1
|
Emami S, Westerlund E, Rojas Converso T, Johansson-Lindbom B, Persson JJ. Protection acquired upon intraperitoneal group a Streptococcus immunization is independent of concurrent adaptive immune responses but relies on macrophages and IFN-γ. Virulence 2025; 16:2457957. [PMID: 39921669 PMCID: PMC11810095 DOI: 10.1080/21505594.2025.2457957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is an important bacterial pathogen causing over 700 million superficial infections and around 500.000 deaths due to invasive disease or severe post-infection sequelae yearly. In spite of this major impact on society, there is currently no vaccine available against this bacterium. GAS strains can be separated into >250 distinct emm (M)-types, and protective immunity against GAS is believed to in part be dependent on type-specific antibodies. Here, we analyse the nature of protective immunity generated against GAS in a model of intraperitoneal immunization in mice. We demonstrate that multiple immunizations are required for the ability to survive a subsequent lethal challenge, and although significant levels of GAS-specific antibodies are produced, these are redundant for protection. Instead, our data show that the immunization-dependent protection in this model is induced in the absence of B and T cells and is accompanied by the induction of an altered acute cytokine profile upon subsequent infection, noticeable e.g. by the absence of classical pro-inflammatory cytokines and increased IFN-γ production. Further, the ability of immunized mice to survive a lethal infection is dependent on macrophages and the macrophage-activating cytokine IFN-γ. To our knowledge these findings are the first to suggest that GAS may have the ability to induce forms of trained innate immunity. Taken together, the current study proposes a novel role for the innate immune system in response to GAS infections that potentially could be leveraged for future development of effective vaccines.
Collapse
Affiliation(s)
- Shiva Emami
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Van Roy Z, Kielian T. Immune-based strategies for the treatment of biofilm infections. Biofilm 2025; 9:100264. [PMID: 40093652 PMCID: PMC11909721 DOI: 10.1016/j.bioflm.2025.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Biofilms are bacterial communities surrounded by a polymeric matrix that can form on implanted materials and biotic surfaces, resulting in chronic infection that is recalcitrant to immune- and antibiotic-mediated clearance. Therefore, biofilm infections present a substantial clinical challenge, as treatment often involves additional surgical interventions to remove the biofilm nidus, prolonged antimicrobial therapy to clear residual bacteria, and considerable risk of treatment failure or infection recurrence. These factors, combined with progressive increases in antimicrobial resistance, highlight the need for alternative therapeutic strategies to circumvent undue morbidity, mortality, and resource strain on the healthcare system resulting from biofilm infections. One promising option is reprogramming dysfunctional immune responses elicited by biofilm. Here, we review the literature describing immune responses to biofilm infection with a focus on targets or strategies ripe for clinical translation. This represents a complex and dynamic challenge, with context-dependent host-pathogen interactions that differ across infection models, microenvironments, and individuals. Nevertheless, consistencies among these variables exist, which could facilitate the development of immune-based strategies for the future treatment of biofilm infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Clegg J, Mnich ME, Carignano A, Cova G, Tavarini S, Sammicheli C, Clemente B, Smith M, Siena E, Bardelli M, Brazzoli M, Bagnoli F, McLoughlin RM, Soldaini E. Staphylococcus aureus-specific TIGIT + Treg are present in the blood of healthy subjects - a hurdle for vaccination? Front Immunol 2025; 15:1500696. [PMID: 39981298 PMCID: PMC11840346 DOI: 10.3389/fimmu.2024.1500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 02/22/2025] Open
Abstract
Staphylococcus aureus poses an enormous burden of morbidity and mortality worldwide. Making an efficacious vaccine has however proven extremely challenging. Due to colonizing interactions, pre-existing S. aureus-specific CD4+ T cells are often found in the human population and yet a detailed characterization of their phenotypes and how they might in turn impact vaccine efficacy are thus far unknown. Using an activation induced marker assay to sort for S. aureus-specific CD4+ T cells in an effector function-independent manner, single cell transcriptomic analysis was conducted. Remarkably, S. aureus-specific CD4+ T cells consisted not only of a broader spectrum of conventional T cells (Tcon) than previously described but also of regulatory T cells (Treg). As compared to polyclonally-activated CD4+ T cells, S. aureus-specific Tcon were enriched for the expression of the Th17-type cytokine genes IL17A, IL22 and IL26, while higher percentages of S. aureus-specific Treg expressed the T Cell Immunoreceptor with Ig and ITIM domains (TIGIT), a pleiotropic immune checkpoint. Notably, the antagonistic anti-TIGIT mAb Tiragolumab increased IL-1β production in response to S. aureus in vitro. Therefore, these results uncover the presence of S. aureus-specific TIGIT+ Treg in the blood of healthy subjects that could blunt responses to vaccination and indicate TIGIT as a potential targetable biomarker to overcome pre-exposure-induced immunosuppression.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Research Center, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Malgorzata E. Mnich
- GSK, Research Center, Siena, Italy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | - Megan Smith
- GSK, Research Center, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
4
|
Zhu Z, Zhou Z, Zhu T, Kong G, Yin Y, Li G, Jiao H. K. pneumoniae ghosts serve as a novel vaccine formulation to enhance immune responses of A. baumannii subunit vaccine in mice. Microb Pathog 2025; 199:107226. [PMID: 39674425 DOI: 10.1016/j.micpath.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a prominent nosocomial pathogen, posing a significant threat to public health. Urgent efforts are required to develop a safe and effective vaccine. Bacterial ghosts (BGs), comprising empty bacterial cell envelopes, offer a promising platform for vaccine adjuvant development. In the present study, Klebsiella pneumoniae (K. pneumoniae, KP) ghosts were generated via PhiX-174 lysis gene E-mediated inactivation. The present study results demonstrated that KP ghosts greatly promoted maturation and activation of BMDCs by upregulating the expression of surface molecules (CD40, CD80, CD86 and MHCII) and improving the secretion of cytokines (IL-1β, TNF-α and IL-12p70). In addition, to assess the immunogenicity and protective efficacy of the vaccine candidate, C57BL/6 mice were immunized with either A. baumannii OmpA or A. baumannii OmpA plus KP ghosts. The results showed that OmpA plus KP ghosts elicited higher levels of specific IgG antibody responses compared to OmpA alone. Furthermore, OmpA plus KP ghosts also increased lymphocyte proliferation and expression of the early activation marker CD69 on T cells, augmented frequency of central memory T cells (TCM) and IFN-γ+CD4+ T cells with production of increased IFN-γ in response to OmpA stimulation, as compared to OmpA alone. Furthermore, post-challenge with A. baumannii, mice immunized with OmpA plus KP ghosts exhibit a higher survival rate and lower bacterial loads in the spleen and lungs compared to those immunized with OmpA alone. In conclusion, these findings underscore the potential of KP ghosts as a candidate vaccine formulation or immunomodulators for designing a novel vaccine against A. baumannii infection.
Collapse
Affiliation(s)
- Zhongtian Zhu
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; The Fifth People's Hospital of Suzhou (The Affiliated Infectious Disease Hospital of Soochow University), Suzhou, 215000, China
| | - Ziyan Zhou
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Tianyi Zhu
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Guimei Kong
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Yinyan Yin
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China
| | - Guocai Li
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis/ Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hongmei Jiao
- Medical College, Yangzhou University/Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis/ Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Kao CM, Fritz SA. Infection prevention-how can we prevent transmission of community-onset methicillin-resistant Staphylococcus aureus? Clin Microbiol Infect 2025; 31:166-172. [PMID: 38218373 DOI: 10.1016/j.cmi.2024.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Staphylococcus aureus is a versatile organism, capable of existing as a commensal organism while also possessing pathogenic potential. The emergence of clinically and genetically distinct strains of methicillin-resistant S. aureus (MRSA), termed community-onset MRSA (CO-MRSA), resulted in an epidemic of invasive and skin and soft tissue infections (SSTI) in otherwise healthy individuals without traditional risk factors. Colonization with S. aureus is a risk factor for developing infection and also a source of transmission to close contacts. Outbreaks of S. aureus SSTI have been described in crowded settings and within households. Thus, preventive strategies are essential to interrupt recurrent infections. OBJECTIVES The objective of this narrative review is to provide a comprehensive, evidence-based approach to prevent transmission of CO-MRSA. We highlight key clinical trials that emphasize the importance of household and environmental S. aureus colonization in propagating household transmission. Finally, we highlight research priorities to prevent S. aureus infection. SOURCES We cite primary literature from peer-reviewed publications as sources for this review. CONTENT Our recommended approach to the management of individuals presenting with skin abscesses includes optimal treatment of the initial infection and hygiene education. Decolonization measures should be recommended for individuals with recurrent SSTIs or whose household members have SSTIs. Targeted decolonization with topical antimicrobials should be prescribed to all affected individuals within the household. IMPLICATIONS S. aureus infections result in substantial mortality and morbidity because of the high incidence of recurrent skin infections. Although current decolonization strategies are beneficial, interventions are often costly to families and effectiveness wanes over time. Results from a recently completed trial evaluating integrated periodic decolonization and household environmental hygiene will further add to our understanding of what constitutes a sustainable decolonization approach. In addition, novel preventive strategies are being developed such as S. aureus vaccines, lytic agents, probiotics, microbiota transplants, and phage therapy.
Collapse
Affiliation(s)
- Carol M Kao
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Ingmer H, Leisner JJ, Fulaz S. Forssman and the staphylococcal hemolysins. APMIS 2025; 133:e13459. [PMID: 39188243 PMCID: PMC11669744 DOI: 10.1111/apm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Forssman was a Swedish pathologist and microbiologist who, in the 1920s and 1930s conducted a long series of experiments that led to unique insights into surface antigens of blood cells, as well as added to the discrimination of toxins produced by staphylococci that lyse red blood cells. This review takes offset in the studies published by Forssman in APMIS addressing the hemolytic properties of staphylococcal toxins displayed against erythrocytes of animal and human origin. In light of current knowledge, we will discuss the insights we now have and how they may pave the way for curing infections with pathogenic staphylococci, including Staphylococcus aureus.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Jørgen J. Leisner
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Stephanie Fulaz
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Hajam IA, Tsai CM, Gonzalez C, Caldera JR, Lázaro Díez M, Du X, Aralar A, Lin B, Duong W, Liu GY. Pathobiont-induced suppressive immune imprints thwart T cell vaccine responses. Nat Commun 2024; 15:10335. [PMID: 39681568 PMCID: PMC11649901 DOI: 10.1038/s41467-024-54644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Pathobionts have evolved many strategies to coexist with the host, but how immune evasion mechanisms contribute to the difficulty of developing vaccines against pathobionts is unclear. Meanwhile, Staphylococcus aureus (SA) has resisted human vaccine development to date. Here we show that prior SA exposure induces non-protective CD4+ T cell imprints, leading to the blunting of protective IsdB vaccine responses. Mechanistically, these SA-experienced CD4+ T cells express IL-10, which is further amplified by vaccination and impedes vaccine protection by binding with IL-10Rα on CD4+ T cell and inhibit IL-17A production. IL-10 also mediates cross-suppression of IsdB and sdrE multi-antigen vaccine. By contrast, the inefficiency of SA IsdB, IsdA and MntC vaccines can be overcome by co-treatment with adjuvants that promote IL-17A and IFN-γ responses. We thus propose that IL-10 secreting, SA-experienced CD4+ T cell imprints represent a staphylococcal immune escaping mechanism that needs to be taken into consideration for future vaccine development.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Juan Raphael Caldera
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- Quest Diagnostics, 33608 Ortega Hwy., San Juan Capistrano, CA, 92675, USA
| | - María Lázaro Díez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- AIDS Research Institute (IrsiCaixa). VIRus Immune Escape and VACcine Design (VIRIEVAC) Universitary Hospital German Trias i Pujol Crta Canyet s/n 08916, Badalona, Barcelona, Spain
| | - Xin Du
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - April Aralar
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - William Duong
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
8
|
Tsai CM, Hajam IA, Caldera JR, Chiang AW, Gonzalez C, Du X, Choudhruy B, Li H, Suzuki E, Askarian F, Clark T, Lin B, Wierzbicki IH, Riestra AM, Conrad DJ, Gonzalez DJ, Nizet V, Lewis NE, Liu GY. Pathobiont-driven antibody sialylation through IL-10 undermines vaccination. J Clin Invest 2024; 134:e179563. [PMID: 39680460 DOI: 10.1172/jci179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024] Open
Abstract
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Austin Wt Chiang
- Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - Cesia Gonzalez
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Xin Du
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Biswa Choudhruy
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Haining Li
- Department of Bioengineering, University of California, La Jolla, California, USA
| | - Emi Suzuki
- Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
- Division of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Ty'Tianna Clark
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brian Lin
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Igor H Wierzbicki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Angelica M Riestra
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
9
|
Torres VJ. Interleukin 10 drives Staphylococcus aureus imprinting and vaccine failure in murine models via antibody glycosylation. J Clin Invest 2024; 134:e187055. [PMID: 39680461 DOI: 10.1172/jci187055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Despite many attempts, there is currently no approved vaccine to prevent Staphylococcus aureus infections. Preclinical vaccination models have failed to predict vaccine efficacy in humans as S. aureus exposure in humans imprints an immune response that is lacking in naive animals. In this issue of the JCI, Tsai and colleagues identify the cytokine IL-10 as the driver of humoral imprinting by S. aureus. Upon vaccination, S. aureus-experienced animals produced copious levels of IL-10, resulting in the hyper-α2,3 sialylation of antibodies, which interfered with the phagocytic-promoting properties of the vaccine-elicited anti-S. aureus antibodies. These findings correlate with the observation that hyperproduction of IL-10 in humans also induces hyper-α2,3 sialylation of antibodies and provide a possible mechanism for previous vaccine failures.
Collapse
|
10
|
He Y, Guo Z, Vahey MD. Modulation of B cell receptor activation by antibody competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624200. [PMID: 39605386 PMCID: PMC11601615 DOI: 10.1101/2024.11.18.624200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although this phenomenon has the potential to steer B cell responses away from conserved epitopes, the factors that influence epitope masking by competing antibodies remain unclear. Using engineered, influenza-reactive B cells, we investigate how antibodies influence the accessibility of epitopes on the viral surface. We find that membrane-proximal epitopes on influenza hemagglutinin are fundamentally at a disadvantage for B cell recognition because they can be blocked by both directly and indirectly competing antibodies. While many influenza-specific antibodies can inhibit B cell activation, the potency of masking depends on proximity of the targeted epitopes as well as antibody affinity, kinetics, and valency. Although most antibodies are inhibitory, we identify one that can enhance accessibility of hidden viral epitopes. Together, these findings establish rules for epitope masking that could help advance immunogen design.
Collapse
Affiliation(s)
- Yuanyuan He
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zijian Guo
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael D. Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Chen X, Missiakas D. Novel Antibody-Based Protection/Therapeutics in Staphylococcus aureus. Annu Rev Microbiol 2024; 78:425-446. [PMID: 39146354 DOI: 10.1146/annurev-micro-041222-024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Staphylococcus aureus is a commensal of the skin and nares of humans as well as the causative agent of infections associated with significant mortality. The acquisition of antibiotic resistance traits complicates the treatment of such infections and has prompted the development of monoclonal antibodies. The selection of protective antigens is typically guided by studying the natural antibody responses to a pathogen. What happens when the pathogen masks these antigens and subverts adaptive responses, or when the pathogen inhibits or alters the effector functions of antibodies? S. aureus is constantly exposed to its human host and has evolved all these strategies. Here, we review how anti-S. aureus targets have been selected and how antibodies have been engineered to overcome the formidable immune evasive activities of this pathogen. We discuss the prospects of antibody-based therapeutics in the context of disease severity, immune competence, and history of past infections.
Collapse
Affiliation(s)
- Xinhai Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Dominique Missiakas
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
12
|
Tomaszewski KL, Blanchard M, Olaniyi R, Brenton HR, Hayes S, Fatma F, Amarasinghe GK, Cho BK, Goo YA, DeDent AC, Fritz SA, Wardenburg JB. Enhanced Staphylococcus aureus protection by uncoupling of the α-toxin-ADAM10 interaction during murine neonatal vaccination. Nat Commun 2024; 15:8702. [PMID: 39379345 PMCID: PMC11461939 DOI: 10.1038/s41467-024-52714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Staphylococcus aureus remains a leading global cause of bacterial infection-associated mortality and has eluded prior vaccine development efforts. S. aureus α-toxin (Hla) is an essential virulence factor in disease, impairing the T cell response to infection. The anti-Hla antibody response is a correlate of human protective immunity. Here we observe that this response is limited early in human life and design a vaccine strategy to elicit immune protection against Hla in a neonatal mice. By targeted disruption of the interaction of Hla with its receptor ADAM10, we identify a vaccine antigen (HlaH35L/R66C/E70C, HlaHRE) that elicits an ~100-fold increase in the neutralizing anti-Hla response. Immunization with HlaHRE enhances the T follicular helper (TFH) cell response to S. aureus infection, correlating with the magnitude of the neutralizing anti-toxin response and disease protection. Furthermore, maternal HlaHRE immunization confers protection to offspring. Together, these findings illuminate a path for S. aureus vaccine development at the maternal-infant interface.
Collapse
Affiliation(s)
- Kelly L Tomaszewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Forward Defense, LLC, St. Louis, MO, USA
| | - Meagan Blanchard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Reuben Olaniyi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Merck & Co, West Point, PA, USA
| | - Hannah R Brenton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha Hayes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Farheen Fatma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute - Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute - Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea C DeDent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Cleveland Clinic Innovations, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Forward Defense, LLC, St. Louis, MO, USA.
| |
Collapse
|
13
|
Chambers HF, Fowler VG. Intertwining clonality and resistance: Staphylococcus aureus in the antibiotic era. J Clin Invest 2024; 134:e185824. [PMID: 39352382 PMCID: PMC11444188 DOI: 10.1172/jci185824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
- Henry F. Chambers
- Division of Infectious Diseases, UCSF, San Francisco, California, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, and
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Sauvat L, Verhoeven PO, Gagnaire J, Berthelot P, Paul S, Botelho-Nevers E, Gagneux-Brunon A. Vaccines and monoclonal antibodies to prevent healthcare-associated bacterial infections. Clin Microbiol Rev 2024; 37:e0016022. [PMID: 39120140 PMCID: PMC11391692 DOI: 10.1128/cmr.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
SUMMARYHealthcare-associated infections (HAIs) represent a burden for public health with a high prevalence and high death rates associated with them. Pathogens with a high potential for antimicrobial resistance, such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and Clostridioides difficile, are responsible for most HAIs. Despite the implementation of infection prevention and control intervention, globally, HAIs prevalence is stable and they are mainly due to endogenous pathogens. It is undeniable that complementary to infection prevention and control measures, prophylactic approaches by active or passive immunization are needed. Specific groups at-risk (elderly people, chronic condition as immunocompromised) and also healthcare workers are key targets. Medical procedures and specific interventions are known to be at risk of HAIs, in addition to hospital environmental exposure. Vaccines or monoclonal antibodies can be seen as attractive preventive approaches for HAIs. In this review, we present an overview of the vaccines and monoclonal antibodies in clinical development for prevention of the major bacterial HAIs pathogens. Based on the current state of knowledge, we look at the challenges and future perspectives to improve prevention by these means.
Collapse
Affiliation(s)
- Léo Sauvat
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Julie Gagnaire
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
15
|
Wang X, Dou Y, Hu J, Chan CHC, Li R, Rong L, Gong H, Deng J, Yuen TTT, Lin X, He Y, Su C, Zhang BZ, Chan JFW, Yuen KY, Chu H, Huang JD. Conserved moonlighting protein pyruvate dehydrogenase induces robust protection against Staphylococcus aureus infection. Proc Natl Acad Sci U S A 2024; 121:e2321939121. [PMID: 39186649 PMCID: PMC11388329 DOI: 10.1073/pnas.2321939121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jingchu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Celia Hoi-Ching Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Renhao Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huarui Gong
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yige He
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Canhui Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
16
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Kelly AM, McCarthy KN, Claxton TJ, Carlile SR, O'Brien EC, Vozza EG, Mills KH, McLoughlin RM. IL-10 inhibition during immunization improves vaccine-induced protection against Staphylococcus aureus infection. JCI Insight 2024; 9:e178216. [PMID: 38973612 PMCID: PMC11383370 DOI: 10.1172/jci.insight.178216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.
Collapse
Affiliation(s)
| | - Karen N McCarthy
- Host-Pathogen Interactions Group and
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Kingston Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
18
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
19
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
20
|
Hajam IA, Liu GY. Linking S. aureus Immune Evasion Mechanisms to Staphylococcal Vaccine Failures. Antibiotics (Basel) 2024; 13:410. [PMID: 38786139 PMCID: PMC11117348 DOI: 10.3390/antibiotics13050410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Vaccination arguably remains the only long-term strategy to limit the spread of S. aureus infections and its related antibiotic resistance. To date, however, all staphylococcal vaccines tested in clinical trials have failed. In this review, we propose that the failure of S. aureus vaccines is intricately linked to prior host exposure to S. aureus and the pathogen's capacity to evade adaptive immune defenses. We suggest that non-protective immune imprints created by previous exposure to S. aureus are preferentially recalled by SA vaccines, and IL-10 induced by S. aureus plays a unique role in shaping these non-protective anti-staphylococcal immune responses. We discuss how S. aureus modifies the host immune landscape, which thereby necessitates alternative approaches to develop successful staphylococcal vaccines.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA;
| | - George Y. Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA;
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
21
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Clowry J, Dempsey DJ, Claxton TJ, Towell AM, Turley MB, Sutton M, Geoghegan JA, Kezic S, Jakasa I, White A, Irvine AD, McLoughlin RM. Distinct T cell signatures are associated with Staphylococcus aureus skin infection in pediatric atopic dermatitis. JCI Insight 2024; 9:e178789. [PMID: 38716729 PMCID: PMC11141913 DOI: 10.1172/jci.insight.178789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/03/2024] [Indexed: 06/02/2024] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.
Collapse
Affiliation(s)
- Julianne Clowry
- Department of Dermatology, National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Dempsey
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Tracey J. Claxton
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling M. Towell
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Mary B. Turley
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Sutton
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sanja Kezic
- Amsterdam UMC, University of Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Arthur White
- School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Alan D. Irvine
- Department of Dermatology, National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rachel M. McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Wang Y, Mukherjee I, Venkatasubramaniam A, Dikeman D, Orlando N, Zhang J, Ortines R, Mednikov M, Sherchand SP, Kanipakala T, Le T, Shukla S, Ketner M, Adhikari RP, Karauzum H, Aman MJ, Archer NK. Dry and liquid formulations of IBT-V02, a novel multi-component toxoid vaccine, are effective against Staphylococcus aureus isolates from low-to-middle income countries. Front Immunol 2024; 15:1373367. [PMID: 38633244 PMCID: PMC11022162 DOI: 10.3389/fimmu.2024.1373367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | | | | | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Nicholas Orlando
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Zhang
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Roger Ortines
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | - Mark Mednikov
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | | | | | - Thao Le
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Sanjay Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Mark Ketner
- Engineered Biopharmaceuticals, Danville, VA, United States
| | | | - Hatice Karauzum
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | - M. Javad Aman
- Integrated Biotherapeutics Inc., Rockville, MD, United States
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
24
|
Mandelli AP, Magri G, Tortoli M, Torricelli S, Laera D, Bagnoli F, Finco O, Bensi G, Brazzoli M, Chiarot E. Vaccination with staphylococcal protein A protects mice against systemic complications of skin infection recurrences. Front Immunol 2024; 15:1355764. [PMID: 38529283 PMCID: PMC10961379 DOI: 10.3389/fimmu.2024.1355764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Skin and soft tissue infections (SSTIs) are the most common diseases caused by Staphylococcus aureus (S. aureus), which can progress to threatening conditions due to recurrences and systemic complications. Staphylococcal protein A (SpA) is an immunomodulator antigen of S. aureus, which allows bacterial evasion from the immune system by interfering with different types of immune responses to pathogen antigens. Immunization with SpA could potentially unmask the pathogen to the immune system, leading to the production of antibodies that can protect from a second encounter with S. aureus, as it occurs in skin infection recurrences. Here, we describe a study in which mice are immunized with a mutated form of SpA mixed with the Adjuvant System 01 (SpAmut/AS01) before a primary S. aureus skin infection. Although mice are not protected from the infection under these conditions, they are able to mount a broader pathogen-specific functional immune response that results in protection against systemic dissemination of bacteria following an S. aureus second infection (recurrence). We show that this "hidden effect" of SpA can be partially explained by higher functionality of induced anti-SpA antibodies, which promotes better phagocytic activity. Moreover, a broader and stronger humoral response is elicited against several S. aureus antigens that during an infection are masked by SpA activity, which could prevent S. aureus spreading from the skin through the blood.
Collapse
Affiliation(s)
| | - Greta Magri
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | - Marco Tortoli
- Animal Resource Center, GlaxoSmithKline, Siena, Italy
| | | | | | - Fabio Bagnoli
- Infectious Disease Research Unit, GlaxoSmithKline, Upper Providence, PA, United States
| | - Oretta Finco
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | | | | | | |
Collapse
|
25
|
Jin T. Exploring the role of bacterial virulence factors and host elements in septic arthritis: insights from animal models for innovative therapies. Front Microbiol 2024; 15:1356982. [PMID: 38410388 PMCID: PMC10895065 DOI: 10.3389/fmicb.2024.1356982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Septic arthritis, characterized as one of the most aggressive joint diseases, is primarily attributed to Staphylococcus aureus (S. aureus) and often results from hematogenous dissemination. Even with prompt treatment, septic arthritis frequently inflicts irreversible joint damage, leading to sustained joint dysfunction in a significant proportion of patients. Despite the unsatisfactory outcomes, current therapeutic approaches for septic arthritis have remained stagnant for decades. In the clinical context, devising innovative strategies to mitigate joint damage necessitates a profound comprehension of the pivotal disease mechanisms. This entails unraveling how bacterial virulence factors interact with host elements to facilitate bacterial invasion into the joint and identifying the principal drivers of joint damage. Leveraging animal models of septic arthritis emerges as a potent tool to achieve these objectives. This review provides a comprehensive overview of the historical evolution and recent advancements in septic arthritis models. Additionally, we address practical considerations regarding experimental protocols. Furthermore, we delve into the utility of these animal models, such as their contribution to the discovery of novel bacterial virulence factors and host elements that play pivotal roles in the initiation and progression of septic arthritis. Finally, we summarize the latest developments in novel therapeutic strategies against septic arthritis, leveraging insights gained from these unique animal models.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
26
|
Kleinhenz M, Li Z, Chidella U, Picard W, Wolfe A, Popelka J, Alexander R, Montgomery CP. Toxin-neutralizing Abs are associated with improved T cell function following recovery from Staphylococcus aureus infection. JCI Insight 2024; 9:e173526. [PMID: 38236641 PMCID: PMC11143924 DOI: 10.1172/jci.insight.173526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUNDT cell responses are impaired in Staphylococcus aureus-infected children, highlighting a potential mechanism of immune evasion. This study tested the hypotheses that toxin-specific antibodies protect immune cells from bacterial killing and are associated with improved T cell function following infection.METHODSS. aureus-infected and healthy children (N = 33 each) were prospectively enrolled. During acute infection and convalescence, we quantified toxin-specific IgG levels by ELISA, antibody function using a cell killing assay, and functional T cell responses by ELISPOT.RESULTSThere were no differences in toxin-specific IgG levels or ability to neutralize toxin-mediated immune cell killing between healthy and acutely infected children, but antibody levels and function increased following infection. Similarly, T cell function, which was impaired during acute infection, improved following infection. However, the response to infection was highly variable; up to half of children did not have improved antibody or T cell function. Serum from children with higher α-hemolysin-specific IgG levels more strongly protected immune cells against toxin-mediated killing. Importantly, children whose serum more strongly protected against toxin-mediated killing also had stronger immune responses to infection, characterized by more elicited antibodies and greater improvement in T cell function following infection.CONCLUSIONThis study demonstrates that, despite T cell impairment during acute infection, S. aureus elicits toxin-neutralizing antibodies. Individual antibody responses and T cell recovery are variable. These findings also suggest that toxin-neutralizing antibodies protect antigen-presenting cells and T cells, thereby promoting immune recovery. Finally, failure to elicit toxin-neutralizing antibodies may identify children at risk for prolonged T cell suppression.FUNDINGNIH National Institute of Allergy and Infectious Diseases R01AI125489 and Nationwide Children's Hospital.
Collapse
Affiliation(s)
- Maureen Kleinhenz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Usha Chidella
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | - Walissa Picard
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
| | | | | | - Robin Alexander
- Biostatistics Resource, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute
- Division of Critical Care Medicine; and
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
27
|
Caldera JR, Tsai CM, Trieu D, Gonzalez C, Hajam IA, Du X, Lin B, Liu GY. The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches. Cell Rep Med 2024; 5:101360. [PMID: 38232694 PMCID: PMC10829788 DOI: 10.1016/j.xcrm.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
The failure of the Staphylococcus aureus (SA) IsdB vaccine trial can be explained by the recall of non-protective immune imprints from prior SA exposure. Here, we investigate natural human SA humoral imprints to understand their broader impact on SA immunizations. We show that antibody responses against SA cell-wall-associated antigens (CWAs) are non-opsonic, while antibodies against SA toxins are neutralizing. Importantly, the protective characteristics of the antibody imprints accurately predict the failure of corresponding vaccines against CWAs and support vaccination against toxins. In passive immunization platforms, natural anti-SA human antibodies reduce the efficacy of the human monoclonal antibodies suvratoxumab and tefibazumab, consistent with the results of their respective clinical trials. Strikingly, in the absence of specific humoral memory responses, active immunizations are efficacious in both naive and SA-experienced mice. Overall, our study points to a practical and predictive approach to evaluate and develop SA vaccines based on pre-existing humoral imprint characteristics.
Collapse
Affiliation(s)
- J R Caldera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Desmond Trieu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
28
|
Gonzalez JJI, Hossain MF, Neef J, Zwack EE, Tsai CM, Raafat D, Fechtner K, Herzog L, Kohler TP, Schlüter R, Reder A, Holtfreter S, Liu GY, Hammerschmidt S, Völker U, Torres VJ, van Dijl JM, Lillig CH, Bröker BM, Darisipudi MN. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 2024; 15:e0022523. [PMID: 38112465 PMCID: PMC10790753 DOI: 10.1128/mbio.00225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.
Collapse
Affiliation(s)
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Herzog
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - George Y. Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Christopher H. Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Murty N. Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
30
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
31
|
Zheng P, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Latest Advances in the Application of Humanized Mouse Model for Staphylococcus aureus. J Infect Dis 2023; 228:800-809. [PMID: 37392466 DOI: 10.1093/infdis/jiad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important pathogen for humans and can cause a wide range of diseases, from mild skin infections, severe osteomyelitis to fatal pneumonia, sepsis, and septicemia. The mouse models have greatly facilitated the development of S. aureus studies. However, due to the substantial differences in immune system between mice and humans, the conventional mouse studies are not predictive of success in humans, in which case humanized mice may overcome this limitation to some extent. Humanized mice can be used to study the human-specific virulence factors produced by S. aureus and the mechanisms by which S. aureus interacts with humans. This review outlined the latest advances in humanized mouse models used in S. aureus studies.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Askarian F, Tsai CM, Cordara G, Zurich RH, Bjånes E, Golten O, Vinther Sørensen H, Kousha A, Meier A, Chikwati E, Bruun JA, Ludviksen JA, Choudhury B, Trieu D, Davis S, Edvardsen PKT, Mollnes TE, Liu GY, Krengel U, Conrad DJ, Vaaje-Kolstad G, Nizet V. Immunization with lytic polysaccharide monooxygenase CbpD induces protective immunity against Pseudomonas aeruginosa pneumonia. Proc Natl Acad Sci U S A 2023; 120:e2301538120. [PMID: 37459522 PMCID: PMC10372616 DOI: 10.1073/pnas.2301538120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) CbpD belongs to the lytic polysaccharide monooxygenases (LPMOs), a family of enzymes that cleave chitin or related polysaccharides. Here, we demonstrate a virulence role of CbpD in PA pneumonia linked to impairment of host complement function and opsonophagocytic clearance. Following intratracheal challenge, a PA ΔCbpD mutant was more easily cleared and produced less mortality than the wild-type parent strain. The x-ray crystal structure of the CbpD LPMO domain was solved to subatomic resolution (0.75Å) and its two additional domains modeled by small-angle X-ray scattering and Alphafold2 machine-learning algorithms, allowing structure-based immune epitope mapping. Immunization of naive mice with recombinant CbpD generated high IgG antibody titers that promoted human neutrophil opsonophagocytic killing, neutralized enzymatic activity, and protected against lethal PA pneumonia and sepsis. IgG antibodies generated against full-length CbpD or its noncatalytic M2+CBM73 domains were opsonic and protective, even in previously PA-exposed mice, while antibodies targeting the AA10 domain were not. Preexisting antibodies in PA-colonized cystic fibrosis patients primarily target the CbpD AA10 catalytic domain. Further exploration of LPMO family proteins, present across many clinically important and antibiotic-resistant human pathogens, may yield novel and effective vaccine antigens.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Chih-Ming Tsai
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Raymond H. Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Elisabet Bjånes
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | | | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Angela Meier
- Division of Critical Care, Department of Anesthesiology, University of California San Diego, La Jolla, CA92037
| | - Elvis Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Jack-Ansgar Bruun
- Proteomics and Metabolomics Core Facility, Department of Medical Biology, The Arctic University of Norway, N-9037Tromsø, Norway
| | | | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
| | - Desmond Trieu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- School of Pharmacy, University of California San Francisco, San Francisco, CA94143
| | - Stanley Davis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, N-8005Bodø, Norway
- Department of Immunology, University of Oslo Hospital, N-0424Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491Trondheim, Norway
| | - George Y. Liu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ute Krengel
- Department of Chemistry, University of Oslo, N-0315Oslo, Norway
| | - Douglas J. Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA92037
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
33
|
Nappi F, Avtaar Singh SS. Host-Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review. Int J Mol Sci 2023; 24:11068. [PMID: 37446247 PMCID: PMC10341754 DOI: 10.3390/ijms241311068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococci sp. are the most commonly associated pathogens in infective endocarditis, especially within high-income nations. This along with the increasing burden of healthcare, aging populations, and the protracted infection courses, contribute to a significant challenge for healthcare systems. A systematic review was conducted using relevant search criteria from PubMed, Ovid's version of MEDLINE, and EMBASE, and data were tabulated from randomized controlled trials (RCT), observational cohort studies, meta-analysis, and basic research articles. The review was registered with the OSF register of systematic reviews and followed the PRISMA reporting guidelines. Thirty-five studies met the inclusion criteria and were included in the final systematic review. The role of Staphylococcus aureus and its interaction with the protective shield and host protection functions was identified and highlighted in several studies. The interaction between infective endocarditis pathogens, vascular endothelium, and blood constituents was also explored, giving rise to the potential use of antiplatelets as preventative and/or curative agents. Several factors allow Staphylococcus aureus infections to proliferate within the host with numerous promoting and perpetuating agents. The complex interaction with the hosts' innate immunity also potentiates its virulence. The goal of this study is to attain a better understanding on the molecular pathways involved in infective endocarditis supported by S. aureus and whether therapeutic avenues for the prevention and treatment of IE can be obtained. The use of antibiotic-treated allogeneic tissues have marked antibacterial action, thereby becoming the ideal substitute in native and prosthetic valvular infections. However, the development of effective vaccines against S. aureus still requires in-depth studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
34
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
35
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Chen X, Gula H, Pius T, Ou C, Gomozkova M, Wang LX, Schneewind O, Missiakas D. Immunoglobulin G subclasses confer protection against Staphylococcus aureus bloodstream dissemination through distinct mechanisms in mouse models. Proc Natl Acad Sci U S A 2023; 120:e2220765120. [PMID: 36972444 PMCID: PMC10083571 DOI: 10.1073/pnas.2220765120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Antibodies bind target molecules with exquisite specificity. The removal of these targets is mediated by the effector functions of antibodies. We reported earlier that the monoclonal antibody (mAb) 3F6 promotes opsonophagocytic killing of Staphylococcus aureus in blood and reduces bacterial replication in animals. Here, we generated mouse immunoglobulin G (mIgG) subclass variants and observed a hierarchy in protective efficacy 3F6-mIgG2a > 3F6-mIgG1 ≥ 3F6-mIgG2b >> 3F6-mIgG3 following bloodstream challenge of C57BL/6J mice. This hierarchy was not observed in BALB/cJ mice: All IgG subclasses conferred similar protection. IgG subclasses differ in their ability to activate complement and interact with Fcγ receptors (FcγR) on immune cells. 3F6-mIgG2a-dependent protection was lost in FcγR-deficient, but not in complement-deficient C57BL/6J animals. Measurements of the relative ratio of FcγRIV over complement receptor 3 (CR3) on neutrophils suggest the preferential expression of FcγRIV in C57BL/6 mice and of CR3 in BALB/cJ mice. To determine the physiological significance of these differing ratios, blocking antibodies against FcγRIV or CR3 were administered to animals before challenge. Correlating with the relative abundance of each receptor, 3F6-mIgG2a-dependent protection in C57BL/6J mice showed a greater reliance for FcγRIV while protection in BALB/cJ mice was only impaired upon neutralization of CR3. Thus, 3F6-based clearance of S. aureus in mice relies on a strain-specific contribution of variable FcγR- and complement-dependent pathways. We surmise that these variabilities are the result of genetic polymorphism(s) that may be encountered in other mammals including humans and may have clinical implications in predicting the efficacy of mAb-based therapies.
Collapse
Affiliation(s)
- Xinhai Chen
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518132, China
| | - Haley Gula
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Tonu Pius
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Margaryta Gomozkova
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| |
Collapse
|
37
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 286] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
38
|
Teymournejad O, Li Z, Beesetty P, Yang C, Montgomery CP. Toxin expression during Staphylococcus aureus infection imprints host immunity to inhibit vaccine efficacy. NPJ Vaccines 2023; 8:3. [PMID: 36693884 PMCID: PMC9873725 DOI: 10.1038/s41541-022-00598-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus infections are a major public health issue, and a vaccine is urgently needed. Despite a considerable promise in preclinical models, all vaccines tested thus far have failed to protect humans against S. aureus. Unlike laboratory mice, humans are exposed to S. aureus throughout life. In the current study, we hypothesized that prior exposure to S. aureus "imprints" the immune response to inhibit vaccine-mediated protection. We established a mouse model in which S. aureus skin and soft tissue infection (SSTI) is followed by vaccination and secondary SSTI. Unlike naïve mice, S. aureus-sensitized mice were incompletely protected against secondary SSTI by vaccination with the inactivated α-hemolysin (Hla) mutant HlaH35L. Inhibition of protection was specific for the HlaH35L vaccine and required hla expression during primary SSTI. Surprisingly, inhibition occurred at the level of vaccine-elicited effector T cells; hla expression during primary infection limited the expansion of T cells and dendritic cells and impaired vaccine-specific T cell responses. Importantly, the T cell-stimulating adjuvant CAF01 rescued inhibition and restored vaccine-mediated protection. Together, these findings identify a potential mechanism for the failure of translation of promising S. aureus vaccines from mouse models to clinical practice and suggest a path forward to prevent these devastating infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.185648.60000 0001 2175 0319Present Address: Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL US
| | - Zhaotao Li
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US
| | - Pavani Beesetty
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.231844.80000 0004 0474 0428Present Address: Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario Canada
| | - Ching Yang
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.259180.70000 0001 2298 1899Present Address: Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY US
| | - Christopher P. Montgomery
- grid.240344.50000 0004 0392 3476Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH US ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH US ,grid.240344.50000 0004 0392 3476Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH US
| |
Collapse
|
39
|
Tsai CM, Caldera J, Hajam IA, Liu GY. Toward an effective Staphylococcus vaccine: why have candidates failed and what is the next step? Expert Rev Vaccines 2023; 22:207-209. [PMID: 36765453 PMCID: PMC9972957 DOI: 10.1080/14760584.2023.2179486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jr Caldera
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, USA
| |
Collapse
|
40
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
41
|
Zong W, Zhang T, Chen B, Lu Q, Cao X, Wang K, Yang Z, Chen Z, Yang Y. Emerging roles of noncoding micro RNAs and circular RNAs in bovine mastitis: Regulation, breeding, diagnosis, and therapy. Front Microbiol 2022; 13:1048142. [PMID: 36458189 PMCID: PMC9707628 DOI: 10.3389/fmicb.2022.1048142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2024] Open
Abstract
Bovine mastitis is one of the most troublesome and costly problems in the modern dairy industry, which is not only difficult to monitor, but can also cause economic losses while having significant implications on public health. However, efficacious preventative methods and therapy are still lacking. Moreover, new drugs and therapeutic targets are in increasing demand due to antibiotic restrictions. In recent years, noncoding RNAs have gained popularity as a topic in pathological and genetic studies. Meanwhile, there is growing evidence that they play a role in regulating various biological processes and developing novel treatment platforms. In light of this, this review focuses on two types of noncoding RNAs, micro RNAs and circular RNAs, and summarizes their characterizations, relationships, potential applications as selection markers, diagnostic or treatment targets and potential applications in RNA-based therapy, in order to shed new light on further research.
Collapse
Affiliation(s)
- Weicheng Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational MedicineXi’an Medical University, Xi’an, China
| | - Bing Chen
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, China
| | - Qinyue Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Creech CB. To err is human, to forgive may require different vaccines. Cell Host Microbe 2022; 30:1070-1071. [PMID: 35952643 DOI: 10.1016/j.chom.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cell Host & Microbe, Tsai et al. (2022) provide evidence that Staphylococcus aureus should be numbered among the pathogens for which original antigenic sin governs subsequent immune responses. Their approach may restore the utility of murine models in staphylococcal vaccine development.
Collapse
Affiliation(s)
- C Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|