1
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Wei SM, Henze EK, Schindler S, Mehravar S, Wood DM, Petrocelli JJ, Sun Y, Sprenger HG, Latorre-Muro P, Smythers AL, Bozi LHM, Darabedian N, Zhu Y, Seo HS, Dhe-Paganon S, Che J, Chouchani ET. The human zinc-binding cysteine proteome. Cell 2025; 188:832-850.e27. [PMID: 39742810 DOI: 10.1016/j.cell.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, most often through zinc binding to protein cysteine residues. Despite being critical for modulation of protein function, the cysteine sites in the majority of the human proteome that are subject to zinc binding remain undefined. Here, we develop ZnCPT, a deep and quantitative mapping of the zinc-binding cysteine proteome. We define 6,173 zinc-binding cysteines, uncovering protein families across major domains of biology that are subject to constitutive or inducible zinc binding. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc binding and nominate malignancies sensitive to zinc-induced cytotoxicity. We discover a mechanism of zinc regulation over glutathione reductase (GSR), which drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation of protein function.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanghee Shin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shelley M Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Erik K Henze
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schindler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Wood
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan J Petrocelli
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Georg Sprenger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yingde Zhu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Méndez D, Tellería F, Alarcón M, Montecino-Garrido H, Molina-Gutiérrez N, Morales-Malvarez L, Deras B, Mansilla S, Castro L, Trostchansky A, Araya-Maturana R, Fuentes E. MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE. Biomed Pharmacother 2025; 183:117840. [PMID: 39842272 DOI: 10.1016/j.biopha.2025.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro. Cytotoxicity and viability tests were performed on human platelets from volunteer donors, together with experiments on aggregation, platelet activation, mitochondrial function, mitochondrial respiration, and thioredoxin reductase 2 (TrxR2) enzymatic activity in isolated platelet mitochondria. The compound MitoCDNB, corresponding to the molecule 5-chloro-2,4-dinitrophenylamino linked with triphenylphosphonium cation (TPP+) by a butyl chain and methanesulfonate as the counterion, was evaluated. MitoCDNB demonstrates potent, high mitochondria-selective antiplatelet effects that provide a novel approach to platelet inhibition with potentially minimized systemic risks. Here, we describe the first compound that inhibits platelet activation by decreasing TrxR2 enzymatic activity and collagen-stimulated maximal mitochondrial respiration, preventing aggregation and platelet activation. These results can be used to develop new antiplatelet drugs targeting mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Nacim Molina-Gutiérrez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Lisandra Morales-Malvarez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Bessy Deras
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
3
|
Dhavarasa P, Sack T, Cerrato CP, Cheng AP, Zhang YY, Chen K, Kelley SO. Mitochondrial Probe for Glutathione Depletion Reveals NME3 Essentiality for Mitochondrial Redox Response. ACS Chem Biol 2024; 19:2012-2022. [PMID: 39133631 DOI: 10.1021/acschembio.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Maintenance of the mitochondrial thiol redox state is essential for cell survival. However, we lack a comprehensive understanding of the redox response to mitochondrial glutathione depletion. We developed a mitochondria-penetrating peptide, mtCDNB, to specifically deplete mitochondrial glutathione. A genome-wide CRISPR/Cas9 screen in tandem with mtCDNB treatment was employed to uncover regulators of the redox response to mitochondrial glutathione depletion. We identified nucleoside diphosphate kinase 3 (NME3) as a regulator of mitochondrial dynamics. We show that NME3 is recruited to the mitochondrial outer membrane when under redox stress. In the absence of NME3, there is impaired mitophagy, which leads to the accumulation of dysfunctional mitochondria. NME3 knockouts depleted of mitochondrial glutathione have increased mitochondrial ROS production, accumulate mtDNA lesions, and present a senescence-associated secretory phenotype. Our findings suggest a novel role for NME3 in selecting mitochondria for degradation through mitophagy under conditions of mitochondrial redox stress.
Collapse
Affiliation(s)
- Piriththiv Dhavarasa
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tanja Sack
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Carmine P Cerrato
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Ashley P Cheng
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yi Y Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Kangfu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60607, United States
| | - Shana O Kelley
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60607, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60607, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| |
Collapse
|
4
|
Cardwell PA, Del Moro C, Murphy MP, Lapthorn AJ, Hartley RC. Human mitochondrial glutathione transferases: Kinetic parameters and accommodation of a mitochondria-targeting group in substrates. Bioorg Med Chem 2024; 104:117712. [PMID: 38593670 DOI: 10.1016/j.bmc.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Glutathione-S-transferases are key to the cellular detoxification of xenobiotics and products of oxidative damage. GSTs catalyse the reaction of glutathione (GSH) with electrophiles to form stable thioether adducts. GSTK1-1 is the main GST isoform in the mitochondrial matrix, but the GSTA1-1 and GSTA4-4 isoforms are also thought to be in the mitochondria with their distribution altering in transformed cells, thus potentially providing a cancer specific target. A mitochondria-targeted version of the GST substrate 1-chloro-2,4-dinitrobenzene (CDNB), MitoCDNB, has been used to manipulate the mitochondrial GSH pool. To finesse this approach to target particular GST isoforms in the context of cancer, here we have determined the kcat/Km for the human isoforms of GSTK1-1, GSTA1-1 and GSTA4-4 with respect to GSH and CDNB. We show how the rate of the GST-catalysed reaction between GSH and CDNB analogues can be modified by both the electron withdrawing substituents, and by the position of the mitochondria-targeting triphenylphosphonium on the chlorobenzene ring to tune the activity of mitochondria-targeted substrates. These findings can now be exploited to selectively disrupt the mitochondrial GSH pools of cancer cells expressing particular GST isoforms.
Collapse
Affiliation(s)
- Patrick A Cardwell
- School of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Carlo Del Moro
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Adrian J Lapthorn
- School of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard C Hartley
- School of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
5
|
Patwardhan RS, Gohil D, Singh B, Kumar BK, Purohit V, Thoh M, Checker R, Gardi N, Gota V, Kutala VK, Patwardhan S, Sharma D, Sandur SK. Mitochondrial-targeted curcumin inhibits T-cell activation via Nrf2 and inhibits graft-versus-host-disease in a mouse model. Phytother Res 2024; 38:1555-1573. [PMID: 38281735 DOI: 10.1002/ptr.8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.
Collapse
Affiliation(s)
| | - Dievya Gohil
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Binita K Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Nilesh Gardi
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vikram Gota
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vijay Kumar Kutala
- Department of Biochemistry, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
6
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Bozi LHM, Wei S, Sprenger HG, Sun Y, Zhu Y, Darabedian N, Petrocelli JJ, Muro PL, Che J, Chouchani ET. A comprehensive landscape of the zinc-regulated human proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574225. [PMID: 38260676 PMCID: PMC10802333 DOI: 10.1101/2024.01.04.574225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.
Collapse
|
7
|
Holcombe J, Weavers H. Functional-metabolic coupling in distinct renal cell types coordinates organ-wide physiology and delays premature ageing. Nat Commun 2023; 14:8405. [PMID: 38110414 PMCID: PMC10728150 DOI: 10.1038/s41467-023-44098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Precise coupling between cellular physiology and metabolism is emerging as a vital relationship underpinning tissue health and longevity. Nevertheless, functional-metabolic coupling within heterogenous microenvironments in vivo remains poorly understood due to tissue complexity and metabolic plasticity. Here, we establish the Drosophila renal system as a paradigm for linking mechanistic analysis of metabolism, at single-cell resolution, to organ-wide physiology. Kidneys are amongst the most energetically-demanding organs, yet exactly how individual cell types fine-tune metabolism to meet their diverse, unique physiologies over the life-course remains unclear. Integrating live-imaging of metabolite and organelle dynamics with spatio-temporal genetic perturbation within intact functional tissue, we uncover distinct cellular metabolic signatures essential to support renal physiology and healthy ageing. Cell type-specific programming of glucose handling, PPP-mediated glutathione regeneration and FA β-oxidation via dynamic lipid-peroxisomal networks, downstream of differential ERR receptor activity, precisely match cellular energetic demands whilst limiting damage and premature senescence; however, their dramatic dysregulation may underlie age-related renal dysfunction.
Collapse
Affiliation(s)
- Jack Holcombe
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
8
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol 2023; 67:102917. [PMID: 37804696 PMCID: PMC10565873 DOI: 10.1016/j.redox.2023.102917] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana R Silva
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Beatriz G Vilarinho
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Tan LX, Germer CJ, Thamban T, La Cunza N, Lakkaraju A. Optineurin tunes outside-in signaling to regulate lysosome biogenesis and phagocytic clearance in the retina. Curr Biol 2023; 33:3805-3820.e7. [PMID: 37586372 PMCID: PMC10529777 DOI: 10.1016/j.cub.2023.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thushara Thamban
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Khailova LS, Krasnov VS, Kirsanov RS, Popova LB, Tashlitsky VN, Kotova EA, Antonenko YN. The transient character of mitochondrial uncoupling by the popular fungicide fluazinam is specific for liver. Arch Biochem Biophys 2023; 746:109735. [PMID: 37652149 DOI: 10.1016/j.abb.2023.109735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
The popular fungicide fluazinam is known to exhibit an unusual cyclic pattern of the protonophoric uncoupling activity in isolated rat liver mitochondria (RLM), with membrane deenergization followed by spontaneous recoupling in the minute scale, which is associated with glutathione conjugation of fluazinam catalyzed by glutathione-S-transferase (GST). Here, we compare the fluazinam effect on RLM with that on rat kidney (RKM) and heart (RHM) mitochondria by monitoring three bioenergetic parameters: oxygen consumption rate, mitochondrial membrane potential and reduction of nucleotides. Only in RLM, the uncoupling activity of fluazinam was transient, i.e. disappeared in a few minutes, whereas in RKM and RHM it was stable in this time scale. We attribute this difference to the increased activity of mitochondrial GST in liver. We report data on the detection of glutathione-fluazinam conjugates by mass-spectrometry, thin layer chromatography and capillary electrophoresis after incubation of fluazinam with RLM but not with RKM, which supports the assumption of the tissue specificity of the conjugation.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vladimir S Krasnov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia; Faculty of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Lyudmila B Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
12
|
Long DL, McCall CE, Poole LB. Glutathionylation of Pyruvate Dehydrogenase Complex E2 and Inflammatory Cytokine Production During Acute Inflammation Are Magnified By Mitochondrial Oxidative Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525791. [PMID: 36747682 PMCID: PMC9900926 DOI: 10.1101/2023.01.26.525791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipopolysaccharide (LPS) is a known inducer of inflammatory signaling which triggers generation of reactive oxygen species (ROS) and cell death in responsive cells like THP-1 promonocytes and freshly isolated human monocytes. A key LPS-responsive metabolic pivot point is the 9 megadalton mitochondrial pyruvate dehydrogenase complex (PDC), which provides pyruvate dehydrogenase (E1), lipoamide-linked transacetylase (E2) and lipoamide dehydrogenase (E3) activities to produce acetyl-CoA from pyruvate. While phosphorylation-dependent decreases in PDC activity following LPS treatment or sepsis have been deeply investigated, redox-linked processes have received less attention. Data presented here demonstrate that LPS-induced reversible oxidation within PDC occurs in PDCE2 in both THP-1 cells and primary human monocytes. Knockout of PDCE2 by CRISPR and expression of FLAG-tagged PDCE2 in THP-1 cells demonstrated that LPS-induced glutathionylation is associated with wild type PDCE2 but not mutant protein lacking the lipoamide-linking lysine residues. Moreover, the mitochondrially-targeted electrophile MitoCDNB, which impairs both glutathione- and thioredoxin-based reductase systems, elevates ROS similar to LPS but does not cause PDCE2 glutathionylation. However, LPS and MitoCDNB together are highly synergistic for PDCE2 glutathionylation, ROS production, and cell death. Surprisingly, the two treatments together had differential effects on cytokine production; pro-inflammatory IL-1β production was enhanced by the co-treatment, while IL-10, an important anti-inflammatory cytokine, dropped precipitously compared to LPS treatment alone. This new information may expand opportunities to understand and modulate PDC redox status and activity and improve the outcomes of pathological inflammation.
Collapse
Affiliation(s)
- David L. Long
- Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Charles E. McCall
- Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
13
|
Uno S, Harkiss AH, Chowdhury R, Caldwell ST, Prime TA, James AM, Gallagher B, Prudent J, Hartley RC, Murphy MP. Incorporating a Polyethyleneglycol Linker to Enhance the Hydrophilicity of Mitochondria-Targeted Triphenylphosphonium Constructs. Chembiochem 2023; 24:e202200774. [PMID: 36917207 PMCID: PMC10946768 DOI: 10.1002/cbic.202200774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023]
Abstract
The targeting of bioactive molecules and probes to mitochondria can be achieved by coupling to the lipophilic triphenyl phosphonium (TPP) cation, which accumulates several hundred-fold within mitochondria in response to the mitochondrial membrane potential (Δψm ). Typically, a simple alkane links the TPP to its "cargo", increasing overall hydrophobicity. As it would be beneficial to enhance the water solubility of mitochondria-targeted compounds we explored the effects of replacing the alkyl linker with a polyethylene glycol (PEG). We found that the use of PEG led to compounds that were readily taken up by isolated mitochondria and by mitochondria inside cells. Within mitochondria the PEG linker greatly decreased adsorption of the TPP constructs to the matrix-facing face of the mitochondrial inner membrane. These findings will allow the distribution of mitochondria-targeted TPP compounds within mitochondria to be fine-tuned.
Collapse
Affiliation(s)
- Shinpei Uno
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Roy Chowdhury
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Tracy A. Prime
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | - Andrew M. James
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Julien Prudent
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | | | - Michael P. Murphy
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
- Department of MedicineUniversity of CambridgeCambridgeCB2 0QQUK
| |
Collapse
|
14
|
Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci U S A 2022; 119:e2117396119. [PMID: 36037337 PMCID: PMC9457330 DOI: 10.1073/pnas.2117396119] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ferroptosis is an iron-dependent programmed necrosis characterized by glutathione (GSH) depletion and lipid peroxidation (LPO). Armed with both the pro- and antiferroptosis machineries, mitochondria play a central role in ferroptosis. However, how mitochondria sense the stress to activate ferroptosis under (patho-)physiological settings remains incompletely understood. Here, we show that FUN14 domain-containing 2, also known as HCBP6 (FUNDC2), a highly conserved and ubiquitously expressed mitochondrial outer membrane protein, regulates ferroptosis and contributes to doxorubicin (DOX)-induced cardiomyopathy. We showed that knockout of FUNDC2 protected mice from DOX-induced cardiac injury by preventing ferroptosis. Mechanistic studies reveal that FUNDC2 interacts with SLC25A11, the mitochondrial glutathione transporter, to regulate mitoGSH levels. Specifically, knockdown of SLC25A11 in FUNDC2-knockout (KO) cells reduced mitoGSH and augmented erasin-induced ferroptosis. FUNDC2 also affected the stability of both SLC25A11 and glutathione peroxidase 4 (GPX4), key regulators for ferroptosis. Our results demonstrate that FUNDC2 modulates ferroptotic stress via regulating mitoGSH and further support a therapeutic strategy of cardioprotection by preventing mitoGSH depletion and ferroptosis.
Collapse
|
15
|
Gao Z, Sharma KK, Andres AE, Walls B, Boumelhem F, Woydziak ZR, Peterson BR. Synthesis of a fluorinated pyronin that enables blue light to rapidly depolarize mitochondria. RSC Med Chem 2022; 13:456-462. [PMID: 35647549 PMCID: PMC9020612 DOI: 10.1039/d1md00395j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorinated analogues of the fluorophore pyronin B were synthesized as a new class of amine-reactive drug-like small molecules. In water, 2,7-difluoropyronin B was found to reversibly react with primary amines to form covalent adducts. When this fluorinated analogue is added to proteins, these adducts undergo additional oxidation to yield fluorescent 9-aminopyronins. Irradiation with visible blue light enhances this oxidation step, providing a photochemical method to modify the biological properties of reactive amines. In living HeLa cells, 2,7-difluoropyronin B becomes localized in mitochondria, where it is partially transformed into fluorescent aminopyronins, as detected by spectral profiling confocal microscopy. Further excitation of these cells with the blue laser of a confocal microscope can depolarize mitochondria within seconds. This biological activity was only observed with 2,7-difluoropyronin B and was not detected with analogues such as pyronin B or 9-methyl-2,7-difluoropyronin B. This irradiation with blue light enhances the cellular production of reactive oxygen species (ROS), suggesting that increased ROS in mitochondria promotes the formation of aminopyronins that inactivate biomolecules critical for maintenance of mitochondrial membrane potential. The unique reactivity of 2,7-difluoropyronin B offers a novel tool for photochemical control of mitochondrial biology.
Collapse
Affiliation(s)
- Zhe Gao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| | - Krishna K Sharma
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| | - Angelo E Andres
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| | - Brandon Walls
- Department of Physical and Life Sciences, Nevada State College Henderson NV 89002 USA
| | - Fadel Boumelhem
- Department of Physical and Life Sciences, Nevada State College Henderson NV 89002 USA
| | - Zachary R Woydziak
- Department of Physical and Life Sciences, Nevada State College Henderson NV 89002 USA
| | - Blake R Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
16
|
Prag HA, Pala L, Kula-Alwar D, Mulvey JF, Luping D, Beach TE, Booty LM, Hall AR, Logan A, Sauchanka V, Caldwell ST, Robb EL, James AM, Xu Z, Saeb-Parsy K, Hartley RC, Murphy MP, Krieg T. Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. Cardiovasc Drugs Ther 2022; 36:1-13. [PMID: 32648168 PMCID: PMC8770414 DOI: 10.1007/s10557-020-07033-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.
Collapse
Affiliation(s)
- Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura Pala
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Du Luping
- Tianjin Medical University, Tianjin, 300070, China
| | - Timothy E Beach
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Lee M Booty
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Andrew R Hall
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Volha Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Ellen L Robb
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Zhelong Xu
- Tianjin Medical University, Tianjin, 300070, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
17
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
18
|
Li C, Chen P, Khan IM, Wang Z, Zhang Y, Ma X. Fluorescence-Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. J Mater Chem B 2022; 10:571-581. [PMID: 34994374 DOI: 10.1039/d1tb02437j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The monitoring of small-molecule thiols (especially glutathione) has attracted widespread attention due to their involvement in numerous physiological processes in living organisms and cells. In this work, a dual-mode nanosensor was designed to detect small-molecule thiols, which is based on the "on-off" switch of fluorescence resonance energy transfer (FRET) and surface-enhanced Raman scattering (SERS). Briefly, DNA was modified by Cy5 (signal probe) and disulfide bonds (recognition element). Gold nanoflowers (AuNFs) were used as the fluorescence-quenching and SERS-enhancing substrate. However, small-molecule thiols can cleave disulfide bonds and release short Cy5-labeled chains, causing the recovery of the fluorescence signal and a decrease of the SERS signal. The nanosensor showed a sensitive response to small-molecule thiols represented by GSH, with a linear range of 0.01-3 mM and a detection limit of 913 nM. In addition, it competed with other related biological interferences and presented good stability and better selectivity towards small-molecule thiols. Most importantly, the developed nanosensor had been successfully applied to in situ imaging and quantitative monitoring of the concentration of small-molecule thiols which changed during T-2 toxin-induced apoptosis in HeLa cells. Meanwhile, nanosensors are also versatile with their potential applications and can be easily extended to the detection and imaging of other human cell lines. The proposed method combines the dual advantages of fluorescence and SERS, which has broad prospects for in situ studies of physiological processes involving small-molecule thiols in biological systems.
Collapse
Affiliation(s)
- Chenbiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Peifang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Ma K, Yang H, Shen T, Yue Y, Zhao L, Liu X, Huo F, Yin C. Unique assemble of carbonylpyridinium and chromene reveal mitochondrial thiol starvation under ferroptosis and novel ferroptosis inducer. Chem Sci 2022; 13:3706-3712. [PMID: 35432896 PMCID: PMC8966632 DOI: 10.1039/d2sc00328g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
To reveal the delicate function of mitochondrial, precise detection tools in spatiotemporal manner remains highly desirable. However, current probes with positive charge warheads for targeting mitochondria diffuse out of the...
Collapse
Affiliation(s)
- Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Tianruo Shen
- University of Technology and Design 487372 Singapore
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Lingling Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Xiaogang Liu
- University of Technology and Design 487372 Singapore
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 PR China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
20
|
Ryan DG, Yang M, Prag HA, Blanco GR, Nikitopoulou E, Segarra-Mondejar M, Powell CA, Young T, Burger N, Miljkovic JL, Minczuk M, Murphy MP, von Kriegsheim A, Frezza C. Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. eLife 2021; 10:e72593. [PMID: 34939929 PMCID: PMC8735863 DOI: 10.7554/elife.72593] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
The Tricarboxylic Acid (TCA) Cycle is arguably the most critical metabolic cycle in physiology and exists as an essential interface coordinating cellular metabolism, bioenergetics, and redox homeostasis. Despite decades of research, a comprehensive investigation into the consequences of TCA cycle dysfunction remains elusive. Here, we targeted two TCA cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), and combined metabolomics, transcriptomics, and proteomics analyses to fully appraise the consequences of TCA cycle inhibition (TCAi) in murine kidney epithelial cells. Our comparative approach shows that TCAi elicits a convergent rewiring of redox and amino acid metabolism dependent on the activation of ATF4 and the integrated stress response (ISR). Furthermore, we also uncover a divergent metabolic response, whereby acute FHi, but not SDHi, can maintain asparagine levels via reductive carboxylation and maintenance of cytosolic aspartate synthesis. Our work highlights an important interplay between the TCA cycle, redox biology, and amino acid homeostasis.
Collapse
Affiliation(s)
- Dylan Gerard Ryan
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Department of Medicine, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | | | - Efterpi Nikitopoulou
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Marc Segarra-Mondejar
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Christopher A Powell
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Tim Young
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and CancerEdinburghUnited Kingdom
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison MRC Research Centre, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
21
|
Wang Y, Yen FS, Zhu XG, Timson RC, Weber R, Xing C, Liu Y, Allwein B, Luo H, Yeh HW, Heissel S, Unlu G, Gamazon ER, Kharas MG, Hite R, Birsoy K. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 2021; 599:136-140. [PMID: 34707288 PMCID: PMC10981497 DOI: 10.1038/s41586-021-04025-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism1. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions2. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron-sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Frederick S Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Rebecca C Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ross Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Changrui Xing
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
22
|
Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J. Thioredoxin-1 Rescues MPP +/MPTP-Induced Ferroptosis by Increasing Glutathione Peroxidase 4. Mol Neurobiol 2021; 58:3187-3197. [PMID: 33634378 DOI: 10.1007/s12035-021-02320-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/03/2021] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD), a common neurodegenerative disease, is typically associated with the loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc). Ferroptosis is a newly identified cell death, which associated with iron accumulation, glutathione (GSH) depletion, lipid peroxidation formation, reactive oxygen species (ROS) accumulation, and glutathione peroxidase 4 (GPX4) reduction. It has been reported that ferroptosis is linked with PD.Thioredoxin-1 (Trx-1) is a redox regulating protein and plays various roles in regulating the activity of transcription factors and inhibiting apoptosis. However, whether Trx-1 plays the role in regulating ferroptosis involved in PD is still unknown. Our present study showed that 1-methyl-4-phenylpyridinium (MPP+) decreased cell viability, GPX4, and Trx-1, which were reversed by Ferrostatin-1 (Fer-1) in PC 12 cells and SH-SY5Y cells. Moreover, the decreased GPX4 and GSH, and increased ROS were inhibited by Fer-1 and Trx-1 overexpression. We further repeated that behavior deficits resulted from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were improved in Trx-1 overexpression transgenic mice. Trx-1 reversed the decreases of GPX4 and tyrosine hydroxylase (TH) induced by MPTP in the substantia nigra pars compacta (SNpc). Our results suggest that Trx-1 inhibits ferroptosis in PD through regulating GPX4 and GSH.
Collapse
Affiliation(s)
- Liping Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Ruhua Deng
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China.
| |
Collapse
|
23
|
Treberg JR. Review: Using isolated mitochondria to investigate mitochondrial hydrogen peroxide metabolism. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110614. [PMID: 33965616 DOI: 10.1016/j.cbpb.2021.110614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are recognized as centrally important to cellular reactive oxygen species (ROS), both as a potential source and due to their substantial antioxidant capacity. While much of the initial ROS formed by mitochondria is superoxide, this is rapidly converted to hydrogen peroxide (H2O2) which more readily crosses membranes making H2O2 important in both redox signalling mechanisms and conditions of oxidative stress. Here I outline our studies on mitochondrial H2O2 metabolism with a focus on some of the challenges and strategies involved with developing an integrated model of mitochondria being intrinsic regulators of H2O2. This view of mitochondria as regulators of H2O2 goes beyond the simpler contention of them being net producers or consumers. Moreover, the integration of both consumption and production can then be tied to a putative mechanism linking energy sensing at the level of the mitochondrial protonmotive force. This mechanism would provide a means of mitochondria communicating their energetic status the extramitochondrial compartment via local H2O2 concentrations. I conclude by explaining how these concepts developed using rodent muscle as a model have high relevance and applicability to comparative studies.
Collapse
Affiliation(s)
- Jason R Treberg
- Department of Biological Sciences, University of Manitoba Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
24
|
Prag HA, Gruszczyk AV, Huang MM, Beach TE, Young T, Tronci L, Nikitopoulou E, Mulvey JF, Ascione R, Hadjihambi A, Shattock MJ, Pellerin L, Saeb-Parsy K, Frezza C, James AM, Krieg T, Murphy MP, Aksentijević D. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res 2021; 117:1188-1201. [PMID: 32766828 PMCID: PMC7983001 DOI: 10.1093/cvr/cvaa148] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.
Collapse
Affiliation(s)
- Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Margaret M Huang
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy E Beach
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy Young
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Efterpi Nikitopoulou
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Raimondo Ascione
- Bristol Medical School and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Anna Hadjihambi
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Michael J Shattock
- King’s College London, British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux 33076, France
- Inserm U1082, Université de Poitiers, 2 Rue de la Miletrie, Poitiers 86021, France
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Dunja Aksentijević
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
25
|
Anamika, Trigun SK. Sirtuin-3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity. J Biochem Mol Toxicol 2021; 35:e22735. [PMID: 33522075 DOI: 10.1002/jbt.22735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
The neurotoxic level of ammonia in the brain during liver cirrhosis causes a nervous system disorder, hepatic encephalopathy (HE), by affecting mitochondrial functions. Sirtuin-3 (SIRT3) is emerging as a master regulator of mitochondrial integrity, which is currently being focused as a pathogenic hotspot for HE. This article describes SIRT3 level versus mitochondrial dysfunction markers in the hippocampus of the control, the moderate-grade hepatic encephalopathy (MoHE), developed in thioacetamide-induced (100 mg/kg bw ip for 10 days) liver cirrhotic rats, and the MoHE rats treated with an SIRT3 activator, honokiol (HKL; 10 mg/kg bw ip), for 7 days from 8th day of the thioacetamide schedule. As compared with the control group rats, hippocampus mitochondria of MoHE rats showed a significant decline in SIRT3 expression and its activity with concordant enhancement of ROS and declined membrane permeability transition and organelle viability scores. This was consistent with the declined mitochondrial thiol level and thiol-regenerating enzyme, isocitrate dehydrogenase 2. Also, significantly declined activities of electron transport chain complexes I, III, IV, and Q10 , decreased NAD+ /NADH and ATP/AMP ratios, and enhanced number of the shrunken mitochondria were recorded in the hippocampus of those MoHE rats. However, all these mitochondrial aberrations were observed to regain their normal profiles/levels, concordant to the enhanced SIRT3 expression and its activity due to treatment with HKL. The findings suggest a role of SIRT3 in mitochondrial structure-function derangements associated with MoHE pathogenesis and SIRT3 activation by HKL as a relevant strategy to protect mitochondrial integrity during ammonia neurotoxicity.
Collapse
Affiliation(s)
- Anamika
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra K Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
26
|
Cvetko F, Caldwell ST, Higgins M, Suzuki T, Yamamoto M, Prag HA, Hartley RC, Dinkova-Kostova AT, Murphy MP. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. J Biol Chem 2021; 296:100169. [PMID: 33298526 PMCID: PMC7948991 DOI: 10.1074/jbc.ra120.016551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and GSH metabolism. Previous reports proposed that mitochondrial reactive oxygen species production and disruption of the GSH pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now, it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production mitoParaquat (MitoPQ) or selectively disrupt mitochondrial thiol homeostasis MitoChlorodinitrobenzoic acid (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide or disruption of mitochondrial thiol homeostasis affects activation of the Nrf2 system in cells, which was assessed by the Nrf2 protein level, nuclear translocation, and expression of its target genes. We found that selective disruption of the mitochondrial GSH pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, whereas using MitoPQ to enhance the production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.
Collapse
Affiliation(s)
- Filip Cvetko
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Maureen Higgins
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Jackson MJ. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis. Free Radic Biol Med 2020; 161:326-338. [PMID: 33099002 PMCID: PMC7754707 DOI: 10.1016/j.freeradbiomed.2020.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Responding appropriately to exercise is essential to maintenance of skeletal muscle mass and function at all ages and particularly during aging. Here, a hypothesis is presented that a key component of the inability of skeletal muscle to respond effectively to exercise in aging is a denervation-induced failure of muscle redox signalling. This novel hypothesis proposes that an initial increase in oxidation in muscle mitochondria leads to a paradoxical increase in the reductive state of specific cysteines of signalling proteins in the muscle cytosol that suppresses their ability to respond to normal oxidising redox signals during exercise. The following are presented for consideration:Transient loss of integrity of peripheral motor neurons occurs repeatedly throughout life and is normally rapidly repaired by reinnervation, but this repair process becomes less efficient with aging. Each transient loss of neuromuscular integrity leads to a rapid, large increase in mitochondrial peroxide production in the denervated muscle fibers and in neighbouring muscle fibers. This peroxide may initially act to stimulate axonal sprouting and regeneration, but also stimulates retrograde mitonuclear communication to increase expression of a range of cytoprotective proteins in an attempt to protect the fiber and neighbouring tissues against oxidative damage. The increased peroxide within mitochondria does not lead to an increased cytosolic peroxide, but the increases in adaptive cytoprotective proteins include some located to the muscle cytosol which modify the local cytosol redox environment to induce a more reductive state in key cysteines of specific signalling proteins. Key adaptations of skeletal muscle to exercise involve transient peroxiredoxin oxidation as effectors of redox signalling in the cytosol. This requires sensitive oxidation of key cysteine residues. In aging, the chronic change to a more reductive cytosolic environment prevents the transient oxidation of peroxiredoxin 2 and hence prevents essential adaptations to exercise, thus contributing to loss of muscle mass and function. Experimental approaches suitable for testing the hypothesis are also outlined.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
28
|
Gibhardt CS, Ezeriņa D, Sung HM, Messens J, Bogeski I. Redox regulation of the mitochondrial calcium transport machinery. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Cobley JN. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants (Basel) 2020; 9:E933. [PMID: 33003362 PMCID: PMC7599503 DOI: 10.3390/antiox9100933] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria-a major presumptive oxidative stressor-produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.
Collapse
Affiliation(s)
- James N Cobley
- Redox Biology Group, Institute for Health Sciences, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| |
Collapse
|
30
|
Prag HA, Kula-Alwar D, Pala L, Caldwell ST, Beach TE, James AM, Saeb-Parsy K, Krieg T, Hartley RC, Murphy MP. Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker. Mol Pharm 2020; 17:3526-3540. [PMID: 32692564 PMCID: PMC7482397 DOI: 10.1021/acs.molpharmaceut.0c00533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Many
mitochondrial metabolites and bioactive molecules contain
two carboxylic acid moieties that make them unable to cross biological
membranes. Hence, there is considerable interest in facilitating the
uptake of these molecules into cells and mitochondria to modify or
report on their function. Conjugation to the triphenylphosphonium
(TPP) lipophilic cation is widely used to deliver molecules selectively
to mitochondria in response to the membrane potential. However, permanent
attachment to the cation can disrupt the biological function of small
dicarboxylates. Here, we have developed a strategy using TPP to release
dicarboxylates selectively within mitochondria. For this, the dicarboxylate
is attached to a TPP compound via a single ester bond, which is then
cleaved by intramitochondrial esterase activity, releasing the dicarboxylate
within the organelle. Leaving the second carboxylic acid free also
means mitochondrial uptake is dependent on the pH gradient across
the inner membrane. To assess this strategy, we synthesized a range
of TPP monoesters of the model dicarboxylate, malonate. We then tested
their mitochondrial accumulation and ability to deliver malonate to
isolated mitochondria and to cells, in vitro and in vivo. A TPP–malonate monoester compound, TPP11–malonate, in which the dicarboxylate group was attached
to the TPP compound via a hydrophobic undecyl link, was most effective
at releasing malonate within mitochondria in cells and in
vivo. Therefore, we have developed a TPP–monoester
platform that enables the selective release of bioactive dicarboxylates
within mitochondria.
Collapse
Affiliation(s)
- Hiran A Prag
- Molecular Research Center, Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Duvaraka Kula-Alwar
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Laura Pala
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stuart T Caldwell
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Timothy E Beach
- Department of Surgery, Cambridge National Institute for Health Research Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Andrew M James
- Molecular Research Center, Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, Cambridge National Institute for Health Research Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Richard C Hartley
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael P Murphy
- Molecular Research Center, Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
31
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Herbal formulation MIT ameliorates high-fat diet-induced non-alcoholic fatty liver disease. Integr Med Res 2020; 9:100422. [PMID: 32489856 PMCID: PMC7260683 DOI: 10.1016/j.imr.2020.100422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases and is caused by obesity, diabetes, high blood pressure, and insulin resistance. Many studies have explored novel candidates to treat NAFLD using herbal medicines owing to their fewer side effects. In this study, we examined the effect of MIT, an herbal formula comprising Ephedra sinica, Panax ginseng, and Alisma orientale, on the murine model of NAFLD. Methods To evaluate the effect of MIT on NAFLD, we used the high-fat diet (HFD)-induced NAFLD mice model. The mice were divided into four groups: control, HFD, HFD with metformin administration, and HFD with MIT administration. Freeze-dried MIT was dissolved in phosphate buffered saline and orally administered for 8 weeks to MIT-treated mice (60 mg/kg) after feeding them with HFD for 16 weeks. Results MIT treatment significantly attenuated fat accumulation, serum glucose levels, and excessive cholesterol. It also reduced the activation of NF-κB, JNK, ERK, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ in the HFD-induced NAFLD mice. The expression level of enzymes involved in the synthesis and oxidation of fatty acids, acetyl-coA carboxylase and CYP2E1, were clearly reduced by MIT treatment. Reactive oxygen species (ROS) production and subsequent liver damage were effectively reduced by MIT treatment. Conclusion We suggest that MIT is a potent herbal formula that can be used for the prevention and treatment of obesity-related NAFLD via regulating the levels of serum glucose and free fatty acids, inflammation, lipid accumulation, and ROS-mediated liver damage.
Collapse
|
33
|
Szibor M, Schreckenberg R, Gizatullina Z, Dufour E, Wiesnet M, Dhandapani PK, Debska‐Vielhaber G, Heidler J, Wittig I, Nyman TA, Gärtner U, Hall AR, Pell V, Viscomi C, Krieg T, Murphy MP, Braun T, Gellerich FN, Schlüter K, Jacobs HT. Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. J Cell Mol Med 2020; 24:3534-3548. [PMID: 32040259 PMCID: PMC7131948 DOI: 10.1111/jcmm.15043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.
Collapse
Affiliation(s)
- Marten Szibor
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Department of Cardiothoracic SurgeryJena University HospitalJenaGermany
| | | | | | - Eric Dufour
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Marion Wiesnet
- Department Cardiac Development and RemodellingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Praveen K. Dhandapani
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | | | - Juliana Heidler
- Functional ProteomicsFaculty of MedicineGoethe UniversityFrankfurt am MainGermany
| | - Ilka Wittig
- Functional ProteomicsFaculty of MedicineGoethe UniversityFrankfurt am MainGermany
| | - Tuula A. Nyman
- Department of ImmunologyInstitute of Clinical MedicineOslo University HospitalUniversity of OsloOsloNorway
| | - Ulrich Gärtner
- Institute of Anatomy and Cell BiologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Andrew R. Hall
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Victoria Pell
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Carlo Viscomi
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Thomas Braun
- Department Cardiac Development and RemodellingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | | | | | - Howard T. Jacobs
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
34
|
Yumnamcha T, Devi TS, Singh LP. Auranofin Mediates Mitochondrial Dysregulation and Inflammatory Cell Death in Human Retinal Pigment Epithelial Cells: Implications of Retinal Neurodegenerative Diseases. Front Neurosci 2019; 13:1065. [PMID: 31649499 PMCID: PMC6795687 DOI: 10.3389/fnins.2019.01065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Photoreceptor degeneration occurs in various retinal diseases including age-related macular degeneration (AMD), Retinitis pigmentosa (RP), and diabetic retinopathy (DR). However, molecular mechanisms are not fully understood yet. The retinal pigment epithelium (RPE) forms the outer blood retinal barrier (oBRB) and supplies glucose, oxygen and nutrients from the fenestrated choriocapillaris to photoreceptors for visual function. Therefore, RPE dysfunction leads to photoreceptor injury/death and progression of blinding eye diseases. This study aims to understand the role of the thioredoxin (Trx) and its reductase (TrxR) redox signaling in human RPE dysfunction and cell death mechanism(s) in an in vitro system. Methods A human RPE cell line (APRE-19) was cultured in DMEM/F12 medium and treated with auranofin (AF - 4 μM, an inhibitor of TrxR) for 4 and 24 h. Mitochondrial and lysosomal function, cellular oxidative stress and NLRP3 inflammasome activity were measured using cell assays, Western blotting, and confocal microscopy. Antioxidants and anti-inflammatory compounds were tested for blocking AF effects on RPE damage. Cell death mechanisms (LDH release to culture media) were determined using necroptosis, ferroptosis and pyroptosis inhibitors. P < 0.05 was considered significant in statistical analysis. Results Auranofin causes mitochondrial dysfunction (Δψm↓ and ATP↓), oxidative stress (H2O2↑) and mitophagic flux to lysosomes. Furthermore, the lysosomal enzyme (cathepsin L) activity is reduced while that of pro-inflammatory caspase-1 (NLRP3 inflammasome) is enhanced in ARPE-19. These effects of AF on ARPE-19 are inhibited by antioxidant N-acetylcysteine (5 mM, NAC) and significantly by a combination of SS31 (mitochondrial antioxidant) and anti-inflammatory drugs (amlexanox and tranilast). AF also causes cell death as measured by cytosolic LDH release/leakage, which is not inhibited by either ferrostatin-1 or necrostatin-1 (ferroptosis and necroptosis inhibitors, respectively). Conversely, AF-induced LDH release is significantly reduced by MCC950 and Ac-YVAD-cmk (NLRP3 and Caspase-1 inhibitors, respectively), suggesting a pro-inflammatory cell death by pyroptosis. Conclusion The Trx/TrxR redox system is critical for RPE function and viability. We previously showed that thioredoxin-interacting protein (TXNIP) is strongly induced in DR inhibiting the Trx/TrxR system and RPE dysfunction. Therefore, our results suggest that the TXNIP-Trx-TrxR redox pathway may participate in RPE dysfunction in DR and other retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Takhellembam Swornalata Devi
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
35
|
Abstract
The mitochondrial matrix is a prominent place in redox biology. It contains mitochondrial glutathione (mGSH), pivotal for maintaining redox homeostasis. In this issue of Cell Chemical Biology, Booty et al., (2019) introduce mitoCDNB, which depletes the mGSH pool, creating new avenues of organellar redox research.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|