1
|
Vacharathit V, Pluempreecha M, Manopwisedjaroen S, Srisaowakarn C, Srichatrapimuk S, Sritipsukho P, Sritipsukho N, Thitithanyanont A. Persistent IP-10/CXCL10 dysregulation following mild Omicron breakthrough infection: Immune network signatures across COVID-19 waves and implications for mRNA vaccine outcomes. Clin Immunol 2025; 278:110507. [PMID: 40306350 DOI: 10.1016/j.clim.2025.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
This study explores immune responses in mild Omicron-era COVID-19 breakthrough cases, focusing on cytokine dysregulation, antibody dynamics, and Long COVID. We analyzed samples from 114 mild symptomatic COVID-19 patients across multiple pandemic waves, each dominated by different SARS-CoV-2 variants, at three timepoints: (T1: 2-4 weeks, T2: 3-4 months, T3: 6-8 months post-infection). Persistent IP-10 elevation up to 8 months post-Omicron breakthrough infection suggests sustained low-grade immune activation that appears unique to this wave. Hybrid immunity from Omicron breakthrough infections elicited broad cross-variant antibody recognition but showed declining neutralization over time. Among vaccination regimens, mRNA-inclusive combinations were associated with lower Long COVID scores. CoV-229E antibody levels correlated with Long COVID scores. These findings underscore the need for extended monitoring of even mild COVID-19 cases and highlight the potential of mRNA vaccines in reducing post-COVID-19 complications. Insights into post-infection immune alterations and vaccine effects can inform the development of future vaccination strategies and approaches for managing post-COVID-19 conditions.
Collapse
Affiliation(s)
- Vimvara Vacharathit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science Mahidol University, Bangkok 10400, Thailand.
| | - Mutita Pluempreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Chanya Srisaowakarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirawat Srichatrapimuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Paskorn Sritipsukho
- Department of Pediatrics, Faculty of Medicine, Thammasat University Hospital, Thammasat University, Pathumthani, Thailand; Center of Excellence in Applied Epidemiology, Thammasat University, Pathumthani, Thailand
| | - Naiyana Sritipsukho
- College of Health and Wellness, Dhurakij Pundit University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Sethi SK, Bradley CE, Bialkowski L, Pang YY, Thompson CD, Schiller JT, Çuburu N. Repurposing anti-viral subunit and mRNA vaccines T cell immunity for intratumoral immunotherapy against solid tumors. NPJ Vaccines 2025; 10:84. [PMID: 40280970 PMCID: PMC12032097 DOI: 10.1038/s41541-025-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Intratumoral (IT) immunotherapy can stimulate the tumor microenvironment and enhance anti-tumor immunity. We investigated IT delivery of three licensed viral vaccines-Shingrix (VZV shingles), Gardasil-9 (HPV), and Spikevax (SARS-CoV-2)-in prevaccinated mice using the murine tumor model TC-1, which expresses HPV16 oncogenes E6 and E7. Shingrix IT injection often induced tumor regression and resistance to secondary challenge. Injecting a VZV glycoprotein E (gE)-derived MHC-II-restricted peptide with polyI:C also led to durable remission, highlighting the role of gE-specific CD4+ T cells. While Gardasil-9 IT injection alone was ineffective, combining a HPV L1-derived MHC-I-restricted peptide with polyI:C or Shingrix enhanced tumor regression. Both approaches elicited CD8+ T cells against the E7 tumor viral oncoprotein. Tumor microenvironment analysis revealed remodeling of the myeloid compartment, significant induction of IFN-γ, TNF-α, and CXCL9 and broad gene expression reprograming. In a dual-flank model, IT injection of Shingrix with an MHC-I-restricted E7 tumor-specific peptide eliminated primary and non-injected tumors. Finally, Spikevax IT injection showed modest tumor growth delay, while improved control was observed with a SARS-CoV-2 spike-derived MHC-I-restricted peptide and polyI:C. These results demonstrate the potential of licensed vaccines as promising platforms for IT immunotherapy, either alone or combined with vaccine- or tumor-derived MHC-I-restricted peptide epitopes.
Collapse
Affiliation(s)
- Shiv K Sethi
- National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Lukas Bialkowski
- National Cancer Institute, NIH, Bethesda, MD, USA
- Beckman Coulter, Bethesda, USA
| | | | | | | | | |
Collapse
|
3
|
de Melo BP, da Silva JAM, Rodrigues MA, Palmeira JDF, Saldanha-Araujo F, Argañaraz GA, Argañaraz ER. SARS-CoV-2 Spike Protein and Long COVID-Part 1: Impact of Spike Protein in Pathophysiological Mechanisms of Long COVID Syndrome. Viruses 2025; 17:617. [PMID: 40431629 PMCID: PMC12115690 DOI: 10.3390/v17050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
SARS-CoV-2 infection has resulted in more than 700 million cases and nearly 7 million deaths worldwide. Although vaccination efforts have effectively reduced mortality and transmission rates, a significant proportion of recovered patients-up to 40%-develop long COVID syndrome (LC) or post-acute sequelae of COVID-19 infection (PASC). LC is characterized by the persistence or emergence of new symptoms following initial SARS-CoV-2 infection, affecting the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Despite the broad range of clinical symptoms that have been described, the risk factors and pathogenic mechanisms behind LC remain unclear. This review, the first of a two-part series, is distinguished by the discussion of the role of the SARS-CoV-2 spike protein in the primary mechanisms underlying the pathophysiology of LC.
Collapse
Affiliation(s)
- Bruno Pereira de Melo
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Jhéssica Adriane Mello da Silva
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Mariana Alves Rodrigues
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
4
|
Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat 2025; 260:152662. [PMID: 40254264 DOI: 10.1016/j.aanat.2025.152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The spike protein (SP) is an outward-projecting transmembrane glycoprotein on viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the blood-brain barrier (BBB) into the brain and cause cerebral damage through various pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been used worldwide to induce human body cells to produce SP to stimulate the immune system. This artificial SP also has a harmful effect on the human nervous system. STUDY DESIGN Narrative review. OBJECTIVE This narrative review presents the crucial role of SP in neurological complaints after SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products (ASP). METHODS Literature searches using broad terms such as "SARS-CoV-2", "spike protein", "COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed using PubMed. Google Scholar was used to search for topic-specific full-text keywords. CONCLUSIONS The toxic properties of SP presented in this review provide a good explanation for many of the neurological symptoms following SARS-CoV-2 infection and after injection of SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can trigger acute and chronic neurological complaints. Such SP-associated pathologies (spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, neuroinflammatory and neurodegenerative potential for the human nervous system, particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to be critically examined, as ASPs have been administered to millions of people worldwide.
Collapse
Affiliation(s)
- Andreas Posa
- University Clinics and Outpatient Clinics for Radiology, Neuroradiology and Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle 06120, Germany.
| |
Collapse
|
5
|
Karaliota S, Moussa M, Rosati M, Devasundaram S, Sengupta S, Goldfarbmuren KC, Burns R, Bear J, Stellas D, Urban EA, Deleage C, Khandhar AP, Erasmus J, Berglund P, Reed SG, Pavlakis GN, Felber BK. Highly immunogenic DNA/LION nanocarrier vaccine potently activates lymph nodes inducing long-lasting immunity in macaques. iScience 2025; 28:112232. [PMID: 40230522 PMCID: PMC11994941 DOI: 10.1016/j.isci.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
A SARS-CoV-2 spike DNA vaccine formulated with a cationic nanoparticle emulsion (LION) was tested in Rhesus macaques. It induced robust, long-lasting (>2 years) cellular and humoral immunity, including increased neutralization breadth. T cell responses were predominantly CD8+, in contrast to other DNA vaccines. A rapid transient cytokine/chemokine response was associated with expansion and trafficking of myeloid cells and lymphocytes. Increased proliferation and dynamic changes between blood and lymph node (LN) were found for monocyte-derived cells, dendritic cells, and B and T cells, resulting in activation of LN and expansion of germinal centers (GCs), likely critical in shaping long-lasting adaptive immunity. Significant GC expansion of B, CD4-, and CD8- cells, including the Tfc3 subset, reflects a balanced immune response, including antibody (Ab) development. DNA/LION vaccination activates myeloid and lymphoid cells in blood and LN and promotes effective antigen presentation, resulting in sustained antigen-specific cellular and humoral responses, emerging as an effective DNA vaccine delivery platform.
Collapse
Affiliation(s)
- Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Maha Moussa
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Soumya Sengupta
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Katherine C. Goldfarbmuren
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elizabeth A. Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
6
|
Steinhubl SR, Sekaric J, Gendy M, Guo H, Ward MP, Goergen CJ, Anderson JL, Amin S, Wilson D, Paramithiotis E, Wegerich S. Development of a personalized digital biomarker of vaccine-associated reactogenicity using wearable sensors and digital twin technology. COMMUNICATIONS MEDICINE 2025; 5:115. [PMID: 40223099 PMCID: PMC11994808 DOI: 10.1038/s43856-025-00840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Effective response to vaccination requires activation of the innate immune system, triggering the synthesis of inflammatory cytokines. The degree of subjective symptoms related to this, referred to as reactogenicity, may predict their eventual immune response. However, the subjective nature of these symptoms is influenced by the nocebo effect, making it difficult to accurately quantify a person's physiologic response. The use of wearable sensors allows for the identification of objective evidence of physiologic changes a person experiences following vaccination, but as these changes are subtle, they can only be detected when an individual's pre-vaccination normal variability is considered. METHODS We use a wearable torso sensor patch and a machine learning method of similarity-based modeling (SBM) to create a physiologic digital twin for 88 people receiving 104 COVID vaccine doses. By using each individual's pre-vaccine digital twin, we are able to effectively control for expected physiologic variations unique to that individual, leaving only vaccine-induced differences. We use these individualized differences between the pre- and post-vaccine period to develop a multivariate digital biomarker for objectively measuring the degree and duration of physiologic changes each individual experiences following vaccination. RESULTS Here we show that the multivariate digital biomarker better predicted systemic reactogenicity than any one physiologic data type and correlated with vaccine-induced changes in humoral and cellular immunity in a 20-person subset. CONCLUSIONS A digital biomarker is capable of objectively identifying an individual's unique response to vaccination and could play a future role in personalizing vaccine regimens.
Collapse
|
7
|
Fierro C, Sanchez-Crespo N, Makrinos D, Zhang W, Sun Y, Rohilla P, Girard B, Adeniji A, DiPiazza A, Paris R. Shared clinical and immunologic features of mRNA vaccines: preliminary results from a comparative clinical study. Front Immunol 2025; 16:1501275. [PMID: 40276503 PMCID: PMC12018429 DOI: 10.3389/fimmu.2025.1501275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Clinical trials do not typically assess underlying molecular mechanisms of vaccine immunogenicity or reactogenicity. We evaluated the reactogenicity and immunogenicity of 4 mRNA vaccines and potential contributing mechanisms and identified shared and unique clinical and immunologic features. Methods This ongoing, open-label, phase 1 trial randomized healthy adults (18-75 years) to receive a single dose of mRNA-1273.222 (bivalent COVID-19), mRNA-1345 (RSV), mRNA-1010 (influenza), and FLUAD (active influenza comparator) or 2 or 3 doses of mRNA-1647 (CMV). The primary objective was to assess the safety and reactogenicity of each study vaccine, with humoral immunogenicity (neutralizing antibody [nAb] responses) as the secondary objective. This interim analysis reports safety and reactogenicity in all study vaccines and humoral immunogenicity in single-dose vaccines (mRNA-1273.222, mRNA-1345, mRNA-1010, and FLUAD). Exploratory objectives included antigen-specific T-cell responses after single-dose mRNA-1345 or mRNA-1273.222, and soluble mediators of inflammation and innate immunity following vaccination in single-dose vaccine groups and two doses of mRNA-1647. Results At the interim analysis data cutoff (February 1, 2023), 302 participants received 1 dose of the study vaccines. Reactogenicity exhibited a consistent trend across vaccine groups; most solicited local and systemic adverse reactions within 7 days were mild or moderate in severity. There were no deaths or serious, severe, or treatment-related adverse events leading to study discontinuation. At Day 29, nAb titers against vaccine-specific antigens increased 2- to 8-fold versus baseline for all single-dose vaccine groups. In an exploratory analysis, mRNA-1273.222 and mRNA-1345 induced antigen-specific Th1-biased CD4+ and CD8+ T-cell responses at Day 29. The cytokine response analysis showed increased levels of IFN-γ, IL-6, IL-2Ra, CXCL9, IP-10, MCP-2, and MIP-1β on Day 2 following vaccination, with generally greater increases observed with mRNA vaccines versus FLUAD. Regardless of age and across mRNA vaccine groups, peak serum levels of IL-1Ra and MCP-1/MCP-2 on Day 2 weakly correlated with systemic reactogenicity scores (correlation coefficient range: 0.15-0.27). Conclusions The 4 mRNA vaccines had acceptable reactogenicity, demonstrated changes in serum biomarkers of innate immune activation, and were immunogenic. This suggests that the observed reactogenicity of mRNA vaccines may be related to shared features of the mRNA platform (LNP platform). Clinical trial registration ClinicalTrials.gov, identifier NCT05397223.
Collapse
Affiliation(s)
- Carlos Fierro
- Johnson County Clin-Trials, Clinical Research, Lenexa, KS, United States
| | | | | | | | - Yanbo Sun
- Moderna, Inc., Cambridge, MA, United States
| | | | | | | | | | | |
Collapse
|
8
|
Alghamdi A, Hussain SD, Wani K, Sabico S, Alnaami AM, Amer OE, Al‐Daghri NM. Altered Circulating Cytokine Profile Among mRNA-Vaccinated Young Adults: A Year-Long Follow-Up Study. Immun Inflamm Dis 2025; 13:e70194. [PMID: 40202571 PMCID: PMC11980434 DOI: 10.1002/iid3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVES This longitudinal study aimed to assess the impact of COVID-19 vaccination on cytokine profile. METHODS A total of 84 Saudi subjects (57.1% females) with mean age of 27.2 ± 12.3 participated in this longitudinal study. Anthropometric data and fasting blood samples were obtained at baseline and after final vaccination, with an average follow-up duration of 14.1 ± 3.6 months for adolescents and 13.3 ± 3.0 months for adults, calculated from the first dose of vaccination. Assessment of cytokine profiles was done using commercially available assays. RESULTS After follow-up, a significant increase in weight and body mass index was observed overall (p = 0.003 and p = 0.002, respectively). Postvaccination, significant increases were observed in several cytokines, including basic fibroblast growth factor 2 (p < 0.001), interferon gamma (IFNγ) (p = 0.005), interleukin-1 beta (IL1β) (p < 0.001), IL4 (p < 0.001), IL6 (p = 0.003), IL7 (p = 0.001), IL17E (p < 0.001), monocyte chemoattractant protein-1 (MCP1) (p = 0.03), MCP3 (p = 0.001), tumor necrosis factor alpha (TNFα) (p < 0.001), and VEGFA (p < 0.001). A significant reduction was observed only in macrophage colony-stimulating factor (p < 0.001). When adjusted for age, epidermal growth factor (EGF), IL4, IL6, MCP3, TNFα, and vascular endothelial growth factor (VEGFA) remained statistically significant. Gender-based analysis revealed that men experienced greater increases in IL6 (p = 0.008), IL4 (p = 0.04), and TNFα (p = 0.015) compared to women. Age-based analysis showed that older participants had more pronounced increases in EGF (p = 0.011), IL6 (p = 0.029), MCP1 (p = 0.042), and TNFα (p = 0.017), while younger participants had a greater increase in VEGFA (p = 0.025). CONCLUSIONS The findings of this study indicated that COVID-19 vaccination resulted in an increase in cytokine levels, which signifies the persistence of the humoral immune response to messenger RNA (mRNA) vaccines. This effect may be attributed to the persistent production of spike protein and highly inflammatory nature of mRNA-lipid nanoparticle. Additionally, the results suggested differences in cytokine levels based on gender and age. Notably, the cytokine profile remains favorably altered in young adults who received mRNA vaccinations, even after 1 year.
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Syed Danish Hussain
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Kaiser Wani
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Shaun Sabico
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Abdullah M. Alnaami
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Osama Emam Amer
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Nasser M. Al‐Daghri
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
9
|
Engelbogen B, Donaldson L, McAuley SA, Fourlanos S. SARS-CoV-2 booster vaccination does not worsen glycemia in people with type 1 diabetes using insulin pumps: an observational study. Acta Diabetol 2025; 62:481-486. [PMID: 39254746 DOI: 10.1007/s00592-024-02372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Despite an increased risk for adverse outcomes from SARS-CoV-2 infection among individuals with type 1 diabetes (T1D), vaccine hesitancy persists due to safety concerns including dysglycemia. The impact of booster vaccination on individuals using automated insulin delivery (AID) systems remains unclear. METHODS We used continuous glucose monitoring (CGM) data from 53 individuals with T1D using insulin pump therapy who received their third and/or fourth COVID-19 vaccination. CGM data from the 14 days before and 3 and 7 days after each vaccination were compared. The primary outcome was glucose time in range (TIR) (70-180 mg/dL) 3 and 7 days post-vaccination compared with the 14 days prior. Secondary outcomes included other CGM metrics such as time below range (< 70 mg/dL), time above range (> 180 mg/dL), mean glucose, co-efficient of variation and average total daily insulin. RESULTS The cohort comprised 53 adults (64% women, 64% AID), totaling 74 vaccination periods (84% Pfizer-BioNTech boosters), mean ± SD age 40.0 ± 15.9 years, duration of diabetes 26.0 ± 15.4 years. There was no significant difference between pre-vaccination TIR (61.0%±18.5) versus 3 (60.5%±22.8) and 7 days post-vaccination (60.2%±21.8; p = 0.79). Level 1 hypoglycemia, time in range 54-69 mg/dL, was lower 3 (1.1%±1.7) and 7 days post-vaccination (1.1%±1.6), compared with 14 days pre-vaccination (1.4%±1.4; p = 0.021). CONCLUSION The study provides evidence that SARS-CoV-2 booster vaccination does not acutely worsen glycemia in people with T1D receiving insulin pump therapy.
Collapse
Affiliation(s)
- Braden Engelbogen
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Melbourne, Australia.
| | - Laura Donaldson
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Sybil A McAuley
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Australia
| | - Spiros Fourlanos
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Tukaj S, Sitna M, Sitko K. The impact of the mRNA COVID-19 vaccine on the Th-like cytokine profile in individuals with no history of COVID-19: insights into autoimmunity targeting heat shock proteins. Front Immunol 2025; 16:1549739. [PMID: 40160814 PMCID: PMC11949786 DOI: 10.3389/fimmu.2025.1549739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Although some reports suggest that COVID-19 vaccination may exacerbate existing autoimmune diseases or trigger new-onset cases, a definitive causal relationship between the vaccines and these conditions has not been established. Several potential mechanisms have been proposed to explain this association, including: (i) molecular mimicry, which refers to a structural similarity between SARS-CoV-2 and human antigens; (ii) bystander activation, involving both B and T lymphocytes; and (iii) the effects of adjuvants. In this study, we investigated whether two doses of the mRNA COVID-19 vaccine influenced blood cytokine levels associated with major T helper cell populations, which are known to play a significant role in autoimmunity and revisited the role of the humoral autoimmune response directed against heat shock proteins (Hsps) in individuals with no history of COVID-19. While no significant differences were found in the levels of IFN-γ, IL-6, IL-22, IL-4, IL-8, IL-10, and IL-17A, between vaccinated and unvaccinated people, several positive correlations were observed between serum cytokine levels and circulating autoantibodies directed against self-Hsps exclusively in vaccinated individuals. These findings suggest that the mRNA COVID-19 vaccine does not impact cytokines involved in the pathogenesis of autoimmune diseases. Further research is required to evaluate the safety of COVID-19 vaccination in patients with autoimmune conditions, particularly those in whom anti-Hsps autoantibodies are suspected to contribute to disease development.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
11
|
Xiao L, Li Y, Wang S, Fan L, Li Q, Fan Z, Wang X, Ma L, Xu D, Yu Y, Han G, Yuan X, Liu B. Early Prediction of Radiation Pneumonitis in Patients With Lung Cancer Treated With Immunotherapy Through Monitoring of Plasma Chemokines. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00151-8. [PMID: 39993540 DOI: 10.1016/j.ijrobp.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/21/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE This study is aimed to identify biomarkers for symptomatic radiation pneumonitis (RP) in patients with lung cancer treated with immune checkpoint inhibitors (ICIs). METHODS AND MATERIALS This multicenter, prospective study enrolled patients with lung cancer receiving thoracic radiation therapy (RT) between 2021 and 2023. Plasma cytokines were measured using Luminex assays. Cox proportional hazards model was used to identify risk factors and biomarkers for RP. Sensitivity analysis was conducted using Fine-Gray competing risk analyses. Receiver operating characteristic curves were used to assess the predictive value of the cytokines. RESULTS A total of 214 patients receiving thoracic RT were included in this study, with 75 (35.05%) patients experiencing symptomatic RP. Among the 71 patients with prior ICI treatment, 32 (45.07%) developed symptomatic RP. Patients with prior ICI treatment had higher incidence of symptomatic RP and plasma chemokines than those without prior ICI treatment. For patients with prior ICI treatment, plasma CXCL10 before RT (hazard ratio [HR], 1.29; 95% CI, 1.03-1.61) and at 2 weeks (HR, 1.28; 95% CI, 1.03-1.59) and 4 weeks during RT (HR, 1.65; 95% CI, 1.19-2.28) were significantly associated with RP. The area under the curves (AUC) of plasma CXCL10 at baseline, 2 weeks and 4 weeks during RT were 0.625, 0.680, and 0.679, respectively. Plasma CXCL14 before RT and CXCL2 during RT were also predictors of RP. A risk score integrating CXCL10, CXCL14, CXCL2, and mean lung dose showed better predictive performance than individual factors (AUC = 0.757). CONCLUSIONS In this prospective study, plasma chemokines predict future risk of symptomatic RP in patients with lung cancer who have received prior immunotherapy. Despite with moderate AUC, the scoring system based on plasma chemokines and mean lung dose is a feasible tool for predicting symptomatic RP, aiding in tailoring personalized and optimal treatment for patients.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Fan
- Department of Radiation Oncology, Jingjiang People Hospital, Taizhou, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Ezhou Central Hospital, Ezhou, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulong Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Han
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Boehm DT, Landreth KM, Kilic ES, Lee KS, Misra B, Bobbala S, Damron FH, Liu TW. Intratumoral administration of mRNA COVID-19 vaccine delays melanoma growth in mice. Sci Rep 2025; 15:5337. [PMID: 39948424 PMCID: PMC11825918 DOI: 10.1038/s41598-025-89930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
Immunotherapies are effective for cancer treatment but are limited in 'cold' tumor microenvironments due to a lack of infiltrating CD8+ T cells, key players in the anti-cancer immune response. The onset of the COVID-19 pandemic sparked the widespread use of mRNA-formulated vaccines and is well documented that vaccination induces a Th1-skewed immune response. Here, we evaluated the effects of an intratumoral injection of the mRNA COVID-19 vaccine in subcutaneous melanoma tumor mouse models. Tumor growth and survival studies following a single intratumoral injection of the COVID-19 vaccine showed significant tumor suppression and prolonged survival in established B16F10 subcutaneous tumor-bearing mice. mRNA vaccine treatment resulted in a significant increase in CD8+ T cell infiltration into the tumor microenvironment, as observed using intravital imaging and flow cytometry. Further tumor growth suppression was achieved using additional mRNA vaccine treatments. Combination administration of mRNA vaccine with immune checkpoint therapies demonstrated enhanced effects, further delaying tumor growth and improving the survival time of tumor-bearing mice. This study demonstrates that mRNA vaccines may be used as adjuvants for immunotherapies.
Collapse
Affiliation(s)
- Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kaitlyn M Landreth
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Emel Sen Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Tracy W Liu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Kawai A, Shimizu T, Tanaka H, Shichinohe S, Anindita J, Hirose M, Kawahara E, Senpuku K, Shimooka M, Quynh Mai LT, Suzuki R, Nogimori T, Yamamoto T, Hirai T, Kato T, Watanabe T, Akita H, Yoshioka Y. Low-inflammatory lipid nanoparticle-based mRNA vaccine elicits protective immunity against H5N1 influenza virus with reduced adverse reactions. Mol Ther 2025; 33:529-547. [PMID: 39690742 PMCID: PMC11852987 DOI: 10.1016/j.ymthe.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
Messenger RNA vaccines based on lipid nanoparticles (mRNA-LNPs) are promising vaccine modalities. However, mRNA-LNP vaccines frequently cause adverse reactions such as swelling and fever in humans, partly due to the inflammatory nature of LNP. Modification of the ionizable lipids used in LNPs is one approach to avoid these adverse reactions. Here, we report the development of mRNA-LNP vaccines with better protective immunity and reduced adverse reactions using LNPs, which contain a disulfide (SS)-cleavable bond and pH-activated lipid-like materials with oleic acid (ssPalmO) as an ionizable lipid (LNPssPalmO). We used mRNA expressing H5N1 subtype high-pathogenicity avian influenza virus-derived hemagglutinin or neuraminidase to generate mRNA-LNP vaccines against H5N1 influenza. Compared with conventional LNPs, mRNA-LNPssPalmO induced comparable antigen-specific antibodies and better interferon-γ (IFN-γ)-producing T helper type 1 responses in mice. Both mRNA-LNPssPalmO and conventional mRNA-LNPs conferred strong protection against homologous H5N1 virus challenge. In addition, mRNA-LNPssPalmO showed better cross-protection against heterologous H5N1 virus challenge compared with conventional mRNA-LNPs. Furthermore, we observed that mRNA-LNPssPalmO induced less-inflammatory responses (e.g., inflammatory cytokine production, vascular hyperpermeability) and fewer adverse reactions (e.g., weight loss, fever) compared with conventional mRNA-LNPs. These results suggest that mRNA-LNPssPalmO would be a safe alternative to conventional vaccines to overcome mRNA-LNP vaccine hesitancy.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taro Shimizu
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Tanaka
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
| | - Shintaro Shichinohe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
| | - Mika Hirose
- Laboratory for Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eigo Kawahara
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kota Senpuku
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Shimooka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Le Thi Quynh Mai
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi 100000, Vietnam
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokiko Watanabe
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidetaka Akita
- Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi 980-8578, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Tajti G, Gebetsberger L, Pamlitschka G, Aigner-Radakovics K, Leitner J, Steinberger P, Stockinger H, Ohradanova-Repic A. Cyclophilin-CD147 interaction enables SARS-CoV-2 infection of human monocytes and their activation via Toll-like receptors 7 and 8. Front Immunol 2025; 16:1460089. [PMID: 39963132 PMCID: PMC11830813 DOI: 10.3389/fimmu.2025.1460089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Monocytes and macrophages, as important constituents of the innate immune system, are equipped with multiple Toll-like-receptors (TLRs) to recognize invading pathogens, such as SARS-CoV-2, and mount an antiviral response. Nevertheless, their uncontrolled activation can lead to hyperinflammation seen in severe COVID-19. Surprisingly, we observed that recombinant SARS-CoV-2 Spike (S) and Nucleocapsid (N) proteins triggered only a weak proinflammatory response in human peripheral blood monocytes. By employing THP-1 and Jurkat NF-κB::eGFP reporter cell lines expressing specific TLRs, various TLR ligands and blocking antibodies, we determined that surface TLRs, including TLR2/1, TLR2/6 and TLR4 do not play a major role in SARS-CoV-2 sensing. However, monocytes are potently activated by the replication-competent SARS-CoV-2, and the response correlates with the viral uptake that is observed only in monocytes, but not in lymphocytes. We show that monocyte activation involves two distinct steps. Firstly, SARS-CoV-2 infects monocytes in a process independent of the S protein and the prime SARS-CoV-2 receptor angiotensin-converting enzyme 2. Instead, the alternative SARS-CoV-2 receptor CD147, which is highly expressed on monocytes, recognizes its well-known interaction partners cyclophilins A and B that are incorporated into SARS-CoV-2 virions. Secondly, upon viral uptake via the cyclophilin-CD147 interaction, that can be inhibited by specific CD147 blocking antibodies or competition with recombinant human cyclophilin A and B, SARS-CoV-2 RNA is recognized by TLR7/8 in endosomes, leading to upregulation of tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6, comprising the core hyperinflammatory signature. Taken together, our data reveal a novel mechanism how human monocytes sense SARS-CoV-2 and suggest that targeting the cyclophilin-CD147 axis might be beneficial to alleviate overt myeloid-driven inflammation triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Gregor Pamlitschka
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Katharina Aigner-Radakovics
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Judith Leitner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Steinberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
15
|
Ratishvili T, Haralambieva IH, Quach HQ, Swanson IM, Goergen KM, Grill DE, Ovsyannikova IG, Kennedy RB, Poland GA. Transcriptomic Signatures Predict Rubella Virus-Induced Cytokine and Chemokine Responses in Female MMR Recipients. Eur J Immunol 2025; 55:e202451303. [PMID: 39931758 DOI: 10.1002/eji.202451303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 05/08/2025]
Abstract
The study examined the relationship between rubella virus (RV)-induced gene expression and proinflammatory cytokine/chemokine secretion in females previously vaccinated with MMR. Gene clusters enriched for functional pathways of innate immune system activation and antiviral responses were found to predict RV-specific MCP-1, MCP-4, IP-10, and IL-2 secretion.
Collapse
Affiliation(s)
- Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Huy Q Quach
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ilya M Swanson
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Krista M Goergen
- Mayo Clinic Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane E Grill
- Mayo Clinic Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Zhou Z, Guan B, Lin J, Zheng R, Xu B. Will personalized ultrafractionated stereotactic adaptive radiotherapy (PULSAR) or split-course SBRT based on systemic therapy (3S) be future directions in the Field of SBRT? Int Immunopharmacol 2025; 146:113689. [PMID: 39721852 DOI: 10.1016/j.intimp.2024.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
The combined use of stereotactic body radiotherapy (SBRT) and immunotherapy is a promising new development. However, the optimal modality for combining SBRT with immunotherapy needs further study. Timmerman and colleagues reported that the time split between radiotherapy and α-PD-L1 therapy can affect the therapeutic effect and introduced a new SBRT paradigm-personalized ultrafractionated stereotactic adaptive radiation therapy (PULSAR). Split-course SBRT based on systemic therapy (3S), which is a concept similar to PULSAR, was introduced. We focus on the underlying mechanisms and advantages of PULSAR or 3S. Notably, the partial results of two relevant clinical trials initiated by our clinical research center are reported here. Moreover, some directions that warrant further investigation are emphasized.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Bingjie Guan
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Junjian Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Fujian, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Fujian, China.
| |
Collapse
|
17
|
Koh AR, Kim HW, Lee YJ, Jo HJ, Chae GE, Kim DW, Ha IH, Kim D. Integrative Korean medicine for recurrent lumbar disc herniation after coronavirus disease vaccination: A case report and literature review. Medicine (Baltimore) 2025; 104:e41079. [PMID: 40184086 PMCID: PMC11709196 DOI: 10.1097/md.0000000000041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 04/05/2025] Open
Abstract
RATIONALE Many side effects have been associated with the coronavirus disease (COVID-19) vaccine. While most adverse events (AEs) are mild, serious adverse events are occasionally observed in the neurological and musculoskeletal systems. Nevertheless, articles reporting such serious adverse events after COVID-19 vaccination are limited, and only few case reports with detailed descriptions are available in the literature. PATIENT CONCERNS Herein, we report the case of a 41-year-old male office worker who developed symptoms of recurrent disc herniation 2 days after COVID-19 vaccination; the patient had no other factors that may have caused the recurrence of disc herniation, such as excessively vigorous activities, following vaccination. DIAGNOSES Consequently, the patient was suspected of having cauda equina syndrome owing to recurrent lumbar disc herniation, and he underwent surgery. INTERVENTIONS The patient underwent integrative Korean medicine treatment, including acupuncture, pharmacopuncture, and Chuna manual therapy, for 8 months postoperatively. OUTCOMES After treatment, the patient's postoperative complications improved; the Numerical Rating Scale score changed from 5 to 1, and the Oswestry Disability Index score changed from 30 to 3. A literature review showed various cases of adverse events related to musculoskeletal inflammation or immune-mediated pathogenesis. LESSONS This paper confirmed the possibility that COVID vaccination is related to lumbar disc herniation recurrence and the possibility of integrative Korean medicine as an effective treatment option after lumbar disc herniation surgery.
Collapse
Affiliation(s)
- Ah-Ra Koh
- Department of Korean Medicine Rehabilitation, Ulsan Jaseng Hospital of Korean Medicine, Ulsan, Republic of Korea
| | - Hyun-Woo Kim
- Department of Acupuncture & Moxibustion Medicine, Ulsan Jaseng Hospital of Korean Medicine, Ulsan, Republic of Korea
| | - Young-Jin Lee
- Department of Korean Medicine Rehabilitation, Ulsan Jaseng Hospital of Korean Medicine, Ulsan, Republic of Korea
| | - Hye-Jeong Jo
- Department of Acupuncture & Moxibustion Medicine, Ulsan Jaseng Hospital of Korean Medicine, Ulsan, Republic of Korea
| | - Go-Eun Chae
- Department of Acupuncture & Moxibustion Medicine, Ulsan Jaseng Hospital of Korean Medicine, Ulsan, Republic of Korea
| | - Dong-Woo Kim
- Department of Internal Korean Medicine, Ulsan Jaseng Hospital of Korean Medicine, Ulsan, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Doori Kim
- Centor for Clinical Research, Jaseng Hospital of Korean Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
van Ewijk CE, Suárez Hernández S, Jacobi RH, Knol MJ, Hahné SJ, Wijmenga-Monsuur AJ, Boer MC, van de Garde MD. Innate immune response after BNT162b2 COVID-19 vaccination associates with reactogenicity. Vaccine X 2025; 22:100593. [PMID: 39734394 PMCID: PMC11681879 DOI: 10.1016/j.jvacx.2024.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Background The innate immune response is important for the development of the specific adaptive immunity, however it may also be associated with reactogenicity after vaccination. We explore the association between innate responsiveness, reactogenicity, and antibody response after first COVID-19 vaccination. Methods We included 146 healthy Dutch individuals aged 12-59 who received their first BNT162b2 (Comirnaty, Pfizer) COVID-19 vaccination. Data on reactogenicity were collected for each individual through daily questionnaires from day 0-5 after vaccination. From 60 participants, serum (adults) and plasma (adolescents) samples were collected before and/or 2 ± 1 days after vaccination to measure cytokines/chemokines as markers for innate responsiveness. Each individual was categorised into innate low, intermediate and high responder based on above or below the median value for each analyte detected after vaccination. For 137 participants, serum was collected at day 28 after vaccination for Spike S1- and RBD-antibody concentration. The associations between reactogenicity and/or innate responsiveness and/or log-transformed antibody concentration were explored using logistic and linear regressions. Results Most participants (85 %) reported both local and systemic symptoms after vaccination. Two participants reported no symptoms. More than half (54 %) reported one or more moderate symptoms. Significantly higher levels of pro-inflammatory mediators CXCL9, CXCL10, CXCL11, IFNγ and CCL20 in adults, and CXCL9, CXCL10 and CXCL11 in adolescents, were found after vaccination. Participants who showed high innate immune responsiveness had higher odds (OR 6.0; 95 % CI 1.4-33) of experiencing one or more moderate symptoms. No association was found between innate responsiveness or having one or more moderate symptoms with Spike S1- or RBD-antibody concentration at day 28 after vaccination. Conclusion Our results suggest an association between the strength of the innate immune response and the severity of reactogenicity to SARS-CoV-2 vaccination. However, more research is needed to understand the relation between reactogenicity and immunogenicity of COVID-19 vaccines.
Collapse
Affiliation(s)
- Catharina E. van Ewijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Sara Suárez Hernández
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronald H.J. Jacobi
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mirjam J. Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Susan J.M. Hahné
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mardi C. Boer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Martijn D.B. van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
19
|
Nguyen HM, Alexander KE, Collinge M, Hickey JC, Lanz TA, Li J, Sheehan MJ, Newman LC, Thorn M. mRNA-LNPs induce immune activation and cytokine release in human whole blood assays across diverse health conditions. Mol Ther 2024:S1525-0016(24)00818-9. [PMID: 39673130 DOI: 10.1016/j.ymthe.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
RNA medicines have become a promising platform for therapeutic use in recent years. Understanding the immunomodulatory effects of novel mRNA-lipid nanoparticles (LNPs) is crucial for future therapeutic development. An in vitro whole blood assay was developed to assess the impact of mRNA-LNPs on immune cell function, cytokine release, and complement activation. mRNA-LNPs significantly increased CD69 expression on T cells and natural killer cells, and CD80/CD86 on myeloid subsets, in a dose-dependent fashion. Furthermore, mRNA-LNPs elicited a robust release of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, monocyte chemoattractant protein-1, IL-6, and IP-10, indicating a potent immune response. Notably, mRNA-LNPs stimulate early cytokine production prior to triggering immune cell activation, suggesting a temporal and biological relationship. Moreover, mRNA-LNPs induce complement activation via the alternative pathway, as evidenced by increased serum sC5b-9, C3a, and Bb, which can amplify the inflammatory response and potentially impact safety. In vitro effects of mRNA-LNPs in whole blood of healthy human donors were compared with those from disease cohorts including systemic lupus erythematosus, type 2 diabetes mellitus, and cancer donors. The differences in mRNA-LNP effects on samples from healthy and diseased populations may impact therapeutic efficacy or toxicity, indicating a need for tailoring LNPs for specific target populations.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | | | - Mark Collinge
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - James C Hickey
- BioMedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Thomas A Lanz
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - Jin Li
- BioMedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Mark J Sheehan
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - Leah C Newman
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - Mitchell Thorn
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA.
| |
Collapse
|
20
|
Becker W, Rebbani K, Duan Z, Valkov E, Bryant S, Ho M, Berzofsky JA, Olkhanud PB. Adjuvants to the S1-subunit of the SARS-CoV-2 spike protein vaccine improve antibody and T cell responses and surrogate neutralization in mice. Sci Rep 2024; 14:29609. [PMID: 39609527 PMCID: PMC11604653 DOI: 10.1038/s41598-024-80636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Various public health measures have contained outbreaks of SARS-CoV-2, but concerns remain over the possibility of future surges. Improvements in broadening the vaccine response can stifle new and nascent infections. In this study, we tested the effects of different adjuvant combinations on the immunization of mice with the receptor-binding domain (RBD)-containing the S1-subunit of the spike protein (S1 protein) from SARS-CoV-2 to induce a robust humoral and cellular immune response. We showed that subcutaneous immunization of S1 protein co-delivered with IL-15 and TLR-ligands (MALP-2, poly I: C, and CpG) or with IL-12 and GM-CSF in DOTAP, or Alum induced significantly high titers of durable antibodies, predominantly IgG1, IgG2a, and IgG2b, that could bind to RBD, S1-subunit, and the full-length ectodomain of SARS-CoV-2 spike protein in sera compared to the immunization with S1 protein alone in both B6 wild-type (WT) and the K18-hACE2 transgenic mice. In addition, immunization with S1 protein co-delivered with IL-15 and TLR-ligands induced antibody responses against S1 protein in aged mice, and sera from younger mice reduced plaque formation of live SARS-CoV-2, and had effective binding to S1 protein from ten different variants of SARS-CoV-2, including Omicron (B.1.1.529), and greater neutralization activity as early as day 21 post-immunization measured by inhibition of RBD binding to hACE2 than sera from mice immunized with S1 protein alone or co-delivered with Alum. We also identified antibody-binding epitopes using 18-mer peptides with 9-residue overlaps from the S1 protein. CD8+ T-cell responses specific to RBD and S1 protein peptide pools were observed up to day 200 post-immunization by tetramer staining. These data show the efficacy of specific immunologically targeted adjuvants for increasing S1 protein immunogenicity in mice and can contribute to more effective vaccines.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Mice
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- Adjuvants, Immunologic/administration & dosage
- Female
- Humans
- T-Lymphocytes/immunology
- Adjuvants, Vaccine
- Mice, Transgenic
- Immunoglobulin G/immunology
- Immunoglobulin G/blood
- Mice, Inbred C57BL
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
Collapse
Affiliation(s)
- William Becker
- Vaccine Branch, CCR, NCI, NIH, Bethesda, MD, USA.
- Vaccine Branch, Bldg. 41-Rm D702D (MSC-5062), 41 Medlars Dr., NIH, Bethesda, MD, 20892-5062, USA.
| | | | - Zhijian Duan
- Antibody Engineering Program, CCR, NCI, NIH, Bethesda, MD, USA
| | - Eugene Valkov
- RNA Biology Laboratory, CCR, NCI, NIH, Frederick, MD, USA
| | - Shawn Bryant
- Vaccine Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Mitchell Ho
- Antibody Engineering Program, CCR, NCI, NIH, Bethesda, MD, USA
- Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
21
|
Vijayan A, Vogels R, Groppo R, Jin Y, Khan S, Van Kampen M, Jorritsma S, Boedhoe S, Baert M, van Diepen H, Kuipers H, Serroyen J, Del Valle JR, Broman A, Nguyen L, Ray S, Jarai B, Arora J, Lifton M, Mildenberg B, Morton G, Santra S, Grossman TR, Schuitemaker H, Custers J, Zahn R. A self-amplifying RNA RSV prefusion-F vaccine elicits potent immunity in pre-exposed and naïve non-human primates. Nat Commun 2024; 15:9884. [PMID: 39543172 PMCID: PMC11564874 DOI: 10.1038/s41467-024-54289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Newly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.RSV.preF, encoding a stabilized form of the RSV fusion protein, in female mice and in non-human primates (NHPs) that are either RSV-naïve or previously infected. Intramuscular vaccination with SMARRT.RSV.preF vaccine induces RSV neutralizing antibodies and cellular responses in naïve mice and NHPs. Importantly, a single dose of the vaccine in RSV pre-exposed NHPs elicits a dose-dependent anamnestic humoral immune response comparable to a subunit RSV preF vaccine. Notably, SMARRT.RSV.preF immunization significantly increases polyfunctional RSV.F specific memory CD4+ and CD8+ T-cells compared to RSV.preF protein vaccine. Twenty-four hours post immunization with SMARRT.RSV.preF, there is a dose-dependent increase in the systemic levels of inflammatory and chemotactic cytokines associated with the type I interferon response in NHPs, which is not observed with the protein vaccine. We identify a cluster of analytes including IL-15, TNFα, CCL4, and CXCL10, whose levels are significantly correlated with each other after SMARRT.RSV.preF immunization. These findings suggest saRNA vaccines have the potential to be developed as a prophylactic RSV vaccine based on innate, cellular, and humoral immune profiles they elicit.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands.
- Artemis Bioservices, Delft, The Netherlands.
| | - Ronald Vogels
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Rachel Groppo
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Yi Jin
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Selina Khan
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
- Oncode Accelerator Foundation, Utrecht, The Netherlands
| | | | - Sytze Jorritsma
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Satish Boedhoe
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Miranda Baert
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
- LUCID research centre, Leiden Medical University, Leiden, The Netherlands
| | | | - Harmjan Kuipers
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | | | - Ann Broman
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Lannie Nguyen
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Sayoni Ray
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Bader Jarai
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Jayant Arora
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Benjamin Mildenberg
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Georgeanna Morton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | | | | | - Jerome Custers
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands.
| |
Collapse
|
22
|
Ivanko I, Hanžek M, Ćelap I, Margetić S, Marijančević D, Josipović J, Gaćina P. CCL20 chemokine and other proinflammatory markers after Ad26.COV2.S vaccination. Biochem Med (Zagreb) 2024; 34:030706. [PMID: 39435167 PMCID: PMC11493461 DOI: 10.11613/bm.2024.030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction In highly stressed circumstances, such as COVID-19 pandemic, biomarkers of the vaccine-induced immunity could be especially convenient. The main aim of our study was to determine C-C motif ligand 20 (CCL20) concentration after Ad26.COV2.S vaccination in regard to more common proinflammatory molecules and its correlation with anti-SARS-CoV-2 antibody concentration. Secondly, we investigated inflammatory and immunologic profile differences between patients with and without arterial hypertension. Materials and methods The study included 84 subjects vaccinated with Ad26.COV2.S vaccine. Concentration of CCL20, interleukin (IL) 6, C-reactive protein (CRP) was investigated before, 7 and 14 days after vaccination and concentration of anti-SARS-CoV-2 IgG antibody 7 and 14 days after vaccination. All the markers were measured by well-established laboratory methods. Results There were no statistically significant changes of CCL20 and IL-6 concentration after the vaccination. The obtained results have shown statistically significant differences for CRP (P = 0.006) concentrations between 3 time points and SARS-CoV-2 IgG antibody (P < 0.001) concentrations between 2 time points. CCL20 did not correlate with IL-6, CRP or anti-SARS-CoV-2 IgG antibody concentration. Statistically significant difference for CRP (P = 0.025) concentration between 3 time points was observed in the subgroup of subjects with arterial hypertension. Conclusions Although our results did not show changes in CCL20 concentration after the vaccination, possibly due to the study timeframe, further investigations on chemokine profile post SARS-CoV-2 immunization could facilitate the recognition of specific patterns of response (supra- or sub-optimal) to the vaccine.
Collapse
Affiliation(s)
- Iva Ivanko
- Department of Haematology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Milena Hanžek
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Ćelap
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sandra Margetić
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Domagoj Marijančević
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Josipa Josipović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- Department of Nephrology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Petar Gaćina
- Department of Haematology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
23
|
Ochar K, Iwar K, Nair VD, Chung YJ, Ha BK, Kim SH. The Potential of Glucosinolates and Their Hydrolysis Products as Inhibitors of Cytokine Storms. Molecules 2024; 29:4826. [PMID: 39459194 PMCID: PMC11510469 DOI: 10.3390/molecules29204826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A cytokine storm is an intense inflammatory response characterized by the overproduction of proinflammatory cytokines, resulting in tissue damage, and organ dysfunction. Cytokines play a crucial role in various conditions, such as coronavirus disease, in which the immune system becomes overactive and releases excessive levels of cytokines, including interleukins, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). This anomalous response often leads to acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multiple organ injury (MOI). Glucosinolates are plant secondary metabolites predominantly found in Brassica vegetables, but are also present in other species, such as Moringa Adens and Carica papaya L. When catalyzed by the enzyme myrosinase, glucosinolates produce valuable products, including sulforaphane, phenethyl isothiocyanate, 6-(methylsulfinyl) hexyl isothiocyanate, erucin, goitrin, and moringin. These hydrolyzed products regulate proinflammatory cytokine production by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling pathway and stimulating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This action can alleviate hyperinflammation in infected cells and modulate cytokine storms. In this review, we aimed to examine the potential role of glucosinolates in modulating cytokine storms and reducing inflammation in various conditions, such as coronavirus disease. Overall, we found that glucosinolates and their hydrolysis products can potentially attenuate cytokine production and the onset of cytokine storms in diseased cells. In summary, glucosinolates could be beneficial in regulating cytokine production and preventing complications related to cytokine storms.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Vadakkemuriyil Divya Nair
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra District, Shahpur 176206, HP, India;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca Signaling Network, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
24
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
25
|
Aşkın Turan S, Aydın Ş. A retrospective cohort study: is COVID-19 BNT162b2 mRNA vaccination a trigger factor for cluster headache? Acta Neurol Belg 2024; 124:1535-1542. [PMID: 38619748 DOI: 10.1007/s13760-024-02536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
OBJECTıVE: Cluster headache (CH) is a coronavirus 2019 (COVID-19) vaccination-related adverse event. There are a few case reports of relapses or de novo cluster episodes following the vaccine. The disease's pathophysiology is still not clear. The most widely accepted mechanism is activation of the trigeminocervical complex (TCC). However, the correlation between vaccination and CH is unexplainable. Its goal is to compare the CH bouts of patients before and after the vaccine. METHODS Patients with a history of CH and who had never experienced COVID-19 illness during the pandemic were included in this retrospective cohort analysis. The semi-structured survey was administered face to face to 24 CH patients (16 male). The headache features before and after vaccination were detailed in this survey. RESULTS 18 patients got vaccinated twice, and 6 of them had no vaccination. After the first vaccination, 83.3% of them had CH bout; after the second vaccination, 72.2% of them had CH bout. We divided headache episodes into three groups: (1) before vaccination, (2) after the first vaccination, and (3) after the second vaccination. The third group had a higher pain intensity (9.30 ± 0.630, p = 0.047) and remitting longer (20.00 ± 5.40 days, p = 0.019) than the other groups. The management of the 53.3% bouts after vaccinations was less effective than the usual episodes. CONCLUSION Most ECH patients experienced new bouts more intense and longer duration after vaccinations than their previous bouts, the mechanism, and pathogenesis of the bouts are the subject of future research. The new studies can be a light for understanding the CH pathophysiology more deeply.
Collapse
Affiliation(s)
- Suna Aşkın Turan
- Pain Department, Mersin City Training and Research Hospital, University of Health Sciences, 33240, Korukent Mah. 96015 Sok. Mersin Entegre Sağlık Kampüsü, Toroslar/Mersin, Türkiye.
| | - Şenay Aydın
- Department of Neurology, Yedikule Chest Disease and Surgery Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
26
|
Kim HH, Lee HK, Hennighausen L, Furth PA, Sung H, Huh JW. Time-course analysis of antibody and cytokine response after the third SARS-CoV-2 vaccine dose. Vaccine X 2024; 20:100565. [PMID: 39399820 PMCID: PMC11470517 DOI: 10.1016/j.jvacx.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The widespread administration of an additional dose of the SARS-CoV-2 vaccine has been promoted across adult populations, demonstrating a robust immune response against COVID-19. Longitudinal studies provide crucial data on the durability of immune response after the third vaccination. This study aims to explore the antibody response, neutralizing activity, and cytokine response against the SARS-CoV-2 ancestral strain (wild-type) and its variants during the timeline before and after the administration of the third vaccine dose. Anti-spike antibody titers and neutralizing antibodies blocking ACE2 binding to spike antigens were measured in 62 study participants at baseline, and on days 7, 21, and 180 post-vaccination. Cytokine levels were assessed at the same points except for day 180, with an additional measurement on day 3 post-vaccination. The analysis revealed no substantial variation in anti-spike antibody titer against the SARS-CoV-2 ancestral strain between the pre-vaccination phase and three days following the third dose. However, a significant nine-fold increase in these titers was observed by day 7, maintained until day 21. Although a decrease was observed by day 180, all participants still had detectable antibody levels. A similar trend was noted for neutralizing antibodies, with a four-fold rise by day 7 post-vaccination. At day 180, a diminution of neutralizing antibody titers was evident for both wild-type and all variants, including Omicron subvariant. A transient increase in cytokine activity, notably involving components of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway, such as CXCL10 and IL-10, was observed within three days after the third dose. This study underscores a distinct amplification of humoral immune response seven days following the third SARS-CoV-2 vaccine dose and observes a decline in neutralizing antibody titers 180 days following the third dose, thus indicating the temporal humoral effectiveness of booster vaccination. A short-term cytokine surge, notably involving the JAK/STAT pathway, highlights the dynamic immune modulation post-vaccination.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
28
|
Severa M, Ricci D, Etna MP, Facchini M, Puzelli S, Fedele G, Iorio E, Cairo G, Castrechini S, Ungari V, Iannetta M, Leone P, Chirico M, Pisanu ME, Bottazzi B, Benedetti L, Sali M, Bartolomucci R, Balducci S, Garlanda C, Stefanelli P, Spadea A, Palamara AT, Coccia EM. A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination. Vaccines (Basel) 2024; 12:1050. [PMID: 39340080 PMCID: PMC11436141 DOI: 10.3390/vaccines12091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
In this pilot study, a multi-parametric analysis comparing immune responses in sera of adult healthy subjects (HS) or people with type 2 diabetes mellitus (T2D) undergoing the single or simultaneous administration of mRNA-based COVID-19 and cellular quadrivalent inactivated influenza vaccines was conducted. While SARS-CoV-2 antibodies remains comparable, influenza antibody titers and seroconversion were significantly higher upon simultaneous vaccination. Magnitude of anti-influenza humoral response closely correlated with an early innate immune signature, previously described for the COVID-19 vaccine, composed of IL-15, IL-6, TNF-α, IFN-γ, CXCL-10 and here extended also to acute-phase protein Pentraxin 3. People with T2D receiving simultaneous vaccination showed a protective response comparable to HS correlating with the early induction of IFN-γ/CXCL10 and a significant reduction of the circulating glucose level due to increased oxidation of glucose digestion and consumption. These data, although preliminary and in-need of validation in larger cohorts, might be exploited to optimize future vaccination in people with chronic disorders, including diabetes.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Daniela Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Marilena Paola Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Marzia Facchini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Simona Puzelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Giada Cairo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Sara Castrechini
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Valentina Ungari
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Marco Iannetta
- Infectious Disease Clinic, Tor Vergata University Hospital, 00133 Rome, Italy; (M.I.); (L.B.)
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Centre—IRCCS, 20019 Milan, Italy; (B.B.); (C.G.)
| | - Livia Benedetti
- Infectious Disease Clinic, Tor Vergata University Hospital, 00133 Rome, Italy; (M.I.); (L.B.)
| | - Michela Sali
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Remo Bartolomucci
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | | | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Centre—IRCCS, 20019 Milan, Italy; (B.B.); (C.G.)
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Antonietta Spadea
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Eliana Marina Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| |
Collapse
|
29
|
Chen WC, Hu SY, Cheng CM, Shen CF, Chuang HY, Ker CR, Sun DJ, Shen CJ. Evaluating TRAIL and IP-10 alterations in vaccinated pregnant women after COVID-19 diagnosis and their correlation with neutralizing antibodies. Front Immunol 2024; 15:1415561. [PMID: 39290698 PMCID: PMC11405216 DOI: 10.3389/fimmu.2024.1415561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background This study evaluates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon-γ-induced protein-10 (IP-10) in pregnant women with COVID-19 and their newborns, exploring the effects of antiviral treatments and vaccine-induced neutralizing antibody (Nab) inhibition on these key viral infection biomarkers. Methods We studied 61 pregnant women with past COVID-19 and either three (n=56) or four (n=5) doses of vaccination, and 46 without COVID-19 but vaccinated. We analyzed them and their newborns' blood for TRAIL, IP-10, and Nab levels using enzyme-linked immunosorbent assays (ELISA), correlating these with other clinical factors. Results Our study found lower TRAIL but higher IP-10 levels in maternal blood than neonatal cord blood, irrespective of past COVID-19 diagnosis. Cases diagnosed with COVID-19 < 4 weeks previously had higher maternal blood TRAIL levels (16.49 vs. 40.81 pg/mL, p=0.0064) and IP-10 (154.68 vs. 225.81 pg/mL, p=0.0170) than those never diagnosed. Antiviral medication lowered TRAIL and IP-10 in maternal blood without affecting Nab inhibition (TRAIL: 19.24 vs. 54.53 pg/mL, p=0.028; IP-10: 158.36 vs. 255.47 pg/mL, p=0.0089). TRAIL and IP-10 levels were similar with three or four vaccine doses, but four doses increased Nab inhibition (p=0.0363). Previously COVID-19 exposed pregnant women had higher Nab inhibition (p < 0.0001). No obvious correlation was found among TRAIL, IP-10, and Nab inhibition level. Conclusions Our study suggests that lower maternal TRAIL and higher IP-10 levels compared to neonatal cord blood coupled with a rise in both markers following COVID-19 diagnosis that could be reduced by antivirals indicates a correlation to infection severity. Higher vaccine doses enhance Nab inhibition, irrespective of antiviral medication use and independent of TRAIL or IP-10 levels, highlighting the significance and safety of adequate vaccination and antiviral use post-diagnosis in pregnant women.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ru Ker
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Der-Ji Sun
- Department of Obstetrics and Gynecology, Pojen Hospital, Kaohsiung, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Nystrom SE, Soldano KL, Rockett M, Datta S, Li G, Silas D, Garrett ME, Ashley-Koch AE, Olabisi OA. APOL1 High-Risk Genotype is Not Associated With New or Worsening of Proteinuria or Kidney Function Decline Following COVID-19 Vaccination. Kidney Int Rep 2024; 9:2657-2666. [PMID: 39291186 PMCID: PMC11403097 DOI: 10.1016/j.ekir.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases systemic inflammatory cytokines which act as a second-hit driver of Apolipoprotein L1 (APOL1)-mediated collapsing glomerulopathy. SARS-CoV-2 vaccination also increases cytokines. Recent reports of new glomerular disease in individuals with APOL1 high-risk genotype (HRG) following SARS-CoV-2 vaccination raised the concern SARS-CoV-2 vaccination may also act as a second-hit driver of APOL1-mediated glomerulopathy. Methods We screened 1507 adults in the Duke's Measurement to Understand Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) registry and enrolled 105 eligible participants with available SARS-CoV-2 vaccination data, prevaccination and postvaccination serum creatinine, and urine protein measurements. Paired data were stratified by number of APOL1 risk alleles (RAs) and compared within groups using Wilcoxon signed rank test and across groups by analysis of variance. Results Among 105 participants, 30 (28.6%) had 2, 39 (37.1%) had 1, and 36 (34.3%) had 0 APOL1 RA. Most of the participants (94%) received at least 2 doses of vaccine. Most (98%) received the BNT162B2 (Pfizer) or mRNA-1273 (Moderna) vaccine. On average, the prevaccine and postvaccine laboratory samples were drawn 648 days apart. There were no detectable differences between pre- and post-serum creatinine or pre- and post-urine albumin creatinine ratio irrespective of the participants' APOL1 genotype. Finally, most participants with APOL1 RA had the most common haplotype (E150, I228, and K255) and lacked the recently described protective N264K haplotype. Conclusion In this observational study, APOL1 HRG is not associated with new or worsening of proteinuria or decline in kidney function following SARS-CoV-2 vaccination. Validation of this result in larger cohorts would further support the renal safety of SARS-CoV-2 vaccine in individuals with APOL1 HRG.
Collapse
Affiliation(s)
- Sarah E Nystrom
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Karen L Soldano
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micki Rockett
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Somenath Datta
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guojie Li
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melanie E Garrett
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allison E Ashley-Koch
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Opeyemi A Olabisi
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
31
|
Tahsin A, Bhattacharjee P, Al Saba A, Yasmin T, Nabi AHMN. Genetic and epigenetic analyses of IFN-γ gene proximal promoter region underlying positive correlation between persistently high anti-SARS-CoV-2 IgG and IFN-γ among COVID-19 vaccinated Bangladeshi adults. Vaccine 2024; 42:126157. [PMID: 39079811 DOI: 10.1016/j.vaccine.2024.126157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
IFN-γ is an immunological modulator influencing IgG isotype and concentration, which present a correlate of protection to evaluate vaccine efficacy. As transiently expressed, stable genetic and epigenetic signatures of the cytokine's expression may exist. This study investigates correlation between plasma IFN-γ and anti-SARS-CoV-2 IgG levels, seeking genetic polymorphisms and epigenetic variations within the IFN-γ gene proximal promoter. 200 COVID-19-vaccinated adults were classified into seropositive and seronegative groups based on plasma anti-SARS-CoV-2 IgG. Upon correlation analysis between anti-SARS-CoV-2 IgG and IFN-γ levels, IFN-γ gene proximal promoter region was subjected to nucleotide sequencing for two subsets: seronegative (21 < Days post-vaccination ≤180, n = 11) and seropositive (IgG > Q3 and Days post-vaccination >180, n = 24). Relative unmethylation of IFN-γ proximal promoter was assessed for the latter subset and its correlation with plasma IFN-γ and IgG levels was evaluated. A statistically significant positive correlation (r = 0.492, p = 0.018) was observed between IFN-γ and anti-SARS-CoV-2 IgG in the seropositive group with persistently high IgG titre (IgG > Q3, Days elapsed post-vaccination >180). A heterozygous 5'-UTR variant (rs776667149:C>T) identified in one seronegative individual revealed a potential impact on PKR-mediated translational attenuation of IFN-γ mRNA. No significant correlation was found between IFN-γ proximal promoter unmethylation and its plasma levels among HAR individuals with Days post-vaccination of either >180 (r = 0.14, p = 0.679) or < 180 (r = -0.062, p = 0.693). This study demonstrates an extent of humoral immunity against SARS-CoV-2 among COVID-19 vaccinated Bangladeshi population. This study suggests plasma IFN-γ may play a role in maintaining persistent anti-SARS-CoV-2 IgG levels, which warrants further investigation along with genetic and/or epigenetic basis to fully establish its protective nature in COVID-19 vaccination.
Collapse
Affiliation(s)
- Anika Tahsin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Piyash Bhattacharjee
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
32
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
33
|
Kalams SA, Felber BK, Mullins JI, Scott HM, Allen MA, De Rosa SC, Heptinstall J, Tomaras GD, Hu J, DeCamp AC, Rosati M, Bear J, Pensiero MN, Eldridge J, Egan MA, Hannaman D, McElrath MJ, Pavlakis GN, HIV Vaccine Trials Network 119(HVTN 119) Study Team. Focusing HIV-1 Gag T cell responses to highly conserved regions by DNA vaccination in HVTN 119. JCI Insight 2024; 9:e180819. [PMID: 39088271 PMCID: PMC11466283 DOI: 10.1172/jci.insight.180819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.
Collapse
Affiliation(s)
- Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James I. Mullins
- Departments of Microbiology, Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Hyman M. Scott
- San Francisco Department of Public Health, San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mary A. Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allan C. DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | - Michael A. Egan
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
34
|
Amini A, Klenerman P, Provine NM. Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity. Curr Opin Virol 2024; 67:101412. [PMID: 38838550 PMCID: PMC11511680 DOI: 10.1016/j.coviro.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK; Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK.
| | - Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
35
|
Kang DD, Hou X, Wang L, Xue Y, Li H, Zhong Y, Wang S, Deng B, McComb DW, Dong Y. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact Mater 2024; 37:86-93. [PMID: 38523704 PMCID: PMC10957522 DOI: 10.1016/j.bioactmat.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Since the approval of the lipid nanoparticles (LNP)-mRNA vaccines against the SARS-CoV-2 virus, there has been an increased interest in the delivery of mRNA through LNPs. However, current LNP formulations contain PEG lipids, which can stimulate the generation of anti-PEG antibodies. The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration. Given the widespread deployment of the COVID-19 vaccines, the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components. In this study, we investigated a series of polysarcosine (pSar) lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems. We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.
Collapse
Affiliation(s)
- Diana D. Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leiming Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Lim SH, Choi SH, Ji YS, Kim SH, Kim CK, Yun J, Park SK. Comparison of antibody response to coronavirus disease 2019 vaccination between patients with solid or hematologic cancer patients undergoing chemotherapy. Asia Pac J Clin Oncol 2024; 20:346-353. [PMID: 37026374 DOI: 10.1111/ajco.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
AIM This study examined the serum antibody response of coronavirus disease 2019 (COVID-19) vaccines in solid and hematologic cancer patients undergoing chemotherapy. Levels of various inflammatory cytokines/chemokines after full vaccination were analyzed. METHODS Forty-eight patients with solid cancer and 37 with hematologic malignancy who got fully vaccinated either with severe acute respiratory syndrome coronavirus 2 messenger RNA (mRNA) or vector vaccines or their combination were included. After consecutively collecting blood, immunogenicity was assessed by surrogate virus neutralization test (sVNT), and cytokine/chemokines were evaluated by Meso Scale Discovery assay. RESULTS Seropositivity and protective immune response were lower in patients with hematologic cancer compared to those with solid cancers, regardless of vaccine type. Significantly lower sVNT inhibition was observed in patients with hematologic cancer (mean [SD] 45.30 [40.27] %) than in those with solid cancer (mean [SD] 61.78 [34.79] %) (p = 0.047). Heterologous vector/mRNA vaccination was independently and most markedly associated with a higher sVNT inhibition score (p < 0.05), followed by homologous mRNA vaccination. The mean serum levels of tumor necrosis factor α, macrophage inflammatory protein (MIP)-1α, and MIP-1β were significantly higher in patients with hematologic cancers compared to those with solid cancers after the full vaccination. In 36 patients who received an additional booster shot, 29 demonstrated increased antibody titer in terms of mean sVNT (%) (40.80 and 75.21, respectively, before and after the additional dose, p < 0.001). CONCLUSION Hematologic cancer patients receiving chemotherapy tended to respond poorly to both COVID-19 mRNA and vector vaccines and had a significantly lower antibody titer compared to those with solid cancers.
Collapse
Affiliation(s)
- Sung Hee Lim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Hyeok Choi
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Young Sok Ji
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Se Hyung Kim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Chan Kyu Kim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jina Yun
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Kyu Park
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
37
|
Hellgren F, Rosdahl A, Arcoverde Cerveira R, Lenart K, Ols S, Gwon YD, Kurt S, Delis AM, Joas G, Evander M, Normark J, Ahlm C, Forsell MN, Cajander S, Loré K. Modulation of innate immune response to mRNA vaccination after SARS-CoV-2 infection or sequential vaccination in humans. JCI Insight 2024; 9:e175401. [PMID: 38716734 PMCID: PMC11141904 DOI: 10.1172/jci.insight.175401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/22/2024] [Indexed: 06/02/2024] Open
Abstract
mRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine. Prior infection conferred significantly stronger induction of proinflammatory and type I IFN-related gene signatures, serum cytokines, and monocyte expansion after the prime vaccination. The response to the second vaccination further increased the magnitude of the early innate response in both study groups. The third vaccination did not further increase vaccine-induced inflammation. In vitro stimulation of PBMCs with TLR ligands showed no difference in cytokine responses between groups, or before or after prime vaccination, indicating absence of a trained immunity effect. We observed that levels of preexisting antigen-specific CD4 T cells, antibody, and memory B cells correlated with elements of the early innate response to the first vaccination. Our data thereby indicate that preexisting memory formed by infection may augment the innate immune activation induced by mRNA vaccines.
Collapse
Affiliation(s)
- Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anja Rosdahl
- Department of Infectious Diseases and
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Seta Kurt
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anna Maria Delis
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gustav Joas
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Sara Cajander
- Department of Infectious Diseases and
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Zhang Z, Yang W, Chen Z, Chi H, Wu S, Zheng W, Jin R, Wang B, Wang Y, Huo N, Zhang J, Song X, Xu L, Zhang J, Hou L, Chen W. A causal multiomics study discriminates the early immune features of Ad5-vectored Ebola vaccine recipients. Innovation (N Y) 2024; 5:100603. [PMID: 38745762 PMCID: PMC11092886 DOI: 10.1016/j.xinn.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjing Yang
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haoang Chi
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
- Intelligent Game and Decision Lab, Academy of Military Science, Beijing 100091, China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wanru Zheng
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruochun Jin
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Busen Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yudong Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Huo
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinlong Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaohong Song
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liyang Xu
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
39
|
Livieratos A, Gogos C, Akinosoglou K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024; 16:685. [PMID: 38793566 PMCID: PMC11125779 DOI: 10.3390/v16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular and humoral immunity exhibit dynamic adaptation to the mutating SARS-CoV-2 virus. It is noteworthy that immune responses differ significantly, influenced by whether a patient has received vaccination or whether there is co-occurrence of naturally acquired and vaccine-induced immunity, known as hybrid immunity. The different immune reactions, conditional on vaccination status and the viral variant involved, bear implications for inflammatory responses, patient outcomes, pathogen transmission rates, and lingering post-COVID conditions. Considering these developments, we have performed a review of recently published literature, aiming to disentangle the intricate relationships among immunological profiles, transmission, the long-term health effects post-COVID infection poses, and the resultant clinical manifestations. This investigation is directed toward understanding the variability in the longevity and potency of cellular and humoral immune responses elicited by immunization and hybrid infection.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
40
|
Korosec CS, Dick DW, Moyles IR, Watmough J. SARS-CoV-2 booster vaccine dose significantly extends humoral immune response half-life beyond the primary series. Sci Rep 2024; 14:8426. [PMID: 38637521 PMCID: PMC11026522 DOI: 10.1038/s41598-024-58811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - David W Dick
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Iain R Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - James Watmough
- Department of Mathematics and Statistics, University of New Brunswick, 3 Bailey Dr, Fredericton, E3B 5A3, NB, Canada
| |
Collapse
|
41
|
Wolz OO, Vahrenhorst D, Quintini G, Lemberg C, Koch SD, Kays SK, Walz L, Kulkarni N, Fehlings M, Wengenmayer P, Heß J, Oostvogels L, Lazzaro S, von Eisenhart-Rothe P, Mann P. Innate Responses to the Former COVID-19 Vaccine Candidate CVnCoV and Their Relation to Reactogenicity and Adaptive Immunogenicity. Vaccines (Basel) 2024; 12:388. [PMID: 38675770 PMCID: PMC11053638 DOI: 10.3390/vaccines12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials). Immunogenicity was investigated using whole-blood RNA sequencing, serum cytokine levels, and SARS-CoV-2-specific antibodies. The T cell responses in peripheral blood were assessed using intracellular cytokine staining (ICS) and high-dimensional profiling in conjunction with SARS-CoV-2 antigen-specificity testing via mass cytometry. Reactogenicity was graded after participants' first and second doses of CVnCoV using vaccine-related solicited adverse events (AEs). Finally, a Spearman correlation was performed between reactogenicity, humoral immunity, and serum cytokine levels to assess the relationship between reactogenicity and immunogenicity post CVnCoV vaccination. Our findings showed that the gene sets related to innate and inflammatory immune responses were upregulated one day post CVnCoV vaccination, while the gene sets related to adaptive immunity were upregulated predominantly one week after the second dose. The serum levels of IFNα, IFNγ, IP-10, CXCL11, IL-10, and MCP-1 increased transiently, peaking one day post vaccination. CD4+ T cells were induced in all vaccinated participants and low frequencies of CD8+ T cells were detected by ex vivo ICS. Using mass cytometry, SARS-CoV-2 spike-specific CD8+ T cells were induced and were characterized as having an activated effector memory phenotype. Overall, the results demonstrated a positive correlation between vaccine-induced systemic cytokines, reactogenicity, and adaptive immunity, highlighting the importance of the balance between the induction of innate immunity to achieve vaccine efficacy and ensuring low reactogenicity.
Collapse
Affiliation(s)
- Olaf-Oliver Wolz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Dominik Vahrenhorst
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Gianluca Quintini
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Christina Lemberg
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sven D. Koch
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sarah-Katharina Kays
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lisa Walz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Neeraja Kulkarni
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Michael Fehlings
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Peter Wengenmayer
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Jana Heß
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lidia Oostvogels
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sandra Lazzaro
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | | | - Philipp Mann
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| |
Collapse
|
42
|
Palladino M, Del Vecchio M, Farroni S, Martellucci O, Gigante A, Alessandri C, Muscaritoli M. Fever and dyspnea after anti-Covid-19 vaccination: a challenging diagnosis. Intern Emerg Med 2024; 19:757-760. [PMID: 37566358 DOI: 10.1007/s11739-023-03390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
There is still little information regarding the long-term safety of the vaccines. We report a case of new-onset adult-onset Still's disease (AOSD) that occurred following Covid-19 vaccination. This patient went to the emergency room with dyspnea from the last two weeks and bilateral swellings that occurred several weeks after the first vaccination. Based on the symptoms and laboratory results, we suspected AOSD. Considering the time relationship between Covid-19 vaccination and AOSD onset in our patient, and possible mechanisms linking vaccination with the onset of autoimmune disorders, physicians should consider adverse events from Covid-19 vaccination and assess the benefits and risks of vaccination for each patient.
Collapse
Affiliation(s)
- Mariangela Palladino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy.
| | - Martina Del Vecchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Simone Farroni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Ottavio Martellucci
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Cristiano Alessandri
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
43
|
Boston RH, Guan R, Kalmar L, Beier S, Horner EC, Beristain-Covarrubias N, Yam-Puc JC, Pereyra Gerber P, Faria L, Kuroshchenkova A, Lindell AE, Blasche S, Correa-Noguera A, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Grigoriadou S, Staples E, Buckland MS, Lear S, Matheson NJ, Benes V, Parkinson C, Thaventhiran JE, Patil KR. Stability of gut microbiome after COVID-19 vaccination in healthy and immuno-compromised individuals. Life Sci Alliance 2024; 7:e202302529. [PMID: 38316462 PMCID: PMC10844540 DOI: 10.26508/lsa.202302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.
Collapse
Affiliation(s)
- Rebecca H Boston
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rui Guan
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sina Beier
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Juan Carlos Yam-Puc
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Luisa Faria
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Kuroshchenkova
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna E Lindell
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sonja Blasche
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Emily Staples
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Parkinson
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - James Ed Thaventhiran
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Edelman A, Boniface ER, Male V, Cameron S, Benhar E, Han L, Matteson KA, van Lamsweerde A, Pearson JT, Darney BG. Timing of Coronavirus Disease 2019 (COVID-19) Vaccination and Effects on Menstrual Cycle Changes. Obstet Gynecol 2024; 143:585-594. [PMID: 38412506 PMCID: PMC10953681 DOI: 10.1097/aog.0000000000005550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To assess whether menstrual cycle timing (follicular or luteal phase) of coronavirus disease 2019 (COVID-19) vaccine administration is associated with cycle length changes. METHODS We used prospectively collected (2021-2022) menstrual cycle tracking data from 19,497 reproductive-aged users of the application "Natural Cycles." We identified whether vaccine was delivered in the follicular or luteal phase and also included an unvaccinated control group. Our primary outcome was the adjusted within-individual change in cycle length (in days) from the average of the three menstrual cycles before the first vaccination cycle (individuals in the unvaccinated control group were assigned a notional vaccine date). We also assessed cycle length changes in the second vaccination cycle and whether a clinically significant change in cycle length (8 days or more) occurred in either cycle. RESULTS Most individuals were younger than age 35 years (80.1%) and from North America (28.6%), continental Europe (33.5%), or the United Kingdom (31.7%). In the vaccinated group, the majority received an mRNA vaccine (63.8% of the full sample). Individuals vaccinated in the follicular phase experienced an average 1-day longer adjusted cycle length with a first or second dose of COVID-19 vaccine compared with their prevaccination average (first dose: 1.00 day [98.75% CI, 0.88-1.13], second dose: 1.11 days [98.75% CI, 0.93-1.29]); those vaccinated in the luteal phase and those in the unvaccinated control group experienced no change in cycle length (respectively, first dose: -0.09 days [98.75% CI, -0.26 to 0.07], second dose: 0.06 days [98.75% CI, -0.16 to 0.29], unvaccinated notional first dose: 0.08 days [98.75% CI, -0.10 to 0.27], second dose: 0.17 days [98.75% CI, -0.04 to 0.38]). Those vaccinated during the follicular phase were also more likely to experience a clinically significant change in cycle length (8 days or more; first dose: 6.8%) than those vaccinated in the luteal phase or unvaccinated (3.3% and 5.0%, respectively; P <.001). CONCLUSION COVID-19 vaccine-related cycle length increases are associated with receipt of vaccination in the first half of the menstrual cycle (follicular phase).
Collapse
Affiliation(s)
- Alison Edelman
- Department of Obstetrics and Gynecology, Oregon Health & Science University, and Oregon Health & Science University-Portland State University, School of Public Health, Portland, Oregon; the Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom; Obstetrics and Gynaecology, University of Edinburgh and Chalmers Centre, Edinburgh, Scotland; Natural Cycles USA Corp, New York, New York; the Department of Obstetrics and Gynecology, University of Massachusetts Chan Medical School, Worcester, Massachusetts; and the National Institute of Public Health, Center for Population Health Research, Cuernavaca, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen WC, Hu SY, Cheng CM, Shen CF, Chuang HY, Ker CR, Sun DJ, Shen CJ. TRAIL and IP-10 dynamics in pregnant women post COVID-19 vaccination: associations with neutralizing antibody potency. Front Cell Infect Microbiol 2024; 14:1358967. [PMID: 38572318 PMCID: PMC10987851 DOI: 10.3389/fcimb.2024.1358967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The aim of this study is to investigate changes in TNF-related apoptosis-inducing ligand (TRAIL) and gamma interferon-induced protein 10 (IP-10) after COVID-19 vaccination in pregnant women and to explore their association with neutralizing antibody (Nab) inhibition. Methods The study evaluated 93 pregnant women who had previously received two (n=21), three (n=55) or four (n=17) doses of COVID-19 vaccine. Also we evaluated maternal blood samples that were collected during childbirth. The levels of TRAIL, IP-10 and Nab inhibition were measured using enzyme-linked immunosorbent assays (ELISA). Results and discussion Our study revealed four-dose group resulted in lower TRAIL levels when compared to the two-dose and three-dose groups (4.78 vs. 16.07 vs. 21.61 pg/ml, p = 0.014). The two-dose group had reduced IP-10 levels than the three-dose cohort (111.49 vs. 147.89 pg/ml, p=0.013), with no significant variation compared to the four-dose group. In addition, the four-dose group showed stronger Nab inhibition against specific strains (BA.2 and BA.5) than the three-dose group. A positive correlation was observed between TRAIL and IP-10 in the two-dose group, while this relationship was not found in other dose groups or between TRAIL/IP-10 and Nab inhibition. As the doses of the COVID-19 vaccine increase, the levels of TRAIL and IP-10 generally increase, only by the fourth dose, the group previously vaccinated with AZD1222 showed lower TRAIL but higher IP-10. Despite these changes, more doses of the vaccine consistently reinforced Nab inhibition, apparently without any relation to TRAIL and IP-10 levels. The variation may indicate the induction of immunological memory in vaccinated mothers, which justifies further research in the future.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ru Ker
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Der-Ji Sun
- Department of Obstetrics and Gynecology, Pojen Hospital, Kaohsiung, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Sarin KY, Zheng H, Chaichian Y, Arunachalam PS, Swaminathan G, Eschholz A, Gao F, Wirz OF, Lam B, Yang E, Lee LW, Feng A, Lewis MA, Lin J, Maecker HT, Boyd SD, Davis MM, Nadeau KC, Pulendran B, Khatri P, Utz PJ, Zaba LC. Impaired innate and adaptive immune responses to BNT162b2 SARS-CoV-2 vaccination in systemic lupus erythematosus. JCI Insight 2024; 9:e176556. [PMID: 38456511 PMCID: PMC10972586 DOI: 10.1172/jci.insight.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding the immune responses to SARS-CoV-2 vaccination is critical to optimizing vaccination strategies for individuals with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here, we comprehensively analyzed innate and adaptive immune responses in 19 patients with SLE receiving a complete 2-dose Pfizer-BioNTech mRNA vaccine (BNT162b2) regimen compared with a control cohort of 56 healthy control (HC) volunteers. Patients with SLE exhibited impaired neutralizing antibody production and antigen-specific CD4+ and CD8+ T cell responses relative to HC. Interestingly, antibody responses were only altered in patients with SLE treated with immunosuppressive therapies, whereas impairment of antigen-specific CD4+ and CD8+ T cell numbers was independent of medication. Patients with SLE also displayed reduced levels of circulating CXC motif chemokine ligands, CXCL9, CXCL10, CXCL11, and IFN-γ after secondary vaccination as well as downregulation of gene expression pathways indicative of compromised innate immune responses. Single-cell RNA-Seq analysis reveals that patients with SLE showed reduced levels of a vaccine-inducible monocyte population characterized by overexpression of IFN-response transcription factors. Thus, although 2 doses of BNT162b2 induced relatively robust immune responses in patients with SLE, our data demonstrate impairment of both innate and adaptive immune responses relative to HC, highlighting a need for population-specific vaccination studies.
Collapse
Affiliation(s)
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, and
| | - Yashaar Chaichian
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | | | | | - Fei Gao
- Institute for Immunity, Transplantation and Infection
| | | | | | - Emily Yang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | - Lori W. Lee
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | | | - Janice Lin
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | | | | | - Mark M. Davis
- Institute for Immunity, Transplantation and Infection
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Kari C. Nadeau
- Institute for Immunity, Transplantation and Infection
- Department of Environmental Gealth, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bali Pulendran
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, and
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
47
|
Bagheri-Hosseinabadi Z, Kaeidi A, Rezvani M, Taghipour Khaje Sharifi G, Abbasifard M. Evaluation of the serum levels of CCL2, CCL3, and IL-29 after first and second administrations of the COVID-19 vaccine (Oxford-AstraZeneca). Immunobiology 2024; 229:152789. [PMID: 38290406 DOI: 10.1016/j.imbio.2024.152789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Previous studies show that chemokines and cytokines play a very important role in eliciting an appropriate response against viruses. Vaccination causes inflammation in the person receiving the vaccine, accompanied with production of inflammatory molecules by immune cells. The more and better the production and expression of chemokines and cytokines by immune cells, the better the response of the acquired immune system. Chemokines and cytokines are critical in promoting the innate immune response against the COVID-19. Here we intended to assess serum levels of CCL2, CCL3, and interleukin (IL)-29 in patients received COVID-19 vaccine. METHODS In this study, 40 subjects vaccinated with the Oxford-AstraZeneca COVID-19 vaccine were selected. Blood samples were collected before injection of the vaccine, 3-5 days after the first dose injection, and 3-5 days subsequent to the second vaccination. To check the serum level of CCL2, CCL3, and IL-29, ELISA technique was used. RESULTS Our results indicated that the serum levels of CCL2, CCL3, and IL-29 were significantly higher after first and second dose of vaccination compared to before vaccine administration. Furthermore, serum levels of all these mediators were higher after second dose of vaccine compared to the first vaccine administration. CONCLUSIONS Oxford-AstraZeneca COVID-19 vaccine is able to induce inflammatory CCL2 and CCL3 chemokines as well as protective interferon lambda (IL-29).
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdi Rezvani
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
48
|
van Eijk LE, Bourgonje AR, Messchendorp AL, Bulthuis MLC, Reinders-Luinge M, Doornbos-van der Meer B, Westra J, den Dunnen WFA, Hillebrands JL, Sanders JSF, van Goor H. Systemic oxidative stress may be associated with reduced IgG antibody titers against SARS-CoV-2 in vaccinated kidney transplant recipients: A post-hoc analysis of the RECOVAC-IR observational study. Free Radic Biol Med 2024; 215:14-24. [PMID: 38395091 DOI: 10.1016/j.freeradbiomed.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) poses an increased risk for severe illness and suboptimal vaccination responses in patients with kidney disease, in which oxidative stress may be involved. Oxidative stress can be reliably measured by determining circulating free thiols (R-SH, sulfhydryl groups), since R-SH are rapidly oxidized by reactive species. In this study, we aimed to examine the association between serum free thiols and the ability to mount a humoral immune response to SARS-CoV-2 vaccination in kidney patients. METHODS Serum free thiol concentrations were measured in patients with chronic kidney disease stages 4/5 (CKD G4/5) (n = 46), on dialysis (n = 43), kidney transplant recipients (KTR) (n = 73), and controls (n = 50). Baseline serum free thiol and interferon-γ-induced protein-10 (IP-10) - a biomarker of the interferon response - were analyzed for associations with seroconversion rates and SARS-CoV-2 spike (S1)-specific IgG concentrations after two doses of the mRNA-1273 vaccine. RESULTS Albumin-adjusted serum free thiol concentrations were significantly lower in patients with CKD G4/5 (P < 0.001), on dialysis (P < 0.001), and KTR (P < 0.001), as compared to controls. Seroconversion rates after full vaccination were markedly reduced in KTR (52.1%) and were significantly associated with albumin-adjusted free thiols (OR = 1.76, P = 0.033). After adjustment for MMF use, hemoglobin, and eGFR, this significance was not sustained (OR = 1.49, P = 0.241). CONCLUSIONS KTR show suboptimal serological responses to SARS-CoV-2 vaccination, which is inversely associated with serum R-SH, reflecting systemic oxidative stress. Albeit this association was not robust to relevant confounding factors, it may at least partially be involved in the inability of KTR to generate a positive serological response after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Larissa E van Eijk
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Arno R Bourgonje
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - A Lianne Messchendorp
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Marian L C Bulthuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Marjan Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Wilfred F A den Dunnen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Luuk Hillebrands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Stephan F Sanders
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
49
|
Hu C, Hu W, Tang B, Bao Q, Jiang X, Tang L, Wang H, He L, Lv M, Xiao Y, Liu C, Li X, Liu Y, Li J, Huang G, Dong Z, Li Z, Guo T, Yang S. Plasma and urine proteomics and gut microbiota analysis reveal potential factors affecting COVID-19 vaccination response. iScience 2024; 27:108851. [PMID: 38318387 PMCID: PMC10838952 DOI: 10.1016/j.isci.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. Moreover, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the vaccination response. Based on the above data, we built a predictive model for vaccination response (AUC = 0.85). Our study provides insights into characteristic plasma and urine proteins and gut microbiota associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host response to COVID-19 vaccination.
Collapse
Affiliation(s)
- Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qiyu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xingyu Jiang
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - He Wang
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinzhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yunyi Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guiping Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhen Dong
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Zhongjun Li
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tiannan Guo
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
50
|
de Sousa PMB, Silva EA, Campos MAG, Lages JS, Corrêa RDGCF, Silva GEB. Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and Differential Diagnosis Review. Vaccines (Basel) 2024; 12:194. [PMID: 38400177 PMCID: PMC10891853 DOI: 10.3390/vaccines12020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Carditis in childhood is a rare disease with several etiologies. We report a case of infant death due to pericarditis and myocarditis after the mRNA vaccine against COVID-19 (COVIDmRNAV). A 7-year-old male child received the first dose of the COVIDmRNAV and presented with monoarthritis and a fever non-responsive to oral antibiotics. The laboratory investigation showed signs of infection (leukocytosis, high levels of c-reactive protein). His condition rapidly deteriorated, and the patient died. The autopsy identified pericardial fibrin deposits, hemorrhagic areas in the myocardium, and normal valves. A diffuse intermyocardial inflammatory infiltrate composed of T CD8+ lymphocytes and histiocytes was identified. An antistreptolysin O (ASO) dosage showed high titers. The presence of arthritis, elevated ASO, and carditis fulfills the criteria for rheumatic fever. However, valve disease and Aschoff's nodules, present in 90% of rheumatic carditis cases, were absent in this case. The temporal correlation with mRNA vaccination prompted its inclusion as one of the etiologies. In cases of myocardial damage related to COVID-19mRNAV, it appears to be related to the expression of exosomes and lipid nanoparticles, leading to a cytokine storm. The potential effects of the COVID-19mRNAV must be considered in the pathogenesis of this disease, whether as an etiology or a contributing factor to a previously initiated myocardial injury.
Collapse
Affiliation(s)
- Pedro Manuel Barros de Sousa
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Elon Almeida Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Marcos Adriano Garcia Campos
- Clinical Hospital of Botucatu Medical School, São Paulo State University, Professor Mário Rubens Guimarães Montenegro Avenue, Botucatu 18618-687, SP, Brazil
| | - Joyce Santos Lages
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | | | - Gyl Eanes Barros Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|