1
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess NAE, Samuel C, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type I interferons induce guanylate-binding proteins and lysosomal defense in hepatocytes to control malaria. Cell Host Microbe 2025; 33:529-544.e9. [PMID: 40168996 DOI: 10.1016/j.chom.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Plasmodium parasites undergo development and replication within hepatocytes before infecting erythrocytes and initiating clinical malaria. Although type I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium. Second, guanylate-binding protein (GBP) 1-mediated disruption of the PV activates the caspase-1 inflammasome, inducing pyroptosis to remove infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium, with their pharmacologic or genetic inhibition leading to profound malarial susceptibility in vivo. In addition to identifying IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, our study also extends the understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Carson Bowers
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Nana Appiah Essel Charles-Chess
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Cristina Samuel
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Justine C Shiau
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongyu Yuan
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dennis E Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Hendawy AS, Sabra ANA, George MY, Rashad E, El-Demerdash E, Botros SS. The antifibrotic effect of Vildagliptin and Diaminodiphenyl Sulfone in murine schistosomiasis mansoni. Sci Rep 2025; 15:10084. [PMID: 40128243 PMCID: PMC11933376 DOI: 10.1038/s41598-025-91955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Schistosomiasis drastically affects human health, where S. mansoni-induced hepatic fibrosis remains a serious problem with no available drug yet. The current study aimed to evaluate the hepatoprotective effects of Vildagliptin (Vilda), Diaminodiphenyl Sulfone (DDS), and their combination (Vilda/DDS) against S. mansoni-induced hepatic fibrosis and elucidate their underlying molecular mechanisms. S.mansoni-infected mice were administered praziquantel (PZQ) for two consecutive days, or Vilda, DDS, and Vilda/DDS for 14 consecutive days. Schistosomiasis-induced hepatic fibrosis was assessed parasitologically, biochemically, and pathologically. Results revealed that Vilda, DDS, and Vida/DDS treatments significantly reduced worm count, oogram stages, ova count, and ameliorated the granulomatous inflammatory reactions and hepatotoxicity indices. Moreover, they enhanced hepatic Nrf2/HO-1 pathway with significant increasing SOD and reducing MDA levels. Furthermore, they significantly downregulated the hepatic TLR4/NF-κB and NLRP3 inflammasome pathways leading to a significant reduction in TNF-α and caspase-1 levels which is important in the activation of IL-1β and caspase-3. Notably, significant downregulation in hepatic TGF-β1, α-SMA, and MMP-9 expressions were also recorded. In conclusion, Vilda/DDS showed antioxidant, anti-inflammatory and antifibrotic activities in comparison to either Vilda or DDS alone against S. mansoni-induced hepatic fibrosis. Therefore, Vilda/DDS is a promising approach for managing S. mansoni infection, liver fibrosis, and associated disease morbidity.
Collapse
Affiliation(s)
- Amira S Hendawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, P.O. Box 30, Imbaba, Giza, 12411, Egypt
| | - Abdel-Nasser A Sabra
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, P.O. Box 30, Imbaba, Giza, 12411, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, 11566, Egypt
| | - Eman Rashad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, 11566, Egypt.
| | - Sanaa S Botros
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, P.O. Box 30, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
3
|
Suresh Kumar Meena Kumari M, Liu P, Nitchman MS, Chaudhary S, Jump K, Morales Y, Miller EA, Shecter I, Stadecker MJ, Kalantari P. NLRP3 and AIM2 inflammasomes exacerbate the pathogenic Th17 cell response to eggs of the helminth Schistosoma mansoni. PLoS Pathog 2025; 21:e1012108. [PMID: 40100932 PMCID: PMC11918320 DOI: 10.1371/journal.ppat.1012108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
Infection with the helminth Schistosoma mansoni can cause exacerbated morbidity and mortality via a pathogenic host CD4 T cell-mediated immune response directed against parasite egg antigens, with T helper (Th) 17 cells playing a major role in the development of severe granulomatous hepatic immunopathology. The role of inflammasomes in intensifying disease has been reported; however, neither the types of caspases and inflammasomes involved, nor their impact on the Th17 response are known. Here we show that enhanced egg-induced IL-1β secretion and pyroptotic cell death required both caspase-1 and caspase-8 as well as NLRP3 and AIM2 inflammasome activation. Schistosome genomic DNA activated AIM2, whereas reactive oxygen species, potassium efflux and cathepsin B, were the major activators of NLRP3. NLRP3 and AIM2 deficiency led to a significant reduction in pathogenic Th17 responses, suggesting their crucial and non-redundant role in promoting inflammation. Additionally, we show that NLRP3- and AIM2-induced IL-1β suppressed IL-4 and protective Type I IFN (IFN-I) production, which further enhanced inflammation. IFN-I signaling also curbed inflammasome- mediated IL-1β production suggesting that these two antagonistic pathways shape the severity of disease. Lastly, Gasdermin D (Gsdmd) deficiency resulted in a marked decrease in egg-induced granulomatous inflammation. Our findings establish NLRP3/AIM2-Gsdmd axis as a central inducer of pathogenic Th17 responses which is counteracted by IFN-I pathway in schistosomiasis.
Collapse
Affiliation(s)
- Madhusoodhanan Suresh Kumar Meena Kumari
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pengyu Liu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Megan S. Nitchman
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santoshi Chaudhary
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kaile Jump
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yoelkys Morales
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Emily A. Miller
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ilana Shecter
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Miguel J. Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Parisa Kalantari
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Liu F, Li X, Yan L, Zhang X, Sun J, Su H, Li L, Chen S, Gao L, Gong P, Zhang N, Zhang X, Li J, Wang X. Inhibition of Neospora caninum activity by niclosamide: Evidence from in vitro and in vivo studies. Vet Parasitol 2025; 334:110362. [PMID: 39637465 DOI: 10.1016/j.vetpar.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Neosporosis caused by Neospora caninum (N. caninum) is one of the main causes of bovine miscarriage, but there are currently no effective drugs or vaccines for treatment and prevention. Our previous works have found that NLRP3 inflammasome activation participated in controlling N. caninum proliferation and niclosamide has been regarded as an NLRP3 inflammasome inducer. This study aimed to evaluate the resistance of niclosamide to N. caninum infection. Niclosamide-mediated NLRP3 inflammasome activation was determined by LDH and ELISA measurement of IL-1β release as a marker for inflammasome activation in a model of N. caninum-infected macrophages. The in vitro antiparasitic effect of niclosamide was further explored in Vero cells by plaque assays, qPCR, and Giemsa staining. The in vivo effects were investigated in N. caninum-infected mice by measuring parasite burden, histopathology, and survival. Results showed that niclosamide partially enhanced macrophage-mediated clearance of N. caninum via the NLRP3 inflammasome activation and displayed direct antiparasitic activity. Plaque assays confirmed significant inhibition of N. caninum growth, and niclosamide effectively reduced cell invasion and intracellular proliferation compared to toltrazuril. In vivo, after niclosamide treatment, the body weight was regained, survival rate was increased, tissue damage was reduced, and parasite burden in tissues was significantly decreased. The numerous vacuole formations were observed in niclosamide-treated N. caninum tachyzoites by electron microscopy. Mitochondrial membrane potential and ATP production of N. caninum tachyzoites were reduced considerably by niclosamide treatment. In conclusion, niclosamide showed strong potential as a therapeutic agent for N. caninum infection, offering a promising treatment option for neosporosis.
Collapse
Affiliation(s)
- Feixue Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Liuzhenxiu Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xu Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jin Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Haitao Su
- Jilin Provincial Center for Disease Prevention and Control (Jilin Provincial Academy of Preventive Medicine), Changchun 130062, China.
| | - Lu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Sining Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Lanbi Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Pengtao Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xichen Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiaocen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Hirako IC, Ramalho T, Gazzinelli RT. Immune regulation of host energy metabolism and periodicity of malaria parasites. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230511. [PMID: 39842477 PMCID: PMC11753876 DOI: 10.1098/rstb.2023.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 01/24/2025] Open
Abstract
The synchronization of Plasmodium parasites as they replicate within red blood cells of their vertebrate host remains largely unexplored. Understanding this synchronization could reveal how parasites optimize their lifecycle to maximize transmission, evade the immune response and maximize energy acquisition. Rhythmic replication fulfils some criteria of an endogenous oscillator with time of day cues potentially provided by temperature, oxygen levels, hormones and/or nutrient availability. Recent research on a rodent malaria model has highlighted that rhythms associated with the host's feeding/fasting cycle are a crucial factor influencing the synchronization of the erythrocytic stages of Plasmodium to the host's circadian cycle. Innate immune responses are also rhythmic and can regulate host metabolism, suggesting that the innate immune response triggered by Plasmodium contributes to its rhythmic replication. Here, we outline how the interplay between immune responses and metabolism could influence the timing and synchronization of Plasmodium's replication rhythm, focusing on the roles of the cytokine tumour necrosis factor, mitochondrial function and metabolites generated by the tricarboxylic acid cycle in highly activated monocytes. These processes are pivotal in controlling parasitemia and determining disease outcome, suggesting that a better understanding of energy metabolism on rhythmic host-parasite interactions may provide new insights for therapeutic interventions against malaria.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Isabella Cristina Hirako
- Laboratory of Immunopathology - Instituto René Rachou, Fundação Oswaldo Cruz - Minas, Belo Horizonte30190-002, Brazil
| | - Theresa Ramalho
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605, USA
| | - Ricardo Tostes Gazzinelli
- Laboratory of Immunopathology - Instituto René Rachou, Fundação Oswaldo Cruz - Minas, Belo Horizonte30190-002, Brazil
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605, USA
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Sun R, Chu J, Li P. Inflammasomes and idiopathic inflammatory myopathies. Front Immunol 2024; 15:1449969. [PMID: 39723212 PMCID: PMC11668653 DOI: 10.3389/fimmu.2024.1449969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiyan Chu
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Li
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Li X, Jiang N, Li Q, Zheng K, Zhang Y, Sang X, Feng Y, Chen R, Chen Q. Taurine potentiates artemisinin efficacy against malaria by modulating the immune response in Plasmodium berghei-infected mice. Parasit Vectors 2024; 17:493. [PMID: 39614280 DOI: 10.1186/s13071-024-06585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Artemisinin (ART) is a frontline drug for the treatment of malaria; however, the emergence of ART-resistant Plasmodium strains necessitates increasing ART sensitivity. Given that taurine (TAU) has been shown to have immunomodulatory activity, we investigated the effects of TAU as an adjunct therapy to ART in mice infected with Plasmodium berghei. METHODS Mice infected with P. berghei ANKA strain (P. berghei ANKA) were treated with TAU alone, ART alone or a combination of TAU and ART (TAU + ART), and their survival time and parasitaemia were recorded. The cytotoxic effects of TAU and ART were subsequently assessed. The expression levels of inflammasome-related genes and inflammatory factors in mice infected with P. berghei ANKA were analysed in relation to those in mice treated with TAU alone, ART alone or the TAU + ART combination. The therapeutic effects were further evaluated by histological analysis and measurement of the spleen index. RESULTS Compared with the control mice, P. berghei ANKA-infected mice treated with ART in combination with TAU presented significantly lower parasitaemia and prolonged survival. The combined treatment resulted in significant reductions in the expression levels of inflammasome-related genes in the spleen, including absent in melanoma 2 (AIM2), caspase-1, NOD-, LRR- and pyrin domain-containing protein 3 (Nlrp3), Nlrp1b, Nlrp1b, NLR family CARD domain containing 4 (Nlrc4), Nlrp6, nucleotide binding oligomerization domain containing 1 (NOD1) and NOD2, and decreases in the levels of inflammatory cytokines in the serum, including interleukin (IL)-12p70, tumour necrosis factor-alpha, monocyte chemoattractant protein-1, IL-10 and IL-6. Histopathological analysis confirmed that TAU + ART combination treatment reduced spleen pathology caused by P. berghei ANKA infection. CONCLUSIONS The findings indicate that TAU potentiates ART efficacy by modulating the immune response in P. berghei-infected mice.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Kexin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
8
|
Wang ZX, Jiao WJ, Yang Y, Liu HL, Wang HL. Role of inflammasomes in Toxoplasma and Plasmodium infections. Parasit Vectors 2024; 17:466. [PMID: 39548522 PMCID: PMC11566176 DOI: 10.1186/s13071-024-06529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The detection of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) by multimeric protein complexes, known as inflammasomes, triggers an inflammatory response, which is a critical component of the innate immune system. This inflammatory response plays a pivotal role in host resistance against parasitic infections, presenting a significant global health challenge. METHODS We systematically searched for relevant articles from the Pubmed and the Web of Science database to summarize current insights into how inflammasomes function in preventing infections caused by the apicomplexan parasites Toxoplasma and Plasmodium. RESULTS In vivo and in vitro studies have extensively explored inflammasomes such as the absent in melanoma 2 (AIM2), NLR family pyrin-containing protein 1 (NLRP1), NLRP3, and NLRP12 inflammasomes, alongside noncanonical inflammasomes, with particular emphasis on the NLRP1 and the NLRP3 inflammasome during Toxoplasma gondii infection or the AIM2 and the NLRP3 inflammasome at various stages of Plasmodium infection. Toxoplasma gondii interacts with inflammasomes to activate or inhibit immune responses. CONCLUSIONS Inflammasomes control parasite burden and parasite-induced cell death, contribute to immune recognition and inflammatory responses and thus influence apicomplexan parasite-associated pathogenesis and the severity of clinical outcomes. Hence, inflammasomes play crucial roles in the progression and outcomes of toxoplasmosis and malaria. A comprehensive understanding of how parasitic infections modulate inflammasome activity enhances insight into host immune responses against parasites.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Wan-Jun Jiao
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Yong Yang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Hong-Li Liu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
9
|
Franco A, Flores-Garcia Y, Venezia J, Daoud A, Scott AL, Zavala F, Sullivan DJ. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect 2024; 26:105343. [PMID: 38670216 DOI: 10.1016/j.micinf.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Hemozoin is a crystal synthesized by Plasmodium parasites during hemoglobin digestion in the erythrocytic stage. The hemozoin released when the parasites egress from the red blood cell, which is complexed with parasite DNA, is cleared from the circulation by circulating and tissue-resident monocytes and macrophages, respectively. Recently, we reported that intravenous administration of purified hemozoin complexed with Plasmodium berghei DNA (HzPbDNA) resulted in an innate immune response that blocked liver stage development of sporozoites that was dose-dependent and time-limited. Here, we further characterize the organismal, cellular, and molecular events associated with this protective innate response in the liver and report that a large proportion of the IV administered HzPbDNA localized to F4/80+ cells in the liver and that the rapid and strong protection against liver-stage development waned quickly such that by 1 week post-HzPbDNA treatment animals were fully susceptible to infection. RNAseq of the liver after IV administration of HzPbDNA demonstrated that the rapid and robust induction of genes associated with the acute phase response, innate immune activation, cellular recruitment, and IFN-γ signaling observed at day 1 was largely absent at day 7. RNAseq analysis implicated NK cells as the major cellular source of IFN-γ. In vivo cell depletion and IFN-γ neutralization experiments supported the hypothesis that tissue-resident macrophages and NK cells are major contributors to the protective response and the NK cell-derived IFN-γ is key to induction of the mechanisms that block sporozoite development in the liver. These findings advance our understanding of the innate immune responses that prevent liver stage malaria infection.
Collapse
Affiliation(s)
- Adriano Franco
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jarrett Venezia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Abdel Daoud
- Department of Pathology, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Alan L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
11
|
Carvalho Cabral P, Richard VR, Borchers CH, Olivier M, Cermakian N. Circadian Control of the Response of Macrophages to Plasmodium Spp.-Infected Red Blood Cells. Immunohorizons 2024; 8:442-456. [PMID: 38916585 PMCID: PMC11220744 DOI: 10.4049/immunohorizons.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Malaria is a serious vector-borne disease characterized by periodic episodes of high fever and strong immune responses that are coordinated with the daily synchronized parasite replication cycle inside RBCs. As immune cells harbor an autonomous circadian clock that controls various aspects of the immune response, we sought to determine whether the intensity of the immune response to Plasmodium spp., the parasite causing malaria, depends on time of infection. To do this, we developed a culture model in which mouse bone marrow-derived macrophages are stimulated with RBCs infected with Plasmodium berghei ANKA (iRBCs). Lysed iRBCs, but not intact iRBCs or uninfected RBCs, triggered an inflammatory immune response in bone marrow-derived macrophages. By stimulating at four different circadian time points (16, 22, 28, or 34 h postsynchronization of the cells' clock), 24-h rhythms in reactive oxygen species and cytokines/chemokines were found. Furthermore, the analysis of the macrophage proteome and phosphoproteome revealed global changes in response to iRBCs that varied according to circadian time. This included many proteins and signaling pathways known to be involved in the response to Plasmodium infection. In summary, our findings show that the circadian clock within macrophages determines the magnitude of the inflammatory response upon stimulation with ruptured iRBCs, along with changes of the cell proteome and phosphoproteome.
Collapse
Affiliation(s)
| | - Vincent R. Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Christoph H. Borchers
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Alonaizan R. Molecular regulation of NLRP3 inflammasome activation during parasitic infection. Biosci Rep 2024; 44:BSR20231918. [PMID: 38623843 PMCID: PMC11096646 DOI: 10.1042/bsr20231918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Parasitic diseases are a serious global health concern, causing many common and severe infections, including Chagas disease, leishmaniasis, and schistosomiasis. The NLRP3 inflammasome belongs to the NLR (nucleotide-binding domain leucine-rich-repeat-containing proteins) family, which are cytosolic proteins playing key roles in the detection of pathogens. NLRP3 inflammasomes are activated in immune responses to Plasmodium, Leishmania, Toxoplasma gondii, Entamoeba histolytica, Trypanosoma cruzi, and other parasites. The role of NLRP3 is not fully understood, but it is a crucial component of the innate immune response to parasitic infections and its functions as a sensor triggering the inflammatory response to the invasive parasites. However, while this response can limit the parasites' growth, it can also result in potentially catastrophic host pathology. This makes it essential to understand how NLRP3 interacts with parasites to initiate the inflammatory response. Plasmodium hemozoin, Leishmania glycoconjugate lipophosphoglycan (LPG) and E. histolytica Gal/GalNAc lectin can stimulate NLRP3 activation, while the dense granule protein 9 (GRA9) of T. gondii has been shown to suppress it. Several other parasitic products also have diverse effects on NLRP3 activation. Understanding the mechanism of NLRP3 interaction with these products will help to develop advanced therapeutic approaches to treat parasitic diseases. This review summarizes current knowledge of the NLRP3 inflammasome's action on the immune response to parasitic infections and aims to determine the mechanisms through which parasitic molecules either activate or inhibit its action.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Yu G, Choi YK, Lee S. Inflammasome diversity: exploring novel frontiers in the innate immune response. Trends Immunol 2024; 45:248-258. [PMID: 38519271 DOI: 10.1016/j.it.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Pathogens elicit complex mammalian immune responses by activating multiple sensors within inflammasomes, which recognize diverse pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This simultaneous activation induces the formation of protein complexes referred to as multiple inflammasomes, that orchestrate a spectrum of programmed cell death pathways, including pyroptosis, apoptosis, and necroptosis. This concept is crucial for comprehending the complexity of the innate immune system's response to diverse pathogens and its implications for various diseases. Novel contributions here include emphasizing simultaneous sensor activation by pathogens, proposing the existence of multiple inflammasome complexes, and advocating for further exploration of their structural basis. Understanding these mechanisms may offer insights into disease pathogenesis, paving the way for potential therapeutic interventions targeting inflammasome-mediated immune responses.
Collapse
Affiliation(s)
- Gyeongju Yu
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - SangJoon Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
14
|
Suresh Kumar Meena Kumari M, Liu P, Jump K, Morales Y, Miller EA, Shecter I, Stadecker MJ, Kalantari P. NLRP3 and AIM2 inflammasomes exacerbate the pathogenic Th17 cell response to eggs of the helminth Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584371. [PMID: 38559160 PMCID: PMC10979858 DOI: 10.1101/2024.03.11.584371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Infection with the helminth Schistosoma mansoni can cause exacerbated morbidity and mortality via a pathogenic host CD4 T cell-mediated immune response directed against parasite egg antigens, with T helper (Th) 17 cells playing a major role in the development of severe granulomatous hepatic immunopathology. The role of inflammasomes in intensifying disease has been reported; however, neither the types of caspases and inflammasomes involved, nor their impact on the Th17 response are known. Here we show that enhanced egg-induced IL-1β secretion and pyroptotic cell death required both caspase-1 and caspase-8 as well as NLRP3 and AIM2 inflammasome activation. Schistosome genomic DNA activated AIM2, whereas reactive oxygen species, potassium efflux and cathepsin B, were the major activators of NLRP3. NLRP3 and AIM2 deficiency led to a significant reduction in pathogenic Th17 responses, suggesting their crucial and non-redundant role in promoting inflammation. Additionally, we show that NLRP3- and AIM2-induced IL-1β suppressed IL-4 and protective Type I IFN (IFN-I) production, which further enhanced inflammation. IFN-I signaling also curbed inflammasome- mediated IL-1β production suggesting that these two antagonistic pathways shape the severity of disease. Lastly, Gasdermin D (Gsdmd) deficiency resulted in a marked decrease in egg-induced granulomatous inflammation. Our findings establish NLRP3/AIM2-Gsdmd axis as a central inducer of pathogenic Th17 responses which is counteracted by IFN-I pathway in schistosomiasis.
Collapse
Affiliation(s)
- Madhusoodhanan Suresh Kumar Meena Kumari
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pengyu Liu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kaile Jump
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yoelkys Morales
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Emily A Miller
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ilana Shecter
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Miguel J. Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Parisa Kalantari
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Ramalho T, Assis PA, Ojelabi O, Tan L, Carvalho B, Gardinassi L, Campos O, Lorenzi PL, Fitzgerald KA, Haynes C, Golenbock DT, Gazzinelli RT. Itaconate impairs immune control of Plasmodium by enhancing mtDNA-mediated PD-L1 expression in monocyte-derived dendritic cells. Cell Metab 2024; 36:484-497.e6. [PMID: 38325373 PMCID: PMC10940217 DOI: 10.1016/j.cmet.2024.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/27/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.
Collapse
Affiliation(s)
- Theresa Ramalho
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Patricia A Assis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ogooluwa Ojelabi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Brener Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Osvaldo Campos
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, Sao Paulo, Brazil
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole Haynes
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Douglas T Golenbock
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
17
|
Pardy RD, Wallbank BA, Striepen B, Hunter CA. Immunity to Cryptosporidium: insights into principles of enteric responses to infection. Nat Rev Immunol 2024; 24:142-155. [PMID: 37697084 PMCID: PMC11881751 DOI: 10.1038/s41577-023-00932-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Oh S, Lee J, Oh J, Yu G, Ryu H, Kim D, Lee S. Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis. Cell Mol Immunol 2023; 20:1513-1526. [PMID: 38008850 PMCID: PMC10687226 DOI: 10.1038/s41423-023-01107-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023] Open
Abstract
Inflammasomes are important sentinels of innate immune defense; they sense pathogens and induce the cell death of infected cells, playing key roles in inflammation, development, and cancer. Several inflammasome sensors detect and respond to specific pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) by forming a multiprotein complex with the adapters ASC and caspase-1. During disease, cells are exposed to several PAMPs and DAMPs, leading to the concerted activation of multiple inflammasomes. However, the molecular mechanisms that integrate multiple inflammasome sensors to facilitate optimal host defense remain unknown. Here, we discovered that simultaneous inflammasome activation by multiple ligands triggered multiple types of programmed inflammatory cell death, and these effects could not be mimicked by treatment with a pure ligand of any single inflammasome. Furthermore, NLRP3, AIM2, NLRC4, and Pyrin were determined to be members of a large multiprotein complex, along with ASC, caspase-1, caspase-8, and RIPK3, and this complex drove PANoptosis. Furthermore, this multiprotein complex was released into the extracellular space and retained as multiple inflammasomes. Multiple extracellular inflammasome particles could induce inflammation after their engulfment by neighboring macrophages. Collectively, our findings define a previously unknown regulatory connection and molecular interaction between inflammasome sensors, which drives the assembly of a multiprotein complex that includes multiple inflammasome sensors and cell death regulators. The discovery of critical interactions among NLRP3, AIM2, NLRC4, and Pyrin represents a new paradigm in understanding the functions of these molecules in innate immunity and inflammasome biology as well as identifying new therapeutic targets for NLRP3-, AIM2-, NLRC4- and Pyrin-mediated diseases.
Collapse
Affiliation(s)
- SuHyeon Oh
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jihye Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jueun Oh
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Gyoengju Yu
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Haesun Ryu
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - SangJoon Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
20
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
21
|
Sekar P, Rajagopalan S, Shabani E, Kanjee U, Schureck MA, Arora G, Peterson ME, Traore B, Crompton PD, Duraisingh MT, Desai SA, Long EO. NK cell-induced damage to P.falciparum-infected erythrocytes requires ligand-specific recognition and releases parasitophorous vacuoles that are phagocytosed by monocytes in the presence of immune IgG. PLoS Pathog 2023; 19:e1011585. [PMID: 37939134 PMCID: PMC10659167 DOI: 10.1371/journal.ppat.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMβ2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.
Collapse
Affiliation(s)
- Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sumati Rajagopalan
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marc A. Schureck
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gunjan Arora
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mary E. Peterson
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Boubacar Traore
- Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sanjay A. Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
22
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Li JX, Liao WZ, Huang ZM, Yin X, Ouyang S, Gu B, Guo XG. Identifying effective diagnostic biomarkers for childhood cerebral malaria in Africa integrating coexpression analysis with machine learning algorithm. Eur J Med Res 2023; 28:76. [PMID: 36782344 PMCID: PMC9926768 DOI: 10.1186/s40001-022-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a manifestation of malaria caused by plasmodium infection. It has a high mortality rate and severe neurological sequelae, existing a significant research gap and requiring further study at the molecular level. METHODS We downloaded the GSE117613 dataset from the Gene Expression Omnibus (GEO) database to determine the differentially expressed genes (DEGs) between the CM group and the control group. Weighted gene coexpression network analysis (WGCNA) was applied to select the module and hub genes most relevant to CM. The common genes of the key module and DEGs were selected to perform further analysis. The least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) were applied to screen and verify the diagnostic markers of CM. Eventually, the hub genes were validated in the external dataset. Gene set enrichment analysis (GSEA) was applied to investigate the possible roles of the hub genes. RESULTS The GO and KEGG results showed that DEGs were enriched in some neutrophil-mediated pathways and associated with some lumen structures. Combining LASSO and the SVM-RFE algorithms, LEF1 and IRAK3 were identified as potential hub genes in CM. Through the GSEA enrichment results, we found that LEF1 and IRAK3 participated in maintaining the integrity of the blood-brain barrier (BBB), which contributed to improving the prognosis of CM. CONCLUSIONS This study may help illustrate the pathophysiology of CM at the molecular level. LEF1 and IRAK3 can be used as diagnostic biomarkers, providing new insight into the diagnosis and prognosis prediction in pediatric CM.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Zhe Liao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin Yin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Pediatrics, The Pediatrics School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi Ouyang
- Department of Infectious Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Salgar S, Bolívar BE, Flanagan JM, Anum SJ, Bouchier-Hayes L. The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Transl Res 2023; 252:34-44. [PMID: 36041706 DOI: 10.1016/j.trsl.2022.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Overactive inflammatory responses are central to the pathophysiology of many hemolytic conditions including sickle cell disease. Excessive hemolysis leads to elevated serum levels of heme due to saturation of heme scavenging mechanisms. Extracellular heme has been shown to activate the NLRP3 inflammasome, leading to activation of caspase-1 and release of pro-inflammatory cytokines IL-1β and IL-18. Heme also activates the non-canonical inflammasome pathway, which may contribute to NLRP3 inflammasome formation and leads to pyroptosis, a type of inflammatory cell death. Some clinical studies indicate there is a benefit to blocking the NLRP3 inflammasome pathway in patients with sickle cell disease and other hemolytic conditions. However, a thorough understanding of the mechanisms of heme-induced inflammasome activation is needed to fully leverage this pathway for clinical benefit. This review will explore the mechanisms of heme-induced NLRP3 inflammasome activation and the role of this pathway in hemolytic conditions including sickle cell disease.
Collapse
Affiliation(s)
- Suruchi Salgar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Beatriz E Bolívar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jonathan M Flanagan
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Shaniqua J Anum
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
26
|
Plasmodium berghei Purified Hemozoin Associated with DNA Strongly Inhibits P. berghei Liver-Stage Development in BALB/c Mice after Intravenous Inoculation. Infect Immun 2023; 91:e0030422. [PMID: 36622216 PMCID: PMC9872621 DOI: 10.1128/iai.00304-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the acidic lysosome-like digestive vacuole, Plasmodium parasites crystallize heme from hemoglobin into hemozoin, or malaria pigment. Upon release of progeny merozoites, the residual hemozoin is phagocytized by macrophages principally in the liver and spleen where the heme crystals can persist for months to years, as heme oxygenase does not readily degrade the crystal. Previous studies demonstrated hemozoin modulation of monocytes and macrophages. Hemozoin modulates immune function activity of monocytes/macrophages. Here, we used purified/washed hemozoin (W-Hz) isolated from murine Plasmodium berghei infections and intravenously (i.v.) injected it back into naive mice. We characterized the modulating effect of W-Hz on liver-stage replication. Purified washed hemozoin decreases P. berghei liver levels both at 1 week and 1 month after i.v. injection in a dose and time dependent fashion. The injected hemozoin fully protected in nine out of 10 mice given a 50 sporozoite inoculum, and in 10 out of 10 mice against 2,000 sporozoites when they were infected an hour or a day after hemozoin inoculation. DNase treatment at the hemozoin reversed the observed liver load reduction. The liver load reduction was similar in mature B- and T-cell-deficient RAG-1 knockout (KO) mice suggesting an innate immune protection mechanism. This work indicates a role for residual hemozoin in down modulation of Plasmodium liver stages.
Collapse
|
27
|
Marques-da-Silva C, Poudel B, Baptista RP, Peissig K, Hancox LS, Shiau JC, Pewe LL, Shears MJ, Kanneganti TD, Sinnis P, Kyle DE, Gurung P, Harty JT, Kurup SP. AIM2 sensors mediate immunity to Plasmodium infection in hepatocytes. Proc Natl Acad Sci U S A 2023; 120:e2210181120. [PMID: 36595704 PMCID: PMC9926219 DOI: 10.1073/pnas.2210181120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
| | - Barun Poudel
- Department of Internal Medicine, University of Iowa, Iowa City, IA52242
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
- Institute of Bioinformatics, University of Georgia, Athens, GA30605
| | - Kristen Peissig
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
| | - Lisa S. Hancox
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Justine C. Shiau
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
- Department of Infectious Diseases, University of Georgia, Athens, GA30605
| | - Lecia L. Pewe
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | | | - Photini Sinnis
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Dennis E. Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
- Department of Infectious Diseases, University of Georgia, Athens, GA30605
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52242
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52242
| | - Samarchith P. Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA30605
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30605
| |
Collapse
|
28
|
Abstract
The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell's ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called "canonical" inflammasomes.
Collapse
Affiliation(s)
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
29
|
Hirako IC, Antunes MM, Rezende RM, Hojo-Souza NS, Figueiredo MM, Dias T, Nakaya H, Menezes GB, Gazzinelli RT. Uptake of Plasmodium chabaudi hemozoin drives Kupffer cell death and fuels superinfections. Sci Rep 2022; 12:19805. [PMID: 36396745 PMCID: PMC9671901 DOI: 10.1038/s41598-022-23858-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kupffer cells (KCs) are self-maintained tissue-resident macrophages that line liver sinusoids and play an important role on host defense. It has been demonstrated that upon infection or intense liver inflammation, KCs might be severely depleted and replaced by immature monocytic cells; however, the mechanisms of cell death and the alterations on liver immunity against infections deserves further investigation. We explored the impact of acute Plasmodium infection on KC biology and on the hepatic immune response against secondary infections. Similar to patients, infection with Plasmodium chabaudi induced acute liver damage as determined by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. This was associated with accumulation of hemozoin, increased of proinflammatory response and impaired bacterial and viral clearance, which led to pathogen spread to other organs. In line with this, mice infected with Plasmodium had enhanced mortality during secondary infections, which was associated with increased production of mitochondrial superoxide, lipid peroxidation and increased free iron within KCs-hallmarks of cell death by ferroptosis. Therefore, we revealed that accumulation of iron with KCs, triggered by uptake of circulating hemozoin, is a novel mechanism of macrophage depletion and liver inflammation during malaria, providing novel insights on host susceptibility to secondary infections. Malaria can cause severe liver damage, along with depletion of liver macrophages, which can predispose individuals to secondary infections and enhance the chances of death.
Collapse
Affiliation(s)
- Isabella C Hirako
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, 3rd Floor, Worcester, MA, USA
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Thomaz Dias
- Escola de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helder Nakaya
- Escola de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, 3rd Floor, Worcester, MA, USA.
- Departamento de Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Pohl K, Cockburn IA. Innate immunity to malaria: The good, the bad and the unknown. Front Immunol 2022; 13:914598. [PMID: 36059493 PMCID: PMC9437427 DOI: 10.3389/fimmu.2022.914598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Malaria is the cause of 600.000 deaths annually. However, these deaths represent only a tiny fraction of total malaria cases. Repeated natural infections with the causative agent, Plasmodium sp. parasites, induce protection from severe disease but not sterile immunity. Thus, immunity to Plasmodium is incomplete. Conversely, immunization with attenuated sporozoite stage parasites can induce sterile immunity albeit after multiple vaccinations. These different outcomes are likely to be influenced strongly by the innate immune response to different stages of the parasite lifecycle. Even small numbers of sporozoites can induce a robust proinflammatory type I interferon response, which is believed to be driven by the sensing of parasite RNA. Moreover, induction of innate like gamma-delta cells contributes to the development of adaptive immune responses. Conversely, while blood stage parasites can induce a strong proinflammatory response, regulatory mechanisms are also triggered. In agreement with this, intact parasites are relatively weakly sensed by innate immune cells, but isolated parasite molecules, notably DNA and RNA can induce strong responses. Thus, the innate response to Plasmodium parasite likely represents a trade-off between strong pro-inflammatory responses that may potentiate immunity and regulatory processes that protect the host from cytokine storms that can induce life threatening illness.
Collapse
Affiliation(s)
- Kai Pohl
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
| | - Ian A. Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
- *Correspondence: Ian A. Cockburn,
| |
Collapse
|
31
|
Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat Commun 2022; 13:4395. [PMID: 35906252 PMCID: PMC9338265 DOI: 10.1038/s41467-022-32127-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens. Guanylate-binding proteins (GBP) have a function in inflammasome formation and pathogen defence. Here the authors show that these GBP proteins are able to kill certain bacteria and promote selective inflammasome activation and that this is mediated by specific GBP protein regions.
Collapse
|
32
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Ambegaonkar AA, Holla P, Dizon BL, Sohn H, Pierce SK. Atypical B cells in chronic infectious diseases and systemic autoimmunity: puzzles with many missing pieces. Curr Opin Immunol 2022; 77:102227. [PMID: 35724448 PMCID: PMC9612402 DOI: 10.1016/j.coi.2022.102227] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
The world’s struggle to contain the
SARS-CoV-2 epidemic, primarily through vaccination, has highlighted the
importance of better understanding the biology of B cells that
participate in defense against infectious diseases, both acute and
chronic. Here, we focus on a population of human B cells, termed atypical
B cells (ABCs), that comprise a distinct B-cell lineage that
differentiates from naive B cells in an interferon-γ-driven process, and
are infrequent in healthy individuals but significantly expanded in
chronic infectious diseases, including malaria, as well as in systemic
autoimmune diseases such as systemic lupus erythematosus (SLE). Recent
comparisons of ABCs by single-cell RNAseq provided evidence that ABCs in
diverse chronic infectious diseases and in systemic autoimmune diseases
are highly related and share common drivers of differentiation and
expansion. However, ABCs in different diseases are not identical and also
show discrete disease-specific features. Here, we compare and contrast
key features of two ABC populations, namely those that are expanded in
individuals living in malaria-endemic areas of the world versus those in
SLE patients. This comparison is of interest as it appears that unique
features of these two diseases result in participation of autoreactive
ABCs in parasite-specific responses in malaria but in pathogenic
autoimmune responses in SLE. A better understanding of the commonality
and differences in the ABC responses in these two diseases may provide
critical insights into the development of vaccines that drive
pathogen-specific antibody responses and avoid
autoimmunity.
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Brian Lp Dizon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA; Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
34
|
You R, He X, Zeng Z, Zhan Y, Xiao Y, Xiao R. Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target. Front Immunol 2022; 13:841732. [PMID: 35693810 PMCID: PMC9174462 DOI: 10.3389/fimmu.2022.841732] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases are a group of heterogeneous diseases with diverse clinical manifestations that can be divided into systemic and organ-specific. The common etiology of autoimmune diseases is the destruction of immune tolerance and the production of autoantibodies, which attack specific tissues and/or organs in the body. The pathogenesis of autoimmune diseases is complicated, and genetic, environmental, infectious, and even psychological factors work together to cause aberrant innate and adaptive immune responses. Although the exact mechanisms are unclear, recently, excessive exacerbation of pyroptosis, as a bond between innate and adaptive immunity, has been proven to play a crucial role in the development of autoimmune disease. Pyroptosis is characterized by pore formation on cell membranes, as well as cell rupture and the excretion of intracellular contents and pro-inflammatory cytokines, such as IL-1β and IL-18. This overactive inflammatory programmed cell death disrupts immune system homeostasis and promotes autoimmunity. This review examines the molecular structure of classical inflammasomes, including NLRP3, AIM2, and P2X7-NLRP3, as the switches of pyroptosis, and their molecular regulation mechanisms. The sophisticated pyroptosis pathways, including the canonical caspase-1-mediated pathway, the noncanonical caspase-4/5/11-mediated pathway, the emerging caspase-3-mediated pathway, and the caspase-independent pathway, are also described. We highlight the recent advances in pyroptosis in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Sjögren's syndrome and dermatomyositis, and attempt to identify its potential advantages as a therapeutic target or prognostic marker in these diseases.
Collapse
Affiliation(s)
- Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
35
|
Köllisch G, Solis FV, Obermann HL, Eckert J, Müller T, Vierbuchen T, Rickmeyer T, Muche S, Przyborski JM, Heine H, Kaufmann A, Baumeister S, Lingelbach K, Bauer S. TLR8 is activated by 5'-methylthioinosine, a Plasmodium falciparum-derived intermediate of the purine salvage pathway. Cell Rep 2022; 39:110691. [PMID: 35417716 DOI: 10.1016/j.celrep.2022.110691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
The innate immune recognition of the malaria-causing pathogen Plasmodium falciparum (P. falciparum) is not fully explored. Here, we identify the nucleoside 5'-methylthioinosine (MTI), a Plasmodium-specific intermediate of the purine salvage pathway, as a pathogen-derived Toll-like receptor 8 (TLR8) agonist. Co-incubation of MTI with the TLR8 enhancer poly(dT) as well as synthetic or P. falciparum-derived RNA strongly increase its stimulatory activity. Of note, MTI generated from methylthioadenosine (MTA) by P. falciparum lysates activates TLR8 when MTI metabolism is inhibited by immucillin targeting the purine nucleoside phosphorylase (PfPNP). Importantly, P. falciparum-infected red blood cells incubated with MTI or cultivated with MTA and immucillin lead to TLR8-dependent interleukin-6 (IL-6) production in human monocytes. Our data demonstrate that the nucleoside MTI is a natural human TLR8 ligand with possible in vivo relevance for innate sensing of P. falciparum.
Collapse
Affiliation(s)
- Gabriele Köllisch
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Hannah-Lena Obermann
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany
| | - Jeannine Eckert
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Thomas Müller
- Institute for Medical Microbiology, Immunology und Hygiene, Technical University Munich, Munich, Germany
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Rickmeyer
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Simon Muche
- Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany
| | - Stefan Baumeister
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Klaus Lingelbach
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
36
|
Jiao Y, Nan J, Mu B, Zhang Y, Zhou N, Yang S, Zhang S, Lin W, Wang F, Xia A, Cao Z, Chen P, Pan Z, Lin G, Pan S, Bin H, Li L, Yang S. Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis. Eur J Med Chem 2022; 232:114194. [DOI: 10.1016/j.ejmech.2022.114194] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
|
37
|
Dalapati T, Moore JM. Hemozoin: a Complex Molecule with Complex Activities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 8:87-102. [PMID: 35096512 DOI: 10.1007/s40588-021-00166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion. Recent Findings Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu. Summary This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.
Collapse
Affiliation(s)
- Trisha Dalapati
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Julie M Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Dizon BLP, Pierce SK. The tangled web of autoreactive B cells in malaria immunity and autoimmune disease. Trends Parasitol 2022; 38:379-389. [PMID: 35120815 PMCID: PMC9012675 DOI: 10.1016/j.pt.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Two seminal observations suggest that the African genome contains genes selected by malaria that protect against systemic lupus erythematosus (SLE) in individuals chronically exposed to malaria, but which in the absence of malaria, are risk factors for SLE. First, Brian Greenwood observed that SLE was rare in Africa and that malaria prevented SLE-like disease in susceptible mice. Second, African-Americans, as compared with individuals of European descent, are at higher risk of SLE. Understanding that antibodies play central roles in malaria immunity and SLE, we discuss how autoreactive B cells contribute to malaria immunity but promote SLE pathology in the absence of malaria. Testing this model may provide insights into the regulation of autoreactivity and identify new therapeutic targets for SLE.
Collapse
Affiliation(s)
- Brian L P Dizon
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
39
|
Andreeva L, David L, Rawson S, Shen C, Pasricha T, Pelegrin P, Wu H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 2021; 184:6299-6312.e22. [PMID: 34861190 PMCID: PMC8763037 DOI: 10.1016/j.cell.2021.11.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
The NACHT-, leucine-rich-repeat- (LRR), and pyrin domain-containing protein 3 (NLRP3) is emerging to be a critical intracellular inflammasome sensor of membrane integrity and a highly important clinical target against chronic inflammation. Here, we report that an endogenous, stimulus-responsive form of full-length mouse NLRP3 is a 12- to 16-mer double-ring cage held together by LRR-LRR interactions with the pyrin domains shielded within the assembly to avoid premature activation. Surprisingly, this NLRP3 form is predominantly membrane localized, which is consistent with previously noted localization of NLRP3 at various membrane organelles. Structure-guided mutagenesis reveals that trans-Golgi network dispersion into vesicles, an early event observed for many NLRP3-activating stimuli, requires the double-ring cages of NLRP3. Double-ring-defective NLRP3 mutants abolish inflammasome punctum formation, caspase-1 processing, and cell death. Thus, our data uncover a physiological NLRP3 oligomer on the membrane that is poised to sense diverse signals to induce inflammasome activation.
Collapse
Affiliation(s)
- Liudmila Andreeva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liron David
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Cryo-EM Center for Structural Biology, Boston, MA 02115, USA
| | - Chen Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Teerithveen Pasricha
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Northeastern University, Boston, MA 02115, USA
| | - Pablo Pelegrin
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Baeza Garcia A, Siu E, Du X, Leng L, Franke-Fayard B, Janse CJ, Howland SW, Rénia L, Lolis E, Bucala R. Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria. FASEB J 2021; 35:e21997. [PMID: 34719814 DOI: 10.1096/fj.202101072r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/11/2022]
Abstract
The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.
Collapse
Affiliation(s)
- Alvaro Baeza Garcia
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Edwin Siu
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xin Du
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
42
|
AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 2021; 597:415-419. [PMID: 34471287 PMCID: PMC8603942 DOI: 10.1038/s41586-021-03875-8] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Inflammasomes are important sentinels of innate immune defense, sensing pathogens and inducing cell death in infected cells1. There are several inflammasome sensors that each detect and respond to specific pathogen- and damage-associated molecular patterns (PAMPs and DAMPs)1. In contrast to this one PAMP/DAMP to one sensor specificity, during infection, live pathogens can induce the release of multiple PAMPs and DAMPs, which could contemporaneously engage multiple inflammasome sensors2–5. Here we discovered that AIM2 regulated the innate immune sensors Pyrin and ZBP1 to drive inflammatory signaling and inflammatory cell death, PANoptosis, and provide host protection during infections with herpes simplex virus 1 (HSV1) and Francisella novicida. We also observed that AIM2, Pyrin and ZBP1 were members of a large multi-protein complex along with ASC, caspase-1, caspase-8, RIPK3, RIPK1 and FADD that drove inflammatory cell death. Collectively, our findings define a previously unknown regulatory connection and molecular interaction among AIM2, Pyrin and ZBP1 that drives assembly of an AIM2-mediated multi-protein complex that involves multiple inflammasome sensors and cell death regulators. These results represent a new paradigm in understanding the functions of these molecules in innate immunity and inflammatory cell death, suggesting new therapeutic targets for AIM2-, ZBP1- and Pyrin-mediated diseases.
Collapse
|
43
|
Pack AD, Schwartzhoff PV, Zacharias ZR, Fernandez-Ruiz D, Heath WR, Gurung P, Legge KL, Janse CJ, Butler NS. Hemozoin-mediated inflammasome activation limits long-lived anti-malarial immunity. Cell Rep 2021; 36:109586. [PMID: 34433049 PMCID: PMC8432597 DOI: 10.1016/j.celrep.2021.109586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/04/2022] Open
Abstract
During acute malaria, most individuals mount robust inflammatory responses that limit parasite burden. However, long-lived sterilizing anti-malarial memory responses are not efficiently induced, even following repeated Plasmodium exposures. Using multiple Plasmodium species, genetically modified parasites, and combinations of host genetic and pharmacologic approaches, we find that the deposition of the malarial pigment hemozoin directly limits the abundance and capacity of conventional type 1 dendritic cells to prime helper T cell responses. Hemozoin-induced dendritic cell dysfunction results in aberrant Plasmodium-specific CD4 T follicular helper cell differentiation, which constrains memory B cell and long-lived plasma cell formation. Mechanistically, we identify that dendritic cell-intrinsic NLRP3 inflammasome activation reduces conventional type 1 dendritic cell abundance, phagocytosis, and T cell priming functions in vivo. These data identify biological consequences of hemozoin deposition during malaria and highlight the capacity of the malarial pigment to program immune evasion during the earliest events following an initial Plasmodium exposure.
Collapse
Affiliation(s)
- Angela D Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | | - Zeb R Zacharias
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Kevin L Legge
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden 233 ZA, the Netherlands
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
44
|
Chua CLL, Ng IMJ, Yap BJM, Teo A. Factors influencing phagocytosis of malaria parasites: the story so far. Malar J 2021; 20:319. [PMID: 34271941 PMCID: PMC8284020 DOI: 10.1186/s12936-021-03849-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
Collapse
Affiliation(s)
| | - Ida May Jen Ng
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bryan Ju Min Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Medicine, The Doherty Institute, University of Melbourne, Victoria, Australia.
| |
Collapse
|
45
|
The intestinal parasite Cryptosporidium is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proc Natl Acad Sci U S A 2021; 118:2007807118. [PMID: 33372132 PMCID: PMC7812745 DOI: 10.1073/pnas.2007807118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The intestinal immune system is able to control pathogens while tolerating and interpreting microbial cues from an abundant microbiome. The mechanisms of innate recognition are crucial to differentiating between pathogen and commensal in this tissue and to mounting an appropriate inflammatory response. Persistent inflammation can alter the cellular architecture and physiology of the gut and have lasting impact on the nutritional state of children who face frequent infection with certain enteric pathogens. We demonstrate that the widespread parasite Cryptosporidium acts as a potent trigger for an enterocyte-intrinsic inflammasome that depends on the NOD-like receptor pyrin domain-6 and results in the local release of the proinflammatory cytokine IL-18. The apicomplexan parasite Cryptosporidium infects the intestinal epithelium. While infection is widespread around the world, children in resource-poor settings suffer a disproportionate disease burden. Cryptosporidiosis is a leading cause of diarrheal disease, responsible for mortality and stunted growth in children. CD4 T cells are required to resolve this infection, but powerful innate mechanisms control the parasite prior to the onset of adaptive immunity. Here, we use the natural mouse pathogen Cryptosporidium tyzzeri to demonstrate that the inflammasome plays a critical role in initiating this early response. Mice lacking core inflammasome components, including caspase-1 and apoptosis-associated speck-like protein, show increased parasite burden and caspase 1 deletion solely in enterocytes phenocopies whole-body knockout (KO). This response was fully functional in germfree mice and sufficient to control Cryptosporidium infection. Inflammasome activation leads to the release of IL-18, and mice that lack IL-18 are more susceptible to infection. Treatment of infected caspase 1 KO mice with recombinant IL-18 is remarkably efficient in rescuing parasite control. Notably, NOD-like receptor family pyrin domain containing 6 (NLRP6) was the only NLR required for innate parasite control. Taken together, these data support a model of innate recognition of Cryptosporidium infection through an NLRP6-dependent and enterocyte-intrinsic inflammasome that leads to the release of IL-18 required for parasite control.
Collapse
|
46
|
Gil-Jaramillo N, Rocha AP, Raiol T, Motta FN, Favali C, Brigido MM, Bastos IMD, Santana JM. The First Contact of Human Dendritic Cells With Trypanosoma cruzi Reveals Response to Virus as an Unexplored Central Pathway. Front Immunol 2021; 12:638020. [PMID: 33897690 PMCID: PMC8062726 DOI: 10.3389/fimmu.2021.638020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Chagas disease is a debilitating and neglected disease caused by the protozoan Trypanosoma cruzi. Soon after infection, interactions among T. cruzi and host innate immunity cells can drive/contribute to disease outcome. Dendritic cells (DCs), present in all tissues, are one of the first immune cells to interact with Trypanosoma cruzi metacyclic trypomastigotes. Elucidating the immunological events triggered immediately after parasite-human DCs encounter may aid in understanding the role of DCs in the establishment of infection and in the course of the disease. Therefore, we performed a transcriptomic analysis of a 12 h interaction between T. cruzi and MoDCs (monocyte-derived DCs) from three human donors. Enrichment analyses of the 468 differentially expressed genes (DEGs) revealed viral infection response as the most regulated pathway. Additionally, exogenous antigen processing and presentation through MHC-I, chemokine signaling, lymphocyte co-stimulation, metallothioneins, and inflammasome activation were found up-regulated. Notable, we were able to identify the increased gene expression of alternative inflammasome sensors such as AIM2, IFI16, and RIG-I for the first time in a T. cruzi infection. Both transcript and protein expression levels suggest proinflammatory cytokine production during early T. cruzi-DCs contact. Our transcriptome data unveil antiviral pathways as an unexplored process during T. cruzi-DC initial interaction, disclosing a new panorama for the study of Chagas disease outcomes.
Collapse
Affiliation(s)
- Natalia Gil-Jaramillo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Amanda Pereira Rocha
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Tainá Raiol
- Fiocruz Brasília–Gerência Regional de Brasília (GEREB), Fundação Oswaldo Cruz (Fiocruz), Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Cecília Favali
- Laboratório de Imunologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo M. Brigido
- Laboratório de Imunologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Izabela M. D. Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Jaime M. Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
47
|
Sena-dos-Santos C, Braga-da-Silva C, Marques D, Azevedo dos Santos Pinheiro J, Ribeiro-dos-Santos Â, Cavalcante GC. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far? Cells 2021; 10:479. [PMID: 33672278 PMCID: PMC7926694 DOI: 10.3390/cells10020479] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Collapse
Affiliation(s)
- Camille Sena-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Cíntia Braga-da-Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Diego Marques
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Jhully Azevedo dos Santos Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66.075-110, Brazil
| | - Giovanna C. Cavalcante
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| |
Collapse
|
48
|
Corbett Y, Parapini S, Perego F, Messina V, Delbue S, Misiano P, Falchi M, Silvestrini F, Taramelli D, Basilico N, D'Alessandro S. Phagocytosis and activation of bone marrow-derived macrophages by Plasmodium falciparum gametocytes. Malar J 2021; 20:81. [PMID: 33568138 PMCID: PMC7874634 DOI: 10.1186/s12936-021-03589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
Background The innate immune response against various life cycle stages of the malaria parasite plays an important role in protection against the disease and regulation of its severity. Phagocytosis of asexual erythrocytic stages is well documented, but little and contrasting results are available about phagocytic clearance of sexual stages, the gametocytes, which are responsible for the transmission of the parasites from humans to mosquitoes. Similarly, activation of host macrophages by gametocytes has not yet been carefully addressed. Methods Phagocytosis of early or late Plasmodium falciparum gametocytes was evaluated through methanol fixed cytospin preparations of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated for 2 h with P. falciparum and stained with Giemsa, and it was confirmed through a standardized bioluminescent method using the transgenic P. falciparum 3D7elo1-pfs16-CBG99 strain. Activation was evaluated by measuring nitric oxide or cytokine levels in the supernatants of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated with early or late gametocytes. Results The results showed that murine bone marrow-derived macrophages can phagocytose both early and late gametocytes, but only the latter were able to induce the production of inflammatory mediators, specifically nitric oxide and the cytokines tumour necrosis factor and macrophage inflammatory protein 2. Conclusions These results support the hypothesis that developing gametocytes interact in different ways with innate immune cells of the host. Moreover, the present study proposes that early and late gametocytes act differently as targets for innate immune responses.
Collapse
Affiliation(s)
- Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy.
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Federica Perego
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Valeria Messina
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Paola Misiano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Mario Falchi
- AIDS-Ricerca e sviluppo, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Silvestrini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy. .,Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.
| |
Collapse
|
49
|
Abstract
Respiratory distress (RD) is a complication of severe malaria associated with a particularly high risk for death in African children infected with the parasite Plasmodium falciparum. The pathophysiology underlying RD remains poorly understood, and the condition is managed supportively. Respiratory distress in severe malaria is associated with high mortality, but its pathogenesis remains unclear. The malaria pigment hemozoin (HZ) is abundant in target organs of severe malaria, including the lungs, and is known to be a potent innate immune activator of phagocytes. We hypothesized that HZ might also stimulate lung epithelial activation and thereby potentiate lung inflammation. We show here that airway epithelium stimulated with HZ undergoes global transcriptional reprogramming and changes in cell surface protein expression that comprise an epithelial activation phenotype. Proinflammatory signaling is induced, and key cytoadherence molecules are upregulated, including several associated with severe malaria, such as CD36 and ICAM1. Epithelial and extracellular matrix remodeling pathways are transformed, including induction of key metalloproteases and modulation of epithelial junctions. The overall program induced by HZ serves to promote inflammation and neutrophil transmigration, and is recapitulated in a murine model of HZ-induced acute pneumonitis. Together, our data demonstrate a direct role for hemozoin in stimulating epithelial activation that could potentiate lung inflammation in malaria.
Collapse
|
50
|
Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes Simplex Virus and Pattern Recognition Receptors: An Arms Race. Front Immunol 2021; 11:613799. [PMID: 33584700 PMCID: PMC7878388 DOI: 10.3389/fimmu.2020.613799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex viruses (HSVs) are experts in establishing persistent infection in immune-competent humans, in part by successfully evading immune activation through diverse strategies. Upon HSV infection, host deploys pattern recognition receptors (PRRs) to recognize various HSV-associated molecular patterns and mount antiviral innate immune responses. In this review, we describe recent advances in understanding the contributions of cytosolic PRRs to detect HSV and the direct manipulations on these receptors by HSV-encoded viral proteins as countermeasures. The continuous update and summarization of these mechanisms will deepen our understanding on HSV-host interactions in innate immunity for the development of novel antiviral therapies, vaccines and oncolytic viruses.
Collapse
Affiliation(s)
- Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|