1
|
Cabric V, Franco Parisotto Y, Park T, Akagbosu B, Zhao Z, Lo Y, Shibu G, Fisher L, Paucar Iza YA, Leslie C, Brown CC. A wave of Thetis cells imparts tolerance to food antigens early in life. Science 2025:eadp0535. [PMID: 40373113 DOI: 10.1126/science.adp0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/22/2025] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Abstract
Within the intestine, peripherally-induced regulatory T (pTreg) cells play an essential role in suppressing inflammatory responses to food proteins. However, the identity of antigen-presenting cells (APC) that instruct food-specific pTreg cells is poorly understood. Here, we found that a subset of Thetis cells, TC IV, is required for food-specific pTreg cell differentiation. TC IV were almost exclusively present within mesenteric lymph nodes suggesting that the presence of TC IV underlies the phenomenon of oral tolerance. A wave of TC IV differentiation in the peri-weaning period was associated with a window of opportunity for enhanced pTreg generation in response to food antigens. Our findings indicate that TC IV may represent a therapeutic target for the treatment of food-associated allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Vanja Cabric
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yollanda Franco Parisotto
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tyler Park
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Blossom Akagbosu
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zihan Zhao
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yun Lo
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Gayathri Shibu
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Logan Fisher
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Yoselin A Paucar Iza
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chrysothemis C Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
2
|
Yoo E, Jo Y, Park J, Hong SW. Immune tolerance to foreign antigens in the intestine: mechanisms mediated by CD4+ T cells. BMB Rep 2025; 58:158-168. [PMID: 40176601 PMCID: PMC12041928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
The immune system encounters a diverse array of antigens, both self and foreign, necessitating mechanisms to maintain tolerance and prevent harmful inflammatory responses. CD4+ T cells, crucial in orchestrating immune responses, play a critical role in mediating tolerance to both self and foreign antigens. While the mechanisms of CD4+ T cell-mediated tolerance to self-antigens are well-documented, the understanding of tolerance to foreign antigens, including those from commensal microbes and food, remains incomplete. This review discusses recent progress in the mechanisms underlying immune tolerance to foreign antigens, with a focus on the role of CD4+ T cells. We explore how inflammatory and tolerogenic CD4+ T cell subsets are developed and maintained. Moreover, we delve into the complexities of immune responses to commensal microbes and food antigens by reviewing recent findings, highlighting the immunological contexts that shape immune tolerance. Understanding these mechanisms enhances our comprehension of how immune tolerance is established and sustained, providing insights into potential therapeutic approaches for managing chronic inflammatory diseases resulting from a loss of immune tolerance to foreign antigens. [BMB Reports 2025; 58(4): 158-168].
Collapse
Affiliation(s)
- Eunbi Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yeleen Jo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jooyoun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sung-Wook Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Edwards M, Brockmann L. Microbiota-dependent modulation of intestinal anti-inflammatory CD4 + T cell responses. Semin Immunopathol 2025; 47:23. [PMID: 40167791 DOI: 10.1007/s00281-025-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025]
Abstract
Barrier organs such as the gastrointestinal tract, lungs, and skin are colonized by diverse microbial strains, including bacteria, viruses, and fungi. These microorganisms, collectively known as the commensal microbiota, play critical roles in maintaining health by defending against pathogens, metabolizing nutrients, and providing essential metabolites. In the gut, commensal-derived antigens are frequently sensed by the intestinal immune system. Maintaining tolerance toward these beneficial microbial species is crucial, as failure to do so can lead to chronic inflammatory conditions like inflammatory bowel disease (IBD) and can even affect systemic immune or metabolic health. The immune system carefully regulates responses to commensals through various mechanisms, including the induction of anti-inflammatory CD4⁺ T cell responses. Foxp3⁺ regulatory T cells (Foxp3+ Tregs) and Type 1 regulatory T cells (Tr1) play a major role in promoting tolerance, as both cell types can produce the anti-inflammatory cytokine IL-10. In addition to these regulatory T cells, effector T cell subsets, such as Th17 cells, also adopt anti-inflammatory functions within the intestine in response to the microbiota. This process of anti-inflammatory CD4+ T cell induction is heavily influenced by the microbiota and their metabolites. Microbial metabolites affect intestinal epithelial cells, promoting the secretion of anti-inflammatory mediators that create a tolerogenic environment. They also modulate intestinal dendritic cells (DCs) and macrophages, inducing a tolerogenic state, and can interact directly with T cells to drive anti-inflammatory CD4⁺ T cell functionality. The disrupted balance of these signals may result in chronic inflammation, with broader implications for systemic health. In this review, we highlight the intricate interplays between commensal microorganisms and the immune system in the gut. We discuss how the microbiota influences the differentiation of commensal-specific anti-inflammatory CD4⁺ T cells, such as Foxp3⁺ Tregs, Tr1 cells, and Th17 cells, and explore the mechanisms through which microbial metabolites modulate these processes. We further discuss the innate signals that prime and commit these cells to an anti-inflammatory fate.
Collapse
Affiliation(s)
- Madeline Edwards
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Leonie Brockmann
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, 108-8345, Japan.
| |
Collapse
|
4
|
Engelhart MJ, Brock OD, Till JM, Glowacki RWP, Cantwell JW, Clarke DJ, Wesener DA, Ahern PP. BT1549 coordinates the in vitro IL-10 inducing activity of Bacteroides thetaiotaomicron. Microbiol Spectr 2025; 13:e0166924. [PMID: 39868786 PMCID: PMC11878027 DOI: 10.1128/spectrum.01669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses. Despite the importance of this microbiome-driven immunomodulation, detailed knowledge of the microbial factors that promote these responses remains limited. We have previously established that the gut symbiont Bacteroides thetaiotaomicron stimulates the production of the anti-inflammatory cytokine IL-10 via soluble factors in a Toll-like receptor 2 (TLR2)-MyD88-dependent manner. Here, using TLR2 activity reporter cell lines, we show that the capacity of B. thetaiotaomicron to stimulate TLR2 activity was not critically dependent on either of the canonical heterodimeric forms of TLR2, TLR2/TLR1, or TLR2/TLR6, that typically mediate its function. Furthermore, biochemical manipulation of B. thetaiotaomicron-conditioned media suggests that IL-10 induction is mediated by a protease-resistant or non-proteogenic factor. We next uncovered that deletion of gene BT1549, a predicted secreted lipoprotein, significantly impaired the capacity of B. thetaiotaomicron to induce IL-10, while complementation in trans restored IL-10 induction, suggesting a role for BT1549 in the immunomodulatory function of B. thetaiotaomicron. Collectively, these data provide molecular insight into the pathways through which B. thetaiotaomicron operates to promote intestinal immune tolerance and symbiosis. IMPORTANCE Intestinal homeostasis requires the establishment of peaceful interactions between the gut microbiome and the intestinal immune system. Members of the gut microbiome, like the symbiont Bacteroides thetaiotaomicron, actively induce anti-inflammatory immune responses to maintain mutualistic relationships with the host. Despite the importance of such interactions, the specific microbial factors responsible remain largely unknown. Here, we show that B. thetaiotaomicron, which stimulates Toll-like receptor 2 (TLR2) to drive IL-10 production, can stimulate TLR2 independently of TLR1 or TLR6, the two known TLR that can form heterodimers with TLR2 to mediate TLR2-dependent responses. Furthermore, we show that IL-10 induction is likely mediated by a protease-resistant or non-proteogenic factor, and that this requires gene BT1549, a predicted secreted lipoprotein and peptidase. Collectively, our work provides insight into the molecular dialog through which B. thetaiotaomicron coordinates anti-inflammatory immune responses. This knowledge may facilitate future strategies to promote such responses for therapeutic purposes.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Orion D. Brock
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jason W. Cantwell
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Darryl A. Wesener
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
6
|
Baldwin I, Robey EA. Adjusting to self in the thymus: CD4 versus CD8 lineage commitment and regulatory T cell development. J Exp Med 2024; 221:e20230896. [PMID: 38980291 PMCID: PMC11232887 DOI: 10.1084/jem.20230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.
Collapse
Affiliation(s)
- Isabel Baldwin
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Hossain MM, King P, Hackett J, Gerard HC, Niwinski R, Wu L, Van Kaer L, Dyson G, Gibson H, Borowsky AD, Sebzda E. Peripheral-derived regulatory T cells contribute to tumor-mediated immune suppression in a nonredundant manner. Proc Natl Acad Sci U S A 2024; 121:e2404916121. [PMID: 39207730 PMCID: PMC11388331 DOI: 10.1073/pnas.2404916121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Identifying tumor-mediated mechanisms that impair immunity is instrumental for the design of new cancer therapies. Regulatory T cells (Tregs) are a key component of cancer-derived immune suppression; however, these lymphocytes are necessary to prevent systemic autoimmunity in mice and humans, and thus, direct targeting of Tregs is not a clinical option for cancer patients. We have previously demonstrated that excising transcription factor Kruppel-like factor 2 (Klf2) within the T cell lineage blocks the generation of peripheral-derived Tregs (pTregs) without impairing production of thymic-derived Tregs. Using this mouse model, we have now demonstrated that eliminating pTregs is sufficient to delay/prevent tumor malignancy without causing autoimmunity. Cancer-bearing mice that expressed KLF2 converted tumor-specific CD4+ T cells into pTregs, which accumulated in secondary lymphoid organs and impaired further T cell effector activity. In contrast, pTreg-deficient mice retained cancer-specific immunity, including improved T cell infiltration into "cold" tumors, reduced T cell exhaustion in tumor beds, restricted generation of tumor-associated myeloid-derived suppressor cells, and the continued production of circulating effector T cells that arose in a cancer-dependent manner. Results indicate that tumor-specific pTregs are critical for early stages of cancer progression and blocking the generation of these inhibitory lymphocytes safely delays/prevents malignancy in preclinical models of melanoma and prostate cancer.
Collapse
Affiliation(s)
- Md Moazzem Hossain
- Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI48201
| | - Paul King
- Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI48201
| | - Justin Hackett
- Department of Oncology, Wayne State University Medical School, Detroit, MI48201
| | - Herve C. Gerard
- Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI48201
| | - Rajmund Niwinski
- Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI48201
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory Dyson
- Department of Oncology, Wayne State University Medical School, Detroit, MI48201
- Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI48201
| | - Heather Gibson
- Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI48201
- Department of Oncology, Wayne State University Medical School, Detroit, MI48201
- Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI48201
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory Medicine, Center for Comparative Medicine, University of California Davis, Davis, CA95616
| | - Eric Sebzda
- Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI48201
- Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI48201
| |
Collapse
|
8
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
9
|
Jheng MJ, Kita H. Control of Asthma and Allergy by Regulatory T Cells. Int Arch Allergy Immunol 2024; 186:87-102. [PMID: 39154634 PMCID: PMC11729466 DOI: 10.1159/000540407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Epithelial barriers, such as the lungs and skin, face the challenge of providing the tissues' physiological function and maintaining tolerance to the commensal microbiome and innocuous environmental factors while defending the host against infectious microbes. Asthma and allergic diseases can result from maladaptive immune responses, resulting in exaggerated and persistent type 2 immunity and tissue inflammation. SUMMARY Among the diverse populations of tissue immune cells, CD4+ regulatory T cells (Treg cells) are central to controlling immune responses and inflammation and restoring tissue homeostasis. Humans and mice that are deficient in Treg cells experience extensive inflammation in their mucosal organs and skin. During past decades, major progress has been made toward understanding the immunobiology of Treg cells and the molecular and cellular mechanisms that control their differentiation and function. It is now clear that Treg cells are not a single cell type and that they demonstrate diversity and plasticity depending on their differentiation stages and tissue environment. They could also take on a proinflammatory phenotype in certain conditions. KEY MESSAGES Treg cells perform distinct functions, including the induction of immune tolerance, suppression of inflammation, and promotion of tissue repair. Subsets of Treg cells in mucosal tissues are regulated by their differentiation stage and tissue inflammatory milieu. Treg cell dysfunction likely plays roles in persistent immune responses and tissue inflammation in asthma and allergic diseases.
Collapse
Affiliation(s)
- Min-Jhen Jheng
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Arizona, Scottsdale, AZ
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
10
|
Varveri A, Papadopoulou M, Papadovasilakis Z, Compeer EB, Legaki AI, Delis A, Damaskou V, Boon L, Papadogiorgaki S, Samiotaki M, Foukas PG, Eliopoulos AG, Hatzioannou A, Alissafi T, Dustin ML, Verginis P. Immunological synapse formation between T regulatory cells and cancer-associated fibroblasts promotes tumour development. Nat Commun 2024; 15:4988. [PMID: 38862534 PMCID: PMC11167033 DOI: 10.1038/s41467-024-49282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA+ CAFs can form immunological synapses with Foxp3+ regulatory T cells (Tregs) in tumours. Notably, α-SMA+ CAFs can phagocytose and process tumour antigens and exhibit a tolerogenic phenotype which instructs movement arrest, activation and proliferation in Tregs in an antigen-specific manner. Moreover, α-SMA+ CAFs display double-membrane structures resembling autophagosomes in their cytoplasm. Single-cell transcriptomic data showed an enrichment in autophagy and antigen processing/presentation pathways in α-SMA-expressing CAF clusters. Conditional knockout of Atg5 in α-SMA+ CAFs promoted inflammatory re-programming in CAFs, reduced Treg cell infiltration and attenuated tumour development. Overall, our findings reveal an immunosuppressive mechanism entailing the formation of synapses between α-SMA+ CAFs and Tregs in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Zacharias Papadovasilakis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aigli-Ioanna Legaki
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasios Delis
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasileia Damaskou
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | | | | | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Centre Alexander Fleming, Vari, Athens, 166 72, Greece
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Hatzioannou
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Themis Alissafi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Panayotis Verginis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Paucar Iza YA, Brown CC. Early life imprinting of intestinal immune tolerance and tissue homeostasis. Immunol Rev 2024; 323:303-315. [PMID: 38501766 PMCID: PMC11102293 DOI: 10.1111/imr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.
Collapse
Affiliation(s)
- Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chrysothemis C. Brown
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
Sorini C, Cardoso RF, Tripathi KP, Mold JE, Diaz OE, Holender Y, Kern BC, Czarnewski P, Gagliani N, Villablanca EJ. Intestinal damage is required for the pro-inflammatory differentiation of commensal CBir1-specific T cells. Mucosal Immunol 2024; 17:81-93. [PMID: 37952848 DOI: 10.1016/j.mucimm.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Commensal-specific clusters of differentiation (CD)4+ T cells are expanded in patients with inflammatory bowel disease (IBD) compared to healthy individuals. How and where commensal-specific CD4+ T cells get activated is yet to be fully understood. We used CBir1 TCR-transgenic CD4+ T cells, specific to a commensal bacterial antigen, and different mouse models of IBD to characterize the dynamics of commensal-specific CD4+ T-cells activation. We found that CBir1 T cells proliferate following intestinal damage and cognate antigen presentation is mediated by CD11c+ cells in the colon-draining mesenteric lymph nodes. Using assay for transposase-accessible chromatin sequencing and flow cytometry, we showed that activated CBir1 T cells preferentially acquire an effector rather than regulatory phenotype, which is plastic over time. Moreover, CBir1 T cells, while insufficient to initiate intestinal inflammation, contributed to worse disease outcomes in the presence of other CD4+ T cells. Our results suggest that the commensal-specific T-cell responses observed in IBD exacerbate rather than initiate disease.
Collapse
Affiliation(s)
- Chiara Sorini
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden.
| | - Rebeca F Cardoso
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Oscar E Diaz
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Yael Holender
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Bianca C Kern
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Nicola Gagliani
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden; Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J Villablanca
- Department of Medicine, Solna, Division of Immunology and Allergy, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
13
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Gelineau A, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. Proc Natl Acad Sci U S A 2023; 120:e2311566120. [PMID: 38064511 PMCID: PMC10723124 DOI: 10.1073/pnas.2311566120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) in the colon are key to promoting peaceful coexistence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TFs; Helios, Rorγ, Gata3, and cMaf), but their interrelationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs (Rorγ, Helios, Gata3, and cMaf) play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR repertoires in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related and cannot be uniquely equated to tTreg and pTreg. Comparison of spleen and colon repertoires revealed that 2 to 5% of clonotypes are shared between the locations. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
Affiliation(s)
| | | | - Serge M. Candéias
- Université Grenoble Alpes, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Interdisciplinary Research Institute of Grenoble, Laboratory of Chemistry and Biology of Metals, Grenoble38054, France
| | | | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
14
|
Shao TY, Jiang TT, Stevens J, Russi AE, Troutman TD, Bernieh A, Pham G, Erickson JJ, Eshleman EM, Alenghat T, Jameson SC, Hogquist KA, Weaver CT, Haslam DB, Deshmukh H, Way SS. Kruppel-like factor 2+ CD4 T cells avert microbiota-induced intestinal inflammation. Cell Rep 2023; 42:113323. [PMID: 37889750 PMCID: PMC10822050 DOI: 10.1016/j.celrep.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Tony T Jiang
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Stevens
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Abigail E Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Ty D Troutman
- Division of Allergy and Immunology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Anas Bernieh
- Division of Pathology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - John J Erickson
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Casey T Weaver
- Program in Immunology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
15
|
Ramanan D, Pratama A, Zhu Y, Venezia O, Sassone-Corsi M, Chowdhary K, Galván-Peña S, Sefik E, Brown C, Gélineau A, Mathis D, Benoist C. Regulatory T cells in the face of the intestinal microbiota. Nat Rev Immunol 2023; 23:749-762. [PMID: 37316560 DOI: 10.1038/s41577-023-00890-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Regulatory T cells (Treg cells) are key players in ensuring a peaceful coexistence with microorganisms and food antigens at intestinal borders. Startling new information has appeared in recent years on their diversity, the importance of the transcription factor FOXP3, how T cell receptors influence their fate and the unexpected and varied cellular partners that influence Treg cell homeostatic setpoints. We also revisit some tenets, maintained by the echo chambers of Reviews, that rest on uncertain foundations or are a subject of debate.
Collapse
Affiliation(s)
| | - Alvin Pratama
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Esen Sefik
- Department of Immunology, Yale University, New Haven, CT, USA
| | - Chrysothemis Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
16
|
López-Fandiño R, Molina E, Lozano-Ojalvo D. Intestinal factors promoting the development of RORγt + cells and oral tolerance. Front Immunol 2023; 14:1294292. [PMID: 37936708 PMCID: PMC10626553 DOI: 10.3389/fimmu.2023.1294292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The gastrointestinal tract has to harmonize the two seemingly opposite functions of fulfilling nutritional needs and avoiding the entry of pathogens, toxins and agents that can cause physical damage. This balance requires a constant adjustment of absorptive and defending functions by sensing environmental changes or noxious substances and initiating adaptive or protective mechanisms against them through a complex network of receptors integrated with the central nervous system that communicate with cells of the innate and adaptive immune system. Effective homeostatic processes at barrier sites take the responsibility for oral tolerance, which protects from adverse reactions to food that cause allergic diseases. During a very specific time interval in early life, the establishment of a stable microbiota in the large intestine is sufficient to prevent pathological events in adulthood towards a much larger bacterial community and provide tolerance towards diverse food antigens encountered later in life. The beneficial effects of the microbiome are mainly exerted by innate and adaptive cells that express the transcription factor RORγt, in whose generation, mediated by different bacterial metabolites, retinoic acid signalling plays a predominant role. In addition, recent investigations indicate that food antigens also contribute, analogously to microbial-derived signals, to educating innate immune cells and instructing the development and function of RORγt+ cells in the small intestine, complementing and expanding the tolerogenic effect of the microbiome in the colon. This review addresses the mechanisms through which microbiota-produced metabolites and dietary antigens maintain intestinal homeostasis, highlighting the complementarity and redundancy between their functions.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | | | | |
Collapse
|
17
|
Al-Hawary SIS, Kashikova K, Ioffe EM, Izbasarova A, Hjazi A, Tayyib NA, Alsalamy A, Hussien BM, Hameed M, Abdalkareem MJ. Pathological role of LncRNAs in immune-related disease via regulation of T regulatory cells. Pathol Res Pract 2023; 249:154709. [PMID: 37586216 DOI: 10.1016/j.prp.2023.154709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Human regulatory T cells (Tregs) are essential in pathogenesis of several diseases such as autoimmune diseases and cancers, and their imbalances may be promoting factor in these disorders. The development of the proinflammatory T cell subset TH17 and its balance with the generation of regulatory T cells (Treg) is linked to autoimmune disease and cancers. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in a variety of diseases and can regulate the expression of significant genes at multiple levels through epigenetic regulation and by modulating transcription, post-transcriptional processes, translation, and protein modification. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structural makeup. LncRNAs are implicated in a range of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. In this regard, a prominent example is lncRNA NEAT1 which several studies have performed to determine its role in the differentiation of immune cells. Many other lncRNAs have been linked to Treg cell differentiation in the context of immune cell differentiation. In this study, we review recent research on the various roles of lncRNAs in differentiation of Treg cell and regulation of the Th17/Treg balance in autoimmune diseases and tumors in which T regs play an important role.
Collapse
Affiliation(s)
| | - Khadisha Kashikova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | - Elena M Ioffe
- Department of Military Clinical Hospital, Ministry of Defence, Almaty, Kazakhstan.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
18
|
Gu Q, Zhao X, Guo J, Jin Q, Wang T, Xu W, Li L, Zhang J, Zhang W, Hong S, Zhang F, Hou B, Zhou X. The splicing isoform Foxp3Δ2 differentially regulates tTreg and pTreg homeostasis. Cell Rep 2023; 42:112877. [PMID: 37498744 DOI: 10.1016/j.celrep.2023.112877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Foxp3 is the master transcription factor for regulatory T cells (Tregs). Alternative splicing of human Foxp3 results in the expression of two isoforms: the full length and an exon 2-deleted protein. Here, AlphaFold2 predictions and in vitro experiments demonstrate that the N-terminal domain of Foxp3 inhibits DNA binding by moving toward the C terminus and that this movement is mediated by exon 2. Consequently, we find that Foxp3Δ2-bearing thymus-derived Tregs (tTregs) in the peripheral lymphoid organ are less sensitive to T cell receptor (TCR) stimulation due to the enhanced binding of Foxp3Δ2 to the Batf promoter and are hyporesponsive to interleukin-2 (IL-2). In contrast, among RORγt+ peripherally induced Tregs (pTregs) in the large intestine, Foxp3Δ2 pTregs express many more RORγt-related genes, conferring a competitive advantage. Together, our results reveal that alternative splicing of exon 2 generates an active form of Foxp3, which plays a differential role in regulating tTreg and pTreg homeostasis.
Collapse
Affiliation(s)
- Qianchong Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiufeng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Qiuzhu Jin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Ting Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Liping Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
19
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
20
|
Abstract
Cardiometabolic disease comprises cardiovascular and metabolic dysfunction and underlies the leading causes of morbidity and mortality, both within the United States and worldwide. Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence suggests that the microbiome is relatively variable during infancy and early childhood, becoming more fixed in later childhood and adulthood. Effects of microbiota, both during early development, and in later life, may induce changes in host metabolism that modulate risk mechanisms and predispose toward the development of cardiometabolic disease. In this review, we summarize the factors that influence gut microbiome composition and function during early life and explore how changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic risk throughout life. We highlight limitations in current methodology and approaches and outline state-of-the-art advances, which are improving research and building toward refined diagnosis and treatment options in microbiome-targeted therapies.
Collapse
Affiliation(s)
- Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition (C.L.G.), Vanderbilt University Medical Center, Nashville
- Tennessee Center for AIDS Research (C.L.G.), Vanderbilt University Medical Center, Nashville
| | - Jane F Ferguson
- Division of Cardiovascular Medicine (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Microbiome Innovation Center (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Infection, Immunology, and Inflammation (J.F.F.), Vanderbilt University Medical Center, Nashville
| |
Collapse
|
21
|
Ramanan D, Chowdhary K, Candéias SM, Sassone-Corsi M, Mathis D, Benoist C. Homeostatic, repertoire and transcriptional relationships between colon T regulatory cell subsets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541199. [PMID: 37292878 PMCID: PMC10245751 DOI: 10.1101/2023.05.17.541199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Foxp3 + regulatory T cells (Tregs) in the colon are key to promoting peaceful co-existence with symbiotic microbes. Differentiated in either thymic or peripheral locations, and modulated by microbes and other cellular influencers, colonic Treg subsets have been identified through key transcription factors (TF; Helios, Rorg, Gata3, cMaf), but their inter-relationships are unclear. Applying a multimodal array of immunologic, genomic, and microbiological assays, we find more overlap than expected between populations. The key TFs play different roles, some essential for subset identity, others driving functional gene signatures. Functional divergence was clearest under challenge. Single-cell genomics revealed a spectrum of phenotypes between the Helios+ and Rorγ+ poles, different Treg-inducing bacteria inducing the same Treg phenotypes to varying degrees, not distinct populations. TCR clonotypes in monocolonized mice revealed that Helios+ and Rorγ+ Tregs are related, and cannot be uniquely equated to tTreg and pTreg. We propose that rather than the origin of their differentiation, tissue-specific cues dictate the spectrum of colonic Treg phenotypes.
Collapse
|
22
|
Abstract
The incomplete removal of T cells that are reactive against self-proteins during their differentiation in the thymus requires mechanisms of tolerance that prevent their effector function within the periphery. A further challenge is imposed by the need to establish tolerance to the holobiont self, which comprises a highly complex community of commensal microorganisms. Here, we review recent advances in the investigation of peripheral T cell tolerance, focusing on new insights into mechanisms of tolerance to the gut microbiota, including tolerogenic antigen-presenting cell types and immunomodulatory lymphocytes, and their layered ontogeny that underlies developmental windows for establishing intestinal tolerance. While emphasizing the intestine as a model tissue for studying peripheral T cell tolerance, we highlight overlapping and distinct pathways that underlie tolerance to self-antigens versus commensal antigens within a broader framework for immune tolerance.
Collapse
|
23
|
Cheru N, Hafler DA, Sumida TS. Regulatory T cells in peripheral tissue tolerance and diseases. Front Immunol 2023; 14:1154575. [PMID: 37197653 PMCID: PMC10183596 DOI: 10.3389/fimmu.2023.1154575] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Maintenance of peripheral tolerance by CD4+Foxp3+ regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome. In more common human autoimmune diseases, defects in Treg function are accompanied with aberrant effector cytokines such as IFNγ. It has recently become appreciated that Tregs plays an important role in not only maintaining immune homeostasis but also in establishing the tissue microenvironment and homeostasis of non-lymphoid tissues. Tissue resident Tregs show profiles that are unique to their local environments which are composed of both immune and non-immune cells. Core tissue-residence gene signatures are shared across different tissue Tregs and are crucial to homeostatic regulation and maintaining the tissue Treg pool in a steady state. Through interaction with immunocytes and non-immunocytes, tissue Tregs exert a suppressive function via conventional ways involving contact dependent and independent processes. In addition, tissue resident Tregs communicate with other tissue resident cells which allows Tregs to adopt to their local microenvironment. These bidirectional interactions are dependent on the specific tissue environment. Here, we summarize the recent advancements of tissue Treg studies in both human and mice, and discuss the molecular mechanisms that maintain tissue homeostasis and prevent pathogenesis.
Collapse
Affiliation(s)
- Nardos Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Tomokazu S. Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune development. Immunity 2023; 56:485-499. [PMID: 36921575 PMCID: PMC10079302 DOI: 10.1016/j.immuni.2023.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Timothy W Hand
- Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
25
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Li Z, Liang X, Chen X, Chen Y, Wang F, Wang S, Liao Y, Li L. The role of thymus- and extrathymus-derived regulatory T cells in maternal-fetal tolerance. Front Immunol 2023; 14:1109352. [PMID: 36817424 PMCID: PMC9932773 DOI: 10.3389/fimmu.2023.1109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Regulatory T (Treg) cells could be divided into thymus-derived Treg (tTreg) cells and peripherally derived Treg (pTreg) cells, and in vitro induced Treg (iTreg) cells. To date, the functions of tTreg versus pTreg and their relative contributions to maternal-fetal immune tolerance remain insufficiently defined due to a lack of a specific marker to distinguish tTreg cells from pTreg cells. In this study, we investigated the role of thymus- and extrathymus-derived Treg cells in pregnancy tolerance using transgenic ACT-mOVA, Foxp3DTR and Foxp3GFP mice, and Treg cell adoptive transfer, etc. We found that the frequencies of Treg cells in the thymus, spleen and lymph nodes (LNs) in either syngeneically- or allogeneically-mated pregnant mice were not different from non-pregnant mice. However, percentages of blood Treg cells in pregnant mice increased at mid-gestation, and percentages of decidua Treg cells in pregnant mice increased as the pregnancy progressed compared with non-pregnant mice, and were significantly higher in allogeneic mice than those in syngeneic group. Compared with syngeneic mice, levels of CCR2 and CCR6 on blood and decidua Treg cells and CCL12 in the decidua significantly increased in allogeneic mice. A surrogate fetal antigen mOVA that was recognized by naïve T cells from OT-IIFoxp3GFP mice induced the generation of pTreg cells in vivo. Transfusion of thymus and spleen Treg cells significantly decreased diphtheria toxin (DT)-increased embryo resorption rates (ERRs) and IFN-γ levels in the blood and decidua. iTreg cells also decreased ERRs and IFN-γ levels in the blood and decidua to an extent lower than thymus and spleen Treg cells. In conclusion, increased blood and decidua Treg cells in pregnancy and increased ERRs in DT-treated Foxp3DTR mice suggest an important immunosuppressive role of Treg cells in pregnancy. Elevated decidua Treg cells in pregnancy could be derived from the recruitment of tTreg cells to the decidua, or from the transformation of naïve T cells in the decidua to pTreg cells. While the immune-suppression effects of thymus and spleen Treg cells are comparable, iTreg cells might play a weaker role in maternal-fetal tolerance.
Collapse
Affiliation(s)
| | | | | | - Yuying Chen
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Fang Wang
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Shuoshi Wang
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | | | - Liping Li
- *Correspondence: Liping Li, ; Yihong Liao,
| |
Collapse
|
27
|
Almeida-Santos J, Bergman ML, Demengeot J. Differentiation of Peripheral Treg. Methods Mol Biol 2023; 2559:67-77. [PMID: 36180627 DOI: 10.1007/978-1-0716-2647-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter shows protocols for the differentiation of peripheral Treg (pTreg) from polyclonal and monoclonal CD4+ T cells. Polyclonal naïve CD4+ T cells can differentiate into pTreg upon adoptive transfer into Foxp3-diphtheria toxin receptor transgenic recipient mice in which endogenous Tregs are transiently depleted by administration of diphtheria toxin before adoptive transfer. Differentiation of monoclonal pTreg is induced through oral delivery of ovalbumin into RAG-deficient DO11.10 mice, in which T cells are ovalbumin specific. We show the isolation of naïve CD4+ T cells by flow cytometry, the administration of ovalbumin in drinking water, and the analysis tools, including an optional protocol for the enrichment of analysis samples in CD4+ T cells using a magnetic purification.
Collapse
Affiliation(s)
- José Almeida-Santos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Department of Life Sciences, Imperial College London, London, UK.
| | | | | |
Collapse
|
28
|
Hackstein CP, Costigan D, Drexhage L, Pearson C, Bullers S, Ilott N, Akther HD, Gu Y, FitzPatrick MEB, Harrison OJ, Garner LC, Mann EH, Pandey S, Friedrich M, Provine NM, Uhlig HH, Marchi E, Powrie F, Klenerman P, Thornton EE. A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nat Commun 2022; 13:7472. [PMID: 36463279 PMCID: PMC9719512 DOI: 10.1038/s41467-022-35126-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dana Costigan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Linnea Drexhage
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Samuel Bullers
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, 750 Republican St, Seattle, WA, 98108, USA
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, and Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, OX39DU, UK
| | - Emanuele Marchi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emily E Thornton
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Yu Y, Bai H, Wu F, Chen J, Li B, Li Y. Tissue adaptation of regulatory T cells in adipose tissue. Eur J Immunol 2022; 52:1898-1908. [PMID: 36369886 DOI: 10.1002/eji.202149527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Foxp3+ regulatory T (Treg) cells critically suppress over-activated immune responses and therefore maintain immune homeostasis. Adipose tissue-resident Treg (AT Treg) cells are known for modulating immunity and metabolism in adipose tissue microenvironment through various physiological signals, as well as their heterogeneous subsets, which potentially play disparate roles in aging and obesity. Recent single-cell studies of Treg cells have revealed specialized trajectories of their tissue adaptation and development in lymphoid tissues and at barrier sites. Here, we reviewed a T Cell Receptor (TCR)-primed environmental cue-boosted model of adipose Treg cells' tissue adaptation, especially in response to IL-33, IFN-α, insulin, and androgen signals, which trigger sophisticated transcriptional cascades and ultimately establish unique transcriptional modules in adipose Treg cell subsets. In addition, we further discuss potential therapeutic strategies against aging and obesity by blocking detrimental environmental cues, strengthening the functions of specific AT Treg subsets and modifying the communications between AT Treg subsets and adipocytes.
Collapse
Affiliation(s)
- Yimeng Yu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Bai
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenglin Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Li
- Unit of Immune and Metabolic Regulation, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
30
|
Help from commensals: β-hex to regulate gut immunity. Cell Host Microbe 2022; 30:1349-1351. [DOI: 10.1016/j.chom.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Bousbaine D, Fisch LI, London M, Bhagchandani P, Rezende de Castro TB, Mimee M, Olesen S, Reis BS, VanInsberghe D, Bortolatto J, Poyet M, Cheloha RW, Sidney J, Ling J, Gupta A, Lu TK, Sette A, Alm EJ, Moon JJ, Victora GD, Mucida D, Ploegh HL, Bilate AM. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science 2022; 377:660-666. [PMID: 35926021 PMCID: PMC9766740 DOI: 10.1126/science.abg5645] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified β-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, β-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Laura I Fisch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Preksha Bhagchandani
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Tiago B Rezende de Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mark Mimee
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Scott Olesen
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - David VanInsberghe
- Microbiology Graduate Program, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Mathilde Poyet
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jingjing Ling
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Gupta
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Timothy K Lu
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Synthetic Biology Center, MIT, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Angelina M Bilate
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
32
|
van der Veeken J, Campbell C, Pritykin Y, Schizas M, Verter J, Hu W, Wang ZM, Matheis F, Mucida D, Charbonnier LM, Chatila TA, Rudensky AY. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity 2022; 55:1173-1184.e7. [PMID: 35700740 PMCID: PMC9885886 DOI: 10.1016/j.immuni.2022.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/19/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
Regulatory T (Treg) cells expressing the transcription factor Foxp3 are an essential suppressive T cell lineage of dual origin: Foxp3 induction in thymocytes and mature CD4+ T cells gives rise to thymic (tTreg) and peripheral (pTreg) Treg cells, respectively. While tTreg cells suppress autoimmunity, pTreg cells enforce tolerance to food and commensal microbiota. However, the role of Foxp3 in pTreg cells and the mechanisms supporting their differentiation remain poorly understood. Here, we used genetic tracing to identify microbiota-induced pTreg cells and found that many of their distinguishing features were Foxp3 independent. Lineage-committed, microbiota-dependent pTreg-like cells persisted in the colon in the absence of Foxp3. While Foxp3 was critical for the suppression of a Th17 cell program, colitis, and mastocytosis, pTreg cells suppressed colonic effector T cell expansion in a Foxp3-independent manner. Thus, Foxp3 and the tolerogenic signals that precede and promote its expression independently confer distinct facets of pTreg functionality.
Collapse
Affiliation(s)
- Joris van der Veeken
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| | - Clarissa Campbell
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA,CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics and Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Michail Schizas
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob Verter
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Hu
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
33
|
Jiang Z, Wu C. Reciprocal Interactions Between Regulatory T Cells and Intestinal Epithelial Cells. Front Immunol 2022; 13:951339. [PMID: 35860233 PMCID: PMC9289291 DOI: 10.3389/fimmu.2022.951339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
It has been well established that Foxp3+ regulatory T cells (Treg cells) play a crucial role for immune repression and tolerance, protecting the body from autoimmunity and inflammation. Previous studies indicate that intestinal Treg cells are one specialized population of Treg cells, distinct from those in other organ compartments, both functionally and phenotypically. Specific external and internal signals, particularly the presence of microbiota, shape these Treg cells to better cooperate with the gut ecosystem, controlling intestinal physiology. The integrity of intestinal epithelial barrier represents a key feature of gut immune tolerance, which can be regulated by multiple factors. Emerging evidence suggests that bidirectional interactions between gut epithelium and resident T cells significantly contribute to intestinal barrier function. Understanding how Treg cells regulate intestinal barrier integrity provides insights into immune tolerance-mediated mucosal homeostasis, which can further illuminate potential therapeutic strategies for treating inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Sun-Yat Sen University, School of Medicine, Guangzhou, China
- *Correspondence: Zhiqiang Jiang, ; Chuan Wu,
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Health (NIH), Bethesda, MD, United States
- *Correspondence: Zhiqiang Jiang, ; Chuan Wu,
| |
Collapse
|
34
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
35
|
Yoshimatsu Y, Sujino T, Miyamoto K, Harada Y, Tanemoto S, Ono K, Umeda S, Yoshida K, Teratani T, Suzuki T, Mikami Y, Nakamoto N, Sasaki N, Takabayashi K, Hosoe N, Ogata H, Sawada K, Imamura T, Yoshimura A, Kanai T. Aryl hydrocarbon receptor signals in epithelial cells govern the recruitment and location of Helios + Tregs in the gut. Cell Rep 2022; 39:110773. [PMID: 35545035 DOI: 10.1016/j.celrep.2022.110773] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) are essential for homeostasis in the colon, but the mechanism by which local environmental cues determine the localization of colonic Tregs is unclear. Here, we administer indigo naturalis (IN), a nontoxic phytochemical aryl hydrocarbon receptor (AhR) agonist used for treating patients with ulcerative colitis (UC) in Asia, and we show that IN increases Helios+ Tregs and MHC class II+ epithelial cells (ECs) in the colon. Interactions between Tregs and MHC class II+ ECs occur mainly near the crypt bottom in the steady state, whereas Tregs dramatically increase and shift toward the crypt top following IN treatment. Moreover, the number of CD25+ T cells is increased near the surface of ECs in IN-treated UC patients compared with that in patients treated with other therapies. We also highlight additional AhR-signaling mechanisms in intestinal ECs that determine the accumulation and localization of Helios+ Tregs in the colon.
Collapse
Affiliation(s)
- Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoko Umeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuo Sasaki
- Institute of Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Sawada
- Department of Molecular Medicine for Pathogenesis, Ehime University, Toon, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University, Toon, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
36
|
Brevi A, Cogrossi LL, Lorenzoni M, Mattorre B, Bellone M. The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple Myeloma. Front Immunol 2022; 13:845422. [PMID: 35371048 PMCID: PMC8968065 DOI: 10.3389/fimmu.2022.845422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
The human microbiota is a unique set of microorganisms colonizing the human body and evolving within it from the very beginning. Acting as an insider, the microbiota provides nutrients, and mutualistically interacts with the host’s immune system, thus contributing to the generation of barriers against pathogens. While a strong link has been documented between intestinal dysbiosis (i.e., disruption to the microbiota homeostasis) and diseases, the mechanisms by which commensal bacteria impact a wide spectrum of mucosal and extramucosal human disorders have only partially been deciphered. This is particularly puzzling for multiple myeloma (MM), a treatable but incurable neoplasia of plasma cells that accumulate in the bone marrow and lead to end-organ damage. Here we revise the most recent literature on data from both the bench and the bedside that show how the gut microbiota modulates cancer immunity, potentially impacting the progression of asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM) to full blown MM. We also explore the effect of the gut microbiome on hematopoietic stem cell transplantation, chemotherapy, immunomodulating therapy and cancer immunotherapy in MM patients. Additionally, we identify the most cogent area of investigation that have the highest chance to delineate microbiota-related and pathobiology-based parameters for patient risk stratification. Lastly, we highlight microbiota-modulating strategies (i.e., diet, prebiotics, probiotics, fecal microbiota transplantation and postbiotics) that may reduce treatment-related toxicity in patients affected by MM as well as the rates of undertreatment of SMM patients.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Lorenzoni
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Benedetta Mattorre
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Matteo Bellone,
| |
Collapse
|
37
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
38
|
Traxinger BR, Richert-Spuhler LE, Lund JM. Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry. Mucosal Immunol 2022; 15:398-407. [PMID: 34845322 PMCID: PMC8628059 DOI: 10.1038/s41385-021-00471-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are a subset of CD4+ T cells that exert suppressive control over other immune cells. Tregs are critical for preventing systemic autoimmunity and maintaining peripheral tolerance, and yet they also assist in orchestration of immunity to pathogenic insult, wherein they limit collateral immunopathology and assist in facilitating a fine balance between immune tolerance and effector activity. Tregs have been extensively studied in lymphoid tissues, and a growing body of work has characterized phenotypically distinct Tregs localized in various nonlymphoid tissue compartments. These tissue Tregs can perform location-specific, alternative functions, highlighting their dynamic, context-dependent roles. Tregs have also been identified in mucosal tissues where specialized physiological functions are paramount, including helping the host to respond appropriately to pathogenic versus innocuous antigens that are abundant at mucosal portals of antigen entry. As in other tissue Treg compartments, mucosal Tregs in the respiratory, gastrointestinal, and genitourinary tracts are distinct from circulating counterparts and can carry out mucosa-specific functions as well as classic suppressive functions that are the hallmark of Tregs. In this review, we summarize current knowledge regarding mucosal Tregs in both health and disease.
Collapse
Affiliation(s)
- Brianna R Traxinger
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura E Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
39
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
41
|
Czepielewski RS, Erlich EC, Onufer EJ, Young S, Saunders BT, Han YH, Wohltmann M, Wang PL, Kim KW, Kumar S, Hsieh CS, Scallan JP, Yang Y, Zinselmeyer BH, Davis MJ, Randolph GJ. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 2021; 54:2795-2811.e9. [PMID: 34788601 PMCID: PMC8678349 DOI: 10.1016/j.immuni.2021.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Lymphangitis and the formation of tertiary lymphoid organs (TLOs) in the mesentery are features of Crohn's disease. Here, we examined the genesis of these TLOs and their impact on disease progression. Whole-mount and intravital imaging of the ileum and ileum-draining collecting lymphatic vessels (CLVs) draining to mesenteric lymph nodes from TNFΔARE mice, a model of ileitis, revealed TLO formation at valves of CLVs. TLOs obstructed cellular and molecular outflow from the gut and were sites of lymph leakage and backflow. Tumor necrosis factor (TNF) neutralization begun at early stages of TLO formation restored lymph transport. However, robustly developed, chronic TLOs resisted regression and restoration of flow after TNF neutralization. TNF stimulation of cultured lymphatic endothelial cells reprogrammed responses to oscillatory shear stress, preventing the induction of valve-associated genes. Disrupted transport of immune cells, driven by loss of valve integrity and TLO formation, may contribute to the pathology of Crohn's disease.
Collapse
Affiliation(s)
- Rafael S Czepielewski
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma C Erlich
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily J Onufer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon Young
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian T Saunders
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yong-Hyun Han
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mary Wohltmann
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter L Wang
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ki-Wook Kim
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shashi Kumar
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Bernd H Zinselmeyer
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Russler-Germain EV, Jung J, Miller AT, Young S, Yi J, Wehmeier A, Fox LE, Monte KJ, Chai JN, Kulkarni DH, Funkhouser-Jones LJ, Wilke G, Durai V, Zinselmeyer BH, Czepielewski RS, Greco S, Murphy KM, Newberry RD, Sibley LD, Hsieh CS. Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity 2021; 54:2547-2564.e7. [PMID: 34715017 DOI: 10.1016/j.immuni.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection.
Collapse
Affiliation(s)
- Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jisun Jung
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aidan T Miller
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon Young
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alec Wehmeier
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsey E Fox
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen J Monte
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivek Durai
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafael S Czepielewski
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suellen Greco
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Muschaweck M, Kopplin L, Ticconi F, Schippers A, Iljazovic A, Gálvez EJC, Abdallah AT, Wagner N, Costa IG, Strowig T, Pabst O. Cognate recognition of microbial antigens defines constricted CD4 + T cell receptor repertoires in the inflamed colon. Immunity 2021; 54:2565-2577.e6. [PMID: 34582747 DOI: 10.1016/j.immuni.2021.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Key aspects of intestinal T cells, including their antigen specificity and their selection by the microbiota and other intestinal antigens, as well as the contribution of individual T cell clones to regulatory and effector functions, remain unresolved. Here we tracked adoptively transferred T cell populations to specify the interrelation of T cell receptor repertoire and the gut antigenic environment. We show that dominant TCRα clonotypes were shared between interferon-γ- and interleukin-17-producing but not regulatory Foxp3+ T cells. Identical TCRα clonotypes accumulated in the colon of different individuals, whereas antibiotics or defined colonization correlated with the expansion of distinct expanded T cell clonotypes. Our results demonstrate key aspects of intestinal CD4+ T cell activation and suggest that few microbial species exert a dominant effect on the intestinal T cell repertoire during colitis. We speculate that dominant proinflammatory T cell clones might provide a therapeutic target in human inflammatory bowel disease.
Collapse
Affiliation(s)
- Moritz Muschaweck
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany; Department of Pediatrics, RWTH Aachen University, Aachen, Germany.
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany; Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, RWTH Aachen University, Aachen, Germany
| | - Aida Iljazovic
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
44
|
Harriman R, Lewis JS. Bioderived materials that disarm the gut mucosal immune system: Potential lessons from commensal microbiota. Acta Biomater 2021; 133:187-207. [PMID: 34098091 DOI: 10.1016/j.actbio.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Over the course of evolution, mammals and gut commensal microbes have adapted to coexist with each other. This homeostatic coexistence is dependent on an intricate balance between tolerogenic and inflammatory responses directed towards beneficial, commensal microbes and pathogenic intruders, respectively. Immune tolerance towards the gut microflora is largely sustained by immunomodulatory molecules produced by the commensals, which protect the bacteria from immune advances and maintain the gut's unique tolerogenic microenvironment, as well as systemic homeostasis. The identification and characterization of commensal-derived, tolerogenic molecules could lead to their utilization in biomaterials-inspired delivery schemes involving nano/microparticles or hydrogels, and potentially lead to the next generation of commensal-derived therapeutics. Moreover, gut-on-chip technologies could augment the discovery and characterization of influential commensals by providing realistic in vitro models conducive to finicky microbes. In this review, we provide an overview of the gut immune system, describe its intricate relationships with the microflora and identify major genera involved in maintaining tolerogenic responses and peripheral homeostasis. More relevant to biomaterials, we discuss commensal-derived molecules that are known to interface with immune cells and discuss potential strategies for their incorporation into biomaterial-based strategies aimed at culling inflammatory diseases. We hope this review will bridge the current findings in gut immunology, microbiology and biomaterials and spark further investigation into this emerging field. STATEMENT OF SIGNIFICANCE: Despite its tremendous potential to culminate into revolutionary therapeutics, the synergy between immunology, microbiology, and biomaterials has only been explored at a superficial level. Strategic incorporation of biomaterial-based technologies may be necessary to fully characterize and capitalize on the rapidly growing repertoire of immunomodulatory molecules derived from commensal microbes. Bioengineers may be able to combine state-of-the-art delivery platforms with immunomodulatory cues from commensals to provide a more holistic approach to combating inflammatory disease. This interdisciplinary approach could potentiate a neoteric field of research - "commensal-inspired" therapeutics with the promise of revolutionizing the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Rian Harriman
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA
| | - Jamal S Lewis
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Pham MN, Khoryati L, Jamison BL, Hayes E, Sullivan JM, Campbell DJ, Gavin MA. In Vivo Expansion of Antigen-Specific Regulatory T Cells through Staggered Fc.IL-2 Mutein Dosing and Antigen-Specific Immunotherapy. Immunohorizons 2021; 5:782-791. [PMID: 34583939 PMCID: PMC11034776 DOI: 10.4049/immunohorizons.2100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these "Ag-specific immunotherapy" (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable because of the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce Ag-specific tolerance in patients, novel methods to control T cell responses during ASI are needed, and strategies that permanently increase Treg frequencies among Ag-specific CD4 T cells may provide long-lasting immunosuppression between treatments. In this study, we present an approach to durably increase the frequency of Ag-specific Treg in mice by administering ASI when Treg numbers are transiently increased with individual doses of a half-life-extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among Ag-responsive CD4 T cells. Expanded Ag-specific Treg persisted for more than 3 wk following treatment cessation, as well as through an inflammatory T cell response to an Ag-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/conventional CD4 T cell ratio among autoantigen- or allergen-specific T cells.
Collapse
Affiliation(s)
- Minh N Pham
- Benaroya Research Institute, Seattle, WA; and
| | | | | | - Erika Hayes
- Benaroya Research Institute, Seattle, WA; and
| | | | | | - Marc A Gavin
- Benaroya Research Institute, Seattle, WA; and
- Omeros Corp., Seattle, WA
| |
Collapse
|
46
|
Shao Q, Gu J, Zhou J, Wang Q, Li X, Deng Z, Lu L. Tissue Tregs and Maintenance of Tissue Homeostasis. Front Cell Dev Biol 2021; 9:717903. [PMID: 34490267 PMCID: PMC8418123 DOI: 10.3389/fcell.2021.717903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) specifically expressing Forkhead box P3 (Foxp3) play roles in suppressing the immune response and maintaining immune homeostasis. After maturation in the thymus, Tregs leave the thymus and migrate to lymphoid tissues or non-lymphoid tissues. Increasing evidence indicates that Tregs with unique characteristics also have significant effects on non-lymphoid peripheral tissues. Tissue-resident Tregs, also called tissue Tregs, do not recirculate in the blood or lymphatics and attain a unique phenotype distinct from common Tregs in circulation. This review first summarizes the phenotype, function, and cytokine expression of these Tregs in visceral adipose tissue, skin, muscle, and other tissues. Then, how Tregs are generated, home, and are attracted to and remain resident in the tissue are discussed. Finally, how an increased understanding of these tissue Tregs might guide clinical treatment is discussed.
Collapse
Affiliation(s)
- Qing Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
48
|
Abstract
Bile acids (BAs) are a family of hydroxylated steroids secreted by the liver that aid in the breakdown and absorption of dietary fats. BAs also function as nutrient and inflammatory signaling molecules, acting through cognate receptors, to coordinate host metabolism. Commensal bacteria in the gastrointestinal tract are functional modifiers of the BA pool, affecting composition and abundance. Deconjugation of host BAs creates a molecular network that inextricably links gut microtia with their host. In this review we highlight the roles of BAs in mediating this mutualistic relationship with a focus on those events that impact host physiology and metabolism.
Collapse
Affiliation(s)
- James C Poland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
49
|
Wang J, Zheng S, Yang X, Huazeng B, Cheng Q. Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb Pathog 2021; 158:105020. [PMID: 34089791 DOI: 10.1016/j.micpath.2021.105020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Gut microbial dysbiosis is closely associated with cow's milk protein allergy (CMPA) during infancy. Recent research has highlighted the crucial role of the commensal microbiota-induced intestinal regulatory T (Treg) cell response in the development of oral tolerance and protection against IgE-mediated food allergies. However, the influences of CMPA (particularly non-IgE-mediated CMPA)-associated microbial dysbiosis on Treg cell-mediated intestinal immune tolerance and homeostasis remain poorly characterized. To investigate this issue, fecal microbiota from infant donors with food protein-induced allergic proctocolitis (FPIAP) associated with cow's milk, which is the most frequent clinical type of non-IgE-mediated gastrointestinal CMPA, and from age-matched healthy controls were transplanted into germ-free mice in this study. Two weeks post fecal microbiota transplantation, the gut microbiome of the recipient mice was analyzed by 16S rRNA gene sequencing, and the intestinal immunological alterations associated with the Treg cell compartment and intestinal immune homeostasis were detected. The specific gut microbial phylotypes that were potentially responsible for the disruption of intestinal immune homeostasis were also analyzed. We observed that the main characteristics of the gut microbiome in infant donors could be stably maintained in recipient mice. We also found that mice colonized with the gut microbiome from infants with cow's milk-induced FPIAP showed significant deficiencies in the accumulation and function of intestinal Treg cells. Furthermore, these mice showed disrupted intestinal immune homeostasis, which was characterized by an overactivated Th2 biased immune response. We further identified two potentially pathogenic genera that contribute to this disruption. Overall, our results highlight a destructive effect of non-IgE-mediated CMPA-associated microbial dysbiosis on intestinal immune tolerance and homeostasis. We believe these findings will help improve our understanding of the gut microbiota-mediated pathogenesis of non-IgE-mediated CMPA in the future.
Collapse
Affiliation(s)
- Jinzhi Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatircs, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shuang Zheng
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Yang
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ben Huazeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian Cheng
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
50
|
Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, Shepherdson E, Singh GSN, Pai R, Shanti A, Wong RMM, Lee A, Khyriem C, Dutertre CA, Chakarov S, Srinivasan KG, Shadan NB, Zhang XM, Khalilnezhad S, Cottier F, Tan ASM, Low G, Chen P, Fan Y, Hor PX, Lee AKM, Choolani M, Vermijlen D, Sharma A, Fuks G, Straussman R, Pavelka N, Malleret B, McGovern N, Albani S, Chan JKY, Ginhoux F. Microbial exposure during early human development primes fetal immune cells. Cell 2021; 184:3394-3409.e20. [PMID: 34077752 PMCID: PMC8240556 DOI: 10.1016/j.cell.2021.04.039] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.
Collapse
Affiliation(s)
- Archita Mishra
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Ghee Chuan Lai
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Leong Jing Yao
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Thet Tun Aung
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Noam Shental
- Department of Mathematics and Computer Science, Open University of Israel, Ra'anana 4353701, Israel
| | - Aviva Rotter-Maskowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edwin Shepherdson
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Gurmit Singh Naranjan Singh
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Rhea Pai
- Genome Institute of Singapore (GIS), A(∗)STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Adhika Shanti
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Regina Men Men Wong
- Genome Institute of Singapore (GIS), A(∗)STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Andrea Lee
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Costerwell Khyriem
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Charles Antoine Dutertre
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore; Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore; Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - K G Srinivasan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Xiao-Meng Zhang
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Fabien Cottier
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Gillian Low
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Phyllis Chen
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Pei Xiang Hor
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Avery Khoo May Lee
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singpore
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Institute for Medical Immunology, ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Ankur Sharma
- Genome Institute of Singapore (GIS), A(∗)STAR, 60 Biopolis Street, Singapore 138672, Singapore; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, PO Box 7214, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Garold Fuks
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; OBGYN-Academic Clinical Program, Duke-NUS, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 119077, Singapore.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore; Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|