1
|
Castagnino PA, Haas DA, Musante L, Tancler NA, Tran BV, Kean R, Steck AR, Martinez LA, Mostaghel EA, Hooper DC, Kim FJ. Sigma1 inhibitor suppression of adaptive immune resistance mechanisms mediated by cancer cell derived extracellular vesicles. Cancer Biol Ther 2025; 26:2455722. [PMID: 39863992 PMCID: PMC11776462 DOI: 10.1080/15384047.2025.2455722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER. Sigma1 is a unique ligand-regulated integral membrane scaffolding protein enriched in the ER of cancer cells. PD-L1 is an integral membrane glycoprotein that is translated into the ER and processed through the cellular secretory pathway. At the cell surface, PD-L1 is an immune checkpoint molecule that binds PD-1 on activated T-cells and blocks anti-tumor immunity. PD-L1 can also be incorporated into cancer cell-derived extracellular vesicles (EVs), and EV-associated PD-L1 can inactivate T-cells within the tumor microenvironment. Here, we demonstrate that a selective small molecule inhibitor of Sigma1 can block IFN-γ mediated adaptive immune resistance in part by altering the incorporation of PD-L1 into cancer cell-derived EVs. Sigma1 inhibition blocked post-translational maturation of PD-L1 downstream of IFN-γ/STAT1 signaling. Subsequently, EVs released in response to IFN-γ stimulation were significantly less potent suppressors of T-cell activation. These results suggest that by reducing tumor derived immune suppressive EVs, Sigma1 inhibition may promote antitumor immunity. Sigma1 modulation presents a novel approach to regulating the tumor immune microenvironment by altering the content and production of EVs. Altogether, these data support the notion that Sigma1 may play a role in adaptive immune resistance in the tumor microenvironment.
Collapse
Affiliation(s)
- Paola A. Castagnino
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Derick A. Haas
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Luca Musante
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Nathalia A. Tancler
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Bach V. Tran
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Rhonda Kean
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Alexandra R. Steck
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Luis A. Martinez
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center, U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - D. Craig Hooper
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Felix J. Kim
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| |
Collapse
|
2
|
Staeger R, Tastanova A, Ghosh A, Winkelbeiner N, Shukla P, Kolm I, Turko P, Benlahrech A, Harper J, Broomfield A, Camera A, Ambrosio M, Haunerdinger V, Cheng PF, Ramelyte E, Pham J, Kreutmair S, Becher B, Levesque MP, Dummer R, Meier-Schiesser B. Tebentafusp elicits on-target cutaneous immune responses driven by cytotoxic T cells in uveal melanoma patients. J Clin Invest 2025; 135:e181464. [PMID: 40311102 PMCID: PMC12165791 DOI: 10.1172/jci181464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUNDTebentafusp is the first T cell receptor-based bispecific protein approved for clinical use in HLA-A*02:01+ adult patients with unresectable/metastatic uveal melanoma. It redirects T cells toward gp100-expressing target cells, frequently inducing skin-related early adverse events.METHODSThis study investigated immunological and cellular responses using single-cell and spatial analysis of skin biopsies from patients with metastatic uveal melanoma treated with tebentafusp.RESULTS81.8% of patients developed acute cutaneous adverse events, which correlated with improved survival. Multimodal analysis revealed a brisk infiltration of CD4+ and CD8+ T cells, while melanocyte numbers declined. Single-cell RNA-sequencing revealed T cell activation, proliferation, and IFN-γ/cytotoxic gene upregulation. CD8+ T cells colocalized with melanocytes and upregulated LAG3, suggesting potential for combination therapies with tebentafusp. Melanocytes upregulated antigen presentation and apoptotic pathways, while pigmentation gene expression decreased. However, gp100 remained stably expressed.CONCLUSIONSequential skin biopsies enable in vivo pharmacodynamic modeling of tebentafusp, offering insights into immune activation, toxicity, and treatment response. Examining the on-target effects of bispecifics in tissues amenable to longitudinal sampling enhances our understanding of toxicity and therapeutic escape mechanisms, guiding strategies for treatment optimization.FUNDINGCancer Research Foundation, Swiss National Science Foundation (323630_207029, 733 310030_170320, 310030_188450, CRSII5_183478), Iten-Kohaut Foundation, European Research Council no. 882424, University Priority Project Translational Cancer Research of the University of Zurich (UZH), UZH PostDoc grant (K-85810-02-01).
Collapse
Affiliation(s)
- Ramon Staeger
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Adhideb Ghosh
- Functional Genomics Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | - Prachi Shukla
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | | | - Jane Harper
- Immunocore Ltd., Abingdon-on-Thames, United Kingdom
| | | | | | - Marianna Ambrosio
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Veronika Haunerdinger
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Phil F. Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - James Pham
- Department of Medical Oncology, The Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales Medicine and Health, Sydney, New South Wales, Australia
| | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Lee JY, Kim KJ, Park W, Seo J, Kang M, Jung EH, Kim SA, Suh KJ, Kim JW, Kim SH, Lee JO, Kim JW, Kim YJ, Lee KW, Kim JH, Bang SM, Kim TM, Paik JH. Early growth response 1 as a key regulator of PD-L1 expression and immune evasion in extranodal NK/T-cell lymphoma. Blood Cancer J 2025; 15:108. [PMID: 40514360 PMCID: PMC12166057 DOI: 10.1038/s41408-025-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/18/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
This study investigates the role of Early Growth Response 1 (EGR1) in extranodal natural killer/T-cell lymphoma (ENKTL) and its correlation with PD-L1 expression. Analysis of 62 ENKTL patient samples revealed that high EGR1 expression was linked to PD-L1 positivity, the immune evasion-A subtype, and early-stage disease. Although EGR1 expression was not an independent prognostic factor for overall survival, patients with higher EGR1 levels showed a trend toward better outcomes. In ENKTL cell lines (YT, SNK6), EGR1 positively regulated LMP1 and PD-L1 expression. Knockdown of EGR1 reduced PD-L1 levels, decreased PTEN, increased AKT phosphorylation, and abrogated STAT3 phosphorylation. Conversely, EGR1 overexpression enhanced PD-L1. Treatment with the histone deacetylase inhibitor entinostat upregulated both EGR1 and PD-L1, but this effect was lost in EGR1-depleted cells, indicating EGR1's necessity for HDAC inhibitor-induced PD-L1 expression. These findings reveal EGR1's pivotal role in tumor immune modulation and highlight potential combination therapies targeting EGR1, epigenetic regulators, and PD-1/PD-L1 checkpoints.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Woochan Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jeongmin Seo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eun Hee Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Sang-A Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | | | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Li Y, Yuan X, Yin XF, Zheng D, Shi F, Liu D, Hu L, Shi X, Wen N, He QY, Yang H, Zhang CZ. Proteomics analysis and immune profiling reveal regulators of PD-L1 in oesophageal squamous cell carcinoma. Br J Cancer 2025:10.1038/s41416-025-03068-4. [PMID: 40490504 DOI: 10.1038/s41416-025-03068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Proteomics studies have advanced our comprehension of cancer biology, accelerated targeted therapy, and improved patient outcomes. METHODS High-resolution mass spectrometry and immune profiling based on immunohistochemistry and multiple immunohistochemistry were employed to investigate proteomic and immune landscapes in oesophageal squamous cell carcinoma (ESCC) and explore the regulators of PD-L1 in ESCC. Molecular validation was performed using qRT-PCR, western blotting, and in vitro functional assays. RESULTS Proteomic profiling of 89 treatment-naive ESCC specimens identified over 9300 proteins, with 6900 proteins detected across most samples. Proteome-based stratification identified three subtypes related to diverse clinical and molecular features. Combined proteomics and immune analyses revealed core proteins associated with the immune landscape in ESCC. Further, integrated proteomics, transcriptomics, and immune profiling nominated COTL1 as a potential regulator of PD-L1 in ESCC. Overexpression of COTL1 upregulated both mRNA and protein levels of PD-L1 and promoted cell proliferation in ESCC. Patients with high COTL1 protein expression were likely to have a poor prognosis, along with increased infiltration of CD4+CD8+ and CD4+GrB+ cells. CONCLUSIONS Collectively, our integrative analysis enables a more comprehensive understanding of the proteomic and immune landscape of ESCC and implicates COTL1 as a potential modulator of PD-L1 and immune cell infiltration.
Collapse
Affiliation(s)
- Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoyi Yuan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dandan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Danya Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liling Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinyu Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nengqiao Wen
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Hong Yang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou City, China.
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Li Y, Zhu J, Zhai F, Ge Y, Zhan Z, Wang S, Kong L, Zhao J, Hu L, Wang S, Shi J, Mao J, Yu Z, Wang H, Jin J, Zhao M, Li H, Jin X. LMNB2-mediated high PD-L1 transcription triggers the immune escape of hepatocellular carcinoma. Cell Death Discov 2025; 11:269. [PMID: 40483310 PMCID: PMC12145441 DOI: 10.1038/s41420-025-02540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
While immune checkpoint inhibitors targeting programmed cell death-ligand 1 (PD-L1) demonstrate clinical efficacy in hepatocellular carcinoma (HCC), tumor cells frequently evade immune surveillance through PD-L1 overexpression, a phenomenon whose regulatory mechanisms remain poorly understood. Through integrated analysis of single-cell transcription sequence data, we identified aberrant upregulation of Lamin B2 (LMNB2) specifically in immunotherapy-sensitive HCC patients. Functional characterization revealed that LMNB2 acts as a transcriptional regulator of PD-L1, potentiating immune escape mechanisms in HCC cells during co-culture with Jurkat cells. Notably, we discovered that speckle-type POZ protein (SPOP) directly interacts with LMNB2 to mediate its ubiquitination and proteasomal degradation, thereby maintaining physiological PD-L1 expression levels. Clinically relevant SPOP mutations or reduced SPOP expression impaired this regulatory mechanism, leading to LMNB2 accumulation and subsequent PD-L1 hyperactivation. Importantly, combinatorial targeting of LMNB2 with Atezolizumab (PD-L1 inhibitor) displayed a synergistic effect on suppressing tumor progression both in vitro and in vivo, particularly in HCC models with SPOP mutations or LMNB2 overexpression. These findings unveil a novel ubiquitination-dependent regulatory axis in HCC immune evasion and propose targeted co-inhibition strategies to overcome HCC immunotherapy resistance.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Yidong Ge
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ziqing Zhan
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Shuyan Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, 315040, Ningbo, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Lecheng Hu
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Zongdong Yu
- Department of Neurosurgery, Shangrao People's Hospital, 334099, Shangrao, Jiangxi, China
| | - Haoyun Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Mengxiang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, Ningbo University, 315010, Ningbo, Zhejiang, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Yee PS, Chai AWY, Yee SM, Ooi S, Tan YH, Garnett MJ, Ng SK, Cheong SC. Interferon-Inducible ADAR1 p150 Is Essential for the Survival of Oral Squamous Cell Carcinoma. Mol Carcinog 2025; 64:1066-1077. [PMID: 40135601 DOI: 10.1002/mc.23910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
We identified ADAR1 as one of the top essential genes for oral squamous cell carcinoma (OSCC) survival from our genome-wide CRISPR/Cas9 screen in OSCC cell lines. In this study, we confirm that ADAR1-knockout (KO) inhibits cell viability and colony forming ability, and induces apoptosis. We report that IFN-β treatment sensitizes less-dependent cell lines to ADAR1 KO-induced cell lethality. Overexpression of ADAR1-p150, but not ADAR1-p110, rescued cell lethality upon ADAR1 KO, confirming that the IFN-inducible p150 is responsible for OSCC survival. Using a deaminase inactive mutant, we demonstrate that the editing function of ADAR1 is important for OSCC survival. Furthermore, we show that ADAR1 KO-induced cell death is mediated by both PKR and MDA5. We compute gene signatures of ADAR1 dependency in OSCC tumors, and found that those with high ADAR1 dependency score are associated with well or moderate differentiation, likely due to high PKR expression or activation. While a majority of ADAR1-dependent tumors exhibit a low T cell-inflamed gene expression profile, ADAR1 KO upregulates PD-L1, a marker of anti-PD1 response, indicating that ADAR1 inhibition may enhance immunotherapy response in OSCC. Collectively, these findings suggest that targeting ADAR1-p150 not only induces OSCC cell death but could induce a favorable response to anti-PD1.
Collapse
Affiliation(s)
- Pei San Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Annie Wai Yeeng Chai
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Shi Mun Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Shiyin Ooi
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Hua Tan
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Sok Ching Cheong
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Li D, Rudloff U. Emerging therapeutics targeting tumor-associated macrophages for the treatment of solid organ cancers. Expert Opin Emerg Drugs 2025:1-39. [PMID: 40353504 DOI: 10.1080/14728214.2025.2504376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Over the last decade, immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 or CTLA-4, which reinvigorate T cells for tumor control have become standard-of-care treatment options. In response to the increasingly recognized mechanisms of resistance to T cell activation in immunologically cold tumors, immuno-oncology drug development has started to shift beyond T cell approaches. These include tumor-associated macrophages (TAMs), a major pro-tumor immune cell population in the tumor microenvironment known to silence immune responses. AREAS COVERED Here we outline anti-TAM therapies in current development, either as monotherapy or in combination with other treatment modalities. We describe emerging drugs targeting TAMs under investigation in phase II and III testing with a focus on their distinguishing mechanism of action which include (1) reprogramming of TAMs toward anti-tumor function and immune surveillance, (2) blockade of recruitment, and (3) reduction and ablation of TAMs. EXPERT OPINION Several new immuno-oncology agents are under investigation to harness anti-tumor functions of TAMs. While robust anti-tumor efficacy of anti-TAM therapies across advanced solid organ cancers remains elusive to-date, TAM reprogramming therapies have yielded benefits in select cancers. The inherent heterogeneity of the diverse TAM population will require enhanced investments into biomarker-driven approaches to fully leverage its therapeutic potential.
Collapse
Affiliation(s)
- Dandan Li
- Developmental Therapeutics Branch (TDB), Biology Group, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
ALKhemeiri N, Eljack S, Saber-Ayad MM. Perspectives of Targeting Autophagy as an Adjuvant to Anti-PD-1/PD-L1 Therapy for Colorectal Cancer Treatment. Cells 2025; 14:745. [PMID: 40422248 DOI: 10.3390/cells14100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, with increasing incidence and mortality rates. Standard conventional treatments for CRC are surgery, chemotherapy, and radiotherapy. Recently, immunotherapy has been introduced as a promising alternative to CRC treatment that utilizes patients' immune system to combat cancer cells. The beneficial effect of immune checkpoint inhibitors, specifically anti-PD-1/ PD-L1, has been ascribed to the abundance of DNA replication errors that result in the formation of neoantigens. Such neoantigens serve as distinct flags that amplify the immune response when checkpoint inhibitors (ICIs) are administered. DNA replication errors in CRC patients are expressed as two statuses: the first is the deficient mismatch repair (MSI-H/dMMR) with a higher overall immune response and survival rate than the second status of patients with proficient mismatch repair (MSS/pMMR). There is a limitation to using anti-PD-1/PD-L1 as it is only confined to MSI-H/dMMR, where there is an abundance of T-cell inhibitory ligands (PD-L1). This calls for investigating new therapeutic interventions to widen the scope of ICIs' role in the treatment of CRC. Autophagy modulation provides a good example. Autophagy is a cellular process that plays a crucial role in maintaining cellular homeostasis and has been studied for its impact on tumor development, progression, and response to treatment. In this review, we aim to highlight autophagy as a potential determinant in tumor immune response and to study the impact of autophagy on the tumor immune microenvironment. Moreover, we aim to investigate the value of a combination of anti-PD-1/PD-L1 agents with autophagy modulators as an adjuvant therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Nasrah ALKhemeiri
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sahar Eljack
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Maha Mohamed Saber-Ayad
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo 12211, Egypt
| |
Collapse
|
9
|
Escors D, Chocarro L, Echaide M, Rodriguez-Neira C, Vilaplana B, Kochan G. Programmed Death-1 Ligand 1 Domain Organization, Signaling Motifs, and Interactors in Cancer Immunotherapy. Cancers (Basel) 2025; 17:1635. [PMID: 40427133 PMCID: PMC12110588 DOI: 10.3390/cancers17101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Immunotherapies targeting the programmed cell death-1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1) pathway sparked a revolution in cancer treatment. These breakthrough therapies work by disrupting the interaction between PD-1-expressed on T cells-and its ligand PD-L1, commonly found on the surface of cancer cells. By using monoclonal antibodies to block this binding, the immune system is unleashed to fight cancer more effectively. However, PD-L1's role extends far beyond immune evasion. When situated on cancer cells, PD-L1 transmits inhibitory signals through PD-1, silencing the effector functions of T cells. However, PD-L1 also engages in reverse signaling, also called intrinsic signaling, delivering intracellular instructions that contribute to cancer cell survival, even in the absence of PD-1 binding. This signaling cascade shields cancer cells from apoptosis, drives proliferation, regulates DNA damage responses, and even functions as a co-transcriptional transactivator, amplifying cancer's ability to thrive. The intricate mechanisms behind PD-L1's intrinsic signaling are under intense investigation. In this review, we provide a historical perspective on the discoveries leading to PD-L1's structure, signaling motifs, and interacting partners, shedding light on its multifaceted roles and the promising therapeutic possibilities ahead.
Collapse
Affiliation(s)
- David Escors
- OncoImmunology Unit, Navarrabiomed-Fundacion Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdISNA), Universidad Publica de Navarra (UPNA), 31008 Pamplona, Spain (M.E.); (C.R.-N.); (B.V.)
| | | | | | | | | | - Grazyna Kochan
- OncoImmunology Unit, Navarrabiomed-Fundacion Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdISNA), Universidad Publica de Navarra (UPNA), 31008 Pamplona, Spain (M.E.); (C.R.-N.); (B.V.)
| |
Collapse
|
10
|
Li A, Luo M, Liu X, Wu H, Liu X, Zhang Z, Zhang X. Toll-like receptor 3 activation enhances antitumor immune response in lung adenocarcinoma through NF-κB signaling pathway. Front Immunol 2025; 16:1585747. [PMID: 40406122 PMCID: PMC12095255 DOI: 10.3389/fimmu.2025.1585747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
Background Toll-like receptor 3 (TLR3) is a pattern recognition receptor known to play a crucial role in the immune response to cancer. However, its effect on the efficacy of immunotherapy in lung adenocarcinoma (LUAD) remains unclear. This study aims to investigate the role of TLR3 in LUAD by examining its expression levels, prognostic significance, and impact on immune signaling pathways. Methods We analyzed the impact of TLR3 expression on the prognosis of lung adenocarcinoma patients using data from the Cancer Genome Atlas (TCGA) database and four additional cohorts (GSE72094, GSE30219, GSE50081 and GSE31210). Functional enrichment analyses were performed to compare molecular features between low and high TLR3 expression groups using gene set variation analysis (GSVA). We also examined the correlation between TLR3 and tumor mutation burden (TMB), immune infiltration, and PD-L1 expression. Further experimental validation was conducted using co-culture systems of LUAD cells and peripheral blood mononuclear cells (PBMCs) with PD1 inhibitors, and Western blot analysis to investigate the involvement of NF-κB signaling. Results TLR3 expression was significantly lower in LUAD tissues compared to normal tissues, with high TLR3 expression correlating with better survival outcomes across multiple cohorts. High TLR3 expression was associated with increased TMB and enhanced immune activation. Patients with high TLR3 expression exhibited higher immune checkpoint expression and immune cell infiltration. Experimental results showed that TLR3 agonists increased the susceptibility of LUAD cells to activated PBMCs under PD1 inhibitor therapy, inhibiting cell proliferation, migration, and invasion. Additionally, TLR3 has a strong positive correlation with MHC molecules and upregulated PD-L1 expression. NF-κB was identified as a key regulator of PD-L1 expression, with TLR3 agonists enhancing NF-κB and PD-L1 activity. Conclusion TLR3 enhances the anti-tumor immune response in LUAD by modulating NF-κB signaling and PD-L1 expression, making it a promising prognostic biomarker and therapeutic target. This study highlights the potential of TLR3 to improve immunotherapy outcomes, providing a comprehensive analysis of its role in LUAD and paving the way for novel therapeutic strategies targeting TLR3-mediated pathways.
Collapse
Affiliation(s)
- Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China
| | - Man Luo
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Xiyao Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China
| | - Xiaoguang Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
11
|
Carreño-Tarragona G, Tiana M, Rouco R, Leivas A, Victorino J, García-Vicente R, Chase AJ, Maidana A, Tapper WJ, Ayala R, Cross NCP, Martínez-López J, Manzanares M. The JAK2 46/1 haplotype influences PD-L1 expression. Blood 2025; 145:2196-2201. [PMID: 39919265 DOI: 10.1182/blood.2023023787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
ABSTRACT Although described more than a decade ago, the mechanism by which the JAK2 46/1 haplotype increases the risk of developing JAK2-mutated myeloproliferative neoplasms (MPNs) remains unexplained. Inflammation and immunity are linked to MPN development and thus could be relevant to the mechanism by which 46/1 mediates its effect. Here, we show that programmed death-1 receptor ligand (PD-L1) expression is elevated in 46/1 haplotype, both in healthy carriers and in CD34+ cells from patients with MPN. Using circular chromosome conformation capture, we observed that PD-L1 and the neighboring PD-L2 loci physically interact with JAK2 in a manner that differs between 46/1 and nonrisk haplotypes. CRISPR/Cas9 genome editing identified a region within JAK2 intron 2 that influences both JAK2 and PD-L1 expression. We suggest that increased PD-L1 expression may be relevant to the mechanism by which 46/1 leads to an increased inherited risk of developing MPN.
Collapse
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - María Tiana
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Department of Biotechnology, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Raquel Rouco
- Functional Genomics Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alejandra Leivas
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Jesús Victorino
- Functional Genomics Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto García-Vicente
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Andrew J Chase
- Department of Human Genetics, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrea Maidana
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - William J Tapper
- Department of Human Genetics, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Nicholas C P Cross
- Department of Human Genetics, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Miguel Manzanares
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Functional Genomics Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Wang Z, Guo W, Zhang X, Wei Y, Zhang W, Du N, Li C, Wu X, Yi F, Zhou T, Dong X, Guo Q, Xu H, Wang E, Li N, Cheng R, Li Z, Song X, Sun Y, Sun X, Cao L. Tumor microenvironment-associated oxidative stress impairs SIRT1 secretion to suppress anti-tumor immune response. Cell Rep 2025; 44:115679. [PMID: 40343797 DOI: 10.1016/j.celrep.2025.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/10/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Sirtuin-1 (SIRT1) is a classical histone deacetylase well known for its roles in intracellular pathways such as energy metabolism, DNA damage response, and genome stability maintenance. We report that SIRT1 can be secreted into the tumor microenvironment (TME) through an unconventional protein secretion pathway, effectively inhibiting tumor growth. However, under the stressful conditions of the TME, SIRT1 undergoes increased methylation, which impedes its secretion. Consequently, tumor-infiltrating M2 macrophages are unable to acquire sufficient SIRT1 from the TME, resulting in a significant decrease in SIRT1 levels within these cells. This SIRT1 decline leads to elevated expression of programmed cell death ligand 1 (PD-L1) on M2 macrophages, which in turn contributes to CD8+ T cell exhaustion through the programmed cell death protein 1/PD-L1 interaction pathway. These findings unveil the multifaceted roles and regulatory mechanisms of SIRT1 within the complex TME, providing deeper insights that significantly enhance our understanding of tumor immune-evasion strategies.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaowen Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Yufei Wei
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning 110122, China
| | - Wanying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Ning Du
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Chunlu Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Tingting Zhou
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiang Dong
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Erli Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Na Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Rong Cheng
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning 110122, China.
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning 110122, China.
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
13
|
Tong J, Tan Y, Ouyang W, Chang H. Targeting immune checkpoints in hepatocellular carcinoma therapy: toward combination strategies with curative potential. Exp Hematol Oncol 2025; 14:65. [PMID: 40317077 PMCID: PMC12046748 DOI: 10.1186/s40164-025-00636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 05/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by poor immune cell infiltration and a strongly immunosuppressive microenvironment. Traditional treatments have often yielded unsatisfactory outcomes due to the insidious onset of the disease. Encouragingly, the introduction of immune checkpoint inhibitors (ICIs) has significantly transformed the approach to HCC treatment. Moreover, combining ICIs with other therapies or novel materials is considered the most promising opportunity in HCC, with some of these combinations already being evaluated in large-scale clinical trials. Unfortunately, most clinical trials fail to meet their endpoints, and the few successful ones also face challenges. This indicates that the potential of ICIs in HCC treatment remains underutilized, prompting a reevaluation of this promising therapy. Therefore, this article provides a review of the role of immune checkpoints in cancer treatment, the research progress of ICIs and their combination application in the treatment of HCC, aiming to open up avenues for the development of safer and more efficient immune checkpoint-related strategies for HCC treatment.
Collapse
Affiliation(s)
- Jing Tong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yongci Tan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Wenwen Ouyang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
14
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
15
|
Fujimoto A, Sakata S, Kataoka K, Kogure Y, Chiba K, Okada A, Shiraishi Y, Baba S, Maruyama D, Ogawa S, Takeuchi K. High-accuracy Detection of PD-L1 3'-UTR Disruption by Immunohistochemistry and Fluorescence in Situ Hybridization on Formalin-fixed Paraffin-embedded Sections. Am J Surg Pathol 2025; 49:490-498. [PMID: 40026197 DOI: 10.1097/pas.0000000000002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Programmed death-ligand 1 (PD-L1/CD274) structural variation (SV) disrupting the 3'-untranslated region has been highlighted as being associated with PD-L1 overexpression. In the present study, we evaluated lymphoma tissue samples to investigate the applicability of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) for detecting the PD-L1 SV involving the 3'-untranslated region. In total, 1052 lymphoma samples were screened using IHC, and 99 IHC screening-positive samples were evaluated with FISH (non-Hodgkin lymphoma [NHL, n=58] and Hodgkin lymphoma [HL, n=41]). Of these, 92 samples showed strong PD-L1 expression with 2 PD-L1 antibodies (E1J2J and SP142) (concordant PD-L1 IHC), whereas 7 samples showed strong PD-L1 expression only with E1J2J (discordant PD-L1 IHC). Abnormal FISH findings for PD-L1 were detected in all evaluated samples (51 NHLs and 41 HLs). A structural abnormality pattern was observed in 17 of the 51 evaluated NHL samples (33%). In contrast, all 41 HL samples showed a copy number abnormality pattern, with 1 exhibiting a structural abnormality pattern. Target-capture sequencing of the PD-L1 gene was performed on 73 of the 99 IHC screening-positive samples, comprising 41 NHLs and 32 HLs. PD-L1 SVs were detected in 16 (39%) of the 41 NHL samples and in only one of the 32 HL samples (3%). Samples exhibiting discordant PD-L1 IHC and/or FISH structural abnormality patterns were shown to harbor PD-L1 SV by target-capture sequencing, with positive and negative predictive values of 94% and 96%, respectively. Our approach is an alternative to target-capture sequencing for evaluating PD-L1 gene abnormalities.
Collapse
Affiliation(s)
- Ayumi Fujimoto
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute
- Division of Hematology, Department of Medicine, Keio University School of Medicine
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
| | - Dai Maruyama
- Department of Hematology-Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute
- Division of Pathology, Cancer Institute
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research
| |
Collapse
|
16
|
Wang Y, Chen Z, Liang K, Wang W, Hu Z, Mao Y, Liang X, Jiang L, Liu Z, Ma Z. AGO2 mediates immunotherapy failure via suppressing tumor IFN-gamma response-dependent CD8 + T cell immunity. Cell Rep 2025; 44:115445. [PMID: 40106436 DOI: 10.1016/j.celrep.2025.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/28/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ), a cytokine essential for activating cellular immune responses, plays a crucial role in cancer immunosurveillance and the clinical success of immune checkpoint blockade therapy. In this study, we show that Argonaute 2 (AGO2), a key mediator in small RNA-guided gene regulation, inversely correlates with tumor responsiveness to IFN-γ and the efficacy of immunotherapy. Mechanistically, IFN-γ upregulates miR-1246 expression in tumor cells, enhancing its interaction with AGO2. This miR-1246-AGO2 complex disrupts IFN-γ-mediated signal transducer and activator of transcription 1 (STAT1) phosphorylation by stabilizing protein tyrosine phosphatase non-receptor 6 (PTPN6) mRNA, thereby suppressing the expression of downstream C-X-C motif chemokine ligands (CXCLs), IFN-stimulated genes (ISGs), and human leukocyte antigen (HLA) molecules, which collectively contribute to tumor immune evasion. In preclinical cancer models, inhibiting AGO2 with BCI-137 or targeting miR-1246 with its antagomir re-sensitizes tumor cells to IFN-γ, leading to the enhanced recruitment, activation, and cytotoxicity of CD8+ T cells and ultimately improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Yuzhao Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zibin Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yize Mao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoyu Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lijuan Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, China.
| | - Zikun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
17
|
Menkiti FE, Okani CO, Onyiaorah IV, Ukah CO, Menkiti IO, Ihekwoaba EC, Okoye OA, Ofiaeli OC, Akpuaka FC. Immunohistochemical expression of PD-L1 in colorectal carcinoma among black patients and the clinicopathological correlates: a cross-sectional study. BMC Gastroenterol 2025; 25:277. [PMID: 40254571 PMCID: PMC12010690 DOI: 10.1186/s12876-025-03862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) incidence is rising in Nigeria, with majority of patients presenting with advanced disease. Despite promising results of PD-L1 antibody therapy in clinical trials, efficacy data exclusively derives from Caucasian populations, leaving a critical knowledge gap for African populations. This study investigated PD-L1 expression in CRC among blacks, correlating it with clinicopathologic parameters. METHODS The immunohistochemical expression of PD-L1 was evaluated in 96 cases of CRC diagnosed between February 2022 and January 2024, using formalin-fixed paraffin-embedded (FFPE) tissue blocks. Statistical analysis was performed using SPSS version 25. The relationships between the PD-L1 expression and the clinicopathological parameters of CRC patients were determined using the chi-square test and Spearman's rank correlation. p < 0.05 was considered to be statistically significant. RESULTS CRC showed a male: female ratio of 1:1.8, most occurred in the seventh decade and 54.17% were right-sided. Adenocarcinoma NOS accounted for 72.5%. The majority (n = 55, 57.3%) of the patients were diagnosed at an advanced stage. PD-L1 expression was observed in 86.46% of cases, significantly correlating with tumour Size (r = 0.263, p = 0.010*), histologic Grade (r = 0.446, p = 0.000*) and tumour Stage (r = 0.367, p = 0.000*). CONCLUSION This study highlighted the high frequency of PD-L1 expression in CRC among black patients, with significant associations to clinicopathologic parameters. The findings suggest the potential benefit of PD-1/PD-L1 targeted therapies and emphasize the need for enhanced early detection and screening in Nigeria.
Collapse
Affiliation(s)
- Felix Emeka Menkiti
- Department of Anatomic Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Nnamdi Azikiwe University, Awka, Nigeria.
- Department of Histopathology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria.
| | - Chukwudi Onyeaghana Okani
- Department of Histopathology, Faculty of Basic Clinical Sciences, Chukwuemeka Odumegwu Ojukwu University, Awka, Anambra State, Nigeria
| | - Igwebuike Victor Onyiaorah
- Department of Anatomic Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Histopathology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Cornelius Ozobia Ukah
- Department of Anatomic Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Histopathology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Ifeoma Oluchukwu Menkiti
- Department of Nursing, College of Nursing, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Eric Chukwudi Ihekwoaba
- Department of Surgery, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria
| | - Odili Aloysius Okoye
- Department of Surgery, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria
| | - Ogochukwu Chioma Ofiaeli
- Department of Paediatrics, Nnamdi Azikiwe University, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Frank Chinedu Akpuaka
- Department of Surgery, Chukwuemeka Odumegwu Ojukwu University, Awka, Anambra State, Nigeria
| |
Collapse
|
18
|
Yu J, Fu L, Wu R, Che L, Liu G, Ran Q, Xia Z, Liang X, Zhao G. Immunocytes in the tumor microenvironment: recent updates and interconnections. Front Immunol 2025; 16:1517959. [PMID: 40297580 PMCID: PMC12034658 DOI: 10.3389/fimmu.2025.1517959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The tumor microenvironment (TME) is a complex, dynamic ecosystem where tumor cells interact with diverse immune and stromal cell types. This review provides an overview of the TME's evolving composition, emphasizing its transition from an early pro-inflammatory, immune-promoting state to a later immunosuppressive milieu characterized by metabolic reprogramming and hypoxia. It highlights the dual roles of key immunocytes-including T lymphocytes, natural killer cells, macrophages, dendritic cells, and myeloid-derived suppressor cells-which can either inhibit or support tumor progression based on their phenotypic polarization and local metabolic conditions. The article further elucidates mechanisms of immune cell plasticity, such as the M1/M2 macrophage switch and the balance between effector T cells and regulatory T cells, underscoring their impact on tumor growth and metastasis. Additionally, emerging therapeutic strategies, including checkpoint inhibitors and chimeric antigen receptor (CAR) T and NK cell therapies, as well as approaches targeting metabolic pathways, are discussed as promising avenues to reinvigorate antitumor immunity. By integrating recent molecular insights and clinical advancements, the review underscores the importance of deciphering the interplay between immunocytes and the TME to develop more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Jiyao Yu
- Department of Ultrasound, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Li Fu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, Jiangyou People’s Hospital, Mianyang, China
| | - Linyi Che
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qinwen Ran
- General Practice Department, Wufu Town Hospital, Chongqing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Liu S, Liu J, Mei Y, Zhang W. Gut microbiota affects PD-L1 therapy and its mechanism in melanoma. Cancer Immunol Immunother 2025; 74:169. [PMID: 40214675 PMCID: PMC11992302 DOI: 10.1007/s00262-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have shown great success in treating melanoma. PD-L1 (B7-H1, CD274), a ligand of PD-1, binds to PD-1 on T cells, inhibiting their activation and proliferation through multiple pathways, thus dampening tumor-reactive T cell activity. Studies have linked PD-L1 expression in melanoma with tumor growth, invasion, and metastasis, making the PD-1/PD-L1 pathway a critical target in melanoma therapy. However, immune-related adverse events are common, reducing the effectiveness of anti-PD-L1 treatments. Recent evidence suggests that the gut microbiome significantly influences anti-tumor immunity, with the microbiome potentially reprogramming the tumor microenvironment and overcoming resistance to anti-PD-1 therapies in melanoma patients. This review explores the mechanisms of PD-1/PD-L1 in melanoma and examines how gut microbiota and its metabolites may help address resistance to anti-PD-1 therapy, offering new insights for improving melanoma treatment strategies.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiahui Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing, China.
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China.
| |
Collapse
|
20
|
Hagbi-Levi S, Abraham M, Gamaev L, Mishaelian I, Hay O, Zorde-Khevalevsky E, Wald O, Wald H, Olam D, Weiss L, Peled A. Identification of Dinaciclib and Ganetespib as anti-inflammatory drugs using a novel HTP screening assay that targets IFNγ-dependent PD-L1. Front Immunol 2025; 16:1502094. [PMID: 40264756 PMCID: PMC12011776 DOI: 10.3389/fimmu.2025.1502094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction IFNγ plays both positive and negative roles in the regulation of innate and adaptive immune responses against tumors and virally infected tissues by upregulating CXCL10 and PD-L1 expression. Methods To identify novel pathways and drugs that regulate the IFNγ-dependent PD-L1, we expressed GFP under the control of mouse PD-L1 promoter in mouse cancer cells that up regulate PD-L1 and CXCL10 in response to IFNγ stimulation. Using these cells, we screened an FDA approved library of 1496 small molecules known for their ability to inhibit IFNγ-dependent increase in PD-L1. Results We identified 46 drugs that up regulated and 4 that down regulated IFNγ-dependent PD-L1 expression. We discovered that in addition to the known JAK inhibitors Ruxolitinib and Baricitinib, Dinaciclib, a CDK1/2/5/9 inhibitor, and Ganetespib, a Hsp90 inhibitor, significantly inhibit both PD-L1 and CXCL10 expression in the model cells. Furthermore, both drugs suppressed IFNγ-dependent CXCL10 and PD-L1 expression in-vitro in primary human lung cells and human cancer cells. These drugs also significantly inhibited delayed-type hypersensitivity (DTH) in-vivo in an inflammation mouse model. Discussion Our novel screening platform can therefore be used in the future to identify novel immunomodulators and pathways in cancer and inflammation, expanding therapeutic horizons.
Collapse
Affiliation(s)
- Shira Hagbi-Levi
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Lika Gamaev
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Inbal Mishaelian
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ophir Hay
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elina Zorde-Khevalevsky
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hanna Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Reinhold-Larsson NV, Starnbach MN. Type I IFNs contribute to upregulation of PD-L1 during Chlamydia trachomatis infection. Infect Immun 2025; 93:e0004025. [PMID: 40071913 PMCID: PMC11977314 DOI: 10.1128/iai.00040-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that if left untreated can cause reproductive harm. Failure of natural adaptive immunity results in chronic and repeat infections. In efforts to understand the failure of adaptive immunity, we have previously discovered that CD8+ T cells, normally integral for controlling intracellular pathogen infections, are misprogrammed by PD-1/PD-L1 signaling during in vivo C. trachomatis infection and fail to mount a protective response. Seeking to uncover the pathways and host factors involved in PD-L1 upregulation that may lead to CD8+ T-cell inhibition, we discovered that C. trachomatis triggers the secretion of host type I interferons (IFNs) that are necessary and sufficient to upregulate PD-L1 in vitro. Additionally, secretion of type I IFNs is dependent on C. trachomatis development and its type III secretion system. We have also validated that type I IFNs contribute to upregulation of PD-L1 during C. trachomatis infection in vivo using a mouse model of infection. Overall, these findings reveal that C. trachomatis induction of this host pathway may contribute to adaptive immune evasion.
Collapse
|
22
|
Kuno S, Pakpian N, Muanprasat C. The potential role of PD-1/PD-L1 small molecule inhibitors in colorectal cancer with different mechanisms of action. Eur J Pharmacol 2025; 992:177351. [PMID: 39922421 DOI: 10.1016/j.ejphar.2025.177351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide, with increasing incidence in younger ages highlighting the need for new or alternative therapy, of which is immune checkpoint inhibitors. Antibody-based immune checkpoint inhibitors targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have revolutionized cancer treatment, including CRC. However, the low response rate in CRC highlights the need for additional research and innovative therapies. Small molecule inhibitors have risen as another strategy worth exploring, considering their potential to target a wide array of PD-1/PD-L1-related pathways. This review focuses on the potential of small molecule inhibitors targeting the PD-1/PD-L1 axis in CRC. Exploring various classes of small molecule inhibitors, including those that directly block the PD-1/PD-L1 interaction and others that target upstream regulators or downstream signaling pathways involved in PD-1/PD-L1-mediated immune suppression. Additionally, modulation of post-transcriptional and post-translational processes, thereby influencing the expression, stability, or localization of PD-1/PD-L1 proteins to enhance antitumor immunity, provides a multifaceted treatment approach. By disrupting these pathways, these inhibitors can restore immune system activity against tumor cells, offering new hope for overcoming resistance and improving outcomes in CRC patients who do not respond to conventional immune checkpoint inhibitors (ICIs). Integrating these small molecules into CRC treatment strategies could represent a promising advancement in the battle against the challenging disease.
Collapse
Affiliation(s)
- Suhaibee Kuno
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nattaporn Pakpian
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
| |
Collapse
|
23
|
Nahm WJ, Sakunchotpanit G, Nambudiri VE. Abscopal Effects and Immunomodulation in Skin Cancer Therapy. Am J Clin Dermatol 2025:10.1007/s40257-025-00943-x. [PMID: 40180765 DOI: 10.1007/s40257-025-00943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Radiation therapy (RT) is a crucial modality in cancer treatment, functioning through direct DNA damage and immune stimulation. However, RT's effects extend beyond targeted cells, influencing neighboring cells through the bystander effect (ByE) and distant sites via the abscopal effect (AbE). The AbE, first described by Mole in 1953, encompasses biological reactions at sites distant from the irradiation field. While RT can enhance antitumor immune responses, it may also contribute to an immunosuppressive microenvironment. To address this limitation, combining RT with immune checkpoint inhibitors (ICIs) has gained renewed interest, aiming to amplify antitumor immune responses. Evidence of AbEs has been observed in various metastatic or advanced cutaneous cancers, including melanoma, basal cell carcinoma, cutaneous lymphoma, Merkel cell carcinoma, and cutaneous squamous cell carcinoma. Clinical studies suggest combining RT with ICIs targeting CTLA-4 and PD-1/PD-L1 may enhance AbE incidence in these cancers. This review primarily explores the current understanding of AbEs in skin cancers, briefly acknowledging the ByE focusing on combining RT with immunomodulation. It focuses on proposed mechanisms, preclinical and clinical evidence, challenges in clinical translation, and future directions for harnessing AbEs in managing advanced skin malignancies. Alternative modalities for inducing abscopal-like responses are also explored. While promising, challenges remain in consistently reproducing AbEs in clinical practice, necessitating further research to optimize treatment combinations, timing, and patient selection.
Collapse
Affiliation(s)
- William J Nahm
- New York University Grossman School of Medicine, New York, NY, USA.
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA.
| | - Goranit Sakunchotpanit
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Shi Q, Liu Y, Yang W, Li Y, Wang C, Gao K. The covalent modification of STAT1 cysteines by sulforaphane promotes antitumor immunity via blocking IFN-γ-induced PD-L1 expression. Redox Biol 2025; 81:103543. [PMID: 39961271 PMCID: PMC11875811 DOI: 10.1016/j.redox.2025.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Sulforaphane (SFN), a natural compound found in cruciferous vegetables, possesses well-documented antitumor properties. However, the precise functions and mechanisms of SFN in cancer suppression remain poorly understood. Here we provide evidence to demonstrate that SFN exerts more pronounced antitumor effects in immunocompetent mice compared to immunodeficient mice, suggesting the involvement of the host immune system in SFN-mediated tumor suppression. Furthermore, we reveal that SFN primarily acts through CD8+ cytotoxic T lymphocytes (CTLs) to enhance antitumor immunity by blocking the IFN-γ-mediated induction of PD-L1, a critical immune checkpoint receptor expressed in cancer cells. Importantly, our findings indicate that the suppression of PD-L1 expression by SFN is independent of the NRF2 protein stabilization pathway. Instead, SFN inhibits IFN-γ-mediated activation of STAT1, a key transcription factor involved in PD-L1 induction. Mechanistically, SFN covalently modifies specific cysteine residues (C155 and C174) on STAT1, resulting in the inhibition of its transcriptional activity. Notably, SFN-mediated downregulation of PD-L1 contributes to its antitumor immune effects, as demonstrated by enhanced anti-CTLA-4-mediated cytotoxicity. These findings indicate that SFN's antitumor effect extends beyond its direct cytotoxic properties, as it also actively engages the host immune system. This underscores SFN's immense potential as an immune-modulating agent in cancer therapy.
Collapse
Affiliation(s)
- Qing Shi
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wanqi Yang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|
25
|
Liao Y, Yang R, Wang B, Ruan Y, Cui L, Yang J, Yu X, Han S, Yao Y, Luan X, Li Y, Shi M, Li S, Liu C, Zhang Y. Mevalonate kinase inhibits anti-tumor immunity by impairing the tumor cell-intrinsic interferon response in microsatellite instability colorectal cancer. Oncogene 2025; 44:944-957. [PMID: 39725712 DOI: 10.1038/s41388-024-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Insufficient tumor cell-intrinsic interferon response represents a major obstacle in immune checkpoint blockade (ICB) therapy, particularly in anti-PD-1 treatment. Although cholesterol metabolism has been demonstrated to be a critical regulator of anti-tumor immune responses, whether cholesterol influences tumor cell-intrinsic interferon response in microsatellite instability (MSI) colorectal cancer (CRC) remains unknown. Through comprehensive siRNA library screening and Gene Set Enrichment Analysis (GSEA), we identified mevalonate kinase (MVK) as a crucial negative regulator of tumor cell-intrinsic interferon response in MSI CRC cells. Genetic ablation of MVK resulted in significant upregulation of Th1 type chemokines (CXCL9 and CXCL10) and enhanced CD8+T cell infiltration in MSI CRC, consequently leading to marked tumor growth suppression in immunocompetent mice. At the molecular level, we demonstrated that MVK physically interacts with the transcriptional activation domain (TAD) of signal transducer and activator of transcription 1 (STAT1). This interaction substantially impairs STAT1 nuclear translocation, thereby attenuating interferon signaling cascade. Furthermore, analyses of humanized PBMC-PDX models and clinical cohorts of MSI CRC patients revealed that reduced MVK expression in tumor tissues strongly correlates with favorable responses to anti-PD-1 therapy. Collectively, our findings establish MVK as a pivotal mediator in cholesterol synthesis pathway that negatively regulates tumor cell-intrinsic interferon response in MSI CRC. These results suggest that therapeutic targeting of MVK represents a promising strategy to enhance ICB efficacy through potentiation of interferon responses in MSI CRC patients.
Collapse
Affiliation(s)
- Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Rui Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xindi Luan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yingjue Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Mengde Shi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China.
- Heilongjiang Province Key Laboratory of Research on Molecular Targeted Anti-Tumor Drugs, Harbin, China.
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| |
Collapse
|
26
|
Palli E, Lavigne M, Verginis P, Alissafi T, Anastasopoulou A, Lyrarakis G, Kirkwood JM, Gogas H, Ziogas DC. Transcriptomic signatures in peripheral CD4 +T-lymphocytes may reflect melanoma staging and immunotherapy responsiveness prior to ICI initiation. Front Immunol 2025; 16:1529707. [PMID: 40226614 PMCID: PMC11986426 DOI: 10.3389/fimmu.2025.1529707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background and purpose Promoting adaptive immunity with ICIs has drastically improved melanoma prognosis, but not for all patients. Some cases relapse in the first few months, while others keep durable benefit, even after immunotherapy discontinuation. To identify cellular/molecular signatures in peripheral blood that could differentiate advanced from metastatic melanoma and predict dynamics for primary/secondary immune escape, we examined 100 consecutive patients with stage III/IV melanoma scheduled to start ICIs. Materials and methods At melanoma diagnosis, a multiparameter flow cytometric analysis and purification scheme using standard conjugated antibodies were performed for all individuals prior to ICI initiation. In each stage(III/IV) according to their RFS/PFS, we retrospectively selected the cases with the clearest clinical outcomes and focused our analysis on the extreme responders(n=7) and non-responders(n=7) to characterize the transcriptomes of circulating CD4+T-cells by bulk RNA-seq, Differential Expression Analysis(DEA)and Gene Ontology(GO)enrichment analysis. Based on our selected patient cohort, we examined for differentially expressed genes(DEGs)and key-pathways that appear preferentially activated in stage III vs. IV melanoma, and in long vs. short immunotherapy responders. Results Although circulating immune-cells did not numerically differ in both sets of analysis(staging and ICI responsiveness), DEA and GO data showed that patients could be clustered separately, identifying 189vs.92 DEGs in stage IV/III and 101vs.47 DEGs in early progressors/long responders. These DEGs were functionally implicated in distinct pathways. For metastatic cases: inflammatory response(logp-value=-9.2:ADGRE5/2,CYBA,GRN,HMOX1,IRF5,ITGAM), adaptive immunity(logp-value=-7.7:CD1C,CD74,CYBB,NCF2,CTSA,S100A8/9,BCL3,FCER1G), T-cell activation(logp-value=-6.3:BCL3,CD1C,CD74,FCER1G,FGL2)and lipid metabolism/catabolism(logp-value=-2.5/-2.6:ARF3,GPX1,MVD,OCRL,PCCB,CTSA,PNPLA2,NAGLU,GBA2,ABHD4); while in early-progressors to ICIs: immune effector processing(logp-value=-13.7:BCL6,FGR,HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,NKG7,SLC11A1,TYROBP,SPON2,HAVCR2),PD-1(logp-value=-10.2:HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5)and IFN signaling(logp-value=-8.5: HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,NCAM1,IFITM3),positive regulation of T-cell activation(logp-value=-7.7:BCL6,HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,SASH3,HAVCR2)and CD28 co-stimulation(logp-value=-10.3:HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5), supporting an immune-mediated behavior. Conclusions Specific pathways and marker genes in the peripheral CD4+T-cells may predetermine melanoma staging and immunotherapy resistance.
Collapse
Affiliation(s)
- Eleni Palli
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Matthieu Lavigne
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology - Biology Department, University of Crete, School of Medicine, Heraklion, Greece
| | - Panagiotis Verginis
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology - Biology Department, University of Crete, School of Medicine, Heraklion, Greece
| | - Themis Alissafi
- Laboratory of Biology, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Amalia Anastasopoulou
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Georgios Lyrarakis
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - John M. Kirkwood
- Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Dimitrios C. Ziogas
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| |
Collapse
|
27
|
Mansoor H, Gohar M, Attaria A, Karim FF, Naeem U, Khan M, Iqbal J. Evaluating comparative effectiveness of pembrolizumab-based therapy versus chemotherapy in treatment of gastric carcinoma: a systematic review and meta-analysis of randomized controlled trials. Clin Exp Med 2025; 25:98. [PMID: 40153063 PMCID: PMC11953116 DOI: 10.1007/s10238-025-01610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Gastric cancer, especially cancer of the gastro-esophageal junction, ranks among the first five cancers in the world with the highest mortality rates. It has poor survival rates for the advanced stages. Traditional chemotherapy, while standard, often results in significant side effects and limited efficacy. The objective of this meta-analysis and systemic review is to ascertain if pembrolizumab-based therapies for advanced gastric cancer are more effective and safer than standard chemotherapy. The focus consisted of RCTs with adults suffering from gastric carcinoma who received pembrolizumab every 3 weeks (200 mg) intra-related dose or with at least comparable chemotherapy regimen. Outcomes assessed are as follows: overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). All potential sources regarding the search of outcome measures were applied: Google Scholar, Scopus, PubMed, and Cochrane library, and last search in June 2024 was carried out. Out of 568 articles screened, four RCTs comprising 2,831 patients met the inclusion criteria. Analysis indicated that pembrolizumab alone did not significantly improve OS compared to chemotherapy (HR 0.87). However, when combined with chemotherapy, pembrolizumab dramatically enhanced OS (HR 0.80) and PFS (HR 0.78). ORR was superior in the pembrolizumab plus chemotherapy group (RR 1.24), while pembrolizumab monotherapy showed no significant difference from chemotherapy alone. Safety analysis revealed a higher frequency of adverse events in the pembrolizumab-based therapy groups compared to chemotherapy. Pembrolizumab together with chemotherapy improves greater survival and higher levels of response rate in patients with severe gastric cancer, especially with high PD-L1 expression. But it has rather more adverse events, allowing patient monitoring with care.
Collapse
Affiliation(s)
| | - Maheen Gohar
- Liaquat University of Health Sciences, Jamshoro, Pakistan
| | - Asma Attaria
- Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | | - Mohsin Khan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Javed Iqbal
- Nursing Department, Communicable Disease Center, Hamad Medical Corporation, P.O Box 3050, Doha, Qatar.
| |
Collapse
|
28
|
Tang Q, Li J, Zhang L, Zeng S, Bao Q, Hu W, He L, Huang G, Wang L, Liu Y, Zhao X, Yang S, Hu C. Orlistat facilitates immunotherapy via AKT-FOXO3a-FOXM1-mediated PD-L1 suppression. J Immunother Cancer 2025; 13:e008923. [PMID: 40139835 PMCID: PMC11951015 DOI: 10.1136/jitc-2024-008923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/02/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The immunotherapy targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death ligand-1 (PD-L1) has achieved significant breakthroughs, but further improvements are still needed in cancer treatment. METHODS We investigated orlistat, a drug approved by the Food and Drug Administration for the treatment of obesity and found that it can enhance the efficacy of CTLA-4 blockade immunotherapy. We conducted both in vivo and in vitro experiments to explore the mechanism by which orlistat increased antitumor immunity. RESULTS Orlistat enhances the efficacy of anti-CTLA-4 immunotherapy by suppressing tumor cell PD-L1 protein expression and boosting the transcription of interferon-stimulated genes (ISGs) and MHC-I. Mechanistically, orlistat inhibits AKT activity and subsequent phosphorylation of forkhead box O3a (FOXO3a) at its threonine (T) 32, serine (S) 253, thereby downregulating Forkhead box M1 (FOXM1) expression, which ultimately suppresses PD-L1 transcription. Specifically, inhibition of FOXM1 leads to FOXO3a accumulation through impaired AKT activity. FOXM1 activates protein kinase B (AKT) via acting as a scaffold to facilitate 3-phosphoinositide-dependent protein kinase 1 (PDK1) and AKT and interaction. In addition, orlistat enhances phosphorylated signal transducer and activator of transcription 1 (p-STAT1) at tyrosine (Y) 701, resulting in upregulation of ISGs and MHC-I. CONCLUSIONS Orlistat plays a crucial role in modulating the immune response and supporting the combination with CTLA-4 blockade to promote antitumor immunotherapy.
Collapse
Affiliation(s)
- Qingyun Tang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lianhua Zhang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shuo Zeng
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Guiping Huang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Liting Wang
- Army Military Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Xiaoyan Zhao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Changjiang Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| |
Collapse
|
29
|
Huo W, Chen M, Chang C, Yu J, Chen D, Wang R. Modulation of the tumor immune microenvironment by Interferon Regulatory Factor 8 enhances immunotherapy in lung adenocarcinoma. Sci Rep 2025; 15:9565. [PMID: 40113982 PMCID: PMC11926069 DOI: 10.1038/s41598-025-94424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon regulatory factors (IRFs) are integral in governing the expression of Type I interferon (IFN) genes. However, the precise role of IRFs in lung adenocarcinoma remains elusive. Our objective is to elucidate the prognostic implications of IRFs and their potential influence on the immunotherapeutic response in patients with lung adenocarcinoma (LUAD). The association between IRFs expression and clinical as well as prognostic features was evaluated utilizing the TCGA database. Prognostic determinants for LUAD were pinpointed via univariate and multivariate analyses. Nomogram to evaluate prognosis predicated on IRF expression levels. Gene enrichments were conducted to elucidate the mechanisms of action. The degree of immune infiltration was using bioinformatics methods and was validated through a single-cell dataset. We compiled our unique cohort of LUAD patients who underwent anti-PD-1 therapy for subsequent immunohistochemistry and multicolor immunofluorescence staining to gauge the conclusion above. Our findings revealed that IRF8 serves as an independent risk factor for overall survival (OS) in patients with LUAD. An analysis of patients undergoing immunotherapy revealed a positive association between the expression of IRF8 and the response to the treatment. In our specific cohort treated with anti-PD-1, high IRF8 expression was observed to enhance immunotherapy response and prolong OS by modulating immune cell infiltration. Our retrospective analysis suggests that elevated IRF8 expression correlates with improved prognosis in LUAD, with higher IRF8 expression being predictive of a more robust immunotherapy response. Mechanistically, IRF8 expression is associated with a modulated tumor immune microenvironment and improved immunotherapeutic response.
Collapse
Affiliation(s)
- Wen Huo
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Minxin Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Cheng Chang
- Nuclear Medicine Department, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Jinming Yu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Dawei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Ruozheng Wang
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
30
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
31
|
Liu Y, Liu Y, Niu X, Chen A, Li Y, Yu Y, Mo B, Liu Z, Xu T, Cheng J, Wu Z, Wei W. Massively parallel interrogation of human functional variants modulating cancer immunosurveillance. Signal Transduct Target Ther 2025; 10:88. [PMID: 40102418 PMCID: PMC11920242 DOI: 10.1038/s41392-025-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuran Niu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Ang Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yizhou Li
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Binrui Mo
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Cheng
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
32
|
Cao Z, Meng Z, Li J, Tian Y, Lu L, Wang A, Huang J, Wang J, Sun J, Chen L, Lu S, Li Z. Interferon-γ-stimulated antigen-presenting cancer-associated fibroblasts hinder neoadjuvant chemoimmunotherapy efficacy in lung cancer. Cell Rep Med 2025; 6:102017. [PMID: 40056907 PMCID: PMC11970394 DOI: 10.1016/j.xcrm.2025.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/06/2024] [Accepted: 02/14/2025] [Indexed: 03/21/2025]
Abstract
Conventional neoadjuvant chemotherapy provides limited benefit for patients with resectable non-small cell lung cancer (NSCLC). Recently, neoadjuvant chemoimmunotherapy (NCIT) has transformed the perioperative management of NSCLC by priming systemic anti-tumor immunity before surgery, yet it remains ineffective for at least 50% of patients. Through single-cell sequencing analysis of our NCIT cohort, we identify that antigen-presenting cancer-associated fibroblasts (apCAFs) can impede the efficacy of NCIT. Using a custom cancer-associated fibroblast biobank, we uncover that interferon (IFN)-γ stimulates apCAF expansion via the JAK1/2-STAT1-IFI6/27 pathway. Mechanistically, apCAFs significantly contribute to PD-L2 expression in the tumor microenvironment (TME), triggering the accumulation of FOXP1+regulatory T cells (Tregs) through the PD-L2-RGMB axis. Reprogramming apCAFs by inhibiting the IFN-γ pathway or blocking the PD-L2-RGMB axis substantially mitigates apCAFs-mediated FOXP1+Tregs' expansion. In summary, we reveal the role of apCAFs in compromising NCIT efficacy and propose applications for anti-PD-L2/RGMB regimens to synergize with anti-PD1 therapies by targeting apCAFs.
Collapse
Affiliation(s)
- Zhengqi Cao
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Zhouwenli Meng
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jian Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Yu Tian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Li Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Anni Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jingze Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jing Sun
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Lixuan Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China.
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China.
| |
Collapse
|
33
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Alvarado Medina A, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Mendez Valdez MJ, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Alshiekh Nasany R, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Activating antiviral immune responses potentiates immune checkpoint inhibition in glioblastoma models. J Clin Invest 2025; 135:e183745. [PMID: 40091830 PMCID: PMC11910234 DOI: 10.1172/jci183745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Viral mimicry refers to the activation of innate antiviral immune responses due to the induction of endogenous retroelements (REs). Viral mimicry augments antitumor immune responses and sensitizes solid tumors to immunotherapy. Here, we found that targeting what we believe to be a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression, and poor immune cell infiltration. Targeting ZNF638 decreased H3K9 trimethylation, increased REs, and activated intracellular dsRNA signaling cascades. Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in diverse GBM models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate IFN signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1, and perivascular CD8 cell infiltration, suggesting that dsRNA signaling may mediate response to immunotherapy. Finally, low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in patients with rGBM and patients with melanoma. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
Affiliation(s)
- Deepa Seetharam
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jay Chandar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Christian K. Ramsoomair
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jelisah F. Desgraves
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alexandra Alvarado Medina
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Anna Jane Hudson
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ava Amidei
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jesus R. Castro
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Vaidya Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah Wang
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yong Zhang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery and
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mynor J. Mendez Valdez
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Vasundara Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah R. Rivas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Victor M. Lu
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ritika Tiwari
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Emmanuel Thomas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Marcus Alexander
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Catherine DeMarino
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Macarena I. De La Fuente
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Ruham Alshiekh Nasany
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E. Ivan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J. Komotar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Antonio Iavarone
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - John Heiss
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ashish H. Shah
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
34
|
Ding CH, Yan FZ, Xu BN, Qian H, Hong XL, Liu SQ, Luo YY, Wu SH, Cai LY, Zhang X, Xie WF. PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma. Cell Death Dis 2025; 16:158. [PMID: 40050608 PMCID: PMC11885674 DOI: 10.1038/s41419-025-07482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Aberrant expression of programmed death ligand-1 (PD-L1) facilitates tumor immune evasion. Protein arginine methyltransferase 3 (PRMT3), a member of type I PRMT family, mediates asymmetric dimethylarginine (ADMA) modification of various substrate proteins. This study investigates the role of PRMT3 in PD-L1-associated tumor immunosuppression in hepatocellular carcinoma (HCC). Hepatocyte-specific knockout of Prmt3 significantly suppressed HCC progression in DEN-CCL4-treated mice. Knockout of Prmt3 in HCC cells markedly increased CD8+ T cell infiltration, and reduced lactate production in tumors. PRMT3 interacted with pyruvate dehydrogenase kinase 1 (PDHK1), asymmetric dimethylation of PDHK1 at arginine 363 and 368 residues and increased its kinase activity. The R363/368 K mutant or inhibition of PDHK1 by JX06 blocked the effect of PRMT3 on lactate production. JX06 treatment also attenuated the tumor-promoting role of PRMT3 in HCC in vitro and in vivo. Furthermore, RNA-seq analysis revealed that knockout of PRMT3 downregulates the tumor-associated immune checkpoint, PD-L1, in tumor tissues. Chromatin immunoprecipitation (ChIP) assay demonstrated that PRMT3 promotes lactate-induced PD-L1 expression by enhancing the direct binding of histone H3 lysine 18 lactylation (H3K18la) to the PD-L1 promoter. Tissue microarray analysis showed a positive correlation between PRMT3 and PD-L1 expression in HCC patients. Anti-PD-L1 treatment reversed PRMT3-induced tumor growth and restored CD8+ T cell infiltration. Our research links PRMT3-mediated metabolic reprogramming and immune evasion, revealing that the PRMT3-PDHK1-lactate-PD-L1 axis may be a potential target for improving the efficacy of immunotherapy in HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo-Nan Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xia-Lu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
35
|
Majocchi S, Lloveras P, Nouveau L, Legrand M, Viandier A, Malinge P, Charreton M, Raymond C, Pace EA, Millard BL, Svensson LA, Kelpšas V, Anceriz N, Salgado-Pires S, Daubeuf B, Magistrelli G, Gueneau F, Moine V, Masternak K, Shang L, Fischer N, Ferlin WG. NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control. Cancer Immunol Res 2025; 13:365-383. [PMID: 39760515 PMCID: PMC11876958 DOI: 10.1158/2326-6066.cir-24-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.
Collapse
Affiliation(s)
- Sara Majocchi
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Lise Nouveau
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | | | | - Maud Charreton
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | - Cecile Raymond
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | | | | | | - Nadia Anceriz
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Bruno Daubeuf
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Franck Gueneau
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | - Valéry Moine
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Limin Shang
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | |
Collapse
|
36
|
Meyer SP, Bauer R, Brüne B, Schmid T. The role of type I interferon signaling in myeloid anti-tumor immunity. Front Immunol 2025; 16:1547466. [PMID: 40098954 PMCID: PMC11911529 DOI: 10.3389/fimmu.2025.1547466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors often arise in chronically inflamed, and thus immunologically highly active niches. While immune cells are able to recognize and remove transformed cells, tumors eventually escape the control of the immune system by shaping their immediate microenvironment. In this context, macrophages are of major importance, as they initially exert anti-tumor functions before they adopt a tumor-associated phenotype that instead inhibits anti-tumor immune responses and even allows for sustaining a smoldering inflammatory, growth promoting tumor microenvironment (TME). Type I interferons (IFNs) are well established modulators of inflammatory reactions. While they have been shown to directly inhibit tumor growth, there is accumulating evidence that they also play an important role in altering immune cell functions within the TME. In the present review, we focus on the impact of type I IFNs on anti-tumor responses, driven by monocytes and macrophages. Specifically, we will provide an overview of tumor-intrinsic factors, which impinge on IFN-stimulated gene (ISG) expression, like the presence of nucleic acids, metabolites, or hypoxia. We will further summarize the current understanding of the consequences of altered IFN responses on macrophage phenotypes, i.e., differentiation, polarization, and functions. For the latter, we will focus on macrophage-mediated tumor cell killing and phagocytosis, as well as on how macrophages affect their environment by secreting cytokines and directly interacting with immune cells. Finally, we will discuss how type I IFN responses in macrophages might affect and should be considered for current and future tumor therapies.
Collapse
Affiliation(s)
- Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
37
|
Deng M, Zhao R, Zou H, Guan R, Wang J, Lee C, He B, Zhou J, Li S, Wei W, Cai H, Guo R. Oxaliplatin induces pyroptosis in hepatoma cells and enhances antitumor immunity against hepatocellular carcinoma. Br J Cancer 2025; 132:371-383. [PMID: 39748129 PMCID: PMC11832738 DOI: 10.1038/s41416-024-02908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death. METHODS Hepatoma cells were treated with oxaliplatin. Pyroptosis and immunoreactivity were evaluated in vitro and in vivo. RESULTS Oxaliplatin activated caspase-3-mediated gasdermin E (GSDME) cleavage and induced pyroptosis in Hep G2 and SK-Hep-1 cells in vitro. Liver cancer cells with high levels of GSDME expression are prone to pyroptosis. Bioinformatic analysis revealed that pyrolysis-related genes are closely related to immunity. In vivo experiments revealed that oxaliplatin exhibited superior antitumor efficacy in mice with normal immune function and more pronounced inhibitory effect on hepatocellular carcinoma with high GSDME levels. Higher levels of cytokines and greater CD8+ T cell infiltration were observed in tumor tissues with better efficacy. Furthermore, an in vitro coculture assay confirmed that oxaliplatin-induced pyroptosis in Hep G2 cells overexpressing GSDME and activated the p38/MAPK signaling pathway to improve the cytotoxicity of CD8+ T cells. Analysis of clinical samples of HCC suggested that the efficacy of FOLFOX-HAIC in patients with high GSDME expression was better than that in patients with low GSDME expression. CONCLUSIONS Oxaliplatin induced pyroptosis in hepatoma cells by activating caspase-3-mediated cleavage of GSDME, which enhanced the cytotoxicity of CD8+ T cells by regulating the p38/MAPK signaling pathway. These results suggest that GSDME level may be used as a marker to predict the efficacy of FOLFOX-HAIC.
Collapse
Affiliation(s)
- Min Deng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongce Zhao
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao Zou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiongliang Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Carol Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Benyi He
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaohua Li
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao Cai
- Department of General Surgery, Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rongping Guo
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Mariniello A, Borgeaud M, Weiner M, Frisone D, Kim F, Addeo A. Primary and Acquired Resistance to Immunotherapy with Checkpoint Inhibitors in NSCLC: From Bedside to Bench and Back. BioDrugs 2025; 39:215-235. [PMID: 39954220 PMCID: PMC11906525 DOI: 10.1007/s40259-024-00700-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 02/17/2025]
Abstract
Immunotherapy with checkpoint inhibitors has become the cornerstone of systemic treatment for non-oncogene addicted non-small-cell lung cancer. Despite its pivotal role, a significant proportion of patients-approximately 70-85%-either exhibit primary resistance to PD-1 blockade or develop acquired resistance following an initial benefit, even in combination with chemotherapy and/or anti-CTLA-4 agents. The phenomenon of primary and acquired resistance to immunotherapy represents a critical clinical challenge, largely based on our incomplete understanding of the mechanisms of action of immunotherapy, and the resulting lack of accurate predictive biomarkers. Here, we review the definitions and explore the proposed mechanisms of primary and acquired resistance, including those related to the tumor microenvironment, systemic factors, and intrinsic tumor characteristics. We also discuss translational data on adaptive changes within tumor cells and the immune infiltrate following exposure to checkpoint inhibitors. Lastly, we offer a comprehensive overview of current and emerging therapeutic strategies designed to prevent primary resistance and counteract acquired resistance.
Collapse
Affiliation(s)
- Annapaola Mariniello
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Maxime Borgeaud
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Marc Weiner
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Daniele Frisone
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Floryane Kim
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland.
| |
Collapse
|
39
|
Zhao M, Chen S, Xu J, Zhou F, Zhou M, Tian S, Ding Z, Chen Y. Alleviation of sepsis-induced lung and liver injury by polysaccharides from Tetrastigma hemsleyanum Diels et Gilg via suppression of TLR4/NF-κB/COX-2 pathway and modulation of immune checkpoint molecules. Mol Immunol 2025; 179:52-64. [PMID: 39919350 DOI: 10.1016/j.molimm.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/06/2024] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Sepsis, a common clinical complication, leads to multi-organ damage due to systemic infection and currently lacks effective therapeutic drugs. Polysaccharide derived from Tetrastigma hemsleyanum Diels et Gilg (TH), abbreviated as THP, is a water-soluble component extracted from TH, exhibiting anti-inflammatory and immunomodulatory properties. This study aims to investigate the effects and mechanisms of THP in sepsis. Results demonstrated that THP reduced neutrophils in the peripheral blood of mice established by cecal ligation and puncture (CLP), and inhibited IL-6 and MCP-1 in plasma, thereby improving systemic inflammation. THP ameliorated pulmonary edema, mitigated lung and liver histopathological injuries, reduced infiltration of neutrophils and macrophages in the lung and liver, and inhibited the TNF-α, IL-6, IL-1β, and MCP-1 transcription in both organs. Additionally, THP decreased myeloid cells, neutrophils, monocytes, and Tregs in the spleens of septic mice, while increasing T cells, CD4+ T cells, and CD8+ T cells, thereby restoring immune imbalance. Mechanistically, THP attenuated sepsis by inhibiting the overactivation of the TLR4/NF-κB/COX-2 pathway, and reducing PD-1, PD-L1, IDO1 in the lung, and PD-1, PD-L1 in the liver of septic mice. In conclusion, this study provides theoretical support for the potential application of THP in sepsis treatment.
Collapse
Affiliation(s)
- Mengjia Zhao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Senmiao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingwen Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fangmei Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingyuan Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shasha Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhishan Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuchi Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, China; School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
40
|
Wu Y, Lin C, Qian Y, Huang X, Xu Y, Li J, He Y, Xie C, Su H. Identification of immune subtypes associated with CD8+ T cell-related genes providing new treatment strategies of esophageal carcinoma. Front Immunol 2025; 16:1512230. [PMID: 40083549 PMCID: PMC11903738 DOI: 10.3389/fimmu.2025.1512230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Background CD8+ T lymphocytes greatly affect the efficacy of immunotherapy, displaying promising potential in various tumors. Here, we aimed to identify immune subtypes associated with CD8+ T cell-related genes to predict the efficacy of treatment in esophageal cancer (ESCA). Methods We obtained 13 immune cell-related datasets from the Gene Expression Omnibus (GEO) database and removed batch effects. Weighted correlation network analysis (WGCNA) and co-expression analysis were performed to identify highly correlated CD8+ T cell genes. Cox analysis was used to process ESCA clinical information, and the immune clusters (ICs) were constructed through consensus cluster analysis. Furthermore, we constructed an immune risk score model to predict the prognosis of ESCA based on these CD8+ T cell genes. This model was verified using the IMvigor210 dataset, and we functionally validated the immune risk score model in vitro. Results The results revealed significant correlations between CD8+ T cell-related genes and immune-related pathways. Three ICs were identified in ESCA, with IC3 demonstrating the most favorable prognosis. The final 6-gene prognostic risk model exhibited stable predictive performance in datasets across different platforms. Compared with that in normal esophageal epithelial (HEEC cells), CHMP7 in the 6-gene prognostic risk model was upregulated in KYSE150 and TE-1 cells. Si-CHMP7 transfection led to a decrease in tumor cell migration, invasion, and proliferation, accompanied by an accelerated apoptotic process. Conclusions Collectively, we identified the immune subtypes of CD8+ T cell-related genes with different prognostic significance. We designated CHMP7 in the 6-gene prognostic risk model as a potential target to improve tumor cell prognosis. These insights provide a strong basis for improving prognosis and facilitating more personalized and accurate treatment decisions for the immunotherapy of ESCA.
Collapse
Affiliation(s)
- Youyi Wu
- Department Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Rui’an People Hospital, Ruian, Zhejiang, China
| | - Chen Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchen Qian
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Xu
- Department of Radiation Oncology Wenzhou Central Hospital Theorem Hospital Affiliated of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youdi He
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Lee SW, Jeong S, Kim YJ, Noh JE, Rho KN, Kim HO, Cho HJ, Yang DH, Hwang EC, Kyun Bae W, Yun SJ, Yun JS, Park CK, Oh IJ, Cho JH. Enhanced thrombopoiesis supplies PD-L1 to circulating immune cells via the generation of PD-L1-expressing platelets in patients with lung cancer. J Immunother Cancer 2025; 13:e010193. [PMID: 40010769 PMCID: PMC11865743 DOI: 10.1136/jitc-2024-010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The increased expression of programmed cell death ligand 1 (PD-L1) on a subset of immune cells in the peripheral blood has been frequently observed in patients with cancer, suggesting a relationship with PD-L1 expression in tumor tissues. In this study, we investigated the mechanisms underlying PD-L1 expression on various types of immune cells in the peripheral blood of patients with cancer. METHODS PD-L1 expression on various immune cell populations was analyzed in peripheral blood mononuclear cells of 112 patients with non-small cell lung cancer (NSCLC) using flow cytometry. A mouse model of X-ray-induced acute thrombocytopenia was used to investigate the relationship between thrombopoiesis and PD-L1-expressing platelet generation. The clinical significance of PD-L1-expressing platelets was analyzed in a cohort of patients with stage IV NSCLC who received a combination of anti-programmed cell death 1 (PD-1) therapy and chemotherapy. RESULTS All immune cell populations, including monocytes, T cells, B cells, and NK cells, showed higher PD-L1 expression in patients with cancer than in healthy controls. However, this increased frequency of PD-L1-expressing cells was not attributed to the expression of the cells themselves. Instead, it was entirely dependent on the direct interaction of the cells with PD-L1-expressing platelets. Notably, the platelet-dependent acquisition of PD-L1 on circulating immune cells of patients with lung cancer was observed in various other cancer types and was mechanistically associated with a surge in thrombopoiesis, resulting in the increased production of PD-L1-expressing reticulated platelets. Clinically, patients with enhanced thrombopoiesis and concurrently high PD-L1-expressing platelets exhibited a better response to anti-PD-1 therapy. CONCLUSIONS These findings highlight the role of tumor-associated thrombopoiesis in generating PD-L1-expressing platelets that may serve as a resource for PD-L1-positive cells in the circulation and act as a predictive biomarker for anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Saei Jeong
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Young Ju Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Jeong Eun Noh
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Kyung Na Rho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Hee-Ok Kim
- Selecxine Inc, Seoul, Korea (the Republic of)
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Eu Chang Hwang
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Department of Urology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Sook Jung Yun
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Department of Dermatology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Ju Sik Yun
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| |
Collapse
|
42
|
Ryu KJ, Ji H, Park B, Yoon SE, Cho J, Kim WS, Kim HH, Kim SJ. MiR-340-5p regulates PD-L1 and predicts pembrolizumab response in extranodal NK/T-cell lymphoma. Sci Rep 2025; 15:6708. [PMID: 40000822 PMCID: PMC11861318 DOI: 10.1038/s41598-025-90542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is an aggressive, chemoresistant non-Hodgkin lymphoma subtype with poor patient outcomes linked to elevated PD-L1 expression. This study investigates miRNA-mediated regulation of PD-L1, focusing on miR-340-5p and miR-424-5p as novel therapeutic targets and predictive biomarkers for pembrolizumab response. Through miRNA sequencing and functional assays, miR-340-5p and miR-424-5p were identified as key modulators of PD-L1 in drug-resistant ENKTL cells, with their roles validated via ribonucleoprotein immunoprecipitation and luciferase reporter assays. Notably, elevated miR-340-5p levels in PD-L1-negative ENKTL tissues were inversely correlated with soluble PD-L1, implicating miR-340-5p in immune evasion mechanisms. Additionally, low serum levels of miR-340-5p were associated with reduced pembrolizumab efficacy, positioning miR-340-5p as a promising predictive biomarker for immune checkpoint blockade. These findings suggest that pre-treatment assessment of serum miR-340-5p could guide pembrolizumab therapy in ENKTL, optimizing treatment outcomes. Validation in larger cohorts is necessary to confirm the utility of miR-340-5p as a predictive biomarker for ENKTL immunotherapy.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- MicroRNAs/blood
- Humans
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Lymphoma, Extranodal NK-T-Cell/drug therapy
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/pathology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Line, Tumor
- Female
- Male
- Biomarkers, Tumor/genetics
- Middle Aged
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Kyung Ju Ryu
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea
| | - Haein Ji
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea
| | - Bon Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea.
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea.
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|
43
|
Tansou R, Kubo T, Nishida H, Nishimura Y, Mihara K, Yanagihara K, Seyama T. Lipid-siRNA Conjugates Targeting High PD-L1 Expression as Potential Novel Immune Checkpoint Inhibitors. Biomolecules 2025; 15:293. [PMID: 40001596 PMCID: PMC11852376 DOI: 10.3390/biom15020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Programmed death 1 ligand (PD-L1), an important immune checkpoint molecule, is mainly expressed on cancer cells and has been shown to exert an immunosuppressive effect on T-cell function by binding to programmed cell death 1 (PD-1) expressed on T-cells. Recently, immune checkpoint inhibitors using antibody drugs such as nivolumab and atezolizumab have attracted attention. However, clinical challenges, including limitations to the scope of their application, are yet to be addressed. In this study, we developed a novel immune checkpoint inhibitor that targets PD-L1 using lipid-siRNA conjugates (lipid-siPDL1s). The inhibitory effect of lipid-siPDL1s on PD-L1 expression was evaluated and found to strongly suppress mRNA expression. Notably, lipid-siPDL1s exerted a significantly stronger effect than unmodified siPDL1. Interestingly, lipid-siPDL1s strongly inhibited PD-L1 expression despite cancer cell stimulation by interferon-gamma, which induced the overexpression of PD-L1 genes. These results strongly suggest that lipid-siPDL1s could be used as novel immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Rina Tansou
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| | - Takanori Kubo
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| | - Haruka Nishida
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| | - Yoshio Nishimura
- School of Pharmaceutical Sciences, Ohu University, Fukushima 963-8611, Japan;
| | - Keichiro Mihara
- Department of International Center for Cell and Gene Therapy, Fujita Health University, Toyoake 470-1192, Japan;
| | - Kazuyoshi Yanagihara
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshio Seyama
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| |
Collapse
|
44
|
Canny SP, Stanaway IB, Holton SE, Mitchem M, O’Rourke AR, Pribitzer S, Baxter SK, Wurfel MM, Malhotra U, Buckner JH, Bhatraju PK, Morrell ED, Speake C, Mikacenic C, Hamerman JA. Proteomic Analyses in COVID-19-Associated Secondary Hemophagocytic Lymphohistiocytosis. Crit Care Explor 2025; 7:e1203. [PMID: 39888602 PMCID: PMC11789895 DOI: 10.1097/cce.0000000000001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
CONTEXT COVID-19 has been associated with features of a cytokine storm syndrome with some patients sharing features with the hyperinflammatory disorder, secondary hemophagocytic lymphohistiocytosis (sHLH). HYPOTHESIS We hypothesized that proteins associated with sHLH from other causes will be associated with COVID-sHLH and that subjects with fatal COVID-sHLH would have defects in immune-related pathways. METHODS AND MODELS We identified two cohorts of adult patients presenting with COVID-19 at two tertiary care hospitals in Seattle, Washington in 2020 and 2021. In this observational study, we assessed clinical laboratory values and plasma proteomics. Subjects identified as having sHLH (ferritin > 1000 plus cytopenias in two or more lineages [WBC < 5000 odds ratio [OR] ANC (absolute neutrophil count) < 1000, hemoglobin < 9 or hematocrit < 27, platelets < 100,000], and elevated transaminases [either AST (aspartate aminotransferase) or ALT (alanine aminotransferase) > 30] OR subjects with a ferritin > 3000) were compared with those with COVID-19 without sHLH. We identified 264 patients with COVID-19 of whom 24 met our sHLH definition. Eight patients who died of COVID-sHLH underwent genomic sequencing to identify variants in immune-related genes. RESULTS Nine percent of enrolled COVID-19 subjects met our defined criteria for sHLH (n = 24/264). Using broad serum proteomic approaches (O-link and SomaScan), we identified three proteins increased in subjects with COVID-19-associated sHLH (soluble PD-L1 [sPD-L1], tumor necrosis factor-R1, and interleukin [IL]-18BP, p < 0.05 for O-link and false discovery rate < 0.05 for SomaScan), supporting a role for proteins previously associated with other forms of sHLH (IL-18BP and soluble tumor necrosis factor receptor 1). We also identified candidate proteins and pathways associated with COVID-sHLH, including sPD-L1 and the syntaxin pathway. We detected pathogenic variants in DOCK8 and TMPRSS15 in deceased individuals with COVID-sHLH, further suggesting that alterations in immune-related processes may contribute to hyperinflammation and fatal outcomes in COVID-19. INTERPRETATIONS AND CONCLUSIONS Proteins increased in COVID-19-associated sHLH, such as sPD-L1, and pathways, such as the syntaxin pathway, suggest important roles for the immune response in driving sHLH in the context of COVID-19.
Collapse
Affiliation(s)
- Susan P. Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Ian B. Stanaway
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA
| | - Sarah E. Holton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Mallorie Mitchem
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Stephan Pribitzer
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA
| | - Sarah K. Baxter
- Department of Pediatrics, University of Washington, Seattle, WA
- Sonoma Biotherapeutics, Seattle, WA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Uma Malhotra
- Department of Infectious Disease, Virginia Mason Medical Center, Seattle, WA
- Department of Medicine, Section of Infectious Diseases, University of Washington, Seattle, WA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Jessica A. Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
45
|
Nihira NT, Wu W, Hosoi M, Togashi Y, Sunada S, Miyoshi Y, Miki Y, Ohta T. Nuclear PD-L1 triggers tumour-associated inflammation upon DNA damage. EMBO Rep 2025; 26:635-655. [PMID: 39747659 PMCID: PMC11811057 DOI: 10.1038/s44319-024-00354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Immune checkpoint inhibitors against PD-1/PD-L1 are highly effective in immunologically hot tumours such as triple-negative breast cancer, wherein constitutive DNA damage promotes inflammation, while inducing PD-L1 expression to avoid attack by cytotoxic T cells. However, whether and how PD-L1 regulates the DNA damage response and inflammation remains unclear. Here, we show that nuclear PD-L1 activates the ATR-Chk1 pathway and induces proinflammatory chemocytokines upon genotoxic stress. PD-L1 interacts with ATR and is essential for Chk1 activation and chromatin binding. cGAS-STING and NF-κB activation in the late phase of the DNA damage response is inhibited by PD-L1 deletion or by inhibitors of ATR and Chk1. Consequently, the induction of proinflammatory chemocytokines at this stage is inhibited by deletion of PD-L1, but restored by the ATR activator Garcinone C. Inhibition of nuclear localisation by PD-L1 mutations or the HDAC2 inhibitor Santacruzamate A inhibits chemocytokine induction. Conversely, the p300 inhibitor C646, which accelerates PD-L1 nuclear localisation, promotes chemocytokine induction. These findings suggest that nuclear PD-L1 strengthens the properties of hot tumours and contributes to shaping the tumour microenvironment.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Mitsue Hosoi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Shigeaki Sunada
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, 113-8421, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Yoshio Miki
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, 305-8550, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan.
| |
Collapse
|
46
|
Zeng X, Wang Z, Zhao A, Wu Y, Wang Z, Wu A, Wang Q, Xia X, Chen X, Zhao W, Li B, Lu Z, Lv Q, Li G, Zuo Z, Wu F, Zhao Y, Wang T, Nie G, Li S, Zhang G. Zinc nanoparticles from oral supplements accumulate in renal tumours and stimulate antitumour immune responses. NATURE MATERIALS 2025; 24:287-296. [PMID: 39815063 DOI: 10.1038/s41563-024-02093-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8+ T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells. This binding event further upregulates intracellular metallothionein-1X expression to induce additional nanoparticle binding and retention. In both tumour animal models and human renal tumour samples, we show that ZnO nanoparticles actively cross the vascular wall to achieve high intratumoural accumulation. We further explore this feature of ZnO nanoparticles for the delivery of chemotherapeutics to mouse and rabbit cancer models. Our findings demonstrate that ZnO nanoparticles derived from supplements can serve as a multifunctional drug delivery and cancer immunotherapy platform.
Collapse
Affiliation(s)
- Xin Zeng
- Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Zhenzhu Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - An Zhao
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Yiqi Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zongping Wang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Aiwen Wu
- Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Qing Wang
- Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, China
| | - Xin Xia
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xichen Chen
- Analytical and Testing Center, Nanjing Medical University, Nanjing, China
| | - Wene Zhao
- Analytical and Testing Center, Nanjing Medical University, Nanjing, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Guorong Li
- Department of Digestive Surgery and Urology, North Hospital, CHU Saint-Etienne, Saint-Etienne, France
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Gen Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
47
|
Wang M, Li X, Wu Y, Wang L, Zhang X, Dai M, Long Y, Zuo D, Li S, Yin X. Loss of RPN1 promotes antitumor immunity via PD-L1 checkpoint blockade in triple-negative breast cancer - experimental studies. Int J Surg 2025; 111:1801-1813. [PMID: 39705151 DOI: 10.1097/js9.0000000000002164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/14/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND RPN1, also known as ribophorin I (RPN1), is a type I transmembrane protein that plays an important role in glycosylation. However, the effects of RPN1 on cancer progression and immune evasion in breast cancer (BC) have not been identified. MATERIALS AND METHODS The expression of RPN1 was evaluated using RT-qPCR and immunohistochemistry (IHC). The effects of RPN1 on tumor cells were assessed using RT-qPCR, western blotting, flow cytometry, Cell Counting Kit 8 (CCK-8), colony formation assays, and in vivo experiments. The mechanism by which RPN1 modifies programmed death ligand-1 (PD-L1) and the tumor microenvironment was examined by RT-qPCR, western blotting, co-immunoprecipitation (Co-IP), and flow cytometry. The influence of the transcription factor YY1 on RPN1 expression was revealed using bioinformatics analysis, RT-qPCR, and dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS RPN1 is aberrantly expressed in triple-negative breast cancer (TNBC) cells, correlating with increased proliferation and poor prognosis. RPN1 mediates the post-translational modification of PD-L1, enhancing its glycosylation and stability, thus facilitating PD-L1-mediated immune escape and tumor growth. The deletion of RPN1 improves the TNBC microenvironment and enhances the efficacy of anti-PD-1 therapy. Additionally, we uncovered a novel regulatory axis involving YY1/RPN1/YBX1 in PD-L1 regulation, affecting TNBC growth and metastasis. CONCLUSIONS Our preliminary study reveals that targeting RPN1 promotes immune suppression, providing a new potential immunotherapy strategy for TNBC. However, further research is necessary to fully elucidate and understand the specific mechanisms of RPN1 in TNBC and its potential for clinical application.
Collapse
Affiliation(s)
- Mengxue Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunjia Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yushen Wu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xue Zhang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Dai
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yang Long
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Zuo
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
- Department of Rehabilitation Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuedong Yin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Sanchez JC, Pierpont TM, Argueta-Zamora D, Wilson K, August A, Cerione RA. PTEN loss in glioma cell lines leads to increased extracellular vesicle biogenesis and PD-L1 cargo in a PI3K-dependent manner. J Biol Chem 2025; 301:108143. [PMID: 39732171 PMCID: PMC11791317 DOI: 10.1016/j.jbc.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Phosphatase and Tensin Homolog (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K-AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor-derived secretome that drives an immunosuppressive tumor immune microenvironment and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ. Through genetic and pharmacological approaches, we show that total cellular expression of PD-L1 is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss specifically upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive tumor immune microenvironment, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.
Collapse
Affiliation(s)
- Julio C Sanchez
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Timothy M Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Dariana Argueta-Zamora
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kristin Wilson
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
49
|
Chang H, Li M, Zhang L, Li M, Ong SH, Zhang Z, Zheng J, Xu X, Zhang Y, Wang J, Liu X, Li K, Luo Y, Wang H, Miao Z, Chen X, Zha J, Yu Y. Loss of histone deubiquitinase Bap1 triggers anti-tumor immunity. Cell Oncol (Dordr) 2025; 48:183-203. [PMID: 39141316 PMCID: PMC11850471 DOI: 10.1007/s13402-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Immunotherapy using PD-L1 blockade is effective in only a small group of cancer patients, and resistance is common. This emphasizes the importance of understanding the mechanisms of cancer immune evasion and resistance. METHODS A genome-scale CRISPR-Cas9 screen identified Bap1 as a regulator of PD-L1 expression. To measure tumor size and survival, tumor cells were subcutaneously injected into both syngeneic WT mice and immunocompromised mice. The phenotypic and transcriptional characteristics of Bap1-deleted tumors were examined using flow cytometry, RNA-seq, and CUT&Tag-seq analysis. RESULTS We found that loss of histone deubiquitinase Bap1 in cancer cells activates a cDC1-CD8+ T cell-dependent anti-tumor immunity. The absence of Bap1 leads to an increase in genes associated with anti-tumor immune response and a decrease in genes related to immune evasion. As a result, the tumor microenvironment becomes inflamed, with more cDC1 cells and effector CD8+ T cells, but fewer neutrophils and regulatory T cells. We also found that the elimination of Bap1-deleted tumors depends on the tumor MHCI molecule and Fas-mediated CD8+ T cell cytotoxicity. Our analysis of TCGA data further supports these findings, showing a reverse correlation between BAP1 expression and mRNA signatures of activated DCs and T-cell cytotoxicity in various human cancers. CONCLUSION The histone deubiquitinase Bap1 could be used as a biomarker for tumor stratification and as a potential therapeutic target for cancer immunotherapies.
Collapse
Affiliation(s)
- Hong Chang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingxia Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Meng Li
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Zhiwei Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zheng
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjie Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kairui Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yao Luo
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haiyun Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
50
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|