1
|
Fan C, Keeffe JR, Malecek KE, Cohen AA, West AP, Baharani VA, Rorick AV, Gao H, Gnanapragasam PNP, Rho S, Alvarez J, Segovia LN, Hatziioannou T, Bieniasz PD, Bjorkman PJ. Cross-reactive sarbecovirus antibodies induced by mosaic RBD nanoparticles. Proc Natl Acad Sci U S A 2025; 122:e2501637122. [PMID: 40402246 DOI: 10.1073/pnas.2501637122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/18/2025] [Indexed: 05/23/2025] Open
Abstract
Broad immune responses are needed to mitigate viral evolution and escape. To induce antibodies against conserved receptor-binding domain (RBD) regions of SARS-like betacoronavirus (sarbecovirus) spike proteins that recognize SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles. Here, we describe neutralizing mAbs isolated from mosaic-8b-immunized rabbits, some on par with Pemgarda, the only currently FDA-approved therapeutic mAb. Deep mutational scanning, in vitro selection of spike resistance mutations, and single-particle cryo-electron microscopy structures of spike-antibody complexes demonstrated targeting of conserved RBD epitopes. Rabbit mAbs included critical D-gene segment RBD-recognizing features in common with human anti-RBD mAbs, despite rabbit genomes lacking an equivalent human D-gene segment, thus demonstrating that the immune systems of humans and other mammals can utilize different antibody gene segments to arrive at similar modes of antigen recognition. These results suggest that animal models can be used to elicit anti-RBD mAbs with similar properties to those raised in humans, which can then be humanized for therapeutic use, and that mosaic RBD nanoparticle immunization coupled with multiplexed screening represents an efficient way to generate and select broadly cross-reactive therapeutic pan-sarbecovirus and pan-SARS-CoV-2 variant mAbs.
Collapse
Affiliation(s)
- Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kathryn E Malecek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jaasiel Alvarez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Luisa N Segovia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
- HHMI, The Rockefeller University, New York, NY 10065
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
2
|
Jana ID, Kanjo K, Roy S, Bhasin M, Bhattacharya S, Banerjee I, Jana S, Chatterjee A, Chakrabarti AK, Chakraborty S, Mukherjee B, Varadarajan R, Mondal A. Early 2022 breakthrough infection sera from India target the conserved cryptic class 5 epitope to counteract immune escape by SARS-CoV-2 variants. J Virol 2025; 99:e0005125. [PMID: 40135898 PMCID: PMC11998512 DOI: 10.1128/jvi.00051-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the vast majority of epitope mapping studies have focused on sera from mRNA-vaccinated populations from high-income countries. In contrast, here, we report an analysis of 164 serum samples isolated from patients with breakthrough infection in India during early 2022 who received two doses of the ChAdOx viral vector vaccine. Sera were screened for neutralization breadth against wild-type (WT), Kappa, Delta, and Omicron BA.1 viruses. Three sera with the highest neutralization breadth and potency were selected for epitope mapping, using charged scanning mutagenesis coupled with yeast surface display and next-generation sequencing. The mapped sera primarily targeted the recently identified class 5 cryptic epitope and, to a lesser extent, the class 1 and class 4 epitopes. The class 5 epitope is completely conserved across all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and for most sarbecoviruses. Based on these observations, an additional 26 sera were characterized, and all showed a broad neutralizing activity, including against XBB.1.5. This is in contrast with the results obtained with the sera from individuals receiving multiple doses of original and updated mRNA vaccines, where impaired neutralization of XBB and later variants of concern (VOCs) were observed. Our study demonstrates that two doses of the ChAdOx vaccine in a highly exposed population were sufficient to drive substantial neutralization breadth against emerging and upcoming variants of concern. These data highlight the important role of hybrid immunity in conferring broad protection and inform future vaccine strategies to protect against rapidly mutating viruses. IMPORTANCE Worldwide implementation of coronavirus disease 2019 (COVID-19) vaccines and the parallel emergence of newer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have shaped the humoral immune response in a population-specific manner. While characterizing this immune response is important for monitoring disease progression at the population level, it is also imperative for developing effective countermeasures in the form of novel vaccines and therapeutics. India has implemented the world's second largest COVID-19 vaccination drive and encountered a large number of post-vaccination "breakthrough" infections. From a cohort of patients with breakthrough infection, we identified individuals whose sera showed broadly neutralizing immunity against different SARS-CoV-2 variants. Interestingly, these sera primarily target a novel cryptic epitope, which was not identified in previous population-level studies conducted in Western countries. This rare cryptic epitope remains conserved across all SARS-CoV-2 variants, including recently emerged ones and for the SARS-like coronaviruses that may cause future outbreaks, thus representing a potential target for future vaccines.
Collapse
Affiliation(s)
- Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Subhanita Roy
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Munmun Bhasin
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Shatarupa Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranath Banerjee
- B.C. Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
3
|
Rubio AA, Baharani VA, Dadonaite B, Parada M, Abernathy ME, Wang Z, Lee YE, Eso MR, Phung J, Ramos I, Chen T, El Nesr G, Bloom JD, Bieniasz PD, Nussenzweig MC, Barnes CO. Bispecific antibodies targeting the N-terminal and receptor binding domains potently neutralize SARS-CoV-2 variants of concern. Sci Transl Med 2025; 17:eadq5720. [PMID: 40043139 DOI: 10.1126/scitranslmed.adq5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
The ongoing emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized amino-terminal domain (NTD)- and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from coronavirus disease 2019 (COVID-19) convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-electron microscopy structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596's favorable binding profile, we designed a series of bispecific antibodies (bsAbs), termed CoV2-biRNs, that featured both NTD and RBD specificities. Two of the C1596-inclusive bsAbs, CoV2-biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, BA.2.86, and JN.1, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 reduced the viral load within the lungs of K18-hACE2 mice after challenge with SARS-CoV-2 XBB.1.5. In conclusion, NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/pharmacology
- Animals
- Antibodies, Neutralizing/immunology
- Humans
- COVID-19/immunology
- COVID-19/virology
- Mice
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Viral/immunology
- Antibodies, Monoclonal/immunology
- Protein Domains
- Epitopes/immunology
- Female
- Mice, Inbred BALB C
- Cryoelectron Microscopy
Collapse
Affiliation(s)
- Adonis A Rubio
- Stanford Biosciences, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Viren A Baharani
- Laboratory of Retrovirology, Rockefeller University, New York, NY 10065, USA
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Megan Parada
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Zijun Wang
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yu E Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Eso
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jennie Phung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Israel Ramos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gina El Nesr
- Stanford Biosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Adia YM, Gnanapragasam PNP, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. Cell 2025; 188:1036-1050.e11. [PMID: 39855201 PMCID: PMC11845252 DOI: 10.1016/j.cell.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2COMs), five (mosaic-5COM), or seven (mosaic-7COM) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges. Naive and COVID-19 pre-vaccinated mice immunized with mosaic-7COM elicited antibodies targeting conserved RBD epitopes, and their sera exhibited higher binding and neutralization titers against sarbecoviruses than mosaic-8b. Mosaic-2COMs and mosaic-5COM elicited higher antibody potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons, supporting its use to protect against SARS-CoV-2 variants and zoonotic sarbecoviruses.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luis F Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yusuf M Adia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|
6
|
Fan C, Keeffe JR, Malecek KE, Cohen AA, West AP, Baharani VA, Rorick AV, Gao H, Gnanapragasam PN, Rho S, Alvarez J, Segovia LN, Hatziioannou T, Bieniasz PD, Bjorkman PJ. Cross-reactive sarbecovirus antibodies induced by mosaic RBD-nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631145. [PMID: 39803445 PMCID: PMC11722225 DOI: 10.1101/2025.01.02.631145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles. Here, we describe neutralizing mAbs from mosaic-8b-immunized rabbits, some on par with Pemgarda (the only currently FDA-approved therapeutic mAb). Deep mutational scanning, in vitro selection of spike resistance mutations, and cryo-EM structures of spike-antibody complexes demonstrated targeting of conserved epitopes. Rabbit mAbs included critical D-gene segment features in common with human anti-RBD mAbs, despite rabbit genomes lacking an equivalent human D-gene segment. Thus, mosaic RBD-nanoparticle immunization coupled with multiplexed screening represent an efficient way to generate and select therapeutic pan-sarbecovirus and pan-SARS-2 variant mAbs.
Collapse
Affiliation(s)
- Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kathryn E. Malecek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jaasiel Alvarez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luisa N. Segovia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
7
|
Renner TM, Stuible M, Cass B, Perret S, Guimond J, Lord-Dufour S, McCluskie MJ, Durocher Y, Akache B. Reduced cross-protective potential of Omicron compared to ancestral SARS-CoV-2 spike vaccines against potentially zoonotic coronaviruses. NPJ VIRUSES 2024; 2:58. [PMID: 40295830 PMCID: PMC11721134 DOI: 10.1038/s44298-024-00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/19/2024] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic has emphasised the importance of vaccines and preparedness against viral threats crossing species barriers. In response, a worldwide vaccination campaign targeting SARS-CoV-2 was implemented, which provides some cross-protective immunological memory to other coronavirus species with zoonotic potential. Following a vaccination regimen against SARS-CoV-2 spike in a preclinical mouse model, we were able to demonstrate the induction of neutralizing antibodies towards multiple human ACE2 (hACE2)-binding Sarbecovirus spikes. Importantly, compared to vaccines based on the SARS-CoV-2 Reference strain, vaccines based on Omicron spike sequences induced drastically less broadly cross-protective neutralizing antibodies against other hACE2-binding sarbecoviruses. This observation remained true whether the vaccination regimens were based on protein subunit or mRNA / LNP vaccines. Overall, while it may be necessary to update vaccine antigens to combat the evolving SARS-CoV-2 virus for enhanced protection from COVID-19, Reference-based vaccines may be a more valuable tool to protect against novel coronavirus zoonoses.
Collapse
Affiliation(s)
- Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Brian Cass
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Sylvie Perret
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Julie Guimond
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Simon Lord-Dufour
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada.
| | - Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Bruun TJ, Do J, Weidenbacher PAB, Utz A, Kim PS. Engineering a SARS-CoV-2 Vaccine Targeting the Receptor-Binding Domain Cryptic-Face via Immunofocusing. ACS CENTRAL SCIENCE 2024; 10:1871-1884. [PMID: 39463836 PMCID: PMC11503491 DOI: 10.1021/acscentsci.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response toward the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response toward the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Jonathan Do
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Payton A.-B. Weidenbacher
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ashley Utz
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Stanford
Biophysics Program, Stanford University
School of Medicine, Stanford, California 94305, United States
- Stanford
Medical Scientist Training Program, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Peter S. Kim
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Hu Y, Wu Q, Chang F, Yang J, Zhang X, Wang Q, Chen J, Teng S, Liu Y, Zheng X, Wang Y, Lu R, Pan D, Liu Z, Liu F, Xie T, Wu C, Tang Y, Tang F, Qian J, Chen H, Liu W, Li YP, Qu X. Broad cross neutralizing antibodies against sarbecoviruses generated by SARS-CoV-2 infection and vaccination in humans. NPJ Vaccines 2024; 9:195. [PMID: 39438493 PMCID: PMC11496711 DOI: 10.1038/s41541-024-00997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that the majority of individuals with natural infection and vaccination elicited broad nAb responses to most tested sarbecoviruses, particularly to clade 1b viruses, but exhibited very low cross-neutralization to SARS-CoV-1 in both natural infection and vaccination, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001-0.091 μg/mL against tested sarbecoviruses; while VSM9-12 exhibited remarkable cross-neutralizing breadth against sarbecoviruses and SARS-CoV-2 Omicron subvariants, highlighting the potential of these two nAbs in combating sarbecoviruses and SARS-CoV-2 Omicron subvariants. Collectively, our findings suggest that vaccination with an ancestral SARS-CoV-2 vaccine, in combination with broad nAbs against sarbecoviruses, may provide a countermeasure for preventing further sarbecovirus outbreaks in humans.
Collapse
Affiliation(s)
- Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang, 422099, China
| | - Jun Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shishan Teng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Rui Lu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Dong Pan
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Zhanpeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fen Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Tianyi Xie
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Chanfeng Wu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Yinggen Tang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang, 421001, China.
| |
Collapse
|
10
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
11
|
Asor R, Olerinyova A, Burnap SA, Kushwah MS, Soltermann F, Rudden LS, Hensen M, Vasiljevic S, Brun J, Hill M, Chang L, Dejnirattisai W, Supasa P, Mongkolsapaya J, Zhou D, Stuart DI, Screaton GR, Degiacomi MT, Zitzmann N, Benesch JLP, Struwe WB, Kukura P. Oligomerization-driven avidity correlates with SARS-CoV-2 cellular binding and inhibition. Proc Natl Acad Sci U S A 2024; 121:e2403260121. [PMID: 39298475 PMCID: PMC11459207 DOI: 10.1073/pnas.2403260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 09/21/2024] Open
Abstract
Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies. Here, we reveal that cooperativity correlates with infectivity and inhibition as opposed to 1:1 binding strength. We show that ACE2 oligomerizes spike more strongly for more infectious variants, while exhibiting weaker 1:1 affinity. Furthermore, we find that antibodies use induced oligomerization both as a primary inhibition mechanism and to enhance the effects of receptor-site blocking. Our results suggest that naive affinity measurements are poor predictors of potency, and introduce an antibody-based inhibition mechanism for oligomeric targets. More generally, they point toward a much broader role of induced oligomerization in controlling biomolecular interactions.
Collapse
Affiliation(s)
- Roi Asor
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Anna Olerinyova
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sean A. Burnap
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Manish S. Kushwah
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Lucas S.P. Rudden
- Department of Physics, Durham University, DurhamDH1 3LE, United Kingdom
| | - Mario Hensen
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Juliane Brun
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Michelle Hill
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Liu Chang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Daming Zhou
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
- Diamond Light Source (United Kingdom), Harwell Science and Innovation Campus, DidcotOX110DE, United Kingdom
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Oxford University Hospitals National Health Service Foundation Trust, OxfordOX3 7JH, United Kingdom
| | | | - Nicole Zitzmann
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Justin L. P. Benesch
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Weston B. Struwe
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
12
|
Ruiz F, Foreman WB, Lilly M, Baharani VA, Depierreux DM, Chohan V, Taylor AL, Guenthoer J, Ralph D, Matsen IV FA, Chu HY, Bieniasz PD, Côté M, Starr TN, Overbaugh J. Delineating the functional activity of antibodies with cross-reactivity to SARS-CoV-2, SARS-CoV-1 and related sarbecoviruses. PLoS Pathog 2024; 20:e1012650. [PMID: 39466880 PMCID: PMC11542851 DOI: 10.1371/journal.ppat.1012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The recurring spillover of pathogenic coronaviruses and demonstrated capacity of sarbecoviruses, such SARS-CoV-2, to rapidly evolve in humans underscores the need to better understand immune responses to this virus family. For this purpose, we characterized the functional breadth and potency of antibodies targeting the receptor binding domain (RBD) of the spike glycoprotein that exhibited cross-reactivity against SARS-CoV-2 variants, SARS-CoV-1 and sarbecoviruses from diverse clades and animal origins with spillover potential. One neutralizing antibody, C68.61, showed remarkable neutralization breadth against both SARS-CoV-2 variants and viruses from different sarbecovirus clades. C68.61, which targets a conserved RBD class 5 epitope, did not select for escape variants of SARS-CoV-2 or SARS-CoV-1 in culture nor have predicted escape variants among circulating SARS-CoV-2 strains, suggesting this epitope is functionally constrained. We identified 11 additional SARS-CoV-2/SARS-CoV-1 cross-reactive antibodies that target the more sequence conserved class 4 and class 5 epitopes within RBD that show activity against a subset of diverse sarbecoviruses with one antibody binding every single sarbecovirus RBD tested. A subset of these antibodies exhibited Fc-mediated effector functions as potent as antibodies that impact infection outcome in animal models. Thus, our study identified antibodies targeting conserved regions across SARS-CoV-2 variants and sarbecoviruses that may serve as therapeutics for pandemic preparedness as well as blueprints for the design of immunogens capable of eliciting cross-neutralizing responses.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - William B. Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, Zhang Y, Zhang Y, Li Z, Chen Q, Wang J, Huang X, Liang H, Zheng H, Yao Y, Chen X, Niu X, He J, Chen L, Zhao J, Xiong X. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun 2024; 15:7585. [PMID: 39217172 PMCID: PMC11366018 DOI: 10.1038/s41467-024-51770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruitian Hou
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiran Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichen Yao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Hills RA, Tan TK, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PNP, Storm KN, Rorick AV, West AP, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, Admans G, James WS, Bjorkman PJ, Townsend AR, Howarth MR. Proactive vaccination using multiviral Quartet Nanocages to elicit broad anti-coronavirus responses. NATURE NANOTECHNOLOGY 2024; 19:1216-1223. [PMID: 38710880 PMCID: PMC11329374 DOI: 10.1038/s41565-024-01655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabrielle Admans
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Bruun TU, Do J, Weidenbacher PAB, Kim PS. Engineering a SARS-CoV-2 vaccine targeting the RBD cryptic-face via immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597541. [PMID: 38895327 PMCID: PMC11185595 DOI: 10.1101/2024.06.05.597541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response towards the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response towards the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora U.J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
17
|
Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Kit Tan T, Rijal P, Chen CP, Cheng SH, Lee WH, Chou YC, Townsend AR, Ma C, Huang KYA. The presence of broadly neutralizing anti-SARS-CoV-2 RBD antibodies elicited by primary series and booster dose of COVID-19 vaccine. PLoS Pathog 2024; 20:e1012246. [PMID: 38857264 PMCID: PMC11192315 DOI: 10.1371/journal.ppat.1012246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Alain R. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ying A. Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
19
|
Rubio AA, Baharani VA, Dadonaite B, Parada M, Abernathy ME, Wang Z, Lee YE, Eso MR, Phung J, Ramos I, Chen T, Nesr GE, Bloom JD, Bieniasz PD, Nussenzweig MC, Barnes CO. Bispecific antibodies with broad neutralization potency against SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592584. [PMID: 38766244 PMCID: PMC11100608 DOI: 10.1101/2024.05.05.592584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The ongoing emergence of SARS-CoV-2 variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized N-terminal domain (NTD) and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from COVID-19 convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-EM structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596's favorable binding profile, we designed a series of bispecific antibodies (bsAbs) termed CoV2-biRNs, that featured both NTD and RBD specificities. Notably, two of the C1596-inclusive bsAbs, CoV2-biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, EG.5.1, and BA.2.86, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 significantly reduced the viral load within the lungs of K18-hACE2 mice following challenge with SARS-CoV-2 XBB.1.5. In conclusion, our NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford Biosciences, Stanford School of Medicine; Stanford, USA
- Department of Biology, Stanford University; Stanford, USA
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University; New York, USA
- Laboratory of Molecular Immunology, The Rockefeller University; New York, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, USA
| | - Megan Parada
- Department of Biology, Stanford University; Stanford, USA
| | | | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University; New York, USA
| | - Yu E. Lee
- Department of Biology, Stanford University; Stanford, USA
| | - Michael R. Eso
- Department of Biology, Stanford University; Stanford, USA
| | - Jennie Phung
- Department of Biology, Stanford University; Stanford, USA
| | - Israel Ramos
- Department of Biology, Stanford University; Stanford, USA
| | - Teresia Chen
- Department of Biology, Stanford University; Stanford, USA
| | - Gina El Nesr
- Stanford Biosciences, Stanford School of Medicine; Stanford, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University; New York, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University; New York, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- ChEM-H Institute, Stanford University; Stanford, CA
- Chan Zuckerberg Biohub; San Francisco, USA
| |
Collapse
|
20
|
Yuan M, Wilson IA. The D Gene in CDR H3 Determines a Public Class of Human Antibodies to SARS-CoV-2. Vaccines (Basel) 2024; 12:467. [PMID: 38793718 PMCID: PMC11126049 DOI: 10.3390/vaccines12050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Public antibody responses have been found against many infectious agents. Structural convergence of public antibodies is usually determined by immunoglobulin V genes. Recently, a human antibody public class against SARS-CoV-2 was reported, where the D gene (IGHD3-22) encodes a common YYDxxG motif in heavy-chain complementarity-determining region 3 (CDR H3), which determines specificity for the receptor-binding domain (RBD). In this review, we discuss the isolation, structural characterization, and genetic analyses of this class of antibodies, which have been isolated from various cohorts of COVID-19 convalescents and vaccinees. All eleven YYDxxG antibodies with available structures target the SARS-CoV-2 RBD in a similar binding mode, where the CDR H3 dominates the interaction with antigen. The antibodies target a conserved site on the RBD that does not overlap with the receptor-binding site, but their particular angle of approach results in direct steric hindrance to receptor binding, which enables both neutralization potency and breadth. We also review the properties of CDR H3-dominant antibodies that target other human viruses. Overall, unlike most public antibodies, which are identified by their V gene usage, this newly discovered public class of YYDxxG antibodies is dominated by a D-gene-encoded motif and uncovers further opportunities for germline-targeting vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse K, Logue J, Clark E, Franko N, Chu H, Veesler D. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 2024; 57:904-911.e4. [PMID: 38490197 DOI: 10.1016/j.immuni.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.
Collapse
Affiliation(s)
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaiti Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Erica Clark
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Aida YM, Gnanapragasam PN, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582544. [PMID: 38464322 PMCID: PMC10925254 DOI: 10.1101/2024.02.28.582544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
1Using computational methods, we designed 60-mer nanoparticles displaying SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) by (i) creating RBD sequences with 6 mutations in the SARS-COV-2 WA1 RBD that were predicted to retain proper folding and abrogate antibody responses to variable epitopes (mosaic-2COMs; mosaic-5COM), and (ii) selecting 7 natural sarbecovirus RBDs (mosaic-7COM). These antigens were compared with mosaic-8b, which elicits cross-reactive antibodies and protects from sarbecovirus challenges in animals. Immunizations in naïve and COVID-19 pre-vaccinated mice revealed that mosaic-7COM elicited higher binding and neutralization titers than mosaic-8b and related antigens. Deep mutational scanning showed that mosaic-7COM targeted conserved RBD epitopes. Mosaic-2COMs and mosaic-5COM elicited higher titers than homotypic SARS-CoV-2 Beta RBD-nanoparticles and increased potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons. These results support using mosaic-7COM to protect against highly mutated SARS-CoV-2 variants and zoonotic sarbecoviruses with spillover potential.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- These authors contributed equally
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- These authors contributed equally
| | - Luis F. Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Yusuf M. Aida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Present address: School of Clinical Medicine, University of Cambridge, Hills Rd, Cambridge, CB2 0SP, UK
| | | | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
- Lead contact
| |
Collapse
|
23
|
Elko EA, Mead HL, Nelson GA, Zaia JA, Ladner JT, Altin JA. Recurrent SARS-CoV-2 mutations at Spike D796 evade antibodies from pre-Omicron convalescent and vaccinated subjects. Microbiol Spectr 2024; 12:e0329123. [PMID: 38189279 PMCID: PMC10871546 DOI: 10.1128/spectrum.03291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Evan A. Elko
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Heather L. Mead
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| | - Georgia A. Nelson
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| | - John A. Zaia
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Jason T. Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - John A. Altin
- The Translational Genomics Research Institute (TGen), Flagstaff, Arizona, USA
| |
Collapse
|
24
|
Zang T, Osei Kuffour E, Baharani VA, Canis M, Schmidt F, Da Silva J, Lercher A, Chaudhary P, Hoffmann HH, Gazumyan A, Miranda IC, MacDonald MR, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Heteromultimeric sarbecovirus receptor binding domain immunogens primarily generate variant-specific neutralizing antibodies. Proc Natl Acad Sci U S A 2023; 120:e2317367120. [PMID: 38096415 PMCID: PMC10740387 DOI: 10.1073/pnas.2317367120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.
Collapse
Affiliation(s)
- Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | | | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Justin Da Silva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Alexander Lercher
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Pooja Chaudhary
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Ileana C. Miranda
- Laboratory of Comparative Pathology, The Rockefeller University, New York, NY10065
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Michel C. Nussenzweig
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
25
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. Cell Host Microbe 2023; 31:1961-1973.e11. [PMID: 37989312 PMCID: PMC10913562 DOI: 10.1016/j.chom.2023.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rhinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. We determine a cryo-EM structure of the PRD-0038 RBD bound to Rhinolophus alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryo-EM and monoclonal antibody reactivity reveals its distinct antigenicity relative to SARS-CoV-2 and identifies PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared with SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Wang R, Han Y, Zhang R, Zhu J, Nan X, Liu Y, Yang Z, Zhou B, Yu J, Lin Z, Li J, Chen P, Wang Y, Li Y, Liu D, Shi X, Wang X, Zhang Q, Yang YR, Li T, Zhang L. Dissecting the intricacies of human antibody responses to SARS-CoV-1 and SARS-CoV-2 infection. Immunity 2023; 56:2635-2649.e6. [PMID: 37924813 DOI: 10.1016/j.immuni.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Collapse
Affiliation(s)
- Ruoke Wang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China
| | - Rui Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yaping Liu
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zichun Lin
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinqian Li
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
27
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557371. [PMID: 37745523 PMCID: PMC10515872 DOI: 10.1101/2023.09.12.557371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad ACE2 usage and that RBD mutations further expand receptor promiscuity and enable human ACE2 utilization. We determined a cryoEM structure of the PRD-0038 RBD bound to R. alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryoEM and monoclonal antibody reactivity revealed its distinct antigenicity relative to SARS-CoV-2 and identified PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicited greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared to SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Elizabeth M. Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Hua RH, Zhang SJ, Niu B, Ge JY, Lan T, Bu ZG. A Novel Conserved Linear Neutralizing Epitope on the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Microbiol Spectr 2023; 11:e0119023. [PMID: 37306579 PMCID: PMC10433833 DOI: 10.1128/spectrum.01190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made it challenging to develop broad-spectrum prophylactic vaccines and therapeutic antibodies. Here, we have identified a broad-spectrum neutralizing antibody and its highly conserved epitope in the receptor-binding domain (RBD) of the spike protein (S) S1 subunit of SARS-CoV-2. First, nine monoclonal antibodies (MAbs) against the RBD or S1 were generated; of these, one RBD-specific MAb, 22.9-1, was selected for its broad RBD-binding abilities and neutralizing activities against SARS-CoV-2 variants. An epitope of 22.9-1 was fine-mapped with overlapping and truncated peptide fusion proteins. The core sequence of the epitope, 405D(N)EVR(S)QIAPGQ414, was identified on the internal surface of the up-state RBD. The epitope was conserved in nearly all variants of concern of SARS-CoV-2. MAb 22.9-1 and its novel epitope could be beneficial for research on broad-spectrum prophylactic vaccines and therapeutic antibody drugs. IMPORTANCE The continuous emergence of new variants of SARS-CoV-2 has caused great challenge in vaccine design and therapeutic antibody development. In this study, we selected a broad-spectrum neutralizing mouse monoclonal antibody which recognized a conserved linear B-cell epitope located on the internal surface of RBD. This MAb could neutralize all variants until now. The epitope was conserved in all variants. This work provides new insights in developing broad-spectrum prophylactic vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shu-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bei Niu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jin-Ying Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Lan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
29
|
Chia WN, Tan CW, Tan AWK, Young B, Starr TN, Lopez E, Fibriansah G, Barr J, Cheng S, Yeoh AYY, Yap WC, Lim BL, Ng TS, Sia WR, Zhu F, Chen S, Zhang J, Kwek MSS, Greaney AJ, Chen M, Au GG, Paradkar PN, Peiris M, Chung AW, Bloom JD, Lye D, Lok S, Wang LF. Potent pan huACE2-dependent sarbecovirus neutralizing monoclonal antibodies isolated from a BNT162b2-vaccinated SARS survivor. SCIENCE ADVANCES 2023; 9:eade3470. [PMID: 37494438 PMCID: PMC10371021 DOI: 10.1126/sciadv.ade3470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2. Among the six mAbs identified, one (E7) showed better huACE2-dependent sarbecovirus neutralizing potency and breadth than any other mAbs reported to date. Mutagenesis and cryo-electron microscopy studies indicate that these mAbs have a unique RBD contact footprint and that E7 binds to a quaternary structure-dependent epitope.
Collapse
Affiliation(s)
- Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Aaron Wai Kit Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Barnaby Young
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jennifer Barr
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Samuel Cheng
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Beng Lee Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Shiwei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Madeline Sheng Si Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Mark Chen
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Gough G. Au
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Prasad N. Paradkar
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Immunology & Infection, New Territories, Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Lye
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheemei Lok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
30
|
Hunt AC, Vögeli B, Hassan AO, Guerrero L, Kightlinger W, Yoesep DJ, Krüger A, DeWinter M, Diamond MS, Karim AS, Jewett MC. A rapid cell-free expression and screening platform for antibody discovery. Nat Commun 2023; 14:3897. [PMID: 37400446 DOI: 10.1038/s41467-023-38965-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Madison DeWinter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Zhang F, Schmidt F, Muecksch F, Wang Z, Gazumyan A, Nussenzweig MC, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547241. [PMID: 37425700 PMCID: PMC10327196 DOI: 10.1101/2023.06.30.547241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. Here, we investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain (NTD) and the receptor binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated spike protein. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies (mAbs) cloned from convalescent individuals. The N343 glycan reduced overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 spike glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Current address: King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia. Center for Integrative Infectious Disease Research, Universitätsklinikum Heidelberg, 69120 Heidleberg, Germany
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Current address: Laboratory of Translational Immunology of Viral Infections, Charité - Universitätsmedizin Berlin, Germany
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
32
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
33
|
Ren Z, Shen C, Peng J. Status and Developing Strategies for Neutralizing Monoclonal Antibody Therapy in the Omicron Era of COVID-19. Viruses 2023; 15:1297. [PMID: 37376597 DOI: 10.3390/v15061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The monoclonal antibody (mAb)-based treatment is a highly valued therapy against COVID-19, especially for individuals who may not have strong immune responses to the vaccine. However, with the arrival of the Omicron variant and its evolving subvariants, along with the occurrence of remarkable resistance of these SARS-CoV-2 variants to the neutralizing antibodies, mAbs are facing tough challenges. Future strategies for developing mAbs with improved resistance to viral evasion will involve optimizing the targeting epitopes on SARS-CoV-2, enhancing the affinity and potency of mAbs, exploring the use of non-neutralizing antibodies that bind to conserved epitopes on the S protein, as well as optimizing immunization regimens. These approaches can improve the viability of mAb therapy in the fight against the evolving threat of the coronavirus.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Song G, Yuan M, Liu H, Capozzola T, Lin RN, Torres JL, He WT, Musharrafieh R, Dueker K, Zhou P, Callaghan S, Mishra N, Yong P, Anzanello F, Avillion G, Vo AL, Li X, Makhdoomi M, Feng Z, Zhu X, Peng L, Nemazee D, Safonova Y, Briney B, Ward AB, Burton DR, Wilson IA, Andrabi R. Broadly neutralizing antibodies targeting a conserved silent face of spike RBD resist extreme SARS-CoV-2 antigenic drift. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538488. [PMID: 37162858 PMCID: PMC10168401 DOI: 10.1101/2023.04.26.538488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.
Collapse
Affiliation(s)
- Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan N. Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nitesh Mishra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Avillion
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anh Lina Vo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Muzamil Makhdoomi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Lead Contact
| |
Collapse
|
35
|
Allen JD, Ivory DP, Song SG, He WT, Capozzola T, Yong P, Burton DR, Andrabi R, Crispin M. The diversity of the glycan shield of sarbecoviruses related to SARS-CoV-2. Cell Rep 2023; 42:112307. [PMID: 36972173 PMCID: PMC10015101 DOI: 10.1016/j.celrep.2023.112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Vaccines remain successful at limiting severe disease and death, but the potential for further coronavirus zoonosis motivates the search for pan-coronavirus vaccines. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of 12 sarbecovirus glycan shields. Of the 22 N-linked glycan attachment sites present on SARS-CoV-2, 15 are shared by all 12 sarbecoviruses. However, there are significant differences in the processing state at glycan sites in the N-terminal domain, such as N165. Conversely, glycosylation sites in the S2 domain are highly conserved and contain a low abundance of oligomannose-type glycans, suggesting a low glycan shield density. The S2 domain may therefore provide a more attractive target for immunogen design efforts aiming to generate a pan-coronavirus antibody response.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Dylan P Ivory
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sophie Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
36
|
Ruffolo JA, Chu LS, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun 2023; 14:2389. [PMID: 37185622 PMCID: PMC10129313 DOI: 10.1038/s41467-023-38063-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558 million natural antibody sequences followed by graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative methods (including AlphaFold) in significantly less time (under 25 s). Accurate structure prediction on this timescale makes possible avenues of investigation that were previously infeasible. As a demonstration of IgFold's capabilities, we predicted structures for 1.4 million paired antibody sequences, providing structural insights to 500-fold more antibodies than have experimentally determined structures.
Collapse
Affiliation(s)
- Jeffrey A Ruffolo
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lee-Shin Chu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
37
|
Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJ, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC. Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. J Clin Invest 2023; 133:e166844. [PMID: 36862518 PMCID: PMC10104900 DOI: 10.1172/jci166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joshua J.C. McGrath
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - G. Dewey Wilbanks
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Min Huang
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nai-Ying Zheng
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven A. Erickson
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, Illinois, USA
| | - Yanbin Fu
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gagandeep Singh
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
| | - Brian Monahan
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Jacob Mauldin
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Komal Srivastava
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Viviana Simon
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
- The Global Health and Emerging Pathogens Institute, and
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
38
|
Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Cervantes Rincón T, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Sci Immunol 2023; 8:eade0958. [PMID: 36701425 PMCID: PMC9972897 DOI: 10.1126/sciimmunol.ade0958] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raoul De Gasparo
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Pavel Svoboda
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences; Brno, Czech Republic
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tommaso Fava
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Celoria
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Michal Stefanik
- Veterinary Research Institute; Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno; Brno, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia; Ceske Budejovice, Czech Republic
| | - Tereza Michalcikova
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences; Tehran, Iran
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Daniel Fernandez
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University; Stanford, USA
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia; Pavia, Italy
| | | | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- Chan Zuckerberg Biohub; San Francisco, USA
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|
39
|
Zhou P, Song G, Liu H, Yuan M, He WT, Beutler N, Zhu X, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Safonova Y, Briney B, Rogers TF, Wilson IA, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity 2023; 56:669-686.e7. [PMID: 36889306 PMCID: PMC9933850 DOI: 10.1016/j.immuni.2023.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lisa E Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Hills RA, Kit Tan T, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PN, Storm KN, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, James WS, Bjorkman PJ, Townsend AR, Howarth M. Multiviral Quartet Nanocages Elicit Broad Anti-Coronavirus Responses for Proactive Vaccinology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529520. [PMID: 36865256 PMCID: PMC9980174 DOI: 10.1101/2023.02.24.529520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A. Hills
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony H. Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Kaya N. Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michelle L. Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
41
|
Huang KYA, Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Tan TK, Rijal P, Vester SK, Hills RA, Howarth M, Keeffe JR, Cohen AA, Kakutani LM, Wu YM, Shahed-Al-Mahmud M, Chou YC, Bjorkman PJ, Townsend AR, Ma C. Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nat Commun 2023; 14:311. [PMID: 36658148 PMCID: PMC9852238 DOI: 10.1038/s41467-023-35949-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Antibody-mediated immunity plays a crucial role in protection against SARS-CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding domain (RBD) antibodies elicited upon natural infection and vaccination and showed that they recognize an immunogenic patch on the internal surface of the core RBD, which faces inwards and is hidden in the "down" state. These antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and Delta variants and some are effective against other sarbecoviruses. We observed a continuum of partially overlapping antibody epitopes from lower to upper part of the inner face of the RBD and some antibodies extend towards the receptor-binding motif. The majority of antibodies are substantially compromised by three mutational hotspots (S371L/F, S373P and S375F) in the lower part of the Omicron BA.1, BA.2 and BA.4/5 RBD. By contrast, antibody IY-2A induces a partial unfolding of this variable region and interacts with a conserved conformational epitope to tolerate all antigenic variations and neutralize diverse sarbecoviruses as well. This finding establishes that antibody recognition is not limited to the normal surface structures on the RBD. In conclusion, the delineation of functionally and structurally conserved RBD epitopes highlights potential vaccine and therapeutic candidates for COVID-19.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Susan K Vester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Yi-Min Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Alain R Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
42
|
Witte L, Baharani VA, Schmidt F, Wang Z, Cho A, Raspe R, Guzman-Cardozo C, Muecksch F, Canis M, Park DJ, Gaebler C, Caskey M, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape. Nat Commun 2023; 14:302. [PMID: 36653360 PMCID: PMC9849103 DOI: 10.1038/s41467-023-35927-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Waves of SARS-CoV-2 infection have resulted from the emergence of viral variants with neutralizing antibody resistance mutations. Simultaneously, repeated antigen exposure has generated affinity matured B cells, producing broadly neutralizing receptor binding domain (RBD)-specific antibodies with activity against emergent variants. To determine how SARS-CoV-2 might escape these antibodies, we subjected chimeric viruses encoding spike proteins from ancestral, BA.1 or BA.2 variants to selection by 40 broadly neutralizing antibodies. We identify numerous examples of epistasis, whereby in vitro selected and naturally occurring substitutions in RBD epitopes that do not confer antibody resistance in the Wuhan-Hu-1 spike, do so in BA.1 or BA.2 spikes. As few as 2 or 3 of these substitutions in the BA.5 spike, confer resistance to nearly all of the 40 broadly neutralizing antibodies, and substantial resistance to plasma from most individuals. Thus, epistasis facilitates the acquisition of resistance to antibodies that remained effective against early omicron variants.
Collapse
Affiliation(s)
- Leander Witte
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | | | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Debby J Park
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
43
|
Schaefer-Babajew D, Wang Z, Muecksch F, Cho A, Loewe M, Cipolla M, Raspe R, Johnson B, Canis M, DaSilva J, Ramos V, Turroja M, Millard KG, Schmidt F, Witte L, Dizon J, Shimeliovich I, Yao KH, Oliveira TY, Gazumyan A, Gaebler C, Bieniasz PD, Hatziioannou T, Caskey M, Nussenzweig MC. Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature 2023; 613:735-742. [PMID: 36473496 PMCID: PMC9876794 DOI: 10.1038/s41586-022-05609-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Feedback inhibition of humoral immunity by antibodies was first documented in 19091. Subsequent studies showed that, depending on the context, antibodies can enhance or inhibit immune responses2,3. However, little is known about how pre-existing antibodies influence the development of memory B cells. Here we examined the memory B cell response in individuals who received two high-affinity anti-SARS-CoV-2 monoclonal antibodies and subsequently two doses of an mRNA vaccine4-8. We found that the recipients of the monoclonal antibodies produced antigen-binding and neutralizing titres that were only fractionally lower compared than in control individuals. However, the memory B cells of the individuals who received the monoclonal antibodies differed from those of control individuals in that they predominantly expressed low-affinity IgM antibodies that carried small numbers of somatic mutations and showed altered receptor binding domain (RBD) target specificity, consistent with epitope masking. Moreover, only 1 out of 77 anti-RBD memory antibodies tested neutralized the virus. The mechanism underlying these findings was examined in experiments in mice that showed that germinal centres formed in the presence of the same antibodies were dominated by low-affinity B cells. Our results indicate that pre-existing high-affinity antibodies bias germinal centre and memory B cell selection through two distinct mechanisms: (1) by lowering the activation threshold for B cells, thereby permitting abundant lower-affinity clones to participate in the immune response; and (2) through direct masking of their cognate epitopes. This may in part explain the shifting target profile of memory antibodies elicited by booster vaccinations9.
Collapse
Affiliation(s)
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Leander Witte
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Juan Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| | | | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
44
|
Bowen JE, Park YJ, Stewart C, Brown JT, Sharkey WK, Walls AC, Joshi A, Sprouse KR, McCallum M, Tortorici MA, Franko NM, Logue JK, Mazzitelli IG, Nguyen AW, Silva RP, Huang Y, Low JS, Jerak J, Tiles SW, Ahmed K, Shariq A, Dan JM, Zhang Z, Weiskopf D, Sette A, Snell G, Posavad CM, Iqbal NT, Geffner J, Bandera A, Gori A, Sallusto F, Maynard JA, Crotty S, Van Voorhis WC, Simmerling C, Grifantini R, Chu HY, Corti D, Veesler D. SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Sci Immunol 2022; 7:eadf1421. [PMID: 36356052 PMCID: PMC9765460 DOI: 10.1126/sciimmunol.adf1421] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.
Collapse
Affiliation(s)
- John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - William K. Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Ignacio G. Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Annalee W. Nguyen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Rui P. Silva
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Yimin Huang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Sasha W Tiles
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kumail Ahmed
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Asefa Shariq
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Zeli Zhang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | | | - Christine M. Posavad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Jennifer A. Maynard
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, 20122 Milan, Italy
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Fan C, Cohen AA, Park M, Hung AFH, Keeffe JR, Gnanapragasam PNP, Lee YE, Gao H, Kakutani LM, Wu Z, Kleanthous H, Malecek KE, Williams JC, Bjorkman PJ. Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity 2022; 55:2419-2435.e10. [PMID: 36370711 PMCID: PMC9606073 DOI: 10.1016/j.immuni.2022.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Increased immune evasion by SARS-CoV-2 variants of concern highlights the need for new therapeutic neutralizing antibodies. Immunization with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicits cross-reactive polyclonal antibodies against conserved sarbecovirus RBD epitopes. Here, we identified monoclonal antibodies (mAbs) capable of cross-reactive binding and neutralization of animal sarbecoviruses and SARS-CoV-2 variants by screening single mouse B cells secreting IgGs that bind two or more sarbecovirus RBDs. Single-particle cryo-EM structures of antibody-spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes. Structural analyses revealed neutralization mechanisms, potentials for intra-spike trimer cross-linking by IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb-resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticle vaccination to generate and identify therapeutic pan-sarbecovirus and pan-variant mAbs.
Collapse
Affiliation(s)
- Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miso Park
- Department of Molecular Medicine, City of Hope, Duarte, CA 91010, USA
| | | | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Kathryn E Malecek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John C Williams
- Department of Molecular Medicine, City of Hope, Duarte, CA 91010, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
46
|
Wang P, Casner RG, Nair MS, Yu J, Guo Y, Wang M, Chan JFW, Cerutti G, Iketani S, Liu L, Sheng Z, Chen Z, Yuen KY, Kwong PD, Huang Y, Shapiro L, Ho DD. A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerg Microbes Infect 2022; 11:147-157. [PMID: 34836485 PMCID: PMC8725896 DOI: 10.1080/22221751.2021.2011623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023]
Abstract
The repeated emergence of highly pathogenic human coronaviruses as well as their evolving variants highlight the need to develop potent and broad-spectrum antiviral therapeutics and vaccines. By screening monoclonal antibodies (mAbs) isolated from COVID-19-convalescent patients, we found one mAb, 2-36, with cross-neutralizing activity against SARS-CoV. We solved the cryo-EM structure of 2-36 in complex with SARS-CoV-2 or SARS-CoV spike, revealing a highly conserved epitope in the receptor-binding domain (RBD). Antibody 2-36 neutralized not only all current circulating SARS-CoV-2 variants and SARS-COV, but also a panel of bat and pangolin sarbecoviruses that can use human angiotensin-converting enzyme 2 (ACE2) as a receptor. We selected 2-36-escape viruses in vitro and confirmed that K378 T in SARS-CoV-2 RBD led to viral resistance. Taken together, 2-36 represents a strategic reserve drug candidate for the prevention and treatment of possible diseases caused by pre-emergent SARS-related coronaviruses. Its epitope defines a promising target for the development of a pan-sarbecovirus vaccine.
Collapse
Affiliation(s)
- Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ryan G Casner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jasper F-W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Gabriele Cerutti
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Peter D Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
47
|
Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Rincón TC, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Human neutralizing antibodies to cold linear epitopes and to subdomain 1 of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.24.515932. [PMID: 36482967 PMCID: PMC9727766 DOI: 10.1101/2022.11.24.515932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera , including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae , including SARS-CoV-2 variants. One sentence summary Broadly cross-reactive antibodies that protect from SARS-CoV-2 variants are revealed by virus coldspot-driven discovery.
Collapse
Affiliation(s)
- Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raoul De Gasparo
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Pavel Svoboda
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences; Brno, Czech Republic
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tommaso Fava
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Celoria
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Michal Stefanik
- Veterinary Research Institute; Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno; Brno, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia; Ceske Budejovice, Czech Republic
| | - Tereza Michalcikova
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences; Tehran, Iran
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Daniel Fernandez
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University; Stanford, USA
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia; Pavia, Italy
| | | | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- Chan Zuckerberg Biohub; San Francisco, USA
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|
48
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
49
|
Lindesmith LC, Boshier FAT, Brewer-Jensen PD, Roy S, Costantini V, Mallory ML, Zweigart M, May SR, Conrad H, O’Reilly KM, Kelly D, Celma CC, Beard S, Williams R, Tutill HJ, Becker Dreps S, Bucardo F, Allen DJ, Vinjé J, Goldstein RA, Breuer J, Baric RS. Immune Imprinting Drives Human Norovirus Potential for Global Spread. mBio 2022; 13:e0186122. [PMID: 36102514 PMCID: PMC9600701 DOI: 10.1128/mbio.01861-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier. Through large-scale sequencing of GII.4 surveillance samples, we identified two variants with extensive divergence within domains that mediate neutralizing antibody binding. Subsequent serological characterization of these strains using temporally resolved adult and child sera suggests that neither candidate could spread globally in adults with multiple GII.4 exposures, yet young children with minimal GII.4 exposure appear susceptible. Antigenic cartography of surveillance and outbreak sera indicates that continued population exposure to GII.4 Sydney 2012 and antigenically related variants over a 6-year period resulted in a broadening of immunity to heterogeneous GII.4 variants, including those identified here. We show that the strongest antibody responses in adults exposed to GII.4 Sydney 2012 are directed to previously circulating GII.4 viruses. Our data suggest that the broadening of antibody responses compromises establishment of strong GII.4 Sydney 2012 immunity, thereby allowing the continued persistence of GII.4 Sydney 2012 and modulating the cycle of norovirus GII.4 variant replacement. Our results indicate a cycle of norovirus GII.4 variant replacement dependent upon population immunity. Young children are susceptible to divergent variants; therefore, emergence of these strains worldwide is driven proximally by changes in adult serological immunity and distally by viral evolution that confers fitness in the context of immunity. IMPORTANCE In our model, preepidemic human norovirus variants harbor genetic diversification that translates into novel antigenic features without compromising viral fitness. Through surveillance, we identified two viruses fitting this profile, forming long branches on a phylogenetic tree. Neither evades current adult immunity, yet young children are likely susceptible. By comparing serological responses, we demonstrate that population immunity varies by age/exposure, impacting predicted susceptibility to variants. Repeat exposure to antigenically similar variants broadens antibody responses, providing immunological coverage of diverse variants but compromising response to the infecting variant, allowing continued circulation. These data indicate norovirus GII.4 variant replacement is driven distally by virus evolution and proximally by immunity in adults.
Collapse
Affiliation(s)
- Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Florencia A. T. Boshier
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paul D. Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sunando Roy
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mark Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kathleen M. O’Reilly
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cristina C. Celma
- Enteric Virus Unit, The Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Stuart Beard
- Enteric Virus Unit, The Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Rachel Williams
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena J. Tutill
- Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sylvia Becker Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León, León, Nicaragua
| | - David J. Allen
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard A. Goldstein
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Microbiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Wang E, Chakraborty AK. Design of immunogens for eliciting antibody responses that may protect against SARS-CoV-2 variants. PLoS Comput Biol 2022; 18:e1010563. [PMID: 36156540 PMCID: PMC9536555 DOI: 10.1371/journal.pcbi.1010563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/06/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of SARS-CoV-2 variants and the history of outbreaks caused by zoonotic coronaviruses point to the need for next-generation vaccines that confer protection against variant strains. Here, we combined analyses of diverse sequences and structures of coronavirus spikes with data from deep mutational scanning to design SARS-CoV-2 variant antigens containing the most significant mutations that may emerge. We trained a neural network to predict RBD expression and ACE2 binding from sequence, which allowed us to determine that these antigens are stable and bind to ACE2. Thus, they represent viable variants. We then used a computational model of affinity maturation (AM) to study the antibody response to immunization with different combinations of the designed antigens. The results suggest that immunization with a cocktail of the antigens is likely to promote evolution of higher titers of antibodies that target SARS-CoV-2 variants than immunization or infection with the wildtype virus alone. Finally, our analysis of 12 coronaviruses from different genera identified the S2’ cleavage site and fusion peptide as potential pan-coronavirus vaccine targets. SARS-CoV-2 variants have already emerged and future variants may pose greater threats to the efficacy of current vaccines. Rather than using a reactive approach to vaccine development that would lag behind the evolution of the virus, such as updating the sequence in the vaccine with a current variant, we sought to use a proactive approach that predicts some of the mutations that could arise that could evade current immune responses. Then, by including these mutations in a new vaccine antigen, we might be able to protect against those potential variants before they appear. Toward this end, we used various computational methods including sequence analysis and machine learning to design such antigens. We then used simulations of antibody development, and the results suggest that immunization with our designed antigens is likely to result in an antibody response that is better able to target SARS-CoV-2 variants than current vaccines. We also leveraged our sequence analysis to suggest that a particular site on the spike protein could serve as a useful target for a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|