1
|
Fehringer M, Vogl T. Molecular mimicry in the pathogenesis of autoimmune rheumatic diseases. J Transl Autoimmun 2025; 10:100269. [PMID: 39877080 PMCID: PMC11773492 DOI: 10.1016/j.jtauto.2025.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of conditions characterized by excessive and misdirected immune responses against the body's own musculoskeletal tissues. Their exact aetiology remains unclear, with genetic, demographic, behavioural and environmental factors implicated in disease onset. One prominent hypothesis for the initial breach of immune tolerance (leading to autoimmunity) is molecular mimicry, which describes structural or sequence similarities between human and microbial proteins (mimotopes). This similarity can lead to cross-reactive antibodies and T-cell receptors, resulting in an immune response against autoantigens. Both commensal microbes in the human microbiome and pathogens can trigger molecular mimicry, thereby potentially contributing to the onset of ARDs. In this review, we focus on the role of molecular mimicry in the onset of rheumatoid arthritis and systemic lupus erythematosus. Moreover, implications of molecular mimicry are also briefly discussed for ankylosing spondylitis, systemic sclerosis and myositis.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| |
Collapse
|
2
|
Yang L, Guo R, Liu H, Chen B, Li C, Liu R, Liao S, Xie Q, Yin G. Mechanism of antiphospholipid antibody-mediated thrombosis in antiphospholipid syndrome. Front Immunol 2025; 16:1527554. [PMID: 40181965 PMCID: PMC11966034 DOI: 10.3389/fimmu.2025.1527554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the occurrence of thrombotic or obstetrical events in patients with persistent antiphospholipid antibodies (aPL). Thrombotic events, the primary pathological hallmarks and clinical manifestations, are among the leading causes of mortality in APS. Our understanding of the mechanism underlying APS-related thrombosis has significantly advanced in recent years. The presence of aPL, particularly anti-β2-glycoprotein I (anti-β2GPI) antibodies, is a major driver of thrombosis. The proposed pathophysiological mechanisms of aPL-mediated pro-thrombotic events can be broadly categorized into three types: disruption of anticoagulant reactions and fibrinolysis, interference with coagulation cascade cells, and complement activation. A triggering 'second hit' is typically necessary to initiate thrombosis. The development of animal models of APS has further refined our understanding of the role of aPL in thrombosis. In this review, we focused on the role of β2GPI-dependent aPL in thrombosis of thrombotic APS.
Collapse
Affiliation(s)
- Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruibing Guo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Changpei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyi Liao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ramón-Vázquez A, Flood P, Cashman TL, Patil P, Ghosh S. T lymphocyte plasticity in chronic inflammatory diseases: The emerging role of the Ikaros family as a key Th17-Treg switch. Autoimmun Rev 2025; 24:103735. [PMID: 39719186 DOI: 10.1016/j.autrev.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
T helper (Th) 17 and regulatory T (Treg) cells are highly plastic CD4+ Th cell subsets, being able not only to actively adapt to their microenvironment, but also to interconvert, acquiring mixed identity markers. These phenotypic changes are underpinned by transcriptional control mechanisms, chromatin reorganization events and epigenetic modifications, that can be hereditable and stable over time. The Ikaros family of transcription factors have a predominant role in T cell subset specification through mechanisms of transcriptional program regulation that enable phenotypical diversification. They are crucial factors in maintaining Th17/Treg balance and therefore, homeostatic conditions in the tissues. However, they are also implicated in pathogenic processes, where their transcriptional repression contributes to the control of autoimmune processes. In this review, we discuss how T cell fate, specifically in humans, is regulated by the Ikaros family and its interplay with additional factors like the Notch signaling pathway, gut microbiota and myeloid-T cell interactions. Further, we highlight how the transcriptional activity of the Ikaros family impacts the course of T cell mediated chronic inflammatory diseases like rheumatoid and psoriatic arthritis, inflammatory bowel disease, systemic lupus erythematosus and multiple sclerosis. We conclude by discussing recently developed therapeutics designed to target Ikaros family members.
Collapse
Affiliation(s)
| | - P Flood
- APC Microbiome Ireland, University College Cork, Ireland
| | - T L Cashman
- APC Microbiome Ireland, University College Cork, Ireland
| | - P Patil
- APC Microbiome Ireland, University College Cork, Ireland
| | - S Ghosh
- APC Microbiome Ireland, University College Cork, Ireland; College of Medicine and Health, University College Cork, Ireland
| |
Collapse
|
4
|
Parodi E, Novi M, Bottino P, La Porta E, Merlotti G, Castello LM, Gotta F, Rocchetti A, Quaglia M. The Complex Role of Gut Microbiota in Systemic Lupus Erythematosus and Lupus Nephritis: From Pathogenetic Factor to Therapeutic Target. Microorganisms 2025; 13:445. [PMID: 40005809 PMCID: PMC11858628 DOI: 10.3390/microorganisms13020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as the abundance of Proteobacteria and reduction in Firmicutes/Bacteroidetes (F/B) ratio and in α-diversity have been consistently reported in systemic lupus erythematosus (SLE), whereas a more specific role has been ascribed to some species (Bacteroides thetaiotaomicron and Ruminococcus gnavus) in LN. Underlying mechanisms include microbial translocation through a "leaky gut" and subsequent molecular mimicry, immune dysregulation (alteration of IFNγ levels and of balance between Treg and Th17 subsets), and epigenetic interactions. Levels of bacterial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), appear to play a key role in modulating LN. Beyond bacterial components of GM, virome and mycobiome are also increasingly recognized as important players in the modulation of an immune response. On the other hand, microbiota-based therapy appears promising and includes diet, prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). The modulation of microbiota could correct critical alterations, such as F/B ratio and Treg/Th17 imbalance, and blunt production of autoantibodies and renal damage. Despite current limits, GM is emerging as a powerful environmental factor that could be harnessed to interfere with key mechanisms leading to SLE, preventing flares and organ damage, including LN. The aim of this review is to provide a state-of-the-art analysis of the role of GM in triggering and modulating SLE and LN on the one hand, while exploring possible therapeutic manipulation of GM to control the disease on the other hand.
Collapse
Affiliation(s)
- Emanuele Parodi
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Marialuisa Novi
- Gastroenterology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Paolo Bottino
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Edoardo La Porta
- Nephrology and Dialysis Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Luigi Mario Castello
- Internal Medicine Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Franca Gotta
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Andrea Rocchetti
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
5
|
Gronke K, Nguyen M, Fuhrmann H, Santamaria de Souza N, Schumacher J, Pereira MS, Löschberger U, Brinkhege A, Becker NJ, Yang Y, Sonnert N, Leopold S, Martin AL, von Münchow-Klein L, Pessoa Rodrigues C, Cansever D, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Schwinge D, Schramm C, Redanz S, Lassen KG, Manfredo Vieira S, Piali L, Palm NW, Bieniossek C, Kriegel MA. Translocating gut pathobiont Enterococcus gallinarum induces T H17 and IgG3 anti-RNA-directed autoimmunity in mouse and human. Sci Transl Med 2025; 17:eadj6294. [PMID: 39908347 DOI: 10.1126/scitranslmed.adj6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Chronic autoimmune diseases often lead to long-term sequelae and require lifelong immunosuppression because of an incomplete understanding of the triggers and drivers in genetically predisposed patients. Gut bacteria that escape the gut barrier, known as translocating gut pathobionts, have been implicated as instigators and perpetuators of extraintestinal autoimmune diseases in mice. The gut microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. Here, we show that the translocating pathobiont Enterococcus gallinarum can induce both human and mouse interferon-γ+ T helper 17 (TH17) differentiation and immunoglobulin G3 (IgG3) subclass switch of anti-E. gallinarum RNA antibodies, which correlated with anti-human RNA autoantibody responses in patients with systemic lupus erythematosus (SLE) and autoimmune hepatitis, two extraintestinal autoimmune diseases. E. gallinarum RNA, but not human RNA, triggered Toll-like receptor 8 (TLR8), and TLR8-mediated human monocyte activation promoted human TH17 induction by E. gallinarum. Translocation of the pathobiont triggered increased anti-RNA autoantibody titers that correlated with renal autoimmune pathophysiology in murine gnotobiotic lupus models and with disease activity in patients with SLE. These studies elucidate cellular mechanisms of how a translocating gut pathobiont induces systemic human T cell- and B cell-dependent autoimmune responses and provide a framework for developing host- and microbiota-derived biomarkers and targeted therapies in autoimmune diseases.
Collapse
Affiliation(s)
- Konrad Gronke
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Mytien Nguyen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Helen Fuhrmann
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Noemi Santamaria de Souza
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Julia Schumacher
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Ulrike Löschberger
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Anna Brinkhege
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Nathalie J Becker
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital Münster, 48149 Münster, Germany
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Sonnert
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Shana Leopold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Anjelica L Martin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Lilly von Münchow-Klein
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Cecilia Pessoa Rodrigues
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Dilay Cansever
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Remy Hallet
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Kirsten Richter
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - David A Schubert
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Guillaume M Daniel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - David Dylus
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Dorothee Schwinge
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Martin Zeitz Centre for Rare Diseases and Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sylvio Redanz
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Silvio Manfredo Vieira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luca Piali
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Martin A Kriegel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital Münster, 48149 Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Schoenaker JM, Nelson VS, Henderickx JGE, Terveer EM, Jansen AJG, Porcelijn L, Netelenbos T, Schipperus MR, Kapur R. The intestinal flora: The key to unraveling heterogeneity in immune thrombocytopenia? Blood Rev 2025; 69:101252. [PMID: 39672701 DOI: 10.1016/j.blre.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by enhanced platelet destruction and impaired platelet production, due to a loss of immune tolerance that leads to targeting of platelets and megakaryocytes by glycoprotein-autoantibodies and/or cytotoxic T cells. There is a high degree of heterogeneity in ITP patients signified by unpredictable disease trajectories and treatment responses. Initial studies in humans have identified intestinal microbiota perturbance in ITP. Recently, gut microbial perturbance has been linked to other autoimmune diseases. Based on these findings, we hypothesize that intestinal microbiota may influence ITP pathophysiology through several mechanisms, including induction of platelet-autoantibody production, increasing complement-dependent platelet cytotoxicity, disturbing T cell homeostasis, impairing megakaryocyte function, and increasing platelet-desialylation and -clearance. The pathophysiological heterogeneity of ITP may, at least in part, be attributed to a perturbed intestinal microbiota. Therefore, a better understanding of intestinal microbiota in ITP may result in a more personalized therapeutic approach.
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/immunology
- Purpura, Thrombocytopenic, Idiopathic/microbiology
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Purpura, Thrombocytopenic, Idiopathic/pathology
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Animals
- Disease Susceptibility
- Autoantibodies/immunology
Collapse
Affiliation(s)
- Jente M Schoenaker
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.
| | - Vivianne S Nelson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, the Netherlands; Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jannie G E Henderickx
- Center for Microbiome Analyses and Therapeutics, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID) Research, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID) Research, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Netherlands Donor Feces Bank, LUCID Medical Microbiology & Infection Prevention, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - A J Gerard Jansen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| | - Leendert Porcelijn
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Sanquin, 1066 CX Amsterdam, the Netherlands.
| | - Tanja Netelenbos
- Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, the Netherlands.
| | | | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Ma X, Zhang J, Jiang Q, Li YX, Yang G. Human microbiome-derived peptide affects the development of experimental autoimmune encephalomyelitis via molecular mimicry. EBioMedicine 2025; 111:105516. [PMID: 39724786 PMCID: PMC11732510 DOI: 10.1016/j.ebiom.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Gut commensal microbiota has been identified as a potential environmental risk factor for multiple sclerosis (MS), and numerous studies have linked the commensal microorganism with the onset of MS. However, little is known about the mechanisms underlying the gut microbiome and host-immune system interaction. METHODS We employed bioinformatics methodologies to identify human microbial-derived peptides by analyzing their similarity to the MHC II-TCR binding patterns of self-antigens. Subsequently, we conducted a range of in vitro and in vivo assays to assess the encephalitogenic potential of these microbial-derived peptides. FINDINGS We analyzed 304,246 human microbiome genomes and 103 metagenomes collected from the MS cohort and identified 731 nonredundant analogs of myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Of note, half of these analogs could bind to MHC II and interact with TCR through structural modeling of the interaction using fine-tuned AlphaFold. Among the 8 selected peptides, the peptide (P3) shows the ability to activate MOG35-55-specific CD4+ T cells in vitro. Furthermore, P3 shows encephalitogenic capacity and has the potential to induce EAE in some animals. Notably, mice immunized with a combination of P3 and MOG35-55 develop severe EAE. Additionally, dendritic cells could process and present P3 to MOG35-55-specific CD4+ T cells and activate these cells. INTERPRETATION Our data suggests the potential involvement of a MOG35-55-mimic peptide derived from the gut microbiota as a molecular trigger of EAE pathogenesis. Our findings offer direct evidence of how microbes can initiate the development of EAE, suggesting a potential explanation for the correlation between certain gut microorganisms and MS prevalence. FUNDING National Natural Science Foundation of China (82371350 to GY).
Collapse
MESH Headings
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Animals
- Molecular Mimicry
- Mice
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/chemistry
- Gastrointestinal Microbiome
- Peptides/chemistry
- Peptides/immunology
- Peptide Fragments/immunology
- Peptide Fragments/chemistry
- Disease Models, Animal
- Receptors, Antigen, T-Cell/metabolism
- Computational Biology/methods
- Histocompatibility Antigens Class II/metabolism
- Protein Binding
- Microbiota
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Multiple Sclerosis
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
Collapse
Affiliation(s)
- Xin Ma
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jian Zhang
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yong-Xin Li
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
8
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
9
|
Dieudonné Y, Lorenzetti R, Rottura J, Janowska I, Frenger Q, Jacquel L, Vollmer O, Carbone F, Chengsong Z, Luka M, Depauw S, Wadier N, Giorgiutti S, Nespola B, Herb A, Voll RE, Guffroy A, Poindron V, Ménager M, Martin T, Soulas-Sprauel P, Rizzi M, Korganow AS, Gies V. Defective germinal center selection results in persistence of self-reactive B cells from the primary to the secondary repertoire in Primary Antiphospholipid Syndrome. Nat Commun 2024; 15:9921. [PMID: 39548093 PMCID: PMC11568317 DOI: 10.1038/s41467-024-54228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a life-threatening clotting disorder mediated by pathogenic autoantibodies. Here we dissect the origin of self-reactive B cells in human PAPS using peripheral blood and bone marrow of patients with triple-positive PAPS via combined single-cell RNA sequencing, B cell receptors (BCR) repertoire profiling, CITEseq analysis and single cell immortalization. We find that antiphospholipid (aPL)-specific B cells are present in the naive compartment, polyreactive, and derived from the natural repertoire. Furthermore, B cells with aPL specificities are not eliminated in patients with PAPS, persist until the memory and long-lived plasma cell stages, likely after defective germinal center selection, while becoming less polyreactive. Lastly, compared with the non-PAPS cells, PAPS B cells exhibit distinct IFN and APRIL signature as well as dysregulated mTORC1 and MYC pathways. Our findings may thus elucidate the survival mechanisms of these autoreactive B cells and suggest potential therapeutic targets for the treatment of PAPS.
Collapse
Affiliation(s)
- Yannick Dieudonné
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France.
| | - Raquel Lorenzetti
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Iga Janowska
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Quentin Frenger
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Léa Jacquel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Olivier Vollmer
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Francesco Carbone
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Zhu Chengsong
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marine Luka
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Sabine Depauw
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadège Wadier
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Benoît Nespola
- Laboratoire d'Immunologie, Plateau technique de Biologie, Strasbourg University Hospital, Strasbourg, France
| | - Agathe Herb
- Hematology laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Reinhard Edmund Voll
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
| | - Mickaël Ménager
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Thierry Martin
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Pauline Soulas-Sprauel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
10
|
Jansen VL, Davids M, van Mourik DJ, Levels JH, Coppens M, Middeldorp S, Nieuwdorp M, van Mens TE. Gut microbiome composition and intestinal immunity in antiphospholipid syndrome patients versus healthy controls. Lupus 2024; 33:1373-1378. [PMID: 39152759 PMCID: PMC11443740 DOI: 10.1177/09612033241274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
INTRODUCTION The gut microbiome is recognized as a factor that could potentially contribute to the persistent antibodies of antiphospholipid syndrome (APS). Gut microbial interventions can both induce and mitigate APS in mice. In human APS patients, anti-beta-2-glycoprotein I (β2GP-1) titers correlate with antibody titers against a gut commensal protein homologous to β2GP-1. AIM To investigate the effect of the intestinal microenvironment on human APS. Methods We cross-sectionally compared intestinal microbiota composition quantified by shotgun sequencing; fecal short chain fatty acids (SCFAs), bacterial metabolites known to affect autoimmune processes; and fecal calprotectin, an intestinal inflammatory marker, in APS patients and healthy controls. RESULTS Neither alpha nor beta diversity of the gut microbiota differed between APS patients (n = 15) and controls (n = 16) and no taxa were differentially abundant. Moreover, fecal SCFAs and fecal calprotectin, did not differ between the groups. CONCLUSION Gut microbiome effects on the APS phenotype are likely not driven by bacterial overabundance, SCFA production or intestinal inflammation.
Collapse
Affiliation(s)
- Valérie Lbi Jansen
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Jm van Mourik
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, The Netherlands
- Department of Medicine - Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes Hm Levels
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel Coppens
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, The Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs E van Mens
- Department of (Experimental) Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
- Department of Medicine - Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Aguirre Del-Pino R, Monahan RC, Huizinga TWJ, Eikenboom J, Steup-Beekman GM. Risk Factors for Antiphospholipid Antibodies and Antiphospholipid Syndrome. Semin Thromb Hemost 2024; 50:817-828. [PMID: 38228166 DOI: 10.1055/s-0043-1776910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Persistence of serum antiphospholipid antibodies (aPL) is associated with a high thrombotic risk, both arterial and venous, and with pregnancy complications. Due to the potential morbidity and mortality associated with the presence of aPL, identifying and recognizing risk factors for the development of aPL and thrombosis in aPL carriers may help to prevent and reduce the burden of disease. Multiple elements are involved in the pathomechanism of aPL development and aPL-related thrombosis such as genetics, malignancy, and infections. This review will address the role of both well-known risk factors and their evolution, and of emerging risk factors, including COVID-19, in the development of aPL and thrombosis in aPL carriers.
Collapse
Affiliation(s)
- Rodrigo Aguirre Del-Pino
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Division of Rheumatology, A Coruña University Hospital (CHUAC), Galicia, Spain
| | - Rory C Monahan
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jeroen Eikenboom
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Rheumatology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
12
|
Garcia AC, Six N, Ma L, Morel L. Intersection of the microbiome and immune metabolism in lupus. Immunol Rev 2024; 325:77-89. [PMID: 38873851 PMCID: PMC11338729 DOI: 10.1111/imr.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.
Collapse
Affiliation(s)
- Abigail Castellanos Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
Koester ST, Chow A, Pepper-Tunick E, Lee P, Eckert M, Brenchley L, Gardner P, Song HJ, Li N, Schiffenbauer A, Volochayev R, Bayat N, McLean JS, Rider LG, Shenoi S, Stevens AM, Dey N. Familial clustering of dysbiotic oral and fecal microbiomes in juvenile dermatomyositis. Sci Rep 2024; 14:16158. [PMID: 38997299 PMCID: PMC11245510 DOI: 10.1038/s41598-024-60225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2024] [Indexed: 07/14/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare immune-mediated disease of childhood with putative links to microbial exposures. In this multi-center, prospective, observational cohort study, we evaluated whether JDM is associated with discrete oral and gut microbiome signatures. We generated 16S rRNA sequencing data from fecal, saliva, supragingival, and subgingival plaque samples from JDM probands (n = 28). To control for genetic and environmental determinants of microbiome community structure, we also profiled microbiomes of unaffected family members (n = 27 siblings, n = 26 mothers, and n = 17 fathers). Sample type (oral-vs-fecal) and nuclear family unit were the predominant variables explaining variance in microbiome diversity, more so than having a diagnosis of JDM. The oral and gut microbiomes of JDM probands were more similar to their own unaffected siblings than they were to the microbiomes of other JDM probands. In a sibling-paired within-family analysis, several potentially immunomodulatory bacterial taxa were differentially abundant in the microbiomes of JDM probands compared to their unaffected siblings, including Faecalibacterium (gut) and Streptococcus (oral cavity). While microbiome features of JDM are often shared by unaffected family members, the loss or gain of specific fecal and oral bacteria may play a role in disease pathogenesis or be secondary to immune dysfunction in susceptible individuals.
Collapse
Affiliation(s)
- Sean T Koester
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Kansas School of Medicine, Kansas City, USA
| | - Albert Chow
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Loma Linda University, Loma Linda, USA
| | - Evan Pepper-Tunick
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Peggy Lee
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Mary Eckert
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laurie Brenchley
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Gardner
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
- Oral Oncology at BC Cancer, Vancouver, BC, Canada
| | - Hyun Jung Song
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Naisi Li
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nastaran Bayat
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
- Social and Scientific Systems, Inc., A DLH Holdings Corp. Company, Silver Spring, MD, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Susan Shenoi
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anne M Stevens
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Janssen, a Wholly Owned Subsidiary of Johnson & Johnson, Raritan, USA
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA, USA.
- Microbiome Research Initiative, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
14
|
Jansen VLBI, van Mourik DJM, Davids M, van Bergen en Henegouwen K, Noordermeer T, Levels JHM, Limper M, Coppens M, Nieuwdorp M, Urbanus RT, Middeldorp S, van Mens TE. An Intestinal Microbiome Intervention Affects Biochemical Disease Activity in Patients with Antiphospholipid Syndrome. TH OPEN 2024; 8:e308-e316. [PMID: 39105064 PMCID: PMC11300102 DOI: 10.1055/s-0044-1788653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/29/2024] [Indexed: 08/07/2024] Open
Abstract
Background The origin of autoantibodies in patients with antiphospholipid syndrome (APS) is unknown. The gut microbiome contributes to autoimmunity and contains peptide homologues to the main APS autoantigen, which affect disease activity in animal models. Alteration of the gut microbiota with vancomycin diminishes disease activity in mice but no data on the effect of gut microbiota alteration in APS patients are available to date. Objective To evaluate whether the gut microbiome affects disease activity in human APS. Methods This was a pre-post design intervention study in APS patients with stable disease and no gastrointestinal comorbidity. Subjects received oral vancomycin, 500 mg four times daily for 7 days, previously shown to alter gut microbiota composition without systemic effects. Disease activity was assessed at four time points by measuring a panel of clinical phenotype-related biomarkers: antiphospholipid antibodies (APLAs), complement and inflammation markers, and hemostatic parameters. The primary outcome was the composite of the biomarker panel determined by multilevel principal component analysis. Results A total of 15 subjects completed the study. The primary outcome, the first principal component of the biomarker panel data, was significantly different after 7 days of vancomycin treatment ( p = 0.03), but not at day 42. APLA titers were unaffected. Unexpectedly, 4 out of 15 patients were negative for APLAs at baseline. In a post-hoc analysis, there was a prolonged effect for subjects with positive antibodies at baseline ( p = 0.03). In subjects with negative APLAs at baseline, the intervention showed no effect. Conclusion The intestinal microbiome affects the biochemical disease activity in APS patients. The mechanism is yet unknown but appears to be APS-specific.
Collapse
Affiliation(s)
- Valérie L. B. I. Jansen
- Department of Vascular Medicine, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Dagmar J. M. van Mourik
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine - Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark Davids
- Department of Experimental Vascular Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tessa Noordermeer
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes H. M. Levels
- Department of Experimental Vascular Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten Limper
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Coppens
- Department of Vascular Medicine, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rolf T. Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine and Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs E. van Mens
- Department of Vascular Medicine, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Department of Medicine - Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
van der Woude D, Toes REM. Immune response to post-translationally modified proteins in rheumatoid arthritis: what makes it special? Ann Rheum Dis 2024; 83:838-846. [PMID: 38378236 DOI: 10.1136/ard-2023-224103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Rheumatoid arthritis (RA) exhibits common characteristics with numerous other autoimmune diseases, including the presence of susceptibility genes and the presence of disease-specific autoantibodies. Anti-citrullinated protein antibodies (ACPA) are the hallmarking autoantibodies in RA and the anti-citrullinated protein immune response has been implicated in disease pathogenesis. Insight into the immunological pathways leading to anti-citrullinated protein immunity will not only aid understanding of RA pathogenesis, but may also contribute to elucidation of similar mechanisms in other autoantibody-positive autoimmune diseases. Similarly, lessons learnt in other human autoimmune diseases might be relevant to understand potential drivers of RA. In this review, we will summarise several novel insights into the biology of the anti-citrullinated protein response and their clinical associations that have been obtained in recent years. These insights include the identification of glycans in the variable domain of ACPA, the realisation that ACPA are polyreactive towards other post-translational modifications on proteins, as well as new awareness of the contributing role of mucosal sites to the development of the ACPA response. These findings will be mirrored to emerging concepts obtained in other human (autoimmune) disease characterised by disease-specific autoantibodies. Together with an updated understanding of genetic and environmental risk factors and fresh perspectives on how the microbiome could contribute to antibody formation, these advancements coalesce to a progressively clearer picture of the B cell reaction to modified antigens in the progression of RA.
Collapse
Affiliation(s)
| | - René E M Toes
- Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
16
|
Higashiyama M, Haniuda K, Nihei Y, Kazuno S, Kikkawa M, Miura Y, Suzuki Y, Kitamura D. Oral bacteria induce IgA autoantibodies against a mesangial protein in IgA nephropathy model mice. Life Sci Alliance 2024; 7:e202402588. [PMID: 38331476 PMCID: PMC10853438 DOI: 10.26508/lsa.202402588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
IgA nephropathy (IgAN) is caused by deposition of IgA in the glomerular mesangium. The mechanism of selective deposition and production of IgA is unclear; however, we recently identified the involvement of IgA autoantibodies. Here, we show that CBX3 is another self-antigen for IgA in gddY mice, a spontaneous IgAN model, and in IgAN patients. A recombinant antibody derived from gddY mice bound to CBX3 expressed on the mesangial cell surface in vitro and to glomeruli in vivo. An elemental diet and antibiotic treatment decreased the levels of autoantibodies and IgAN symptoms in gddY mice. Serum IgA and the recombinant antibody from gddY mice also bound to oral bacteria of the mice and binding was competed with CBX3. One species of oral bacteria was markedly decreased in elemental diet-fed gddY mice and induced anti-CBX3 antibody in normal mice upon immunization. These data suggest that particular oral bacteria generate immune responses to produce IgA that cross-reacts with mesangial cells to initiate IgAN.
Collapse
Affiliation(s)
- Mizuki Higashiyama
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshihito Nihei
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mika Kikkawa
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
17
|
Fan Z, Xu S, Deng Y, Wei L, Yang J, Xing X. Disordered gut microbiota and alterations in the serum metabolome are associated with venous thromboembolism. Thromb Res 2024; 235:68-74. [PMID: 38306775 DOI: 10.1016/j.thromres.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
INTRODUCTION The gut microbiome plays a crucial role in various diseases, and its regulation is a potential treatment option for these conditions. However, the relationship between the gut microbiome and venous thromboembolism (VTE) remains poorly explored. METHODS In this study, we collected feces and serum samples from 8 VTE patients and 7 healthy controls. The gut microbiota and serum metabolites were analyzed using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry, respectively. Additionally, a combined analysis of microbiota and metabolome was performed. RESULTS The alpha and beta diversity between the VTE and control groups were significantly different. Patients with VTE exhibited an overgrowth of Blautia, Roseburia, Coprococcus, and Ruminococcus. Moreover, serum metabolomics analysis revealed altered levels of choline and lithocholic acid. Pathway enrichment analysis indicated a significant upregulation of bile secretion pathways. In addition, a positive correlation was observed between the levels of serum choline and lithocholic acid and the abundance of gut flora enriched in the VTE group. CONCLUSION This study provided novel insights into the disordered gut microbiota and serum metabolome associated with VTE, suggesting potential common pathological mechanisms between VTE and arterial thrombosis. Targeted modulation of the gut microbiome may hold promise as a preventive and therapeutic approach for VTE.
Collapse
Affiliation(s)
- Zeqin Fan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yishu Deng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Li Wei
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Yunnan University, Kunming, China.
| |
Collapse
|
18
|
Jesus GFA, Galvani NC, Abel JDS, Scussel R, Fagundes MĹ, Córneo EDS, Rossetto M, Sargiani D, de Ávila RAM, Michels M. Nuxcell Neo ® improves vaccine efficacy in antibody response. Front Vet Sci 2024; 11:1248811. [PMID: 38414656 PMCID: PMC10898353 DOI: 10.3389/fvets.2024.1248811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Current vaccination protocols raise concerns about the efficacy of immunization. There is evidence that changes in the gut microbiota can impact immune response. The formation of the gut microbiota in newborns plays a crucial role in immunity. Probiotic bacteria and prebiotics present important health-promoting and immunomodulatory properties. Thus, we hypothesize that pro and prebiotic supplementation can improve the efficacy of vaccination in newborns. In this protocol, newborn mice were used and treated with a single-dose rabies vaccine combined with Nuxcell Neo® (2 g/animal/week) for 3 weeks. Samples were collected on days 7, 14, and 21 after vaccination for analysis of cytokines and concentration of circulating antibodies. Our results show an increased concentration of antibodies in animals vaccinated against rabies and simultaneously treated with Nuxcell Neo® on days 14 and 21 when compared to the group receiving only the vaccine. In the cytokine levels analysis, it was possible to observe that there weren't relevant and significant changes between the groups, which demonstrates that the health of the animal remains stable. The results of our study confirm the promising impact of the use of Nuxcell Neo® on the immune response after vaccination.
Collapse
Affiliation(s)
| | - Nathalia Coral Galvani
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Jéssica da Silva Abel
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Mírian ĺvens Fagundes
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | - Emily da Silva Córneo
- Laboratory of Experimental Pathophysiology, UNESC—University of Southern Santa Catarina, Criciúma, Brazil
| | | | | | | | - Monique Michels
- Biohall Consulting, Research and Innovation, Itajaí, Santa Catarina, Brazil
| |
Collapse
|
19
|
Sun C, Zhu D, Zhu Q, He Z, Lou Y, Chen D. The significance of gut microbiota in the etiology of autoimmune hepatitis: a narrative review. Front Cell Infect Microbiol 2024; 14:1337223. [PMID: 38404291 PMCID: PMC10884129 DOI: 10.3389/fcimb.2024.1337223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver that is mediated by autoimmunity and has complex pathogenesis. Its prevalence has increased globally. Since the liver is the first organ to be exposed to harmful substances, such as gut-derived intestinal microbiota and its metabolites, gut health is closely related to liver health, and the "liver-gut axis" allows abnormalities in the gut microbiota to influence the development of liver-related diseases such as AIH. Changes in the composition of the intestinal microbiota and its resultant disruption of the intestinal barrier and microbial transport are involved in multiple ways in the disruption of immune homeostasis and inflammation, thereby influencing the development of AIH. In terms of the mechanisms involved in immune, the gut microbiota or its metabolites, which is decreased in secondary bile acids, short-chain fatty acids (SCFAs), and polyamines, and increased in lipopolysaccharide (LPS), branched-chain amino acids (BCAA), tryptophan metabolite, amino acid, and bile acid, can disrupt immune homeostasis by activating various immune cells and immune-related signaling pathways, resulting in aberrant activation of the immune system. Clarifying this mechanism has significant clinical implications for the treatment of AIH with drugs that target intestinal microbiota and related signaling pathways. Therefore, this narrative review summarizes the progress in exploring the involvement of gut microbiota in the pathogenesis of AIH, with the aim of helping to improve the precise targeting of therapeutic treatments against AIH for the benefit of clinical AIH treatment.
Collapse
Affiliation(s)
- Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongzi Zhu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Lou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Desheng Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
21
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
22
|
Zhao Y, Qi W, Huang C, Zhou Y, Wang Q, Tian X, Li M, Zhao Y, Zeng X, Zhao J. Serum Calprotectin as a Potential Predictor of Microvascular Manifestations in Patients with Antiphospholipid Syndrome. Rheumatol Ther 2023; 10:1769-1783. [PMID: 37906398 PMCID: PMC10654303 DOI: 10.1007/s40744-023-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION Microvascular manifestations constitute a subtype of antiphospholipid syndrome, and those patients have relatively poor prognoses, so it is important to find markers for microvascular manifestations. This study was conducted to explore whether serum calprotectin could be a predictor of microvascular manifestations in antiphospholipid antibody (aPL)-positive patients. METHODS Consecutive patients with persistent aPL positivity referred to Peking Union Medical College Hospital and age- and sex-matched health controls (HCs) were included. Microvascular manifestations included antiphospholipid syndrome (APS) nephropathy, livedo reticularis, valvular lesions, non-stroke central nervous system manifestations, myocarditis, catastrophic APS, and other microvascular manifestations confirmed by pathology, imaging, or clinical diagnosis. Calprotectin was measured by an enzyme-linked immunosorbent assay (ELISA). The cutoff value was defined as mean + 2 standard deviations of HCs. Multivariable logistic regression analysis was used to analyze risk factors. Pearson correlation analysis was used to detect the correlation between calprotectin and other laboratory data. RESULTS Of the 466 patients included in the study, 281 (60.3%) patients met the 2006 Sydney Revised Classification Criteria; among the latter, 77.2% were patients with primary APS. The mean age was 39.10 ± 13.05 years old, and 77.0% were female. Thirty-eight age- and sex-matched HCs were included in the study. Serum calprotectin levels were increased in aPL-positive patients compared with HCs (649.66 ± 240.79 vs 484.62 ± 149.37 ng/ml, p < 0.001), and were increased in patients with microvascular manifestations compared with patients without (693.03 ± 271.90 vs 639.43 ± 232.06 ng/ml, p = 0.044). The cutoff value was 783.36 ng/ml. Ninety-three patients (20.0%) were positive for calprotectin. Calprotectin positivity was independently associated with microvascular manifestations (odds ratio [OR] 1.90, 95% confidence interval [CI] 1.07-3.36) and platelet count (PLT) < 100 (OR 2.04, 95% CI 1.08-3.88). Age (OR 0.98, 95% CI 0.96-1.00), systemic lupus erythematosus (OR 2.08, 95% CI 1.15-3.75), calprotectin positivity (OR 1.83, 95% CI 1.02-3.26), hypertension (OR 2.73, 95% CI 1.36-5.45), hemolytic anemia (OR 2.66, 95% CI 1.13-6.23), and anti-β2GPI antibodies (OR 2.06, 95% CI 1.11-3.83) could independently predict microvascular manifestations in aPL-positive patients. Serum calprotectin negatively correlated with PLT (R = - 0.101, p = 0.031). CONCLUSION Serum calprotectin levels are increased in aPL-positive patients and could be a potential predictor of microvascular manifestations.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wanting Qi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Can Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yangzhong Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Vorobyev A, Ludwig RJ. Forschung für die Praxis: Ernährung und Mikrobiom bei Autoimmunkrankheiten. J Dtsch Dermatol Ges 2023; 21:958-963. [PMID: 37700405 DOI: 10.1111/ddg.15101_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/17/2023] [Indexed: 09/14/2023]
Abstract
ZusammenfassungDie Häufigkeit von Autoimmunerkrankungen in Industrieländern hat während der letzten Jahrzehnte ständig zugenommen. Diese Erkrankungen führen zu erhöhter Sterblichkeit sowie anhaltender Beeinträchtigung der Lebensqualität der Patienten und bedeuten eine große medizinische Belastung. Die Behandlung von Autoimmunkrankheiten beruht häufig auf unspezifischer Immunsuppression, was das Risiko von Infektionskrankheiten und Krebsmanifestationen erhöht. Die Pathogenese von Autoimmunerkrankungen ist komplex und umfasst nicht nur genetische Faktoren, sondern auch Umwelteinflüsse, die als Grund für die Zunahme von Autoimmunerkrankungen angesehen werden. Zahlreiche Umweltfaktoren wie Infektionen, Rauchen, Medikamente oder Ernährung können das Auftreten von Autoimmunität entweder fördern oder verhindern. Die Mechanismen der Beeinflussung durch Umwelteinflüsse sind jedoch komplex und derzeit noch nicht eindeutig geklärt. Die Entschlüsselung dieser Wechselwirkungen könnte unser Verständnis der Autoimmunität verbessern und neue Behandlungsmöglichkeiten für die Patienten eröffnen.
Collapse
Affiliation(s)
- Artem Vorobyev
- Abteilung für Dermatologie, Allergologie und Venerologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
- Lübecker Institut für experimentelle Dermatologie, Lübeck
| | - Ralf J Ludwig
- Abteilung für Dermatologie, Allergologie und Venerologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
- Lübecker Institut für experimentelle Dermatologie, Lübeck
| |
Collapse
|
25
|
Vorobyev A, Ludwig RJ. Research in practice: Diet and microbiome in autoimmune diseases. J Dtsch Dermatol Ges 2023; 21:958-962. [PMID: 37235511 DOI: 10.1111/ddg.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 05/28/2023]
Abstract
The incidence of autoimmune diseases in industrialized countries is constantly increasing over past decades. These diseases lead to increased mortality and persistent reduction in quality of life of the patients, posing a severe medical burden. Treatment of autoimmune diseases is often based on unspecific immune suppression, increasing the risk of infectious diseases as well as cancer manifestation. Pathogenesis of autoimmune conditions is complex and includes not only genetic factors, but also environmental influence, which is considered to be the reason for the rise of incidence of autoimmune diseases. Environmental factors comprise numerous elements, such as infections, smoking, medication, diet etc., which can either promote or prevent the onset of autoimmunity. However, the mechanisms of environmental influence are complex and for this moment not clearly understood. Deciphering of these interactions could enhance our comprehension of autoimmunity and provide some novel treatment options for the patients.
Collapse
Affiliation(s)
- Artem Vorobyev
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, Lübeck, Germany
| | - Ralf J Ludwig
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, Lübeck, Germany
| |
Collapse
|
26
|
Park SY, Lee SP, Kim D, Kim WJ. Gut Dysbiosis: A New Avenue for Stroke Prevention and Therapeutics. Biomedicines 2023; 11:2352. [PMID: 37760793 PMCID: PMC10525294 DOI: 10.3390/biomedicines11092352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
A stroke is a serious life-threatening condition and a leading cause of death and disability that happens when the blood vessels to part of the brain are blocked or burst. While major advances in the understanding of the ischemic cascade in stroke was made over several decades, limited therapeutic options and high mortality and disability have caused researchers to extend the focus toward peripheral changes beyond brain. The largest proportion of microbes in human body reside in the gut and the interaction between host and microbiota in health and disease is well known. Our study aimed to explore the gut microbiota in patients with stroke with comparison to control group. Fecal samples were obtained from 51 subjects: 25 stroke patients (18 hemorrhagic, 7 ischemic) and 26 healthy control subjects. The variable region V3-V4 of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. PICRUSt2 was used for prediction of metagenomics functions. Our results show taxonomic dysbiosis in stroke patients in parallel with functional dysbiosis. Here, we show that stroke patients have (1) increased Parabacteroides and Escherichia_Shigella, but decreased Prevotella and Fecalibacterium; (2) higher transposase and peptide/nickel transport system substrate-binding protein, but lower RNA polymerase sigma-70 factor and methyl-accepting chemotaxis protein, which are suggestive of malnutrition. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Manipulation of nutrition is expected to alleviate gut dysbiosis and prognosis and improve disability and mortality in the management of stroke.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Clinical Laboratory Science, Cheju Halla University, 38 Halladaehak-ro, Jeju-si 63092, Republic of Korea;
| | - Sang Pyung Lee
- Department of Neurosurgery, Brain-Neuro Center, Cheju Halla General Hospital, 65 Doryeong-ro, Jeju-si 63127, Republic of Korea;
| | - Dongin Kim
- Department of Laboratory Medicine, EONE Laboratories, 291 Harmony-ro, Incheon 22014, Republic of Korea;
| | - Woo Jin Kim
- Department of Laboratory Medicine, EONE Laboratories, 291 Harmony-ro, Incheon 22014, Republic of Korea;
| |
Collapse
|
27
|
Yao K, Xie Y, Wang J, Lin Y, Chen X, Zhou T. Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus. Front Immunol 2023; 14:1202850. [PMID: 37533870 PMCID: PMC10390700 DOI: 10.3389/fimmu.2023.1202850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
28
|
Wortel CM, Liem SI, van Leeuwen NM, Boonstra M, Fehres CM, Stöger L, Huizinga TW, Toes RE, De Vries-Bouwstra J, Scherer HU. Anti-topoisomerase, but not anti-centromere B cell responses in systemic sclerosis display active, Ig-secreting cells associated with lung fibrosis. RMD Open 2023; 9:e003148. [PMID: 37507206 PMCID: PMC10387632 DOI: 10.1136/rmdopen-2023-003148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Almost all patients with systemic sclerosis (SSc) harbour autoantibodies. Anti-topoisomerase antibodies (ATA) and anti-centromere antibodies (ACA) are most prevalent and associate with distinct clinical phenotypes. B cell responses underlying these phenotypes are ill-defined. To understand how B cell autoreactivity and disease pathology connect, we determined phenotypic and functional characteristics of autoreactive B cells in ATA-positive and ACA-positive patients. METHODS Levels and isotypes of autoantibodies secreted by ex vivo cultured peripheral blood mononuclear cells from patients with ATA-positive (n=22) and ACA-positive (n=20) SSc were determined. Antibody secreting cells (ASCs) were isolated by cell sorting and cultured separately. Correlations were studied between the degree of spontaneous autoantibody production and the presence and degree of interstitial lung disease (ILD). RESULTS Circulating B cells secreting either ATA-immunoglobulin G (IgG) or ACA-IgG on stimulation was readily detectable in patients. The ATA response, but not the ACA response, showed additional secretion of autoreactive IgA. ATA-IgG and ATA-IgA were also secreted spontaneously. Additional cell sorting confirmed the presence of ATA-secreting plasmablasts. The degree of spontaneous ATA-secretion was higher in patients with ILD than in those without (p<0.001) and correlated with the degree of pulmonary fibrosis (p<0.001). CONCLUSION In contrast to ACA-positive patients, ATA-positive patients show signs of recent activation of the B cell response that hallmarks this disease. The degree of activation correlates with the presence and severity of ILD, the most deleterious disease manifestation. This could explain differential responsiveness to B cell depleting therapy. The abundant and spontaneous secretion of ATA-IgG and ATA-IgA may point toward a continuously activating trigger.
Collapse
Affiliation(s)
- Corrie M Wortel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie Ie Liem
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina M van Leeuwen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Boonstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia M Fehres
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lauran Stöger
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Wj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Gronke K, Nguyen M, Santamaria N, Schumacher J, Yang Y, Sonnert N, Leopold S, Martin AL, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Vieira SM, Schwinge D, Schramm C, Lassen KG, Piali L, Palm NW, Bieniossek C, Kriegel MA. Human Th17- and IgG3-associated autoimmunity induced by a translocating gut pathobiont. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546430. [PMID: 37425769 PMCID: PMC10327010 DOI: 10.1101/2023.06.29.546430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.
Collapse
|
30
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
English J, Patrick S, Stewart LD. The potential role of molecular mimicry by the anaerobic microbiome in the aetiology of autoimmune disease. Anaerobe 2023; 80:102721. [PMID: 36940867 DOI: 10.1016/j.anaerobe.2023.102721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Autoimmune diseases are thought to develop as a consequence of various environmental and genetic factors, each of which contributes to dysfunctional immune responses and/or a breakdown in immunological tolerance towards native structures. Molecular mimicry by microbial components is among the environmental factors thought to promote a breakdown in immune tolerance, particularly through the presence of cross-reactive epitopes shared with the human host. While resident members of the microbiome are essential promoters of human health through immunomodulation, defence against pathogenic colonisation and conversion of dietary fibre into nutritional resources for host tissues, there may be an underappreciated role of these microbes in the aetiology and/or progression of autoimmune disease. An increasing number of molecular mimics are being identified amongst the anaerobic microbiota which structurally resemble endogenous components and, in some cases, for example the human ubiquitin mimic of Bacteroides fragilis and DNA methyltransferase of Roseburia intestinalis, have been associated with promoting antibody profiles characteristic of autoimmune diseases. The persistent exposure of molecular mimics from the microbiota to the human immune system is likely to be involved in autoantibody production that contributes to the pathologies associated with immune-mediated inflammatory disorders. Here-in, examples of molecular mimics that have been identified among resident members of the human microbiome and their ability to induce autoimmune disease through cross-reactive autoantibody production are discussed. Improved awareness of the molecular mimics that exist among human colonisers will help elucidate the mechanisms involved in the breakdown of immune tolerance that ultimately lead to chronic inflammation and downstream disease.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK; The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Linda D Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
32
|
Abstract
Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease propelled by circulating autoantibodies that recognize cell surface phospholipids and phospholipid binding proteins. The result is an increased risk of thrombotic events, pregnancy morbidity, and various other autoimmune and inflammatory complications. Although antiphospholipid syndrome was first recognized in patients with lupus, the stand alone presentation of antiphospholipid syndrome is at least equally common. Overall, the diagnosis appears to affect at least one in 2000 people. Studies of antiphospholipid syndrome pathogenesis have long focused on logical candidates such as coagulation factors, endothelial cells, and platelets. Recent work has shed light on additional potential therapeutic targets within the innate immune system, including the complement system and neutrophil extracellular traps. Vitamin K antagonists remain the mainstay of treatment for most patients with thrombotic antiphospholipid syndrome and, based on current data, appear superior to the more targeted direct oral anticoagulants. The potential role of immunomodulatory treatments in antiphospholipid syndrome management is receiving increased attention. As for many systemic autoimmune diseases, the most important future direction is to more precisely identify mechanistic drivers of disease heterogeneity in pursuit of unlocking personalized and proactive treatments for patients.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - D Ware Branch
- James R. and Jo Scott Research Chair, Department of Obstetrics and Gynecology, University of Utah Health and Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Thomas L Ortel
- Division of Hematology, Departments of Medicine and Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
33
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
34
|
Pereira MS, Kriegel MA. Evolving concepts of host-pathobiont interactions in autoimmunity. Curr Opin Immunol 2023; 80:102265. [PMID: 36444784 DOI: 10.1016/j.coi.2022.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Autoimmune diseases are complex, multifactorial diseases with a polygenic trait and diverse environmental factors that contribute to triggering and exacerbating each disorder. The human microbiome is increasingly implicated in the multistep pathogenesis of autoimmune diseases. We summarize here the latest developments in the field of how the microbiota interacts with the host on a cellular and molecular level. We review how pathobionts evolve within the gut of autoimmune-prone hosts to translocate to secondary lymphoid tissues. On mucosal sites and in non-gut tissues, pathobionts trigger autoimmune pathways through various mechanisms, including cross-reactivity with autoantigens and secretion of metabolites that alter immune functions. A better understanding of these mechanisms will hasten the development of unconventional therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany; Section of Rheumatology and Clinical Immunology, Department of Internal Medicine D, University Hospital Münster, 48149 Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
35
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
36
|
Kriegel MA. Subdoligranulum chews up joints: how a gut pathobiont can instigate arthritis. Trends Immunol 2023; 44:4-6. [PMID: 36494272 DOI: 10.1016/j.it.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The microbiota has been implicated in triggering certain autoimmune diseases. In rheumatoid arthritis (RA), the 'mucosal origins' hypothesis suggests that such a trigger can instigate systemic autoimmune responses that lead to synovial inflammation. Chriswell et al. recently identified a human gut commensal bound by monoclonal autoantibodies and eliciting autoantibody-mediated, transferable arthritis in gnotobiotic mouse models.
Collapse
Affiliation(s)
- Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany; Section of Rheumatology and Clinical Immunology, Department of Internal Medicine D, University Hospital Münster, 48149 Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
37
|
Peretti S, Torracchi S, Russo E, Bonomi F, Fiorentini E, Aoufy KE, Bruni C, Lepri G, Orlandi M, Chimenti MS, Guiducci S, Amedei A, Matucci-Cerinic M, Bellando Randone S. The Yin-Yang Pharmacomicrobiomics on Treatment Response in Inflammatory Arthritides: A Narrative Review. Genes (Basel) 2022; 14:89. [PMID: 36672830 PMCID: PMC9859330 DOI: 10.3390/genes14010089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Gut microbiota (GM) is the set of microorganisms inhabiting the gastroenteric tract that seems to have a role in the pathogenesis of rheumatic diseases. Recently, many authors proved that GM may influence pharmacodynamics and pharmacokinetics of several drugs with complex interactions that are studied by the growing field of pharmacomicrobiomics. The aim of this review is to highlight current evidence on pharmacomicrobiomics applied to the main treatments of Rheumatoid Arthritis and Spondyloarthritis in order to maximize therapeutic success, in the framework of Personalized Medicine. (2) Methods: We performed a narrative review concerning pharmacomicrobiomics in inflammatory arthritides. We evaluated the influence of gut microbiota on treatment response of conventional Disease Modifying Anti-Rheumatic drugs (cDMARDs) (Methotrexate and Leflunomide) and biological Disease Modifying Anti-Rheumatic drugs (bDMARDs) (Tumor necrosis factor inhibitors, Interleukin-17 inhibitors, Interleukin 12/23 inhibitors, Abatacept, Janus Kinase inhibitors and Rituximab). (3) Results: We found a great amount of studies concerning Methotrexate and Tumor Necrosis Inhibitors (TNFi). Conversely, fewer data were available about Interleukin-17 inhibitors (IL-17i) and Interleukin 12/23 inhibitors (IL-12/23i), while none was identified for Janus Kinase Inhibitors (JAKi), Tocilizumab, Abatacept and Rituximab. We observed that microbiota and drugs are influenced in a mutual and reciprocal way. Indeed, microbiota seems to influence therapeutic response and efficacy, whereas in the other hand, drugs may restore healthy microbiota. (4) Conclusions: Future improvement in pharmacomicrobiomics could help to detect an effective biomarker able to guide treatment choice and optimize management of inflammatory arthritides.
Collapse
Affiliation(s)
- Silvia Peretti
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Sara Torracchi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesco Bonomi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elisa Fiorentini
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Khadija El Aoufy
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Cosimo Bruni
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
- Department of Rheumatology, University Hospital of Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Gemma Lepri
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Martina Orlandi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Silvia Bellando Randone
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
38
|
B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J Clin Med 2022; 12:jcm12010018. [PMID: 36614819 PMCID: PMC9821657 DOI: 10.3390/jcm12010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease characterized by thrombosis, pregnancy morbidity, and the presence of antiphospholipid antibodies (aPL). Anticoagulants form the mainstay of treatment in PAPS. A growing number of studies suggest a previously underappreciated role of the immune system in the pathophysiology of PAPS. Although B-cells are strongly implicated in the pathophysiology of other autoimmune diseases such as systemic lupus erythematosus (SLE), little is known about the role of B-cells in PAPS. Shifts in B-cell subsets including increases in plasmablasts and higher levels of BAFF are present in patients with PAPS. However, while treatment with rituximab and belimumab may ameliorate thrombotic and non-thrombotic manifestations of PAPS, these treatments do not reduce aPL serum levels, suggesting that B-cells contribute to the pathophysiology of APS beyond the production of autoantibodies.
Collapse
|
39
|
Mankaï A, Melayah S, Bousetta S, Ghozzi M, Yacoub‐Jemni S, Ghedira I. Antiphospholipid antibodies in autoimmune thyroid diseases. J Clin Lab Anal 2022; 36:e24788. [DOI: 10.1002/jcla.24788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Amani Mankaï
- Laboratory of Immunology Farhat Hached Hospital Sousse Tunisia
- High School of Sciences and Techniques of Health Tunis El Manar University Tunis Tunisia
- Research Unit "Obesity: Etiopathology and Treatment, UR18ES01" National Institute of Nutrition and Food Technology Tunis Tunisia
| | - Sarra Melayah
- Laboratory of Immunology Farhat Hached Hospital Sousse Tunisia
- Department of Immunology, Faculty of Pharmacy Monastir University Monastir Tunisia
- LR12SP11 Sahloul University Hospital Sousse Tunisia
| | - Syrine Bousetta
- Laboratory of Immunology Farhat Hached Hospital Sousse Tunisia
| | - Mariem Ghozzi
- Laboratory of Immunology Farhat Hached Hospital Sousse Tunisia
- Research Laboratory for "Epidemiology and Immunogenetics of Viral Infections" (LR14SP02) Sahloul University Hospital, University of Sousse Sousse Tunisia
| | - Saloua Yacoub‐Jemni
- Blood Transfusion Center Farhat Hached Hospital Sousse Tunisia
- Faculty of Medicine Sousse University Sousse Tunisia
| | - Ibtissem Ghedira
- Laboratory of Immunology Farhat Hached Hospital Sousse Tunisia
- Department of Immunology, Faculty of Pharmacy Monastir University Monastir Tunisia
| |
Collapse
|
40
|
van Mourik DJM, Salet DM, Middeldorp S, Nieuwdorp M, van Mens TE. The role of the intestinal microbiome in antiphospholipid syndrome. Front Immunol 2022; 13:954764. [PMID: 36505427 PMCID: PMC9732728 DOI: 10.3389/fimmu.2022.954764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
The antiphospholipid syndrome (APS) is a thrombotic autoimmune disease in which the origin of the disease-characterizing autoantibodies is unknown. Increased research effort into the role of the intestinal microbiome in autoimmunity has produced new insights in this field. This scoping review focusses on the gut microbiome in its relation to APS. EMBASE and MEDLINE were searched for original studies with relevance to the relation between the gut microbiome and APS. Thirty studies were included. Work on systemic lupus erythematosus, which strongly overlaps with APS, has shown that patients often display an altered gut microbiome composition, that the disease is transferable with the microbiome, and that microbiome manipulation affects disease activity in murine lupus models. The latter has also been shown for APS, although data on microbiome composition is less consistent. APS patients do display an altered intestinal IgA response. Evidence has accrued for molecular mimicry as an explanatory mechanism for these observations in APS and other autoimmune diseases. Specific gut microbes express proteins with homology to immunodominant APS autoantigens. The disease phenotype appears to be dependent on these mimicking proteins in an APS mouse model, and human APS B- and T-cells indeed cross-react with these mimics. Pre-clinical evidence furthermore suggests that diet may influence autoimmunity through the microbiome, as may microbial short chain fatty acid production, though this has not been studied in APS. Lastly, the microbiome has been shown to affect key drivers of thrombosis, and may thus affect APS severity through non-immunological mechanisms. Overall, these observations demonstrate the impact of the intestinal microbiome on autoimmunity and the importance of understanding its role in APS.
Collapse
Affiliation(s)
- Dagmar J. M. van Mourik
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| | - Dorien M. Salet
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands
| | - Thijs E. van Mens
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Amsterdam Reproduction & Development, Pregnancy & Birth, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| |
Collapse
|
41
|
Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M, Liu Z, Zhu B. Next-Generation Probiotics: Microflora Intervention to Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5633403. [PMID: 36440358 PMCID: PMC9683952 DOI: 10.1155/2022/5633403] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/06/2022] [Indexed: 11/02/2023]
Abstract
With the development of human genome sequencing and techniques such as intestinal microbial culture and fecal microbial transplantation, newly discovered microorganisms have been isolated, cultured, and researched. Consequently, many beneficial probiotics have emerged as next-generation probiotics (NGPs). Currently, "safety," "individualized treatment," and "internal interaction within the flora" are requirements of a potential NGPs. Furthermore, in the complex ecosystem of humans and microbes, it is challenging to identify the relationship between specific strains, specific flora, and hosts to warrant a therapeutic intervention in case of a disease. Thus, this review focuses on the progress made in NGPs and human health research by elucidating the limitations of traditional probiotics; summarizing the functions and strengths of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, Eubacterium hallii, and Roseburia spp. as NGPs; and determining the role of their intervention in treatment of certain diseases. Finally, we aim to provide a reference for developing new probiotics in the future.
Collapse
Affiliation(s)
- Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yunfeng Duan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Demin Cao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Miya Su
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Upadhyay R, Littman DR. Provocateurs of autoimmunity within the gut microbiota. Sci Transl Med 2022; 14:eadd3901. [DOI: 10.1126/scitranslmed.add3901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An arthritogenic strain of
Subdoligranulum
in the gut elicits a local immune response, a precursor to systemic autoimmunity (Chriswell
et al.
).
Collapse
Affiliation(s)
- Rabi Upadhyay
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Dan R. Littman
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| |
Collapse
|
43
|
Kazemifard N, Dehkohneh A, Baradaran Ghavami S. Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy. Front Med (Lausanne) 2022; 9:940454. [PMID: 36313997 PMCID: PMC9606607 DOI: 10.3389/fmed.2022.940454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Dehkohneh
- Department for Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany,Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Shaghayegh Baradaran Ghavami
| |
Collapse
|
44
|
Wang X, Pang K, Wang J, Zhang B, Liu Z, Lu S, Xu X, Zhu L, Zhou Z, Niu M, Gao J, Li J, Zhao F, Wu J. Microbiota dysbiosis in primary Sjögren's syndrome and the ameliorative effect of hydroxychloroquine. Cell Rep 2022; 40:111352. [PMID: 36103827 DOI: 10.1016/j.celrep.2022.111352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
The human microbiome plays an important role in autoimmune diseases. However, there is limited knowledge regarding the microbiota in individuals with primary Sjögren's syndrome (pSS). Here, we perform 16S ribosomal RNA gene sequencing of fecal, oral, and vaginal samples from a cohort of 133 individuals with pSS, 56 with non-pSS, and 40 healthy control (HC) individuals. Dysbiosis in the gut, oral, and vaginal microbiome is evident in patients with pSS, and oral samples demonstrate the greatest extent of microbial variation. Multiple key indicator bacteria and clinical characteristics are identified across different body sites, implying that microbial dysbiosis has important roles in the pathogenesis of pSS. Furthermore, we observe pSS-like dysbiosis in individuals with pre-clinical pSS or non-pSS-related disease, revealing that microbial shifts could appear prior to pSS. After hydroxychloroquine (HCQ) treatment, microbial dysbiosis in individuals with pSS is partially resolved, although the microbiota composition remain disordered. These results contribute to the overall understanding of the relationship between the microbiome and pSS.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kun Pang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100091, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lingxiao Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Miaomiao Niu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianxia Gao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianmin Li
- Pathology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
45
|
Chen Y, Lin J, Xiao L, Zhang X, Zhao L, Wang M, Li L. Gut microbiota in systemic lupus erythematosus: A fuse and a solution. J Autoimmun 2022; 132:102867. [PMID: 35932662 DOI: 10.1016/j.jaut.2022.102867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Gut commensals help shape and mold host immune system and deeply influence human health. The disease spectrum of mankind that gut microbiome may associate with is ever-growing, but the mechanisms are still enigmas. Characterized by loss of self-tolerance and sustained self-attack, systemic lupus erythematosus (SLE) is labeled with chronic inflammation, production of autoantibodies and multisystem injury, which so far are mostly incurable. Gut microbiota and their metabolites, now known as important environmental triggers of local/systemic immune responses, have been proposed to be involved in SLE development and progression probably through the following mechanisms: translocation beyond their niches; molecular mimicry to cross-activate immune response targeting self-antigens; epitope spreading to expand autoantibodies spectrum; and bystander activation to promote systemic inflammation. Gut microbiota which varies between individuals may also influence the metabolism and bio-transformation of disease-modifying anti-rheumatic drugs, thus associated with the efficacy and toxicity of these drugs, adding another explanation for heterogenic therapeutic responses. Modulation of gut microbiota via diet, probiotics/prebiotics, antibiotics/phages, fecal microbiota transplantation, or helminth to restore immune tolerance and homeostasis is expected to be a promising neoadjuvant therapy for SLE. We reviewed the advances in this territory and discussed the application prospect of modulating gut microbiota in controlling SLE.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
46
|
Liu Q, Zuo T, Lu W, Yeoh YK, Su Q, Xu Z, Tang W, Yang K, Zhang F, Lau LHS, Lui RNS, Chin ML, Wong R, Cheung CP, Zhu W, Chan PKS, Chan FKL, Lui GC, Ng SC. Longitudinal Evaluation of Gut Bacteriomes and Viromes after Fecal Microbiota Transplantation for Eradication of Carbapenem-Resistant Enterobacteriaceae. mSystems 2022; 7:e0151021. [PMID: 35642928 PMCID: PMC9239097 DOI: 10.1128/msystems.01510-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding the role of fecal microbiota transplantation (FMT) in the decolonization of multidrug-resistant organisms (MDRO) is critical. Specifically, little is known about virome changes in MDRO-infected subjects treated with FMT. Using shotgun metagenomic sequencing, we characterized longitudinal dynamics of the gut virome and bacteriome in three recipients who successfully decolonized carbapenem-resistant Enterobacteriaceae (CRE), including Klebsiella spp. and Escherichia coli, after FMT. We observed large shifts of the fecal bacterial microbiota resembling a donor-like community after transfer of a fecal microbiota dominated by the genus Ruminococcus. We found a substantial expansion of Klebsiella phages after FMT with a concordant decrease of Klebsiella spp. and striking increase of Escherichia phages in CRE E. coli carriers after FMT. We also observed the CRE elimination and similar evolution of Klebsiella phage in mice, which may play a role in the collapse of the Klebsiella population after FMT. In summary, our pilot study documented bacteriome and virome alterations after FMT which mediate many of the effects of FMT on the gut microbiome community. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for multidrug-resistant organisms; however, introducing a complex mixture of microbes also has unknown consequences for landscape features of gut microbiome. We sought to understand bacteriome and virome alterations in patients undergoing FMT to treat infection with carbapenem-resistant Enterobacteriaceae. This finding indicates that transkingdom interactions between the virome and bacteriome communities may have evolved in part to support efficient FMT for treating CRE.
Collapse
Affiliation(s)
- Qin Liu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zuo
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenqi Lu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi Su
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Keli Yang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Zhang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Louis H. S. Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Rashid N. S. Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Miu Ling Chin
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rity Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyi Zhu
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K. S. Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K. L. Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace C. Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clin Exp Immunol 2022; 209:161-174. [PMID: 35652460 DOI: 10.1093/cei/uxac057] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases have long been known to share a common pathogenesis involving a dysregulated immune system with failure to recognize self from non-self antigens. This immune dysregulation is now increasingly understood to be induced by environmental triggers in genetically predisposed individuals. Although several external environmental triggers have been defined in different autoimmune diseases, much attention is being paid to the role of the internal micro-environment occupied by the microbiome which was once termed "the forgotten organ". In this regard, the gut microbiome, serving as an intermediary between some of those external environmental effectors and the immune system helps programming of the immune system to be tolerant to innocent external and self antigens. However, in the presence of perturbed gut microbiota (dysbiosis), the immune system could be erroneously directed in favor of pro-inflammatory pathways to instigate different autoimmune processes. An accumulating body of evidence, including both experimental and human studies (observational and interventional) points to a role of gut microbiome in different autoimmune diseases. Such evidence could provide a rationale for gut microbiome manipulation with therapeutic and even preventative intents in patients with established or predisposed to autoimmune diseases respectively. Perturbations of the gut microbiome have been delineated in some immune mediated diseases, IBD in particular. However, such patterns of disturbance (microbiome signatures) and related pathogenetic roles of the gut microbiome are context dependent and cannot be generalized in the same exact way to other autoimmune disorders and the contribution of gut microbiome to different disease phenotypes has to be precisely defined. In this review, we revise the evidence for a role of gut microbiome in various autoimmune diseases and possible mechanisms mediating such a role.
Collapse
Affiliation(s)
- Walaa Abdelaty Shaheen
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,Gastroenterology Department, Menoufia University, Egypt
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,University Hospitals of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, UK.,University Hospitals of Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
48
|
From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:371-383. [PMID: 35606567 DOI: 10.1038/s41584-022-00786-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
The presence of disease-specific autoantibody responses and the efficacy of B cell-targeting therapies in rheumatoid arthritis (RA) indicate a pivotal role for B cells in disease pathogenesis. Important advances have shaped our understanding of the involvement of autoantibodies and autoreactive B cells in the disease process. In RA, autoantibodies target antigens with a variety of post-translational modifications such as carbamylation, acetylation and citrullination. B cell responses against citrullinated antigens generate anti-citrullinated protein antibodies (ACPAs), which are themselves modified in the variable domains by abundant N-linked glycans. Insights into the induction of autoreactive B cells against antigens with post-translational modifications and the development of autoantibody features such as isotype usage, epitope recognition, avidity and glycosylation reveal their relationship to particular RA risk factors and clinical phenotypes. Glycosylation of the ACPA variable domain, for example, seems to predict RA onset in ACPA+ healthy individuals, possibly because it affects B cell receptor signalling. Moreover, ACPA-expressing B cells show dynamic phenotypic changes and develop a continuously proliferative and activated phenotype that can persist in patients who are in drug-induced clinical remission. Together, these findings can be integrated into a conceptual framework of immunological autoreactivity in RA, delineating how it develops and persists and why disease activity recurs when therapy is tapered or stopped.
Collapse
|
49
|
Garabatos N, Santamaria P. Gut Microbial Antigenic Mimicry in Autoimmunity. Front Immunol 2022; 13:873607. [PMID: 35572569 PMCID: PMC9094498 DOI: 10.3389/fimmu.2022.873607] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays a major role in the developmental biology and homeostasis of cells belonging to the adaptive and innate arms of the immune system. Alterations in its composition, which are known to be regulated by both genetic and environmental factors, can either promote or suppress the pathogenic processes underlying the development of various autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes and rheumatoid arthritis, to just name a few. Cross-recognition of gut microbial antigens by autoreactive T cells as well as gut microbe-driven alterations in the activation and homeostasis of effector and regulatory T cells have been implicated in this process. Here, we summarize our current understanding of the positive and negative associations between alterations in the composition of the gut microbiota and the development of various autoimmune disorders, with a special emphasis on antigenic mimicry.
Collapse
Affiliation(s)
- Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Pashova S, Balabanski L, Elmadjian G, Savov A, Stoyanova E, Shivarov V, Petrov P, Pashov A. Restriction of the Global IgM Repertoire in Antiphospholipid Syndrome. Front Immunol 2022; 13:865232. [PMID: 35493489 PMCID: PMC9043687 DOI: 10.3389/fimmu.2022.865232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
The typical anti-phospholipid antibodies (APLA) in the anti-phospholipid syndrome (APS) are reactive with the phospholipid-binding protein β2GPI as well as a growing list of other protein targets. The relation of APLA to natural antibodies and the fuzzy set of autoantigens involved provoked us to study the changes in the IgM repertoire in APS. To this end, peptides selected by serum IgM from a 7-residue linear peptide phage display library (PDL) were deep sequenced. The analysis was aided by a novel formal representation of the Igome (the mimotope set reflecting the IgM specificities) in the form of a sequence graph. The study involved women with APLA and habitual abortions (n=24) compared to age-matched clinically healthy pregnant women (n=20). Their pooled Igomes (297 028 mimotope sequences) were compared also to the global public repertoire Igome of pooled donor plasma IgM (n=2 796 484) and a set of 7-mer sequences found in the J regions of human immunoglobulins (n=4 433 252). The pooled Igome was represented as a graph connecting the sequences as similar as the mimotopes of the same monoclonal antibody. The criterion was based on previously published data. In the resulting graph, identifiable clusters of vertices were considered related to the footprints of overlapping antibody cross-reactivities. A subgraph based on the clusters with a significant differential expression of APS patients' mimotopes contained predominantly specificities underrepresented in APS. The differentially expressed IgM footprints showed also an increased cross-reactivity with immunoglobulin J regions. The specificities underexpressed in APS had a higher correlation with public specificities than those overexpressed. The APS associated specificities were strongly related also to the human peptidome with 1 072 mimotope sequences found in 7 519 human proteins. These regions were characterized by low complexity. Thus, the IgM repertoire of the APS patients was found to be characterized by a significant reduction of certain public specificities found in the healthy controls with targets representing low complexity linear self-epitopes homologous to human antibody J regions.
Collapse
Affiliation(s)
- Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lubomir Balabanski
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
- Genomics Laboratory, Hospital “Malinov”, Sofia, Bulgaria
| | - Gabriel Elmadjian
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexey Savov
- Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Peter Petrov
- Institute Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anastas Pashov
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|