1
|
Li S, Li J, Chen G, Lin T, Zhang P, Tong K, Chen N, Liu S. Exosomes originating from neural stem cells undergoing necroptosis participate in cellular communication by inducing TSC2 upregulation of recipient cells following spinal cord injury. Neural Regen Res 2025; 20:3273-3286. [PMID: 38993124 PMCID: PMC11881710 DOI: 10.4103/nrr.nrr-d-24-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00030/figure1/v/2024-12-20T164640Z/r/image-tiff We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury. While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function, their precise function in spinal cord injury remains unclear. To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury, we conducted single-cell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury. Subsequently, we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes. The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes. Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs, 104 long non-coding RNAs, 720 circular RNAs, and 14 microRNAs compared with the control group. Construction of a competing endogenous RNA network identified the following hub genes: tuberous sclerosis 2 ( Tsc2 ), solute carrier family 16 member 3 ( Slc16a3 ), and forkhead box protein P1 ( Foxp1 ). Notably, a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury. TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone. Furthermore, in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells. Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways. In addition, Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways. Collectively, these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
Collapse
Affiliation(s)
- Shiming Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Jianfeng Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Lin
- Department of Orthopedics and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Penghui Zhang
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ningning Chen
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Shaoyu Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Yamazawa E, Tanaka S, Nagae G, Umeda T, Tatsuno K, Hana T, Kim P, Takami T, Takai K, Komori T, Otani R, Higuchi F, Takami H, Yamada K, Nomura M, Mukasa A, Takayanagi S, Imai H, Aburatani H, Saito N. DNA methylation identifies body segment origins of spinal ependymomas. Acta Neuropathol 2025; 149:45. [PMID: 40319167 DOI: 10.1007/s00401-025-02885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Neurological Surgery, Okayama Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan.
| | - Genta Nagae
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takayoshi Umeda
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kenji Tatsuno
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Phyo Kim
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Keisuke Takai
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Yamada
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Shunsaku Takayanagi
- Department of Neuro-Oncology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama, 350-1298, Japan
| | - Hideaki Imai
- Department of Neurosurgery, Japan Community Health Care Organization Tokyo Shinjuku Medical Center, 5-1 Tsukudochou, Shinjuku-ku, Tokyo, 162-8543, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Bankolé A, Srivastava A, Shihavuddin A, Tighanimine K, Faucourt M, Koka V, Weill S, Nemazanyy I, Nelson AJ, Stokes MP, Delgehyr N, Genovesio A, Meunier A, Fumagalli S, Pende M, Spassky N. mTOR controls ependymal cell differentiation by targeting the alternative cell cycle and centrosomal proteins. EMBO Rep 2025:10.1038/s44319-025-00460-2. [PMID: 40307619 DOI: 10.1038/s44319-025-00460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Ependymal cells are multiciliated glial cells lining the ventricles of the mammalian brain. Their differentiation from progenitor cells involves cell enlargement and progresses through centriole amplification phases and ciliogenesis. These phases are accompanied by the sharp up-regulation of mTOR Complex 1 activity (mTORC1), a master regulator of macromolecule biosynthesis and cell growth, whose function in ependymal cell differentiation is unknown. We demonstrate that mTORC1 inhibition by rapamycin preserves the progenitor pool by reinforcing quiescence and preventing alternative cell cycle progression for centriole amplification. Overexpressing E2F4 and MCIDAS circumvents mTORC1-regulated processes, enabling centriole amplification despite rapamycin, and enhancing mTORC1 activity through positive feedback. Acute rapamycin treatment in multicentriolar cells during the late phases of differentiation causes centriole regrouping, indicating a direct role of mTORC1 in centriole dynamics. By phosphoproteomic and phosphomutant analysis, we reveal that the mTORC1-mediated phosphorylation of GAS2L1, a centrosomal protein that links actin and microtubule cytoskeletons, participates in centriole disengagement. This multilayered and sequential control of ependymal development by mTORC1, from the progenitor pool to centriolar function, has implications for pathophysiological conditions like aging and hydrocephalus-prone genetic diseases.
Collapse
Affiliation(s)
- Alexia Bankolé
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Asm Shihavuddin
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
- Department of EEE, Presidency University, Dhaka, Bangladesh
| | - Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Vonda Koka
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Solene Weill
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alissa J Nelson
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Matthew P Stokes
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Mario Pende
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France.
| |
Collapse
|
4
|
Alonso MI, Martínez-Páramo S, Lamus F, Gato Á. Evaluation of Adult Mouse Brain Neurogenic Niche Behavior Culturing Adult Mice Brain Slice In Vitro. Methods Mol Biol 2025. [PMID: 40172830 DOI: 10.1007/7651_2025_611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Adult brain neural precursors carry out their biological activity in specific areas in which they are able to self-renew and differentiate into neurons. This is due to a complex microenvironment of cellular interrelations in which soluble factors from the neighboring cells, vascular structures, and the content of the brain ventricle cavity (cerebrospinal fluid) play a key role. This cellular functional entity, known as the "neurogenic niche," is able to generate new mature neurons, which are functionally integrated into the neuronal circuits of the adult mammal brain. The complexity of neurogenic niche signaling, which include biologically active molecules such as growth factors and morphogens, requires an experimental approach in order to create specific modifications of the biological activity of some of these molecules by means of a model of the active neurogenic niche, allowing an evaluation of neural precursor behavior.Here we describe the adaptation of an in vitro culture technique of adult brain slices with selected coronal sections, involving the two main brain neurogenic niches, the sub-ventricular zone (SVZ), and the hippocampus dentate gyrus, together with their associated sub-ependymal zone (SEZ). We explain certain examples of the experimental approach to modify neurogenic niche soluble signaling, implanting latex microbeads as a carrier for soluble signals. Additionally, we introduce an immune-cytochemical approach involving bromodeoxyuridine detection as a neural precursor cellular lineage tracer in combination with different molecular expressions, as a means of testing progressive states of neural precursor differentiation and neuronal maturation.This system represents a suitable strategy for evaluating the biological role of soluble components of the adult brain neurogenic niche.
Collapse
Affiliation(s)
- Maria Isabel Alonso
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| | - Sonia Martínez-Páramo
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Francisco Lamus
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Ángel Gato
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
5
|
Ding C, Pan Z, Yan X, Zhou R, Li H, Chen L, Wang Y, Zhang Y. Gas1-high quiescent neural stem cells are multipotent and produce oligodendrocytes during aging and after demyelinating injury. PLoS Biol 2025; 23:e3003100. [PMID: 40179071 PMCID: PMC11990765 DOI: 10.1371/journal.pbio.3003100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/11/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Quiescent neural stem cells (qNSCs) in the adult mouse subventricular zone (SVZ) normally have limited capacity to generate glia. Gliogenic domains are present in both dorsal and ventral SVZ, with the ventral region featuring a subpopulation of Gli1+ qNSCs. In dorsal SVZ, however, the molecular identity and developmental origin of oligodendrogenic qNSCs remains elusive. Here, through single-cell analysis and lineage tracing, we identify an undefined subpopulation of Gas1high qNSCs in dorsal SVZ, distinct from Gli1+ qNSCs. These cells originate from embryonic Gas1high dorsal radial glia, and persist into the aged SVZ. Remarkably, they are multipotent and more gliogenic than Gas1low/- qNSCs, continuously generating oligodendrocytes in the adult and aged brain, and can be mobilized for myelin repair upon demyelination. Together, our study uncovers a subpopulation of dorsally derived, multipotent long-term qNSCs in the adult and aged SVZ with enhanced gliogenic potential, shedding light on the heterogeneity and plasticity of NSCs in normal, aging, and disease conditions.
Collapse
Affiliation(s)
- Chaoqiong Ding
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, China
| | - Zhenzhong Pan
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
| | - Xiang Yan
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,
| | - Ran Zhou
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
| | - Huifang Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
| |
Collapse
|
6
|
Sun YQ, Huang XX, Guo W, Hong C, Ji J, Zhang XY, Yang J, Hu G, Sun XL. IFN-γ signaling links ventriculomegaly to choroid plexus and ependyma dysfunction following maternal immune activation. J Neuroinflammation 2025; 22:83. [PMID: 40089736 PMCID: PMC11909946 DOI: 10.1186/s12974-025-03409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Maternal immune activation (MIA) is a principal environmental risk factor contributing to autism spectrum disorder (ASD) and can be causally linked to ASD symptoms. In our study, we found that MIA triggered by poly (I: C) injection caused ventriculomegaly in offspring due to the dysfunction of the choroid plexus (Chp) and ependyma. We subsequently identified a sustained enhancement of interferon-γ (IFN-γ) signaling in the brain and serum of MIA offspring. Further study revealed that increased IFN-γ signaling could disrupt the barrier function of Chp epithelial cells by activating macrophages, and suppress the differentiation of primary ependymal cells via the signal transducer and activator of transcription 1/3 signaling. The effects of MIA on the offspring were mitigated by administration of IFNGR-blocking antibody in pregnant dams, while systemic maternal administration of IFN-γ was sufficient to mimic the effect of MIA. Overall, our findings revealed that ventriculomegaly caused by IFN-γ signaling could be a critical factor in compromising fetal brain development in MIA-induced ASD and provide a mechanistic framework for the association between maternal inflammation and abnormal development of ventricles in the offspring.
Collapse
Affiliation(s)
- Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chen Hong
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
7
|
Harkins D, Ali S, Tockovska T, Ciganovic S, Casasbuenas DL, Watanabe S, Ouzikov S, Yuzwa SA. Clonal lineage tracing and transcriptomics of cortical progenitor populations reveal maintenance of differentiation potential. Stem Cell Reports 2025; 20:102418. [PMID: 39952245 PMCID: PMC11960535 DOI: 10.1016/j.stemcr.2025.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
Postnatal neocortical development is a complex period wherein radial glial progenitors (RGPs) complete excitatory neurogenesis and transition to the production of glia. Here, we take advantage of a multi-layered lineage tracing tool pbacBarcode, to examine the contributions of individual cortical RGPs to the postnatal cortex. We reveal that some individual cortical RGPs are multipotent and give rise to olfactory bulb interneurons, astrocytes, and oligodendrocytes in a ∼2:1:1 ratio. We provide evidence that differentiation potential into terminal cell types is maintained as late as post-natal day (P)4, suggesting that a population decline model, as opposed to cell fate restriction, underlies postnatal neocortical development. Moreover, a pool of proliferative intermediary cells, which may represent a multipotent postnatal intermediate progenitor cell population, may contribute to the production of the three major cell types. Lastly, we examine RGP postnatal contribution to oligodendrocytes and show that oligodendrocyte progenitor founder cell production by cortical RGPs is largely complete by P3.
Collapse
Affiliation(s)
- Danyon Harkins
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shawar Ali
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Teodora Tockovska
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Bioinformatics and HPC Core, Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Sara Ciganovic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daniela Lozano Casasbuenas
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Samuel Watanabe
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Stephanie Ouzikov
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto. 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2025; 60:749-761.e5. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
9
|
DeSpenza T, Kiziltug E, Allington G, Barson DG, McGee S, O'Connor D, Robert SM, Mekbib KY, Nanda P, Greenberg ABW, Singh A, Duy PQ, Mandino F, Zhao S, Lynn A, Reeves BC, Marlier A, Getz SA, Nelson-Williams C, Shimelis H, Walsh LK, Zhang J, Wang W, Prina ML, OuYang A, Abdulkareem AF, Smith H, Shohfi J, Mehta NH, Dennis E, Reduron LR, Hong J, Butler W, Carter BS, Deniz E, Lake EMR, Constable RT, Sahin M, Srivastava S, Winden K, Hoffman EJ, Carlson M, Gunel M, Lifton RP, Alper SL, Jin SC, Crair MC, Moreno-De-Luca A, Luikart BW, Kahle KT. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nat Neurosci 2025; 28:536-557. [PMID: 39994410 PMCID: PMC12038823 DOI: 10.1038/s41593-024-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2024] [Indexed: 02/26/2025]
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (ventriculomegaly) is a defining feature of congenital hydrocephalus (CH) and an under-recognized concomitant of autism. Here, we show that de novo mutations in the autism risk gene PTEN are among the most frequent monogenic causes of CH and primary ventriculomegaly. Mouse Pten-mutant ventriculomegaly results from aqueductal stenosis due to hyperproliferation of periventricular Nkx2.1+ neural progenitor cells (NPCs) and increased CSF production from hyperplastic choroid plexus. Pten-mutant ventriculomegalic cortices exhibit network dysfunction from increased activity of Nkx2.1+ NPC-derived inhibitory interneurons. Raptor deletion or postnatal everolimus treatment corrects ventriculomegaly, rescues cortical deficits and increases survival by antagonizing mTORC1-dependent Nkx2.1+ NPC pathology. Thus, PTEN mutations concurrently alter CSF dynamics and cortical networks by dysregulating Nkx2.1+ NPCs. These results implicate a nonsurgical treatment for CH, demonstrate a genetic association of ventriculomegaly and ASD, and help explain neurodevelopmental phenotypes refractory to CSF shunting in select individuals with CH.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY, USA
| | - Daniel G Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - David O'Connor
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Phan Q Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Lynn
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie A Getz
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Lauren K Walsh
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Mackenzi L Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Annaliese OuYang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laetitia R Reduron
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer Hong
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - William Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marina Carlson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael C Crair
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Mellanson K, Zhou L, Michurina T, Mikhailik A, Benveniste H, Samaras D, Enikolopov G, Peunova N. Ciliated cell domains with locally coordinated ciliary motion generate a mosaic of microflows in the brain's lateral ventricles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638730. [PMID: 40027612 PMCID: PMC11870595 DOI: 10.1101/2025.02.19.638730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Circulation of cerebrospinal fluid (CSF) through the brain's ventricles is essential for maintaining brain homeostasis and supporting neurogenesis. CSF flow is supported by the structural polarization of multiciliated cells, which align with the flow direction. However, it remains unclear how the organization of tissue-wide polarity across the ciliary epithelium comprised of thousands of cells, determines the trajectory of the flow and efficient distribution of the CSF. Here, we used new approaches to analyze the organization of translational polarity across extensive areas of the lateral ventricular wall. We also used live imaging to examine cilia motion, flow trajectories, and ciliary beat frequency (CBF) in live preparations of ventricles. In addition to the primary flow running across the ventricular wall from the posterior area to the anterior (P-A), we found multiple local microflows with both direct and curved trajectories that deviate from the mainstream P-A direction. Our results suggest that the ciliated epithelium in the lateral ventricles varies in the alignment of ciliated cell translational polarity: whereas in the narrow dorsal area translational polarity is aligned with the direction of the mainstream flow, in the periphery of the mainstream it is organized into distinct cell clusters with locally aligned polarity vectors. We posit that the cluster organization of the multiciliated ependymal cells underpins the generation of a complex mosaic of flows, with the local microflows facilitating the wide spreading of the CSF across the ependyma. We demonstrate that nNOS is involved in the control of translational polarity, cluster organization, microflows, and CBF in the ependyma. Significance The flow of cerebrospinal fluid (CSF) is crucial for brain homeostasis. This flow is driven by the coordinated beating of cilia on thousands of ciliated cells. Planar polarity vector of the ciliated cells is aligned with the flow direction in the areas of the ependyma underlying the mainstream flow (1). However, the overall alignment of planar cell polarity and flow across the whole tissue is unclear. Here we report a discovery of complex flow patterns over the ependyma, consisting of numerous microflows in the periphery of the mainstream flow. Using new approaches, we found that planar polarity of the ependymal ciliated cells on the periphery of the mainstream flow aligns only locally, indicating a clustered organization of the ependyma that supports various flow directions.
Collapse
|
11
|
Pang X, Gu L, Han QY, Xing JQ, Zhao M, Huang SY, Yi JX, Pan J, Hong H, Xue W, Zhou XQ, Su ZH, Zhang XR, Sun LM, Jiang SZ, Luo D, Chen L, Wang ZJ, Yu Y, Xia T, Zhang XM, Li AL, Zhou T, Cai H, Li T. RGS22 maintains the physiological function of ependymal cells to prevent hydrocephalus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:441-453. [PMID: 39400871 DOI: 10.1007/s11427-024-2720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Xue Pang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jia-Qing Xing
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Yi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jun-Xi Yi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Zhi-Hui Su
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xin-Ran Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zheng-Jie Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yu Yu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Kang SJ, Kim YH, Nguyen-Phuong T, Kim Y, Oh JM, Go JC, Kim D, Park CG, Lee H, Kim HJ. Immune cell-enriched single-cell RNA sequencing unveils the interplay between infiltrated CD8 + T resident memory cells and choroid plexus epithelial cells in Alzheimer's disease. J Neuroimmunol 2025; 398:578488. [PMID: 39571412 DOI: 10.1016/j.jneuroim.2024.578488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and the leading cause of dementia. Despite significant efforts, treatment strategies targeting amyloid-β have been less successful than anticipated. Recently, the role of neuroinflammation and adaptive immune response in AD pathogenesis has gained attention. Here, we performed immune cell-enriched single-cell RNA sequencing of brain parenchymal cells from 12-month-old 5xFAD, an AD mouse model. We analyzed 11,587 single cells and found distinct differences in T cell and choroid plexus cell populations between 5xFAD mouse and littermate control. Subsequent sub-clustering of T cells in the 5xFAD mouse revealed distinct subtypes, with CD8+ resident memory T cells (TRM) being the most prevalent T cell type. In addition, we observed an increase in T cell exhaustion markers, including Pdcd1, Ctla4, and Havcr2, with a particularly significant elevation of PD-1 and TIM-3 in CD8+ TRM in 5xFAD mouse. Furthermore, choroid plexus (ChP) epithelial cells showed altered gene expression patterns, with higher expression of MHC class I and Type I IFN-stimulated genes in 5xFAD mouse compared to the control mouse, suggesting an association with clonal expansion of AD-specific T cells in the brain. Through single-cell RNA sequencing (scRNA-seq) analysis, our study highlights the potential role of resident memory CD8+ T cell and their possible interactions with ChP epithelial cells. This study provides an exploration of the brain microenvironment landscape in AD, revealing critical insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Seong-Jun Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; PB Immune Therapeutics Inc., Seoul, Republic of Korea
| | - Yong-Hee Kim
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Thuy Nguyen-Phuong
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; PB Immune Therapeutics Inc., Seoul, Republic of Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yijoon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin-Mi Oh
- Samsung Genomic Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jae-Chun Go
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - DaeSik Kim
- PB Immune Therapeutics Inc., Seoul, Republic of Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; PB Immune Therapeutics Inc., Seoul, Republic of Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Hyunsu Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; PB Immune Therapeutics Inc., Seoul, Republic of Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhang L, Xu YM, Bian MM, Yan HZ, Gao JX, Bao QH, Chen YQ, Ding SQ, Wang R, Zhang N, Hu JG, Lü HZ. Ezrin, a novel marker of ependymal cells, can be used to demonstrate their proliferation regulation after spinal cord injury in mice. Neurobiol Dis 2024; 203:106746. [PMID: 39603280 DOI: 10.1016/j.nbd.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ependymal cells (EpCs), as a potential stem cell niche, have gained interest for their potential in vivo stem cell therapy for spinal cord injury (SCI). Heterogeneity of spinal EpCs may contribute to differences in the ability of spinal EpCs to proliferate, differentiate and transition after injury, while there is limited understanding of the regulation of these events. Our research found that ezrin (Ezr) was expressed highly in EpCs of the spinal cord, and its upregulation rapidly occurred after injury (6 h). It remained consistently highly expressed in proliferating EpCs, this occurs before pathological accumulation of it occurs in other glial and immune-related cells. Differential expression of Ezr, Arg3, Pvalb, Ccnd1, and Gmpr characterized distinct responses of EpCs to injury activity. Also, we uncovered the dynamic regulatory behavior of immature EpCs after injury. In contrast to constitutive expression in parenchymal tissues, injury factors upregulated guanosine monophosphate reductase (Gmpr) in arrested EpCs, unveiling a distinctive mechanism to regulate proliferation in EpCs following spinal cord injury.
Collapse
Affiliation(s)
- Lin Zhang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; School of life Science, Bengbu Medical University, Anhui 233030, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Qian-Hui Bao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases,Bengbu Medical University, Anhui 233030, PR China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases,Bengbu Medical University, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases,Bengbu Medical University, Anhui 233030, PR China.
| |
Collapse
|
14
|
Chouly M, Bally-Cuif L. Generating neurons in the embryonic and adult brain: compared principles and mechanisms. C R Biol 2024; 347:199-221. [PMID: 39535540 DOI: 10.5802/crbiol.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Neurogenesis is a lifelong process, generating neurons in the right amount, time and place and with the correct identity to permit the growth, function, plasticity and repair of the nervous system, notably the brain. Neurogenesis originates from neural progenitor cells (NPs), endowed with the capacity to divide, renew to maintain the progenitor population, or commit to engage in the neurogenesis process. In the adult brain, these progenitors are classically called neural stem cells (NSCs). We review here the commonalities and differences between NPs and NSCs, in their cellular and molecular attributes but also in their potential, regulators and lineage, in the embryonic and adult brains. Our comparison is based on the two most studied model systems, namely the telencephalon of the zebrafish and mouse. We also discuss how the population of embryonic NPs gives rise to adult NSCs, and outstanding questions pertaining to this transition.
Collapse
|
15
|
Herzeg A, Borges B, Diafos LN, Gupta N, MacKenzie TC, Sanders SJ. The Conundrum of Mechanics Versus Genetics in Congenital Hydrocephalus and Its Implications for Fetal Therapy Approaches: A Scoping Review. Prenat Diagn 2024; 44:1354-1366. [PMID: 39218781 DOI: 10.1002/pd.6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy, particularly for single-gene disorders (SGDs), have led to significant progress in developing innovative precision medicine approaches that hold promise for treating conditions such as primary hydrocephalus (CH), which is characterized by increased cerebrospinal fluid (CSF) volumes and cerebral ventricular dilation as a result of impaired brain development, often due to genetic causes. CH is a significant contributor to childhood morbidity and mortality and a driver of healthcare costs. In many cases, prenatal ultrasound can readily identify ventriculomegaly as early as 14-20 weeks of gestation, with severe cases showing poor neurodevelopmental outcomes. Postnatal surgical approaches, such as ventriculoperitoneal shunts, do not address the underlying genetic causes, have high complication rates, and result in a marginal improvement of neurocognitive deficits. Prenatal somatic cell gene therapy (PSCGT) promises a novel approach to conditions such as CH by targeting genetic mutations in utero, potentially improving long-term outcomes. To better understand the pathophysiology, genetic basis, and molecular pathomechanisms of CH, we conducted a scoping review of the literature that identified over 160 published genes linked to CH. Mutations in L1CAM, TRIM71, MPDZ, and CCDC88C play a critical role in neural stem cell development, subventricular zone architecture, and the maintenance of the neural stem cell niche, driving the development of CH. Early prenatal interventions targeting these genes could curb the development of the expected CH phenotype, improve neurodevelopmental outcomes, and possibly limit the need for surgical approaches. However, further research is needed to establish robust genotype-phenotype correlations and develop safe and effective PSCGT strategies for CH.
Collapse
Affiliation(s)
- Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Loukas N Diafos
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Nalin Gupta
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Stephan J Sanders
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Institute for Developmental and Regenerative Medicine, Oxford University, Oxford, UK
| |
Collapse
|
16
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
17
|
O'Shea TM, Ao Y, Wang S, Ren Y, Cheng AL, Kawaguchi R, Shi Z, Swarup V, Sofroniew MV. Derivation and transcriptional reprogramming of border-forming wound repair astrocytes after spinal cord injury or stroke in mice. Nat Neurosci 2024; 27:1505-1521. [PMID: 38907165 PMCID: PMC11303254 DOI: 10.1038/s41593-024-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yilong Ren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Amy L Cheng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Mathias A, Perriot S, Jones S, Canales M, Bernard-Valnet R, Gimenez M, Torcida N, Oberholster L, Hottinger AF, Zekeridou A, Theaudin M, Pot C, Du Pasquier R. Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases. Front Immunol 2024; 15:1419712. [PMID: 39114659 PMCID: PMC11303155 DOI: 10.3389/fimmu.2024.1419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objectives Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Methods Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Results Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Conclusion Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Sylvain Perriot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Samuel Jones
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Mathieu Canales
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Nathan Torcida
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Larise Oberholster
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Andreas F. Hottinger
- Lundin Family Brain Tumor Research Centre, Department of Clinical Neurosciences and Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology and Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Marie Theaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Morozov YM, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cereb Cortex 2024; 34:bhae293. [PMID: 39024157 PMCID: PMC11485267 DOI: 10.1093/cercor/bhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| |
Collapse
|
20
|
Schupp PG, Shelton SJ, Brody DJ, Eliscu R, Johnson BE, Mazor T, Kelley KW, Potts MB, McDermott MW, Huang EJ, Lim DA, Pieper RO, Berger MS, Costello JF, Phillips JJ, Oldham MC. Deconstructing Intratumoral Heterogeneity through Multiomic and Multiscale Analysis of Serial Sections. Cancers (Basel) 2024; 16:2429. [PMID: 39001492 PMCID: PMC11240479 DOI: 10.3390/cancers16132429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that are consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.
Collapse
Affiliation(s)
- Patrick G. Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samuel J. Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Daniel J. Brody
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Brett E. Johnson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin W. Kelley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew B. Potts
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Michael W. McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Eric J. Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; (P.G.S.); (S.J.S.); (D.J.B.); (R.E.); (B.E.J.); (T.M.); (K.W.K.); (M.B.P.); (M.W.M.); (D.A.L.); (R.O.P.); (M.S.B.); (J.F.C.); (J.J.P.)
| |
Collapse
|
21
|
Jimenez-Cyrus D, Adusumilli VS, Stempel MH, Maday S, Ming GL, Song H, Bond AM. Molecular cascade reveals sequential milestones underlying hippocampal neural stem cell development into an adult state. Cell Rep 2024; 43:114339. [PMID: 38852158 PMCID: PMC11320877 DOI: 10.1016/j.celrep.2024.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Quiescent adult neural stem cells (NSCs) in the mammalian brain arise from proliferating NSCs during development. Beyond acquisition of quiescence, an adult NSC hallmark, little is known about the process, milestones, and mechanisms underlying the transition of developmental NSCs to an adult NSC state. Here, we performed targeted single-cell RNA-seq analysis to reveal the molecular cascade underlying NSC development in the early postnatal mouse dentate gyrus. We identified two sequential steps, first a transition to quiescence followed by further maturation, each of which involved distinct changes in metabolic gene expression. Direct metabolic analysis uncovered distinct milestones, including an autophagy burst before NSC quiescence acquisition and cellular reactive oxygen species level elevation along NSC maturation. Functionally, autophagy is important for the NSC transition to quiescence during early postnatal development. Together, our study reveals a multi-step process with defined milestones underlying establishment of the adult NSC pool in the mammalian brain.
Collapse
Affiliation(s)
- Dennisse Jimenez-Cyrus
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vijay S Adusumilli
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max H Stempel
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
22
|
Xiong Y, Pi W, Zhao W, Shi W, Yan W, Yang H, Zhou Y, Li Q, Yang L. Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries. Front Cell Dev Biol 2024; 12:1426395. [PMID: 38983786 PMCID: PMC11231923 DOI: 10.3389/fcell.2024.1426395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.
Collapse
Affiliation(s)
- Yanxiang Xiong
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wang Zhao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Shi
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weihong Yan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanrong Zhou
- Department of Health, The Qinglong County People’s Hospital, Qinglong, Guizhou, China
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Leiluo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
23
|
Saldivia N, Salazar K, Cifuentes M, Espinoza F, Harrison FE, Nualart F. Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages. Glia 2024; 72:708-727. [PMID: 38180226 DOI: 10.1002/glia.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-β through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.
Collapse
Affiliation(s)
- Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Francisca Espinoza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
24
|
Baur K, Carrillo-García C, Şan Ş, von Hahn M, Strelau J, Hölzl-Wenig G, Mandl C, Ciccolini F. Growth/differentiation factor 15 controls ependymal and stem cell number in the V-SVZ. Stem Cell Reports 2024; 19:351-365. [PMID: 38366596 PMCID: PMC10937156 DOI: 10.1016/j.stemcr.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
The expression of growth/differentiation factor (GDF) 15 increases in the ganglionic eminence (GE) late in neural development, especially in neural stem cells (NSCs). However, GDF15 function in this region remains unknown. We report that GDF15 receptor is expressed apically in the GE and that GDF15 ablation promotes proliferation and cell division in the embryonic GE and in the adult ventricular-subventricular zone (V-SVZ). This causes a transient generation of additional neuronal progenitors, compensated by cell death, and a lasting increase in the number of ependymal cells and apical NSCs. Finally, both GDF15 receptor and the epidermal growth factor receptor (EGFR) were expressed in progenitors and mutation of GDF15 affected EGFR signaling. However, only exposure to exogenous GDF15, but not to EGF, normalized proliferation and the number of apical progenitors. Thus, GDF15 regulates proliferation of apical progenitors in the GE, thereby affecting the number of ependymal cells and NSCs.
Collapse
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Carmen Carrillo-García
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Şeydanur Şan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; Sorbonne University, 21 Rue de l'École de Médecine, 75006 Paris, France
| | - Manja von Hahn
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Jens Strelau
- University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Del Bigio MR. History of research concerning the ependyma: a view from inside the human brain. Front Cell Neurosci 2024; 17:1320369. [PMID: 38259502 PMCID: PMC10800557 DOI: 10.3389/fncel.2023.1320369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The history of research concerning ependymal cells is reviewed. Cilia were identified along the surface of the cerebral ventricles c1835. Numerous anatomical and histopathological studies in the late 1800's showed irregularities in the ependymal surface that were thought to be indicative of specific pathologies such as syphilis; this was subsequently disproven. The evolution of thoughts about functions of cilia, the possible role of ependyma in the brain-cerebrospinal fluid barrier, and the relationship of ependyma to the subventricular zone germinal cells is discussed. How advances in light and electron microscopy and cell culture contributed to our understanding of the ependyma is described. Discoveries of the supraependymal serotoninergic axon network and supraependymal macrophages are recounted. Finally, the consequences of loss of ependymal cells from different regions of the central nervous system are considered.
Collapse
Affiliation(s)
- Marc R. Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Shin M, Lee J, Lee H, Kumar V, Kim J, Park S. Deup1 Expression Interferes with Multiciliated Differentiation. Mol Cells 2023; 46:746-756. [PMID: 38052490 PMCID: PMC10701303 DOI: 10.14348/molcells.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.
Collapse
Affiliation(s)
- Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
27
|
Chelyshev Y, Ermolin I. RNA Sequencing and Spatial Transcriptomics in Traumatic Spinal Cord Injury (Review). Sovrem Tekhnologii Med 2023; 15:75-86. [PMID: 39944372 PMCID: PMC11811828 DOI: 10.17691/stm2023.15.6.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 01/03/2025] Open
Abstract
In order to understand the fundamental mechanisms of the spinal cord functioning, it is necessary to reveal a complete set of cell types and their populations, which can be identified by the unique combination of their features. The technologies of single-cell and single-nucleus RNA sequencing serve as effective tools for determining the role of various types of cells in normal and pathological reactions in the spinal cord. Spatial transcriptomics combines these technologies with the methods of obtaining and saving spatial information about cells in the tissue, which allows one to localize more precisely the injured area, characterize in detail the tissue compartments in the specific anatomical region, and analyze the pathological picture at the cellular and molecular level. Atlases of development of RNA-sequencing technologies and spatial transcriptomics created on the basis of the data from single-cell and single-nucleus RNA sequencing open great opportunities for new perspective concepts concerning the mechanisms of rearranging neural connections and restoration of sensorimotor functions in traumatic spine injury. The transcriptomes obtained were a powerful resource for detecting new functions of the nervous tissue cells. To establish therapeutic targets, the detected molecular diversity in neurons of various types enables tracing and comparing their susceptibility and regenerative potential. Determination of causes of selective cell susceptibility in spinal cord injury needs comprehensive information on the specificity of human cell populations in comparison with the known data obtained on the experimental models. In the present review, we have summarized advances in identification and study of cell characteristics in a traumatized spinal cord based on transcription profiling at a single-cell or single-nucleus level.
Collapse
Affiliation(s)
- Yu.A. Chelyshev
- MD, DSc, Professor, Department of Histology; Kazan Federal University, 18 Kremlyovskaya St., Kazan, the Republic of Tatarstan, 420008, Russia
| | - I.L. Ermolin
- DSc, Professor, Department of Histology with Cytology and Embryology; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
28
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
29
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
30
|
Nelles DG, Hazrati LN. The pathological potential of ependymal cells in mild traumatic brain injury. Front Cell Neurosci 2023; 17:1216420. [PMID: 37396927 PMCID: PMC10312375 DOI: 10.3389/fncel.2023.1216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common neurological condition affecting millions of individuals worldwide. Although the pathology of mTBI is not fully understood, ependymal cells present a promising approach for studying the pathogenesis of mTBI. Previous studies have revealed that DNA damage in the form of γH2AX accumulates in ependymal cells following mTBI, with evidence of widespread cellular senescence in the brain. Ependymal ciliary dysfunction has also been observed, leading to altered cerebrospinal fluid homeostasis. Even though ependymal cells have not been extensively studied in the context of mTBI, these observations reflect the pathological potential of ependymal cells that may underlie the neuropathological and clinical presentations of mTBI. This mini review explores the molecular and structural alterations that have been reported in ependymal cells following mTBI, as well as the potential pathological mechanisms mediated by ependymal cells that may contribute to overall dysfunction of the brain post-mTBI. Specifically, we address the topics of DNA damage-induced cellular senescence, dysregulation of cerebrospinal fluid homeostasis, and the consequences of impaired ependymal cell barriers. Moreover, we highlight potential ependymal cell-based therapies for the treatment of mTBI, with a focus on neurogenesis, ependymal cell repair, and modulation of senescence signaling pathways. Further insight and research in this field will help to establish the role of ependymal cells in the pathogenesis of mTBI and may lead to improved treatments that leverage ependymal cells to target the origins of mTBI pathology.
Collapse
Affiliation(s)
- Diana G. Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
31
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
32
|
Li J, Godoy MI, Zhang AJ, Diamante G, Ahn IS, Cebrian-Silla A, Alvarez-Buylla A, Yang X, Novitch BG, Zhang Y. Prdm16 and Vcam1 regulate the postnatal disappearance of embryonic radial glia and the ending of cortical neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528567. [PMID: 36824905 PMCID: PMC9949035 DOI: 10.1101/2023.02.14.528567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Embryonic neural stem cells (NSCs, i.e., radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends. The mechanisms that regulate the postnatal disappearance of radial glia and the ending of embryonic neurogenesis remain poorly understood. Here, we show that PR domain-containing 16 (Prdm16) promotes the disappearance of radial glia and the ending of neurogenesis in the cerebral cortex. Genetic deletion of Prdm16 from NSCs leads to the persistence of radial glia in the adult V-SVZ and prolonged postnatal cortical neurogenesis. Mechanistically, Prdm16 induces the postnatal reduction in Vascular Cell Adhesion Molecule 1 (Vcam1). The postnatal disappearance of radial glia and the ending of cortical neurogenesis occur normally in Prdm16-Vcam1 double conditional knockout mice. These observations reveal novel molecular regulators of the postnatal disappearance of radial glia and the ending of embryonic neurogenesis, filling a key knowledge gap in NSC biology.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Marlesa I. Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Alice J. Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | | | - In Sook Ahn
- Department of Integrative Biology and Physiology, UCLA
| | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA
- Brain Research Institute at UCLA
- Institute for Quantitative and Computational Biosciences at UCLA
- Molecular Biology Institute at UCLA
| | - Bennett G. Novitch
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Department of Neurobiology, UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| |
Collapse
|
33
|
LRP2 contributes to planar cell polarity-dependent coordination of motile cilia function. Cell Tissue Res 2023; 392:535-551. [PMID: 36764939 PMCID: PMC10172251 DOI: 10.1007/s00441-023-03757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 02/12/2023]
Abstract
Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.
Collapse
|
34
|
Rodrigo Albors A, Singer GA, Llorens-Bobadilla E, Frisén J, May AP, Ponting CP, Storey KG. An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury. Dev Cell 2023; 58:239-255.e10. [PMID: 36706756 DOI: 10.1016/j.devcel.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
The adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord ependymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also immature as well as mature cell states. By comparing transcriptomes of spinal cord and brain ependymal cells, which lack stem cell abilities, we identify immature cells as potential spinal cord stem cells. Following spinal cord injury, these cells re-enter the cell cycle, which is accompanied by a short-lived reversal of ependymal cell maturation. We further analyze ependymal cells in the human spinal cord and identify widespread cell maturation and altered cell identities. This in-depth characterization of spinal cord ependymal cells provides insight into their biology and informs strategies for spinal cord repair.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Gail A Singer
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrew P May
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Tornado Bio, Inc., South San Francisco, CA 94080, USA
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kate G Storey
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
35
|
Ringers C, Bialonski S, Ege M, Solovev A, Hansen JN, Jeong I, Friedrich BM, Jurisch-Yaksi N. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 2023; 12:77701. [PMID: 36700548 PMCID: PMC9940908 DOI: 10.7554/elife.77701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
Collapse
Affiliation(s)
- Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Stephan Bialonski
- Institute for Data-Driven Technologies, Aachen University of Applied SciencesJülichGermany
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anton Solovev
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Jan Niklas Hansen
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Benjamin M Friedrich
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
36
|
Lopez-Rodriguez D, Rohrbach A, Lanzillo M, Gervais M, Croizier S, Langlet F. Ontogeny of ependymoglial cells lining the third ventricle in mice. Front Endocrinol (Lausanne) 2023; 13:1073759. [PMID: 36686420 PMCID: PMC9849764 DOI: 10.3389/fendo.2022.1073759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction During hypothalamic development, the germinative neuroepithelium gives birth to diverse neural cells that regulate numerous physiological functions in adulthood. Methods Here, we studied the ontogeny of ependymal cells in the mouse mediobasal hypothalamus using the BrdU approach and publicly available single-cell RNAseq datasets. Results We observed that while typical ependymal cells are mainly produced at E13, tanycyte birth depends on time and subtypes and lasts up to P8. Typical ependymocytes and β tanycytes are the first to arise at the top and bottom of the dorsoventral axis around E13, whereas α tanycytes emerge later in development, generating an outside-in dorsoventral gradient along the third ventricle. Additionally, α tanycyte generation displayed a rostral-to-caudal pattern. Finally, tanycytes mature progressively until they reach transcriptional maturity between P4 and P14. Discussion Altogether, this data shows that ependyma generation differs in time and distribution, highlighting the heterogeneity of the third ventricle.
Collapse
Affiliation(s)
- David Lopez-Rodriguez
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc Lanzillo
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Manon Gervais
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sophie Croizier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
D'Gama PP, Jurisch-Yaksi N. Methods to study motile ciliated cell types in the zebrafish brain. Methods Cell Biol 2023; 176:103-123. [PMID: 37164533 DOI: 10.1016/bs.mcb.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.
Collapse
|
38
|
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun 2022; 4:fcac288. [PMID: 36415662 PMCID: PMC9677497 DOI: 10.1093/braincomms/fcac288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 08/08/2023] Open
Abstract
Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.
Collapse
Affiliation(s)
- Diana G Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Canada
| | - Lili-Naz Hazrati
- Correspondence to: Dr. Lili-Naz Hazrati 555 University Ave, Toronto ON M5G 1X8, Canada E-mail:
| |
Collapse
|
39
|
Olmos-Carreño CL, Figueres-Oñate M, Scicolone GE, López-Mascaraque L. Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. Int J Mol Sci 2022; 23:ijms232012388. [PMID: 36293245 PMCID: PMC9604099 DOI: 10.3390/ijms232012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Clonal cell analysis outlines the ontogenic potential of single progenitor cells, allowing the elucidation of the neural heterogeneity among different cell types and their lineages. In this work, we analyze the potency of retinal stem/progenitor cells through development using the chick embryo as a model. We implemented in ovo the clonal genetic tracing strategy UbC-StarTrack for tracking retinal cell lineages derived from individual progenitors of the ciliary margin at E3.5 (HH21-22). The clonal assignment of the derived-cell progeny was performed in the neural retina at E11.5-12 (HH38) through the identification of sibling cells as cells expressing the same combination of fluorophores. Moreover, cell types were assessed based on their cellular morphology and laminar location. Ciliary margin derived-cell progenies are organized in columnar associations distributed along the peripheral retina with a limited tangential dispersion. The analysis revealed that, at the early stages of development, this region harbors multipotent and committed progenitor cells.
Collapse
Affiliation(s)
- Cindy L. Olmos-Carreño
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
| | - María Figueres-Oñate
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| | - Gabriel E. Scicolone
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Laura López-Mascaraque
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| |
Collapse
|
40
|
Wang Y, Chiola S, Yang G, Russell C, Armstrong CJ, Wu Y, Spampanato J, Tarboton P, Ullah HMA, Edgar NU, Chang AN, Harmin DA, Bocchi VD, Vezzoli E, Besusso D, Cui J, Cattaneo E, Kubanek J, Shcheglovitov A. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat Commun 2022; 13:5688. [PMID: 36202854 PMCID: PMC9537523 DOI: 10.1038/s41467-022-33364-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.
Collapse
Affiliation(s)
- Yueqi Wang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - Chad Russell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Yuanyuan Wu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Paisley Tarboton
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Amelia N Chang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jun Cui
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Aleksandr Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
41
|
Cao L, Huang MZ, Zhang Q, Luo ZR, Zhang Y, An PJ, Yang LL, Tan W, Wang CQ, Dou XW, Li Q. The neural stem cell properties of Pkd2l1+ cerebrospinal fluid-contacting neurons in vivo. Front Cell Neurosci 2022; 16:992520. [PMID: 36159391 PMCID: PMC9500444 DOI: 10.3389/fncel.2022.992520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The neural stem cells (NSCs) in the ventricular-subventricular zone of the adult mammalian spinal cord may be of great benefit for repairing spinal cord injuries. However, the sources of NSCs remain unclear. Previously, we have confirmed that cerebrospinal fluid-contacting neurons (CSF-cNs) have NSC potential in vitro. In this study, we verified the NSC properties of CSF-cNs in vivo. In mouse spinal cords, Pkd2l1+ CSF-cNs localized around the central canal express NSC markers. In vitro, Pkd2l1+ CSF-cNs form a neurosphere and express NSC markers. Activation and proliferation of CSF-cNs can be induced by injection of the neurotrophic factors basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) into the lateral ventricle. Spinal cord injury (SCI) also induces NSC activation and proliferation of CSF-cNs. Collectively, our results demonstrate that Pkd2l1+ CSF-cNs have NSC properties in vivo and may be involved in SCI recovery.
Collapse
Affiliation(s)
- Liang Cao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ming-Zhi Huang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qiang Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhang-Rong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ping-Jiang An
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei-Luo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chun-Qing Wang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao-Wei Dou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Xiao-Wei Dou,
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Qing Li,
| |
Collapse
|
42
|
Harkins D, Harvey TJ, Atterton C, Miller I, Currey L, Oishi S, Kasherman M, Davila RA, Harris L, Green K, Piper H, Parton RG, Thor S, Cooper HM, Piper M. Hydrocephalus in Nfix−/− Mice Is Underpinned by Changes in Ependymal Cell Physiology. Cells 2022; 11:cells11152377. [PMID: 35954220 PMCID: PMC9368351 DOI: 10.3390/cells11152377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix−/−) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix−/− mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix−/− and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix−/− mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Tracey J. Harvey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Cooper Atterton
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Ingrid Miller
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Laura Currey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Sabrina Oishi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Raul Ayala Davila
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Lucy Harris
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
| | - Hannah Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Robert G. Parton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
- Institute for Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia;
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia;
- Correspondence:
| |
Collapse
|
43
|
Zeng H. What is a cell type and how to define it? Cell 2022; 185:2739-2755. [PMID: 35868277 DOI: 10.1016/j.cell.2022.06.031] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Cell types are the basic functional units of an organism. Cell types exhibit diverse phenotypic properties at multiple levels, making them challenging to define, categorize, and understand. This review provides an overview of the basic principles of cell types rooted in evolution and development and discusses approaches to characterize and classify cell types and investigate how they contribute to the organism's function, using the mammalian brain as a primary example. I propose a roadmap toward a conceptual framework and knowledge base of cell types that will enable a deeper understanding of the dynamic changes of cellular function under healthy and diseased conditions.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
45
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
46
|
Quaresima S, Istiaq A, Jono H, Cacci E, Ohta K, Lupo G. Assessing the Role of Ependymal and Vascular Cells as Sources of Extracellular Cues Regulating the Mouse Ventricular-Subventricular Zone Neurogenic Niche. Front Cell Dev Biol 2022; 10:845567. [PMID: 35450289 PMCID: PMC9016221 DOI: 10.3389/fcell.2022.845567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis persists in selected regions of the adult mouse brain; among them, the ventricular-subventricular zone (V-SVZ) of the lateral ventricles represents a major experimental paradigm due to its conspicuous neurogenic output. Postnatal V-SVZ neurogenesis is maintained by a resident population of neural stem cells (NSCs). Although V-SVZ NSCs are largely quiescent, they can be activated to enter the cell cycle, self-renew and generate progeny that gives rise to olfactory bulb interneurons. These adult-born neurons integrate into existing circuits to modify cognitive functions in response to external stimuli, but cells shed by V-SVZ NSCs can also reach injured brain regions, suggesting a latent regenerative potential. The V-SVZ is endowed with a specialized microenvironment, which is essential to maintain the proliferative and neurogenic potential of NSCs, and to preserve the NSC pool from exhaustion by finely tuning their quiescent and active states. Intercellular communication is paramount to the stem cell niche properties of the V-SVZ, and several extracellular signals acting in the niche milieu have been identified. An important part of these signals comes from non-neural cell types, such as local vascular cells, ependymal and glial cells. Understanding the crosstalk between NSCs and other niche components may aid therapeutic approaches for neuropathological conditions, since neurodevelopmental disorders, age-related cognitive decline and neurodegenerative diseases have been associated with dysfunctional neurogenic niches. Here, we review recent advances in the study of the complex interactions between V-SVZ NSCs and their cellular niche. We focus on the extracellular cues produced by ependymal and vascular cells that regulate NSC behavior in the mouse postnatal V-SVZ, and discuss the potential implication of these molecular signals in pathological conditions.
Collapse
Affiliation(s)
- Sabrina Quaresima
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Emanuele Cacci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| | - Giuseppe Lupo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| |
Collapse
|
47
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
48
|
Ishikawa K, Ishii M, Yaguchi T, Katada T, Ichinose K, Ohata S. epi-Aszonalenin B from Aspergillus novofumigatus inhibits NF-κB activity induced by ZFTA-RELA fusion protein that drives ependymoma. Biochem Biophys Res Commun 2022; 596:104-110. [DOI: 10.1016/j.bbrc.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
|
49
|
Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 2022; 11:cells11050846. [PMID: 35269466 PMCID: PMC8909806 DOI: 10.3390/cells11050846] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.
Collapse
|
50
|
Herranz-Pérez V, Nakatani J, Ishii M, Katada T, García-Verdugo JM, Ohata S. Ependymoma associated protein Zfta is expressed in immature ependymal cells but is not essential for ependymal development in mice. Sci Rep 2022; 12:1493. [PMID: 35087169 PMCID: PMC8795269 DOI: 10.1038/s41598-022-05526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The fusion protein of uncharacterised zinc finger translocation associated (ZFTA) and effector transcription factor of tumorigenic NF-κB signalling, RELA (ZFTA-RELA), is expressed in more than two-thirds of supratentorial ependymoma (ST-EPN-RELA), but ZFTA's expression profile and functional analysis in multiciliated ependymal (E1) cells have not been examined. Here, we showed the mRNA expression of mouse Zfta peaks on embryonic day (E) 17.5 in the wholemount of the lateral walls of the lateral ventricle. Zfta was expressed in the nuclei of FoxJ1-positive immature E1 (pre-E1) cells in E18.5 mouse embryonic brain. Interestingly, the transcription factors promoting ciliogenesis (ciliary TFs) (e.g., multicilin) and ZFTA-RELA upregulated luciferase activity using a 5' upstream sequence of ZFTA in cultured cells. Zftatm1/tm1 knock-in mice did not show developmental defects or abnormal fertility. In the Zftatm1/tm1 E1 cells, morphology, gene expression, ciliary beating frequency and ependymal flow were unaffected. These results suggest that Zfta is expressed in pre-E1 cells, possibly under the control of ciliary TFs, but is not essential for ependymal development or flow. This study sheds light on the mechanism of the ZFTA-RELA expression in the pathogenesis of ST-EPN-RELA: Ciliary TFs initiate ZFTA-RELA expression in pre-E1 cells, and ZFTA-RELA enhances its own expression using positive feedback.
Collapse
Affiliation(s)
- Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, CIBERNED, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Jin Nakatani
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Masaki Ishii
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, CIBERNED, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan.
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|