, Behm B, Dulai PS, Patel D, Bamias G, Rivera-Nieves J. Inherent Immune Cell Variation Within Colonic Segments Presents Challenges for Clinical Trial Design. J Crohns Colitis 2020; 14:1364-1377. [PMID: 32239151 PMCID: PMC7533898 DOI: 10.1093/ecco-jcc/jjaa067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Intestinal biopsy sampling during IBD trials represents a valuable adjunct strategy for understanding drug responses at the tissue level. Given the length and distinctive embryonic origins of the proximal and distal colon, we investigated whether inherent regional differences of immune cell composition could introduce confounders when sampling different disease stages, or pre/post drug administration. Here, we capitalise on novel mass cytometry technology to perform deep immunophenotyping of distinct healthy colonic segments, using the limited numbers of biopsies that can be harvested from patients. METHODS Biopsies [2.8 mm] were collected from the caecum, transverse colon, descending colon, and rectum of normal volunteers. Intestinal leukocytes were isolated, stained with a panel of 37 antibodies, and mass cytometry data acquired. RESULTS Site-specific patterns of leukocyte localisation were observed. The proximal colon featured increased CD8+ T cells [particularly resident memory], monocytes, and CD19+ B cells. Conversely, the distal colon and rectum tissues exhibited enrichment for CD4+ T cells and antibody-secreting cells. The transverse colon displayed increased abundance of both γδ T cells and NK cells. Subsets of leukocyte lineages also displayed gradients of expression along the colon length. CONCLUSIONS Our results show an inherent regional immune cell variation within colonic segments, indicating that regional mucosal signatures must be considered when assessing disease stages or the prospective effects of trial drugs on leukocyte subsets. Precise protocols for intestinal sampling must be implemented to allow for the proper interpretation of potential differences observed within leukocyte lineages present in the colonic lamina propria.
Collapse
Affiliation(s)
- Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- San Diego VA Medical Center, San Diego, CA, USA
| | - Mauricio Guzman
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- San Diego VA Medical Center, San Diego, CA, USA
| | - Luke R Lundborg
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- San Diego VA Medical Center, San Diego, CA, USA
| | - Shaila Yeasmin
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- San Diego VA Medical Center, San Diego, CA, USA
| | - Tamara Perez-Jeldres
- Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja Arriarán, Santiago, Chile
| | - Andres Yarur
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Behm
- Division of Gastroenterology, University of Virginia, Charlottesville, VI, USA
| | | | - Derek Patel
- San Diego VA Medical Center, San Diego, CA, USA
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- San Diego VA Medical Center, San Diego, CA, USA
| |
Collapse
|
14
|
Coakley JD, Breen EP, Moreno-Olivera A, Al-Harbi AI, Melo AM, O’Connell B, McManus R, Doherty DG, Ryan T. Innate Lymphocyte Th1 and Th17 Responses in Elderly Hospitalised Patients with Infection and Sepsis. Vaccines (Basel) 2020; 8:vaccines8020311. [PMID: 32560376 PMCID: PMC7350237 DOI: 10.3390/vaccines8020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background: the role of innate immunity in human sepsis must be fully clarified to identify potential avenues for novel immune adjuvant sepsis therapies. Methods: A prospective observational study was performed including patients with sepsis (septic group), infection without sepsis (infection group), and healthy controls (control group) in the setting of acute medical wards and intensive care units in a 1000-bed university hospital. A total of 42 patients with sepsis, 30 patients with infection, and 30 healthy controls were studied. The differentiation states of circulating mucosal associated invariant T (MAIT) cells and Natural Killer T (NKT) cells were characterised as naive (CD45RA+, CD197+), central memory (CD45RA−, CD197+), effector memory (CD45RA−, CD197−), or terminally differentiated (CD45RA+, CD197−). The differentiation states of circulating gamma-delta T lymphocytes were characterised as naive (CD45RA+, CD27+), central memory (CD45RA−, CD27+), effector memory (CD45RA−, CD27−), or terminally differentiated (CD45RA+, CD27−). The expression of IL-12 and IL-23 receptors, the transcription factors T-Bet and RORγt, and interferon-γ and IL-17a were analysed. Results: MAIT cell counts were lower in the septic group (p = 0.002) and the infection group (p < 0.001) than in the control group. The MAIT cell T-Bet expression in the infection group was greater than in the septic group (p = 0.012). The MAIT RORγt expression in the septic group was lower than in the control group (p = 0.003). The NK cell counts differed in the three groups (p < 0.001), with lower Natural Killer (NK) cell counts in the septic group (p < 0.001) and in the infection group (p = 0.001) than in the control group. The NK cell counts increased in the septic group in the 3 weeks following the onset of sepsis (p = 0.028). In lymphocyte stimulation experiments, fewer NK cells expressed T-Bet in the septic group than in the infection group (p = 0.002), and fewer NK cells expressed IFN-γ in the septic group than in the control group (p = 0.002). The NKT cell counts were lower in the septic group than both the control group (p = 0.05) and the infection group (p = 0.04). Fewer NKT cells expressed T-Bet in the septic group than in the infection group (p = 0.004). Fewer NKT cells expressed RORγt in the septic group than in the control group (p = 0.003). Fewer NKT cells expressed IFN-γ in the septic group than in both the control group (p = 0.002) and the infection group (p = 0.036). Conclusion: The clinical presentation of infection and or sepsis in patients is linked with a mosaic of changes in the innate lymphocyte Th1 and Th17 phenotypes. The manipulation of the innate lymphocyte phenotype offers a potential avenue for immune modulation in patients with sepsis.
Collapse
Affiliation(s)
- John Davis Coakley
- St James’s Hospital Intensive Care Unit, James’s Street, Dublin 8, Ireland;
- Correspondence:
| | - Eamon P. Breen
- Trinity Translational Medicine Institute, St James’s Hospital, Dublin 8, Ireland;
| | - Ana Moreno-Olivera
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Alhanouf I. Al-Harbi
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Ashanty M. Melo
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Brian O’Connell
- Department of Clinical Microbiology, St James’s Hospital, James’s Street, Dublin 8, Ireland;
| | - Ross McManus
- Molecular Medicine, Trinity Translational Medicine Institute, Department of Clinical Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland;
| | - Derek G. Doherty
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Thomas Ryan
- St James’s Hospital Intensive Care Unit, James’s Street, Dublin 8, Ireland;
| |
Collapse
|
15
|
Juno JA, Kent SJ. What Can Gamma Delta T Cells Contribute to an HIV Cure? Front Cell Infect Microbiol 2020; 10:233. [PMID: 32509601 PMCID: PMC7248205 DOI: 10.3389/fcimb.2020.00233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023] Open
Abstract
Elimination of the latent HIV reservoir remains a major barrier to achieving an HIV cure. In this review, we discuss the cytolytic nature of human gamma delta T cells and highlight the emerging evidence that they can target and eliminate HIV-infected T cells. Based on observations from human clinical trials assessing gamma delta immunotherapy in oncology, we suggest key questions and research priorities for the study of these unique T cells in HIV cure research.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Ang WX, Ng YY, Xiao L, Chen C, Li Z, Chi Z, Tay JCK, Tan WK, Zeng J, Toh HC, Wang S. Electroporation of NKG2D RNA CAR Improves Vγ9Vδ2 T Cell Responses against Human Solid Tumor Xenografts. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:421-430. [PMID: 32462079 PMCID: PMC7240063 DOI: 10.1016/j.omto.2020.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023]
Abstract
Vγ9Vδ2 T cell-based anticancer immunotherapy has shown some promise in early-phase clinical trials but there is still large room for improvement. Using the extracellular domain of the human NKG2D, a stimulatory receptor expressed by Vγ9Vδ2 T cells, we constructed NKG2D ligand-specific chimeric antigen receptors (CARs). We adopted a non-viral CAR approach via mRNA electroporation to modify Vγ9Vδ2 T cells and demonstrated that, upon interaction with the NKG2D ligand-positive cancer cells, the CARs substantially enhanced the cytotoxic activity of the modified cells toward multiple cultured solid tumor cell lines, including those resistant to Zometa treatment. Repeated doses of the CAR-expressing cells resulted in tumor regression in mice with established tumors, extending median survival time by up to 132% as compared to the PBS control group. The findings suggest clinical potential for RNA CAR-modified Vγ9Vδ2 T cells to treat a wide variety of NKG2D ligand-expressing cancers.
Collapse
Affiliation(s)
- Wei Xia Ang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Lin Xiao
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Can Chen
- Tessa Therapeutics, Singapore 239351, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhixia Chi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Johan Chin-Kang Tay
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wee Kiat Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Jieming Zeng
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
17
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
18
|
The Nonmevalonate Pathway of Isoprenoid Biosynthesis Supports Anaerobic Growth of Listeria monocytogenes. Infect Immun 2020; 88:IAI.00788-19. [PMID: 31792073 DOI: 10.1128/iai.00788-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
Isoprenoids are an essential and diverse class of molecules, present in all forms of life, that are synthesized from an essential common precursor derived from either the mevalonate pathway or the nonmevalonate pathway. Most bacteria have one pathway or the other, but the Gram-positive, facultative intracellular pathogen Listeria monocytogenes is unusual because it carries all the genes for both pathways. While the mevalonate pathway has previously been reported to be essential, here we demonstrate that the nonmevalonate pathway can support growth of strains 10403S and EGD-e, but only anaerobically. L. monocytogenes lacking the gene hmgR, encoding the rate-limiting enzyme of the mevalonate pathway, had a doubling time of 4 h under anaerobic conditions, in contrast to the 45 min doubling time of the wild type. In contrast, deleting hmgR in two clinical isolates resulted in mutants that grew significantly faster, doubling in approximately 2 h anaerobically, although they still failed to grow under aerobic conditions without mevalonate. The difference in anaerobic growth rate was traced to three amino acid changes in the nonmevalonate pathway enzyme GcpE, and these changes were sufficient to increase the growth rate of 10403S to the rate observed in the clinical isolates. Despite an increased growth rate, virulence was still dependent on the mevalonate pathway in 10403S strains expressing the more active GcpE allele.
Collapse
|
19
|
van der Heiden M, Björkander S, Rahman Qazi K, Bittmann J, Hell L, Jenmalm MC, Marchini G, Vermijlen D, Abrahamsson T, Nilsson C, Sverremark‐Ekström E. Characterization of the γδ T-cell compartment during infancy reveals clear differences between the early neonatal period and 2 years of age. Immunol Cell Biol 2020; 98:79-87. [PMID: 31680329 PMCID: PMC7003854 DOI: 10.1111/imcb.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
γδ T cells are unconventional T cells that function on the border of innate and adaptive immunity. They are suggested to play important roles in neonatal and infant immunity, although their phenotype and function are not fully characterized in early childhood. We aimed to investigate γδ T cells in relation to age, prematurity and cytomegalovirus (CMV) infection. Therefore, we used flow cytometry to characterize the γδ T-cell compartment in cord blood and peripheral blood cells from 14-day-, 2-year- and 5-year-old children, as well as in peripheral blood samples collected at several time points during the first months of life from extremely premature neonates. γδ T cells were phenotypically similar at 2 and 5 years of age, whereas cord blood was divergent and showed close proximity to γδ T cells from 14-day-old neonates. Interestingly, 2-year-old children and adults showed comparable Vδ2+ γδ T-cell functionality toward both microbial and polyclonal stimulations. Importantly, extreme preterm birth compromised the frequencies of Vδ1+ cells and affected the functionality of Vδ2+ γδ T cells shortly after birth. In addition, CMV infection was associated with terminal differentiation of the Vδ1+ compartment at 2 years of age. Our results show an adult-like functionality of the γδ T-cell compartment already at 2 years of age. In addition, we demonstrate an altered γδ T-cell phenotype early after birth in extremely premature neonates, something which could possible contribute to the enhanced risk for infections in this vulnerable group of children.
Collapse
MESH Headings
- Adult
- Aging/genetics
- Aging/immunology
- Child Development
- Child, Preschool
- Female
- Humans
- Infant, Newborn
- Infant, Premature/growth & development
- Infant, Premature/immunology
- Male
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Marieke van der Heiden
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Sophia Björkander
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Khaleda Rahman Qazi
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Julia Bittmann
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Lena Hell
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Giovanna Marchini
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical ImmunologyUniversité Libre de BruxellesBruxellesBelgium
| | - Thomas Abrahamsson
- Department of Clinical and Experimental Medicine and Department of PaediatricsLinköping UniversityLinköpingSweden
| | - Caroline Nilsson
- Sachs’ Children and Youth HospitalSödersjukhusetStockholmSweden
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
| | - Eva Sverremark‐Ekström
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| |
Collapse
|
20
|
Nguyen CT, Maverakis E, Eberl M, Adamopoulos IE. γδ T cells in rheumatic diseases: from fundamental mechanisms to autoimmunity. Semin Immunopathol 2019; 41:595-605. [PMID: 31506867 PMCID: PMC6815259 DOI: 10.1007/s00281-019-00752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
The innate and adaptive arms of the immune system tightly regulate immune responses in order to maintain homeostasis and host defense. The interaction between those two systems is critical in the activation and suppression of immune responses which if unchecked may lead to chronic inflammation and autoimmunity. γδ T cells are non-conventional lymphocytes, which express T cell receptor (TCR) γδ chains on their surface and straddle between innate and adaptive immunity. Recent advances in of γδ T cell biology have allowed us to expand our understanding of γδ T cell in the dysregulation of immune responses and the development of autoimmune diseases. In this review, we summarize current knowledge on γδ T cells and their roles in skin and joint inflammation as commonly observed in rheumatic diseases.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, USA.
| |
Collapse
|
21
|
Lee M, Park C, Woo J, Kim J, Kho I, Nam DH, Park WY, Kim YS, Kong DS, Lee HW, Kim TJ. Preferential Infiltration of Unique Vγ9Jγ2-Vδ2 T Cells Into Glioblastoma Multiforme. Front Immunol 2019; 10:555. [PMID: 30967876 PMCID: PMC6440384 DOI: 10.3389/fimmu.2019.00555] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is clinically highly aggressive as a result of evolutionary dynamics induced by cross-talk between cancer cells and a heterogeneous group of immune cells in tumor microenvironment. The brain harbors limited numbers of immune cells with few lymphocytes and macrophages; thus, innate-like lymphocytes, such as γδ T cells, have important roles in antitumor immunity. Here, we characterized GBM-infiltrating γδ T cells, which may have roles in regulating the GBM tumor microenvironment and cancer cell gene expression. V(D)J repertoires of tumor-infiltrating and blood-circulating γδ T cells from four patients were analyzed by next-generation sequencing-based T-cell receptor (TCR) sequencing in addition to mutation and immune profiles in four GBM cases. In all tumor tissues, abundant innate and effector/memory lymphocytes were detected, accompanied by large numbers of tumor-associated macrophages and closely located tumor-infiltrating γδ T cells, which appear to have anti-tumor activity. The immune-related gene expression analysis using the TCGA database showed that the signature gene expression extent of γδ T cells were more associated with those of cytotoxic T and Th1 cells and M1 macrophages than those of Th2 cells and M2 macrophages. Although the most abundant γδ T cells were Vγ9Vδ2 T cells in both tumor tissues and blood, the repertoire of intratumoral Vγ9Vδ2 T cells was distinct from that of peripheral blood Vγ9Vδ2 T cells and was dominated by Vγ9Jγ2 sequences, not by canonical Vγ9JγP sequences that are mostly commonly found in blood γδ T cells. Collectively, unique GBM-specific TCR clonotypes were identified by comparing TCR repertoires of peripheral blood and intra-tumoral γδ T cells. These findings will be helpful for the elucidation of tumor-specific antigens and development of anticancer immunotherapies using tumor-infiltrating γδ T cells.
Collapse
Affiliation(s)
- Mijeong Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Chanho Park
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jeongmin Woo
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Jinho Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Inseong Kho
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Do-Hyun Nam
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yeon-Soo Kim
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Doo-Sik Kong
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Won Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University, Seoul, South Korea
| | - Tae Jin Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, South Korea.,Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
22
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
23
|
Chen H, Zou M, Teng D, Hu Y, Zhang J, He W. Profiling the pattern of the human T-cell receptor γδ complementary determinant region 3 repertoire in patients with lung carcinoma via high-throughput sequencing analysis. Cell Mol Immunol 2019; 16:250-259. [PMID: 30886423 PMCID: PMC6460488 DOI: 10.1038/cmi.2017.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/02/2017] [Indexed: 01/03/2023] Open
Abstract
γδ T cells function as sentinels in early host responses to infections and malignancies. Specifically, γδ T cells recognize tumor-associated stress antigens via T-cell receptor (TCR) γδ and play important roles in the antitumor immune response. In this study, we characterized the pattern of the human TCR γδ complementary determinant region 3 (CDR3) repertoire in patients with lung carcinoma (LC) via high-throughput sequencing. The results showed that the diversity of CDR3δ was significantly reduced, and that of CDR3γ was unchanged in LC patients compared with healthy individuals; in addition, LC patients shared significantly more CDR3δ sequences with each other than healthy individuals. The CDR3 length distribution and N-addition length distribution did not significantly differ between LC patients and healthy individuals. In addition, the CDR3 repertoire tended to use more Vδ2 and fewer Vδ1 germline gene fragments among LC patients. Moreover, we found a combination of four TCR γδ repertoire features that focus on CDR3δ and can be used as a biomarker for LC diagnosis. Our research suggests that the TCR γδ CDR3 repertoire changed in LC patients due to the antitumor immune response by γδ T cells in vivo, and these changes primarily focus on the amplification of certain tumor-specific CDR3δ clones among patients. This study demonstrates the role of γδ T cells from the TCR γδ CDR3 repertoire in tumor immunity and lays the foundation for elucidating the mechanism underlying the function of γδT cells in antitumor immunity.
Collapse
Affiliation(s)
- Hui Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Mingjin Zou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Da Teng
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Yu Hu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China
| | - Jianmin Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China.
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, 100005, China.
| |
Collapse
|
24
|
Zhuang Q, Peng B, Wei W, Gong H, Yu M, Yang M, Liu L, Ming Y. The detailed distribution of T cell subpopulations in immune-stable renal allograft recipients: a single center study. PeerJ 2019; 7:e6417. [PMID: 30775184 PMCID: PMC6369828 DOI: 10.7717/peerj.6417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 01/03/2023] Open
Abstract
Background Most renal allograft recipients reach a stable immune state (neither rejection nor infection) after transplantation. However, the detailed distribution of overall T lymphocyte subsets in the peripheral blood of these immune-stable renal transplant recipients remains unclear. We aim to identify differences between this stable immune state and a healthy immune state. Methods In total, 103 recipients underwent renal transplantation from 2012 to 2016 and received regular follow-up in our clinic. A total of 88 of these 103 recipients were enrolled in our study according to the inclusion and exclusion criteria. A total of 47 patients were 1 year post-transplantation, and 41 were 5 years post-transplantation. In addition, 41 healthy volunteers were recruited from our physical examination clinic. Detailed T cell subpopulations from the peripheral blood were assessed via flow cytometry. The parental frequency of each subset was calculated and compared among the diverse groups. Results The demographics and baseline characteristics of every group were analyzed. The frequency of total T cells (CD3+) was decreased in the renal allograft recipients. No difference in the variation of the CD4+, CD8+, and activated (HLA-DR+) T cell subsets was noted among the diverse groups. Regarding T cell receptor (TCR) markers, significant reductions were found in the proportion of γδ T cells and their Vδ2 subset in the renal allograft recipients. The proportions of both CD4+ and CD8+ programmed cell death protein (PD) 1+ T cell subsets were increased in the renal allograft recipients. The CD27+CD28+ T cell proportions in both the CD4+ and CD8+ populations were significantly decreased in the allograft recipients, but the opposite results were found for both CD4+ and CD8+ CD27-CD28- T cells. An increased percentage of CD4+ effector memory T cells and a declined fraction of CD8+ central memory T cells were found in the renal allograft recipients. Conclusion Limited differences in general T cell subsets (CD4+, CD8+, and HLA-DR+) were noted. However, obvious differences between renal allograft recipients and healthy volunteers were identified with TCR, PD1, costimulatory molecules, and memory T cell markers.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bo Peng
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wei
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hang Gong
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng Yu
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lian Liu
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The 3rd Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Man F, Lim L, Volpe A, Gabizon A, Shmeeda H, Draper B, Parente-Pereira AC, Maher J, Blower PJ, Fruhwirth GO, T M de Rosales R. In Vivo PET Tracking of 89Zr-Labeled Vγ9Vδ2 T Cells to Mouse Xenograft Breast Tumors Activated with Liposomal Alendronate. Mol Ther 2019; 27:219-229. [PMID: 30429045 PMCID: PMC6318719 DOI: 10.1016/j.ymthe.2018.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Gammadelta T (γδ-T) cells are strong candidates for adoptive immunotherapy in oncology due to their cytotoxicity, ease of expansion, and favorable safety profile. The development of γδ-T cell therapies would benefit from non-invasive cell-tracking methods and increased targeting to tumor sites. Here we report the use of [89Zr]Zr(oxinate)4 to track Vγ9Vδ2 T cells in vivo by positron emission tomography (PET). In vitro, we showed that 89Zr-labeled Vγ9Vδ2 T cells retained their viability, proliferative capacity, and anti-cancer cytotoxicity with minimal DNA damage for amounts of 89Zr ≤20 mBq/cell. Using a mouse xenograft model of human breast cancer, 89Zr-labeled γδ-T cells were tracked by PET imaging over 1 week. To increase tumor antigen expression, the mice were pre-treated with PEGylated liposomal alendronate. Liposomal alendronate, but not placebo liposomes or non-liposomal alendronate, significantly increased the 89Zr signal in the tumors, suggesting increased homing of γδ-T cells to the tumors. γδ-T cell trafficking to tumors occurred within 48 hr of administration. The presence of γδ-T cells in tumors, liver, and spleen was confirmed by histology. Our results demonstrate the suitability of [89Zr]Zr(oxinate)4 as a cell-labeling agent for therapeutic T cells and the potential benefits of liposomal bisphosphonate treatment before γδ-T cell administration.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Lindsay Lim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Alessia Volpe
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Alberto Gabizon
- Oncology Institute, Shaare Zedek Medical Center and Hebrew University-School of Medicine, Jerusalem 9103102, Israel
| | - Hilary Shmeeda
- Oncology Institute, Shaare Zedek Medical Center and Hebrew University-School of Medicine, Jerusalem 9103102, Israel
| | - Benjamin Draper
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ana C Parente-Pereira
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - John Maher
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
26
|
Gracey E, Qaiyum Z, Kuruvilla J, Inman RD. Gamma Delta T Cell Subset V Gamma 2+ Expansion Associated with Longterm Infliximab Treatment in a Patient with Ankylosing Spondylitis. J Rheumatol 2018; 43:2079-2082. [PMID: 27803350 DOI: 10.3899/jrheum.160425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eric Gracey
- Department of Immunology, University of Toronto, and Toronto Western Hospital, University Health Network
| | - Zoya Qaiyum
- Department of Immunology, University of Toronto, and Toronto Western Hospital, University Health Network
| | | | - Robert D Inman
- Department of Immunology, University of Toronto, and Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Howard J, Zaidi I, Loizon S, Mercereau-Puijalon O, Déchanet-Merville J, Mamani-Matsuda M. Human Vγ9Vδ2 T Lymphocytes in the Immune Response to P. falciparum Infection. Front Immunol 2018; 9:2760. [PMID: 30538708 PMCID: PMC6277687 DOI: 10.3389/fimmu.2018.02760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Malaria is an infectious disease caused by the protozoan parasite Plasmodium sp, the most lethal being Plasmodium falciparum. Clinical malaria is associated with the asexual replication cycle of Plasmodium parasites inside the red blood cells (RBCs) and a dysregulated immune response. Although the mechanisms of immune responses to blood—or liver-stage parasites have been extensively studied, this has not led to satisfactory leads for vaccine design. Among innate immune cells responding to infection are the non-conventional gamma-delta T-cells. The Vγ9Vδ2 T-cell subset, found only in primates, is activated in response to non-peptidic phosphoantigens produced by stressed mammalian cells or by microorganisms such as Mycobacteria, E.coli, and Plasmodium. The potential protective role of Vγ9Vδ2 T-cells against infections and cancer progression is of current research interest. Vγ9Vδ2 T-cells have been shown to play a role in the early control of P. falciparum parasitemia and to influence malaria adaptive immunity via cytokine release and antigen presentation. They are activated and expanded during a primary P. falciparum infection in response to malaria phosphoantigens and their activity is modulated upon subsequent infections. Here, we review the wide range of functions by which Vγ9Vδ2 T-cells could both contribute to and protect from malaria pathology, with a particular focus on their ability to induce both innate and adaptive responses. We discuss how the multifunctional roles of these T-cells could open new perspectives on gamma-delta T-cell-based interventions to prevent or cure malaria.
Collapse
Affiliation(s)
- Jennifer Howard
- Division of Intramural Research (DIR), National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Irfan Zaidi
- Division of Intramural Research (DIR), National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Séverine Loizon
- Univ. Bordeaux, CNRS ImmunoConcEpT UMR 5164, Bordeaux, France
| | | | | | | |
Collapse
|
28
|
Park C, Kim TJ. Expansion and Sub-Classification of T Cell-Dependent Antibody Responses to Encompass the Role of Innate-Like T Cells in Antibody Responses. Immune Netw 2018; 18:e34. [PMID: 30402329 PMCID: PMC6215906 DOI: 10.4110/in.2018.18.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to T cell-dependent (TD) Ab responses, T cells can also regulate T cell-independent (TI) B cell responses in the absence of a specific major histocompatibility complex (MHC) class II and antigenic peptide-based interaction between T and B cells. The elucidation of T cells capable of supporting TI Ab responses is important for understanding the cellular mechanism of different types of TI Ab responses. Natural killer T (NKT) cells represent 1 type of helper T cells involved in TI Ab responses and more candidate helper T cells responsible for TI Ab responses may also include γδ T cells and recently reported B-1 helper CD4+ T cells. Marginal zone (MZ) B and B-1 cells, 2 major innate-like B cell subsets considered to function independently of T cells, interact with innate-like T cells. Whereas MZ B and NKT cells interact mutually for a rapid response to blood-borne infection, peritoneal memory phenotype CD49dhighCD4+ T cells support natural Ab secretion by B-1 cells. Here the role of innate-like T cells in the so-called TI Ab response is discussed. To accommodate the involvement of T cells in the TI Ab responses, we suggest an expanded classification of TD Ab responses that incorporate cognate and non-cognate B cell help by innate-like T cells.
Collapse
Affiliation(s)
- Chanho Park
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
29
|
Zhu X, Zeng Z, Qiu D, Chen J. Vγ9Vδ2 T cells inhibit immature dendritic cell transdifferentiation into osteoclasts through downregulation of RANK, c‑Fos and ATP6V0D2. Int J Mol Med 2018; 42:2071-2079. [PMID: 30066839 PMCID: PMC6108864 DOI: 10.3892/ijmm.2018.3791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/10/2018] [Indexed: 01/16/2023] Open
Abstract
Osteoimmunological studies have revealed that T cells exert a powerful impact on the formation and activity of osteoclasts and bone remodeling. Evidence demonstrates that immature dendritic cells (iDCs) are more efficient transdifferentiating into osteoclasts (OCs) than monocytes. However, whether Vγ9Vδ2 T (γδ T) cells stimulate or inhibit iDC transdifferentiation into OCs has never been reported. The aim of the present study was to investigate the effects of γδ T cells on this transdifferentiation process. γδ T cells and iDCs were isolated from the peripheral blood of healthy volunteers separately and were co-cultured with Transwelll inserts, with γδ T cells in the upper chamber and iDCs in the lower chamber. IDCs were treated with macrophage-colony stimulating factor and receptor activator of nuclear factor-κB (RANK) ligand. Tartrate resistant acid phosphatase (TRAP) assay and dentine resorption assay were performed to detect OC formation and their resorption capacity, respectively. The mRNA expression of OCs was examined using a micro-array and real time-quantitative polymerase chain reaction to trace the changes during iDC transdifferentiation into OCs. The results demonstrated that γδ T cells significantly inhibited the generation of the TRAP-positive OCs from iDCs and their resorption capacity. The microarray analysis identified decreased expression level of Fos proto-oncogene AP-1 transcription factor subunit (c-Fos), ATPase H+ transporting V0 subunit d (ATP6V0D2) and cathepsin K when iDCs were co-cultured with γδ T cells. These genes are associated with OC differentiation, indicating that γδ T cells suppressed iDCs osteoclastogenesis by downregulation of the RANK/c-Fos/ATP6V0D2 signaling pathway. The present findings provide novel insights into the interactions between human γδ T cells and iDCs, and demonstrate that γδ T cells are capable of inhibiting OC formation and their activity via downregulation of genes associated with OC differentiation.
Collapse
Affiliation(s)
- Xiaolin Zhu
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhiyong Zeng
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dongbiao Qiu
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junmin Chen
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
30
|
Willcox CR, Davey MS, Willcox BE. Development and Selection of the Human Vγ9Vδ2 + T-Cell Repertoire. Front Immunol 2018; 9:1501. [PMID: 30013562 PMCID: PMC6036166 DOI: 10.3389/fimmu.2018.01501] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023] Open
Abstract
Vγ9Vδ2+ lymphocytes are among the first T-cells to develop in the human fetus and are the predominant peripheral blood γδ T-cell population in most adults. Capable of broad polyclonal responses to pyrophosphate antigens (pAg), they are implicated in immunity to a diverse range of infections. Previously Vγ9Vδ2+ development was thought to involve postnatal selection and amplification of public Vγ9 clonotypes in response to microbial stimuli. However, recent data indicate the Vγ9Vδ2+ T-cell receptor (TCR) repertoire, which is generated early in gestation, is dominated by public Vγ9 clonotypes from birth. These chains bear highly distinct features compared to Vγ9 chains from Vδ1+ T-cells, due either to temporal differences in recombination of each subset and/or potentially prenatal selection of pAg-reactive clonotypes. While these processes result in a semi-invariant repertoire featuring Vγ9 sequences preconfigured for pAg recognition, alterations in TCRδ repertoires between neonate and adult suggest either peripheral selection of clonotypes responsive to microbial antigens or altered postnatal thymic output of Vγ9Vδ2+ T-cells. Interestingly, some individuals demonstrate private Vγ9Vδ2+ expansions with distinct effector phenotypes, suggestive of selective expansion in response to microbial stimulation. The Vγ9Vδ2+ T-cell subset, therefore, exhibits many features common to mouse γδ T-cell subsets, including early development, a semi-invariant TCR repertoire, and a reliance on butyrophilin-like molecules in antigen recognition. However, importantly Vγ9Vδ2+ T-cells retain TCR sensitivity after acquiring an effector phenotype. We outline a model for Vγ9Vδ2+ T-cell development and selection involving innate prenatal repertoire focusing, followed by postnatal repertoire shifts driven by microbial infection and/or altered thymic output.
Collapse
Affiliation(s)
- Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Martin S Davey
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Li Y, Wu J, Luo G, He W. Functions of Vγ4 T Cells and Dendritic Epidermal T Cells on Skin Wound Healing. Front Immunol 2018; 9:1099. [PMID: 29915573 PMCID: PMC5994537 DOI: 10.3389/fimmu.2018.01099] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a complex and dynamic process that progresses through the distinct phases of hemostasis, inflammation, proliferation, and remodeling. Both inflammation and re-epithelialization, in which skin γδ T cells are heavily involved, are required for efficient skin wound healing. Dendritic epidermal T cells (DETCs), which reside in murine epidermis, are activated to secrete epidermal cell growth factors, such as IGF-1 and KGF-1/2, to promote re-epithelialization after skin injury. Epidermal IL-15 is not only required for DETC homeostasis in the intact epidermis but it also facilitates the activation and IGF-1 production of DETC after skin injury. Further, the epidermal expression of IL-15 and IGF-1 constitutes a feedback regulatory loop to promote wound repair. Dermis-resident Vγ4 T cells infiltrate into the epidermis at the wound edges through the CCR6-CCL20 pathway after skin injury and provide a major source of IL-17A, which enhances the production of IL-1β and IL-23 in the epidermis to form a positive feedback loop for the initiation and amplification of local inflammation at the early stages of wound healing. IL-1β and IL-23 suppress the production of IGF-1 by DETCs and, therefore, impede wound healing. A functional loop may exist among Vγ4 T cells, epidermal cells, and DETCs to regulate wound repair.
Collapse
Affiliation(s)
- Yashu Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.,Department of Burns, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| |
Collapse
|
32
|
Peters C, Kabelitz D, Wesch D. Regulatory functions of γδ T cells. Cell Mol Life Sci 2018; 75:2125-2135. [PMID: 29520421 PMCID: PMC11105251 DOI: 10.1007/s00018-018-2788-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
γδ T cells share characteristics of innate and adaptive immune cells and are involved in a broad spectrum of pro-inflammatory functions. Nonetheless, there is accumulating evidence that γδ T cells also exhibit regulatory functions. In this review, we describe the different phenotypes of regulatory γδ T cells in correlation with the identified mechanisms of suppression.
Collapse
MESH Headings
- Animals
- Genes, cdc/physiology
- Humans
- Immune System Phenomena/physiology
- Immune Tolerance
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany.
| |
Collapse
|
33
|
Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018; 41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
34
|
Wu L, Zhang H, Jiang Y, Gallo RC, Cheng H. Induction of antitumor cytotoxic lymphocytes using engineered human primary blood dendritic cells. Proc Natl Acad Sci U S A 2018; 115:E4453-E4462. [PMID: 29674449 PMCID: PMC5948994 DOI: 10.1073/pnas.1800550115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dendritic cell (DC)-based cancer immunotherapy has achieved modest clinical benefits, but several technical hurdles in DC preparation, activation, and cancer/testis antigen (CTA) delivery limit its broad applications. Here, we report the development of immortalized and constitutively activated human primary blood dendritic cell lines (ihv-DCs). The ihv-DCs are a subset of CD11c+/CD205+ DCs that constitutively display costimulatory molecules. The ihv-DCs can be genetically modified to express human telomerase reverse transcriptase (hTERT) or the testis antigen MAGEA3 in generating CTA-specific cytotoxic T lymphocytes (CTLs). In an autologous setting, the HLA-A2+ ihv-DCs that present hTERT antigen prime autologous T cells to generate hTERT-specific CTLs, inducing cytolysis of hTERT-expressing target cells in an HLA-A2-restricted manner. Remarkably, ihv-DCs that carry two allogeneic HLA-DRB1 alleles are able to prime autologous T cells to proliferate robustly in generating HLA-A2-restricted, hTERT-specific CTLs. The ihv-DCs, which are engineered to express MAGEA3 and high levels of 4-1BBL and MICA, induce simultaneous production of both HLA-A2-restricted, MAGEA3-specific CTLs and NK cells from HLA-A2+ donor peripheral blood mononuclear cells. These cytotoxic lymphocytes suppress lung metastasis of A549/A2.1 lung cancer cells in NSG mice. Both CTLs and NK cells are found to infiltrate lung as well as lymphoid tissues, mimicking the in vivo trafficking patterns of cytotoxic lymphocytes. This approach should facilitate the development of cell-based immunotherapy for human lung cancer.
Collapse
Affiliation(s)
- Long Wu
- School of Pharmacy, Jinan University, 510632 Guangzhou, China
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yixing Jiang
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
35
|
The human Vδ2 + T-cell compartment comprises distinct innate-like Vγ9 + and adaptive Vγ9 - subsets. Nat Commun 2018; 9:1760. [PMID: 29720665 PMCID: PMC5932074 DOI: 10.1038/s41467-018-04076-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022] Open
Abstract
Vδ2+ T cells form the predominant human γδ T-cell population in peripheral blood and mediate T-cell receptor (TCR)-dependent anti-microbial and anti-tumour immunity. Here we show that the Vδ2+ compartment comprises both innate-like and adaptive subsets. Vγ9+ Vδ2+ T cells display semi-invariant TCR repertoires, featuring public Vγ9 TCR sequences equivalent in cord and adult blood. By contrast, we also identify a separate, Vγ9− Vδ2+ T-cell subset that typically has a CD27hiCCR7+CD28+IL-7Rα+ naive-like phenotype and a diverse TCR repertoire, however in response to viral infection, undergoes clonal expansion and differentiation to a CD27loCD45RA+CX3CR1+granzymeA/B+ effector phenotype. Consistent with a function in solid tissue immunosurveillance, we detect human intrahepatic Vγ9− Vδ2+ T cells featuring dominant clonal expansions and an effector phenotype. These findings redefine human γδ T-cell subsets by delineating the Vδ2+ T-cell compartment into innate-like (Vγ9+) and adaptive (Vγ9−) subsets, which have distinct functions in microbial immunosurveillance. Human Vδ2+ γδ T cells are thought to be an innate-like T-cell population. Here the authors show the Vδ2+ compartment contains both innate-like Vγ9+ and an adaptive Vγ9- subset that undergoes clonal expansion during viral infection and can infiltrate liver tissue.
Collapse
|
36
|
Migalovich Sheikhet H, Villacorta Hidalgo J, Fisch P, Balbir-Gurman A, Braun-Moscovici Y, Bank I. Dysregulated CD25 and Cytokine Expression by γδ T Cells of Systemic Sclerosis Patients Stimulated With Cardiolipin and Zoledronate. Front Immunol 2018; 9:753. [PMID: 29706966 PMCID: PMC5909681 DOI: 10.3389/fimmu.2018.00753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives γδ T cells, a non-conventional innate lymphocyte subset containing cells that can be activated by lipids and phosphoantigens, are abnormally regulated in systemic sclerosis (SSc). To further evaluate the significance of this dysregulation, we compared how exposure to an autoantigenic lipid, cardiolipin (CL), during co-stimulation with an amino-bisphosphonate (zoledronate, zol), affects the activation and cytokine production of SSc and healthy control (HC) γδ T cells. Methods Expression of CD25 on Vγ9+, Vδ1+, and total CD3+ T cells in cultured peripheral blood mononuclear cells (PBMCs), their binding of CD1d tetramers, and the effect of monoclonal antibody (mAb) blockade of CD1d were monitored by flow cytometry after 4 days of in vitro culture. Intracellular production of IFNγ and IL-4 was assessed after overnight culture. Results Percentages of CD25+ among CD3+ and Vδ1+ T cells were elevated significantly in short-term cultured SSc PBMC compared to HC. In SSc but not HC, CL and zol, respectively, suppressed %CD25+ Vγ9+ and Vδ1+ T cells but, when combined, CL + zol significantly activated both subsets in HC and partially reversed inhibition by the individual reagents in SSc. Importantly, Vδ1+ T cells in both SSc and HC were highly reactive with lipid presenting CD1d tetramers, and a CD1d-blocking mAb decreased CL-induced enhancement of %SSc CD25+ Vδ1+ T cells in the presence of zol. %IFNγ+ cells among Vγ9+ T cells of SSc was lower than HC cultured in medium, CL, zol, or CL + zol, whereas %IFNγ+ Vδ1+ T cells was lower only in the presence of CL or CL + zol. %IL-4+ T cells were similar in SSc and HC in all conditions, with the exception of being increased in SSc Vγ9+ T cells in the presence of CL. Conclusion Abnormal functional responses of γδ T cell subsets to stimulation by CL and phosphoantigens in SSc may contribute to fibrosis and immunosuppression, characteristics of this disease.
Collapse
Affiliation(s)
| | | | - Paul Fisch
- Department of Clinical Pathology, University of Freiburg Medical Center, Freiburg, Germany
| | - Alexandra Balbir-Gurman
- B. Shine Rheumatology Unit, Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yolanda Braun-Moscovici
- B. Shine Rheumatology Unit, Rambam Health Care Campus and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ilan Bank
- Laboratory of Immune-Regulation, Sheba Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Tel Aviv University, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-Cultured Dendritic Cells Enhance Anti-Tumor Gamma Delta T Cell Functions through IL-15 Secretion. Front Immunol 2018; 9:658. [PMID: 29692776 PMCID: PMC5902500 DOI: 10.3389/fimmu.2018.00658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccination can be an effective post-remission therapy for acute myeloid leukemia (AML). Yet, current DC vaccines do not encompass the ideal stimulatory triggers for innate gamma delta (γδ) T cell anti-tumor activity. Promoting type 1 cytotoxic γδ T cells in patients with AML is, however, most interesting, considering these unconventional T cells are primed for rapid function and exert meaningful control over AML. In this work, we demonstrate that interleukin (IL)-15 DCs have the capacity to enhance the anti-tumoral functions of γδ T cells. IL-15 DCs of healthy donors and of AML patients in remission induce the upregulation of cytotoxicity-associated and co-stimulatory molecules on the γδ T cell surface, but not of co-inhibitory molecules, incite γδ T cell proliferation and stimulate their interferon-γ production in the presence of blood cancer cells and phosphoantigens. Moreover, the innate cytotoxic capacity of γδ T cells is significantly enhanced upon interaction with IL-15 DCs, both towards leukemic cell lines and allogeneic primary AML blasts. Finally, we address soluble IL-15 secreted by IL-15 DCs as the main mechanism behind the IL-15 DC-mediated γδ T cell activation. These results indicate that the application of IL-15-secreting DC subsets could render DC-based anti-cancer vaccines more effective through, among others, the involvement of γδ T cells in the anti-leukemic immune response.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Sébastien Anguille
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
Rhodes DA, Chen HC, Williamson JC, Hill A, Yuan J, Smith S, Rhodes H, Trowsdale J, Lehner PJ, Herrmann T, Eberl M. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters. Front Immunol 2018; 9:662. [PMID: 29670629 PMCID: PMC5893821 DOI: 10.3389/fimmu.2018.00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Activation of human Vγ9/Vδ2 T cells by "phosphoantigens" (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with efficiency of T cell activation by cytokine secretion, although direct evidence of a functional role was not obtained by knockdown experiments. Our findings indicate a link between members of the ABC protein superfamily and the BTN3A-dependent activation of γδ T cells by endogenous and exogenous pAg.
Collapse
Affiliation(s)
- David A. Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: David A. Rhodes,
| | - Hung-Chang Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Alfred Hill
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jack Yuan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Harriet Rhodes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
39
|
Petrasca A, Melo AM, Breen EP, Doherty DG. Human Vδ3+ γδ T cells induce maturation and IgM secretion by B cells. Immunol Lett 2018; 196:126-134. [DOI: 10.1016/j.imlet.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/12/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
|
40
|
Niu C, Li M, Zhu S, Chen Y, Zhou L, Xu D, Li W, Cui J, Liu Y, Chen J. Decitabine Inhibits Gamma Delta T Cell Cytotoxicity by Promoting KIR2DL2/3 Expression. Front Immunol 2018; 9:617. [PMID: 29632540 PMCID: PMC5879086 DOI: 10.3389/fimmu.2018.00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Gamma delta (γδ) T cells, which possess potent cytotoxicity against a wide range of cancer cells, have become a potential avenue for adoptive immunotherapy. Decitabine (DAC) has been reported to enhance the immunogenicity of tumor cells, thereby reinstating endogenous immune recognition and tumor lysis. However, DAC has also been demonstrated to have direct effects on immune cells. In this study, we report that DAC inhibits γδ T cell proliferation. In addition, DAC increases the number of KIR2DL2/3-positive γδ T cells, which are less cytotoxic than the KIR2DL2/3-negative γδ T cells. We found that DAC upregulated KIR2DL2/3 expression in KIR2DL2/3-negative γδ T cells by inhibiting KIR2DL2/3 promoter methylation, which enhances the binding of KIR2DL2/3 promoter to Sp-1 and activates KIR2DL2/3 gene expression. Our data demonstrated that DAC can inhibit the function of human γδ T cells at both cellular and molecular levels, which confirms and extrapolates the results of previous studies showing that DAC can negatively regulate the function of NK cells and αβ T cells of the immune system.
Collapse
Affiliation(s)
- Chao Niu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongchong Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yongjun Liu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Abstract
γδ T cells are one of the three immune cell types that express antigen receptors. They contribute to lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. γδ T cells have the capacity of secreting abundant cytokines and exerting potent cytotoxicity against a wide range of cancer cells. γδ T cells exhibit important roles in immune-surveillance and immune defense against tumors and have become attractive effector cells for cancer immunotherapy. γδ T cells mediate anti-tumor therapy mainly by secreting pro-apoptotic molecules and inflammatory cytokines, or through a TCR-dependent pathway. Recently, γδ T cells are making their way into clinical trials. Some clinical trials demonstrated that γδ T cell-based immunotherapy is well tolerated and efficient. Despite the advantages that could be exploited, there are obstacles have to be addressed for the development of γδ T cell immunotherapies. Future direction for immunotherapy using γδ T cells should focus on overcoming the side effects of γδ T cells and exploring better antigens that help stimulating γδ T cell expansion in vitro.
Collapse
|
42
|
Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol 2018; 84:75-86. [PMID: 29402644 DOI: 10.1016/j.semcdb.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease.
Collapse
Affiliation(s)
- David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium.
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium
| | - Ariadni Kouzeli
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Teja Rus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
43
|
Xiao L, Chen C, Li Z, Zhu S, Tay JC, Zhang X, Zha S, Zeng J, Tan WK, Liu X, Chng WJ, Wang S. Large-scale expansion of Vγ9Vδ2 T cells with engineered K562 feeder cells in G-Rex vessels and their use as chimeric antigen receptor-modified effector cells. Cytotherapy 2018; 20:420-435. [PMID: 29402645 DOI: 10.1016/j.jcyt.2017.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/02/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Vγ9Vδ2 T cells are a minor subset of lymphocytes in the peripheral blood that has been extensively investigated for their tolerability, safety and anticancer efficacy. A hindrance to the broad application of these cells for adoptive cellular immunotherapy has been attaining clinically appropriate numbers of Vγ9Vδ2 T cells. Furthermore, Vγ9Vδ2 T cells exist at low frequencies among cancer patients. We, therefore, sought to conceive an economical method that allows for a quick and robust large-scale expansion of Vγ9Vδ2 T cells. A two-step protocol was developed, in which peripheral blood mononuclear cells (PBMCs) from healthy donors or cancer patients were activated with Zometa and interleukin (IL)-2, followed by co-culturing with gamma-irradiated, CD64-, CD86- and CD137L-expressing K562 artificial antigen-presenting cells (aAPCs) in the presence of the anti-CD3 antibody OKT3. We optimized the co-culture ratio of K562 aAPCs to immune cells, and migrated this method to a G-Rex cell growth platform to derive clinically relevant cell numbers in a Good Manufacturing Practice (GMP)-compliant manner. We further include a depletion step to selectively remove αβ T lymphocytes. The method exhibited high expansion folds and a specific enrichment of Vγ9Vδ2 T cells. Expanded Vγ9Vδ2 T cells displayed an effector memory phenotype with a concomitant down-regulated expression of inhibitory immune checkpoint receptors. Finally, we ascertained the cytotoxic activity of these expanded cells by using nonmodified and chimeric antigen receptor (CAR)-engrafted Vγ9Vδ2 T cells against a panel of solid tumor cells. Overall, we report an efficient approach to generate highly functional Vγ9Vδ2 T cells in massive numbers suitable for clinical application in an allogeneic setting.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Can Chen
- Tessa Therapeutics, Pte Ltd., Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sumin Zhu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Johan Ck Tay
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xi Zhang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shijun Zha
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jieming Zeng
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | - Xin Liu
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Singapore.
| |
Collapse
|
44
|
Watanabe D, Koyanagi‐Aoi M, Taniguchi‐Ikeda M, Yoshida Y, Azuma T, Aoi T. The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture. Stem Cells Transl Med 2018; 7:34-44. [PMID: 29164800 PMCID: PMC5746152 DOI: 10.1002/sctm.17-0021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). However, these technologies have focused on αβT cells and require a population of antigen-specific CTLs, which are purified by cell sorting with HLA-peptide multimer, as the origin of iPS cells. In the present study, we aimed to develop an efficient and convenient system for generating iPSCs that harbor rearrangements of the TCRG and TCRD gene regions (γδT-iPSCs) without cell-sorting. We stimulated human whole peripheral blood mononuclear cell (PBMC) culture using Interleukin-2 and Zoledronate to activate γδT cells. Gene transfer into those cells with the Sendai virus vector resulted in γδT cell-dominant expression of exogenous genes. The introduction of reprogramming factors into the stimulated PBMC culture allowed us to establish iPSC lines. Around 70% of the established lines carried rearrangements at the TCRG and TCRD gene locus. The γδT-iPSCs could differentiate into hematopoietic progenitors. Our technology will pave the way for new avenues toward novel immunotherapy that can be applied for various types of cancer. Stem Cells Translational Medicine 2018;7:34-44.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Division of Gastroenterology, Department of Internal Medicine, Kobe UniversityKobeJapan
| | - Michiyo Koyanagi‐Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Center for Human Resource Development for Regenerative Medicine, Kobe University HospitalKobeJapan
| | | | - Yukiko Yoshida
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Division of Gastroenterology, Department of Internal Medicine, Kobe UniversityKobeJapan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe UniversityKobeJapan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Center for Human Resource Development for Regenerative Medicine, Kobe University HospitalKobeJapan
| |
Collapse
|
45
|
Fazekas B, Moreno-Olivera A, Kelly Y, O'Hara P, Murray S, Kennedy A, Conlon N, Scott J, Melo AM, Hickey FB, Dooley D, O'Brien EC, Moran S, Doherty DG, Little MA. Alterations in circulating lymphoid cell populations in systemic small vessel vasculitis are non-specific manifestations of renal injury. Clin Exp Immunol 2017; 191:180-188. [PMID: 28960271 DOI: 10.1111/cei.13058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Innate lymphocyte populations, such as innate lymphoid cells (ILCs), γδ T cells, invariant natural killer T (iNK T) cells and mucosal-associated invariant T (MAIT) cells are emerging as important effectors of innate immunity and are involved in various inflammatory and autoimmune diseases. The aim of this study was to assess the frequencies and absolute numbers of innate lymphocytes as well as conventional lymphocytes and monocytes in peripheral blood from a cohort of anti-neutrophil cytoplasm autoantibody (ANCA)-associated vasculitis (AAV) patients. Thirty-eight AAV patients and 24 healthy and disease controls were included in the study. Patients with AAV were sampled both with and without immunosuppressive treatment, and in the setting of both active disease and remission. The frequencies of MAIT and ILC2 cells were significantly lower in patients with AAV and in the disease control group compared to healthy controls. These reductions in the AAV patients remained during remission. B cell count and frequencies were significantly lower in AAV in remission compared to patients with active disease and disease controls. Despite the strong T helper type 2 (Th) preponderance of eosinophilic granulomatosis with polyangiitis, we did not observe increased ILC2 frequency in this cohort of patients. The frequencies of other cell types were similar in all groups studied. Reductions in circulating ILC2 and MAIT cells reported previously in patients with AAV are not specific for AAV, but are more likely to be due to non-specific manifestations of renal impairment and chronic illness. Reduction in B cell numbers in AAV patients experiencing remission is probably therapy-related.
Collapse
Affiliation(s)
- B Fazekas
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | | | - Y Kelly
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - P O'Hara
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - S Murray
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - A Kennedy
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - N Conlon
- Department of Immunology, Trinity College, Dublin, Ireland
| | - J Scott
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - A M Melo
- Department of Immunology, Trinity College, Dublin, Ireland
| | - F B Hickey
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - D Dooley
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - E C O'Brien
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - S Moran
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland
| | - D G Doherty
- Department of Immunology, Trinity College, Dublin, Ireland
| | - M A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College, Dublin, Ireland
| |
Collapse
|
46
|
Krocova Z, Macela A, Kubelkova K. Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System. Front Cell Infect Microbiol 2017; 7:446. [PMID: 29085810 PMCID: PMC5650615 DOI: 10.3389/fcimb.2017.00446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
The intracellular bacterial pathogen Francisella tularensis causes serious infectious disease in humans and animals. Moreover, F. tularensis, a highly infectious pathogen, poses a major concern for the public as a bacterium classified under Category A of bioterrorism agents. Unfortunately, research has so far failed to develop effective vaccines, due in part to the fact that the pathogenesis of intracellular bacteria is not fully understood and in part to gaps in our understanding of innate immune recognition processes leading to the induction of adaptive immune response. Recent evidence supports the concept that immune response to external stimuli in the form of bacteria is guided by the primary interaction of the bacterium with the host cell. Based on data from different Francisella models, we present here the basic paradigms of the emerging innate immune recognition concept. According to this concept, the type of cell and its receptor(s) that initially interact with the target constitute the first signaling window; the signals produced in the course of primary interaction of the target with a reacting cell act in a paracrine manner; and the innate immune recognition process as a whole consists in a series of signaling windows modulating adaptive immune response. Finally, the host, in the strict sense, is the interacting cell.
Collapse
Affiliation(s)
- Zuzana Krocova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
47
|
Towstyka NY, Shiromizu CM, Keitelman I, Sabbione F, Salamone GV, Geffner JR, Trevani AS, Jancic CC. Modulation of γδ T-cell activation by neutrophil elastase. Immunology 2017; 153:225-237. [PMID: 28888033 DOI: 10.1111/imm.12835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
γδ T cells are non-conventional, innate-like T cells, characterized by a restricted T-cell receptor repertoire. They participate in protective immunity responses against extracellular and intracellular pathogens, tumour surveillance, modulation of innate and adaptive immune responses, tissue healing, epithelial cell maintenance and regulation of physiological organ function. In this study, we investigated the role of neutrophils during the activation of human blood γδ T cells through CD3 molecules. We found that the up-regulation of CD69 expression, and the production of interferon-γ and tumour necrosis factor-α induced by anti-CD3 antibodies was potentiated by neutrophils. We found that inhibition of caspase-1 and neutralization of interleukin-18 did not affect neutrophil-mediated modulation. By contrast, the treatment with serine protease inhibitors prevented the potentiation of γδ T-cell activation induced by neutrophils. Moreover, the addition of elastase to γδ T-cell culture increased their stimulation, and the treatment of neutrophils with elastase inhibitor prevented the effect of neutrophils on γδ T-cell activation. Furthermore, we demonstrated that the effect of elastase on γδ T cells was mediated through the protease-activated receptor, PAR1, because the inhibition of this receptor with a specific antagonist, RWJ56110, abrogated the effect of neutrophils on γδ T-cell activation.
Collapse
Affiliation(s)
- Nadia Yasmín Towstyka
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene Keitelman
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Florencia Sabbione
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriela Verónica Salamone
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Raúl Geffner
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Analía Silvina Trevani
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Xiang Z, Tu W. Dual Face of Vγ9Vδ2-T Cells in Tumor Immunology: Anti- versus Pro-Tumoral Activities. Front Immunol 2017; 8:1041. [PMID: 28894450 PMCID: PMC5581348 DOI: 10.3389/fimmu.2017.01041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Vγ9Vδ2-T cells are considered as potent effector cells for tumor immunotherapy through directly killing tumor cells and indirectly regulating other innate and adaptive immune cells to establish antitumoral immunity. The antitumoral activity of Vγ9Vδ2-T cells is governed by a complicated set of activating and inhibitory cell receptors. In addition, cytokine milieu in tumor microenvironment can also induce the pro-tumoral activities and functional plasticity of Vγ9Vδ2-T cells. Here, we review the anti- versus pro-tumoral activities of Vγ9Vδ2-T cells and discuss the mechanisms underlying the recognition, activation, differentiation and regulation of Vγ9Vδ2-T cells in tumor immunosurveillance. The comprehensive understanding of the dual face of Vγ9Vδ2-T cells in tumor immunology may improve the therapeutic efficacy and clinical outcomes of Vγ9Vδ2-T cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zheng Xiang
- Li Ka Shing Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Laboratory for Translational Immunology, University of Hong Kong, Hong Kong, Hong Kong
| | - Wenwei Tu
- Li Ka Shing Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Laboratory for Translational Immunology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
49
|
Lawand M, Déchanet-Merville J, Dieu-Nosjean MC. Key Features of Gamma-Delta T-Cell Subsets in Human Diseases and Their Immunotherapeutic Implications. Front Immunol 2017; 8:761. [PMID: 28713381 PMCID: PMC5491929 DOI: 10.3389/fimmu.2017.00761] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/16/2017] [Indexed: 02/01/2023] Open
Abstract
The unique features of gamma-delta (γδ) T cells, related to their antigen recognition capacity, their tissue tropism, and their cytotoxic function, make these cells ideal candidates that could be targeted to induce durable immunity in the context of different pathologies. In this review, we focus on the main characteristics of human γδ T-cell subsets in diseases and the key mechanisms that could be explored to target these cells.
Collapse
Affiliation(s)
- Myriam Lawand
- Cordeliers Research Center, UMRS 1138, Team "Cancer, Immune Control and Escape", INSERM, Paris, France.,Cordeliers Research Center, UMRS 1138, University Sorbonne-Paris Cité, University Paris Descartes, Paris, France.,Cordeliers Research Center, UMRS 1138, University Pierre and Marie Curie (UPMC), Paris 06, University Paris-Sorbonne, Paris, France
| | | | - Marie-Caroline Dieu-Nosjean
- Cordeliers Research Center, UMRS 1138, Team "Cancer, Immune Control and Escape", INSERM, Paris, France.,Cordeliers Research Center, UMRS 1138, University Sorbonne-Paris Cité, University Paris Descartes, Paris, France.,Cordeliers Research Center, UMRS 1138, University Pierre and Marie Curie (UPMC), Paris 06, University Paris-Sorbonne, Paris, France
| |
Collapse
|
50
|
Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B, Schmaler M, Narang V, Zolezzi F, Poidinger M, Mori L, De Libero G. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. eLife 2017; 6. [PMID: 28518056 PMCID: PMC5459576 DOI: 10.7554/elife.24476] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
MHC class I-related molecule MR1 presents riboflavin- and folate-related metabolites to mucosal-associated invariant T cells, but it is unknown whether MR1 can present alternative antigens to other T cell lineages. In healthy individuals we identified MR1-restricted T cells (named MR1T cells) displaying diverse TCRs and reacting to MR1-expressing cells in the absence of microbial ligands. Analysis of MR1T cell clones revealed specificity for distinct cell-derived antigens and alternative transcriptional strategies for metabolic programming, cell cycle control and functional polarization following antigen stimulation. Phenotypic and functional characterization of MR1T cell clones showed multiple chemokine receptor expression profiles and secretion of diverse effector molecules, suggesting functional heterogeneity. Accordingly, MR1T cells exhibited distinct T helper-like capacities upon MR1-dependent recognition of target cells expressing physiological levels of surface MR1. These data extend the role of MR1 beyond microbial antigen presentation and indicate MR1T cells are a normal part of the human T cell repertoire. DOI:http://dx.doi.org/10.7554/eLife.24476.001 White blood cells called T cells recognize germs and infected cells, and get rid of other cells in the body that look different to healthy cells – for example, tumor cells. These activities all depend on a molecule called the T cell receptor (or TCR for short), which is found on the surface of the T cells. Each TCR interacts with a specific complex on the surface of the target cell. One of the molecules recognized by the TCR is known as MHC class I-related (shortened to MR1). This molecule attracts TCRs to infected cells, but it was not know if the MR1 molecule could attract TCRs to cancer cells too. Lepore et al. now show that there are indeed T cells in humans that recognize cancer cells through interaction with the MR1 molecules produced by the cancer cells. This new group of T cells has been named MR1T, and the cells can be easily detected in the blood of healthy individuals. The cells can be classified as a new cell population based on their capacity to recognize MR1 and how they react with different types of cancer cells. Importantly, the MR1 that attracts these TCRs is the same in all people, and so the same TCR may recognize MR1-expressing cancer cells from different patients. The next challenge is to identify MR1T cells that recognize and kill cancer cells from different tissues. These studies will hopefully pave the way for new and broader strategies to combat cancer. DOI:http://dx.doi.org/10.7554/eLife.24476.002
Collapse
Affiliation(s)
- Marco Lepore
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Artem Kalinichenko
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Salvatore Calogero
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Pavanish Kumar
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| | - Bhairav Paleja
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| | - Mathias Schmaler
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vipin Narang
- Singapore Immunology Network, A*STAR, Singapore, Singapore
| | | | - Michael Poidinger
- Singapore Immunology Network, A*STAR, Singapore, Singapore.,Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Lucia Mori
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Singapore Immunology Network, A*STAR, Singapore, Singapore
| | - Gennaro De Libero
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Singapore Immunology Network, A*STAR, Singapore, Singapore
| |
Collapse
|