1
|
Yilmaz R, Toprak K, Karagoz A, Yontar OC, Ucar M, Kokcu HI, Ozturk B, Kaya E, Yilmaz M, Öz E. Prognostic Value of Non-Traditional Lipid Indices for In-Hospital Mortality in Patients with Acute Coronary Syndromes. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:846. [PMID: 40428804 PMCID: PMC12113601 DOI: 10.3390/medicina61050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: Acute coronary syndrome (ACS) is a life-threatening cardiovascular condition with high mortality rates, necessitating accurate and early risk assessment to optimize patient outcomes. While traditional lipid markers, such as low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C), are widely used, non-traditional lipid indices, including the lipoprotein combined index (LCI), atherogenic index of plasma (AIP), atherogenic index (AI), Castelli risk indices (CRI-I, CRI-II), and atherogenic combined index (ACI) may offer additional prognostic insights by reflecting the underlying atherogenic and inflammatory processes. This study aimed to assess the prognostic value of these non-traditional lipid indices, along with traditional lipid and biochemical markers, for in-hospital mortality in ACS patients. Materials and Methods: This retrospective observational study analyzed data from ACS patients admitted to the coronary care unit (CCU) between January 2019 and September 2024. A cohort of 920 patients was divided into survivor (n = 823, 89.46%) and non-survivor (n = 97, 10.54%) groups based on in-hospital mortality outcomes. Demographic, hematological, biochemical, and lipid profile data, including traditional and non-traditional lipid indices, were collected. Separate logistic regression models were developed for each index, adjusting for demographic and clinical variables in order to assess the independent predictive power of each non-traditional lipid index. Results: Significant differences were observed between survivor and non-survivor groups in terms of age, c-reactive protein (CRP), white blood cell count (WBC), hemoglobin (HGB), and creatinine levels (all p-values < 0.05). While traditional lipid markers, such as LDL-C and HDL-C, showed limited predictive value, non-traditional lipid indices demonstrated stronger associations. The highest Exp (Beta) values were observed for the CRI-II, AI, and CRI-I. An ROC analysis further confirmed that the CRI-II, AI, and CRI-I had the highest AUC values, with pairwise comparisons underscoring the CRI-II's superior accuracy. These findings suggest that non-traditional lipid indices predict atherogenic risk better than traditional markers alone. Conclusions: Non-traditional lipid indices, particularly the CRI-I and II, AI, LCI, ACI, and AIP, were found to be significantly associated with in-hospital mortality in ACS patients. These indices may provide additional prognostic value beyond traditional lipid parameters; however, further prospective studies are needed to confirm their clinical utility. These results underscore the importance of integrating non-traditional lipid indices into routine risk assessments to improve mortality predictions and inform targeted interventions in high-risk ACS patients.
Collapse
Affiliation(s)
- Rustem Yilmaz
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey;
| | - Ahmet Karagoz
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Osman Can Yontar
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Melisa Ucar
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Halil Ibrahim Kokcu
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Berkant Ozturk
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Enes Kaya
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Mustafa Yilmaz
- Department of Cardiology, Faculty of Medicine, Samsun University, Samsun 33805, Turkey; (A.K.); (O.C.Y.); (M.U.); (H.I.K.); (B.O.); (E.K.); (M.Y.)
| | - Ersoy Öz
- Department of Statistics, Yildiz Technical University, Istanbul 34220, Turkey
| |
Collapse
|
2
|
Qin YS, Yi J, Chen YJ, Zhang W, Tang SF. Recent Advances in Micro/Nanomotor for the Therapy and Diagnosis of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11443-11468. [PMID: 39648908 DOI: 10.1021/acsami.4c15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Atherosclerotic cardiovascular disease poses a significant global public health threat with a high incidence that can result in severe mortality and disability. The lack of targeted effects from traditional therapeutic drugs on atherosclerosis may cause damage to other organs and tissues, necessitating the need for a more focused approach to address this dilemma. Micro/nanomotors are self-propelled micro/nanoscale devices capable of converting external energy into autonomous movement, which offers advantages in enhancing penetration depth and retention while increasing contact area with abnormal sites, such as atherosclerotic plaque, inflammation, and thrombosis, within blood vessel walls. Recent studies have demonstrated the crucial role micro/nanomotors play in treating atherosclerotic cardiovascular disease. Hence, this review highlights the recent progress of micro/nanomotor technology in atherosclerotic cardiovascular disease, including the effective promotion of micro/nanomotors in the circulatory system, overcoming hemorheological barriers, targeting the atherosclerotic plaque microenvironment, and targeting intracellular drug delivery, to facilitate atherosclerotic plaque localization and therapy. Furthermore, we also describe the potential application of micro/nanomotors in the imaging of vulnerable plaque. Finally, we discuss key challenges and prospects for treating atherosclerotic cardiovascular disease while emphasizing the importance of designing individualized management strategies specific to its causes and microenvironmental factors.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| | - Juan Yi
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545006, China
| | - Yan-Jun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou 545006, China
| | - Shi-Fu Tang
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| |
Collapse
|
3
|
Lu Y, Wu S, Zhu S, Shen J, Liu C, Zhao C, Su S, Ma H, Xiang M, Xie Y. Integrated Single-Cell Analysis Revealed Novel Subpopulations of Foamy Macrophages in Human Atherosclerotic Plaques. Biomolecules 2024; 14:1606. [PMID: 39766313 PMCID: PMC11675068 DOI: 10.3390/biom14121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Foam cell formation is a hallmark of atherosclerosis, yet the cellular complexity within foam cells in human plaques remains unexplored. Here, we integrate published single-cell RNA-sequencing, spatial transcriptomic, and chromatin accessibility sequencing datasets of human atherosclerotic lesions across eight distinct studies. Through this large-scale integration of patient-derived information, we identified foamy macrophages enriched for genes characteristic of the foamy signature. We further re-clustered the foamy macrophages into five unique subsets with distinct potential functions: (i) pro-foamy macrophages, exhibiting relatively high inflammatory and adhesive properties; (ii) phagocytic foamy macrophages, specialized in efferocytosis; (iii) high-efflux foamy macrophages marked by high NR1H3 expression; (iv) mature foamy macrophages prone to programmed cell death; and (v) synthetic subset. Trajectory analysis elucidated a bifurcated differentiation cell fate from pro-foam macrophages toward either the programmed death (iv) or synthetic (v) phenotype. The existence of these foamy macrophage subsets was validated by immunostaining. Moreover, these foamy macrophage subsets exhibited strong potential ligand-receptor interactions. Finally, we conducted Mendelian randomization analyses to identify a possible causal relationship between key regulatory genes along the programmed death pathway in foamy macrophages and atherosclerotic diseases. This study provides a high-resolution map of foam cell diversity and a set of potential key regulatory genes in atherosclerotic plaques, offering novel insights into the multifaceted pathophysiology underlying human atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Meixiang Xiang
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.L.); (S.W.); (S.Z.); (J.S.); (C.L.); (C.Z.); (S.S.); (H.M.)
| | - Yao Xie
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.L.); (S.W.); (S.Z.); (J.S.); (C.L.); (C.Z.); (S.S.); (H.M.)
| |
Collapse
|
4
|
Toprak K, Kaplangöray M, Karataş M, Dursun A, Arğa Y, Tascanov MB, Biçer A, Demirbağ R. Atherogenic Combined Index: Validation of a Coronary Artery Disease Predictive Biomarker. Arch Med Res 2024; 55:103065. [PMID: 39098112 DOI: 10.1016/j.arcmed.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND/AIM The balance between atherogenic and antiatherogenic lipid particles significantly influences coronary artery disease (CAD), as an imbalance may contribute to the development and progression of atherosclerosis, which affects the risk and severity of CAD. This study aims to introduce and validate the atherogenic combined index (ACI) as a novel lipid biomarker that, comprehensively assesses the balance between atherogenic and antiatherogenic particles in the blood to effectively reflect the cumulative atherogenic effect and its association with the presence and severity of CAD. MATERIAL AND METHODS In this cross-sectional study, 1,830 patients diagnosed with CAD and a total of 650 patients without CAD were included in the study cohort for comprehensive analysis and comparison. Based on the tertiles of the SYNTAX score (SS), three subgroups of patients with CAD were identified. ACI and other atherogenic indices were compared to predict the presence and severity of CAD. RESULTS The levels of ACI and other non-traditional lipid markers levels were higher in the CAD group compared to the non-CAD group (p <0.05, for all). ACI showed a good linear association with the SYNTAX score (r = 0.527; p <0.001). The multivariate logistic regression model showed that ACI was an independent predictor of the presence (OR: 1.602, 95% CI: 1.509-1.701, p <0.001) and severity (OR: 1.296, 95% CI: 1.243-1.351, p <0.001) of CAD after adjustment for various confounders. CONCLUSION The results suggest that ACI may serve as a promising and stronger tool for predicting the presence and severity of CAD.
Collapse
Affiliation(s)
- Kenan Toprak
- Harran University, Faculty of Medicine, Department of Cardiology, Sanliurfa, Turkey.
| | - Mustafa Kaplangöray
- Şeyh Edebali University, Medical Faculty, Department of Cardiology, Bilecik, Turkey
| | - Mesut Karataş
- Kartal Koşuyolu High Specialization Training and Research Hospital, Istanbul, Turkey
| | - Ayten Dursun
- Şanlıurfa Provincial Health Directorate, Nursing Department, Sanliurfa, Turkey
| | - Yakup Arğa
- Viranşehir State Hospital, Department of Cardiology, Sanliurfa, Turkey
| | | | - Asuman Biçer
- Harran University, Faculty of Medicine, Department of Cardiology, Sanliurfa, Turkey
| | - Recep Demirbağ
- Harran University, Faculty of Medicine, Department of Cardiology, Sanliurfa, Turkey
| |
Collapse
|
5
|
Ya X, Ma L, Li H, Ge P, Zheng Z, Mou S, Liu C, Zhang Y, Wang R, Zhang Q, Ye X, Zhang D, Zhao J. Exploring the relationship between hemodynamics and the immune microenvironment in carotid atherosclerosis: Insights from CFD and CyTOF technologies. J Cereb Blood Flow Metab 2024; 44:1733-1744. [PMID: 38833561 PMCID: PMC11494853 DOI: 10.1177/0271678x241251976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
Carotid atherosclerosis is a major cause of stroke. Hemodynamic forces, such as shear stress and oscillatory shear, play an important role in the initiation and progression of atherosclerosis. The alteration of the immune microenvironment is the fundamental pathological mechanism by which diverse external environmental factors impact the formation and progression of plaques. However, Current research on the relationship between hemodynamics and immunity in atherosclerosis still lack of comprehensive understanding. In this study, we combined computational fluid dynamics (CFD) and Mass cytometry (CyTOF) technologies to explore the changes in the immune microenvironment within plaques under different hemodynamic conditions. Our results indicated that neutrophils were enriched in adverse flow environments. M2-like CD163+CD86+ macrophages were predominantly enriched in high WSS and low OSI environments, while CD163-CD14+ macrophages were enriched in low WSS and high OSI environments. Functional analysis further revealed T cell pro-inflammatory activation and dysregulation in modulation, along with an imbalance in M1-like/M2-like macrophages, suggesting their potential involvement in the progression of atherosclerotic lesions mediated by adverse flow patterns. Our study elucidated the potential mechanisms by which hemodynamics regulated the immune microenvironment within plaques, providing intervention targets for future precision therapies.
Collapse
Affiliation(s)
- Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siqi Mou
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Shang J, Ma Y, Liu X, Sun S, Pang X, Zhou R, Huan S, He Y, Xiong B, Zhang XB. Single-particle rotational microrheology enables pathological staging of macrophage foaming and antiatherosclerotic studies. Proc Natl Acad Sci U S A 2024; 121:e2403740121. [PMID: 39102540 PMCID: PMC11331104 DOI: 10.1073/pnas.2403740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.
Collapse
Affiliation(s)
- Jinhui Shang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xixuan Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Shijie Sun
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiayun Pang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Shuangyan Huan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| |
Collapse
|
7
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Iannotta D, A A, Lai A, Nair S, Koifman N, Lappas M, Salomon C, Wolfram J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307240. [PMID: 38100284 DOI: 10.1002/smll.202307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Na'ama Koifman
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martha Lappas
- University of Melbourne, Department of Obstetrics and Gynaecology, Australia, and Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
10
|
Wang Z, Khondowe P, Brannick E, Abasht B. Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens. Sci Rep 2024; 14:3450. [PMID: 38342952 PMCID: PMC10859375 DOI: 10.1038/s41598-024-53904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Paul Khondowe
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Erin Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
11
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Zbesko JC, Stokes J, Becktel DA, Doyle KP. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol Dis 2023; 181:106130. [PMID: 37068641 PMCID: PMC10993857 DOI: 10.1016/j.nbd.2023.106130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, United States
| | | | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, United States; Departments of Neurology, Neurosurgery, Psychology, Arizona Center on Aging, and the BIO5 Institute, University of Arizona, United States.
| |
Collapse
|
13
|
Dragoljevic D, Lee MKS, Pernes G, Morgan PK, Louis C, Shihata W, Huynh K, Kochetkova AA, Bell PW, Mellett NA, Meikle PJ, Lancaster GI, Kraakman MJ, Nagareddy PR, Hanaoka BY, Wicks IP, Murphy AJ. Administration of an LXR agonist promotes atherosclerotic lesion remodelling in murine inflammatory arthritis. Clin Transl Immunology 2023; 12:e1446. [PMID: 37091327 PMCID: PMC10113696 DOI: 10.1002/cti2.1446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/21/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objectives The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods Ldlr -/- mice were fed a western-type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions.
Collapse
Affiliation(s)
- Dragana Dragoljevic
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Man Kit Sam Lee
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Gerard Pernes
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Pooranee K Morgan
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Cynthia Louis
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Rheumatology UnitRoyal Melbourne HospitalMelbourneVICAustralia
| | - Waled Shihata
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Kevin Huynh
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Arina A Kochetkova
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Patrick W Bell
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Natalie A Mellett
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Peter J Meikle
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Graeme I Lancaster
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| | - Michael J Kraakman
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | | | - Beatriz Y Hanaoka
- Department of SurgeryOhio State University Wexner Medical CenterColumbusOHUSA
| | - Ian P Wicks
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Rheumatology UnitRoyal Melbourne HospitalMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| |
Collapse
|
14
|
Shen S, Huang Z, Lin L, Fang Z, Li W, Luo W, Wu G, Huang Z, Liang G. Tussilagone attenuates atherosclerosis through inhibiting MAPKs-mediated inflammation in macrophages. Int Immunopharmacol 2023; 119:110066. [PMID: 37058752 DOI: 10.1016/j.intimp.2023.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis is a common chronic inflammatory disease. Recent studies have highlighted the key role of macrophages and inflammation in process of atherosclerotic lesion formation. A natural product, tussilagone (TUS), has previously exhibited anti-inflammatory activities in other diseases. In this study, we explored the potential effects and mechanisms of TUS on the inflammatory atherosclerosis. Atherosclerosis was induced in ApoE-/- mice by feeding them with a high-fat diet (HFD) for 8 weeks, followed by administration of TUS (10, 20 mg ·kg-1·d-1, i.g.) for 8 weeks. We demonstrated that TUS alleviated inflammatory response and reduced atherosclerotic plaque areas in HFD-fed ApoE-/- mice. Pro-inflammatory factor and adhesion factors were inhibited by TUS treatment. In vitro, TUS suppressed foam cell formation and oxLDL-induced inflammatory response in MPMs. RNA-sequencing analysis indicated that MAPK pathway was related to the anti-inflammation and anti-atherosclerosis effects of TUS. We further confirmed that TUS inhibited MAPKs phosphorylation in plaque lesion of aortas and cultured macrophages. MAPK inhibition blocked oxLDL-induced inflammatory response and prevented the innately pharmacological effects of TUS. Our findings present a mechanistic explanation for the pharmacological effect of TUS against atherosclerosis and indicate TUS as a potentially therapeutic candidate for atherosclerosis.
Collapse
Affiliation(s)
- Sirui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhuqi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liming Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zimin Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
15
|
Roy PK, Islam J, Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt Heart J 2023; 75:24. [PMID: 37014444 PMCID: PMC10073393 DOI: 10.1186/s43044-023-00352-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND In normal circumstances, AT secretes anti-inflammatory adipokines (AAKs) which regulates lipid metabolism, insulin sensitivity, vascular hemostasis, and angiogenesis. However, during obesity AT dysfunction occurs and leads to microvascular imbalance and secretes several pro-inflammatory adipokines (PAKs), thereby favoring atherogenic dyslipidemia and insulin resistance. Literature suggests decreased levels of circulating AAKs and increased levels of PAKs in obesity-linked disorders. Importantly, AAKs have been reported to play a vital role in obesity-linked metabolic disorders mainly insulin resistance, type-2 diabetes mellitus and coronary heart diseases. Interestingly, AAKs counteract the microvascular imbalance in AT and exert cardioprotection via several signaling pathways such as PI3-AKT/PKB pathway. Although literature reviews have presented a number of investigations detailing specific pathways involved in obesity-linked disorders, literature concerning AT dysfunction and AAKs remains sketchy. In view of the above, in the present contribution an effort has been made to provide an insight on the AT dysfunction and role of AAKs in modulating the obesity and obesity-linked atherogenesis and insulin resistance. MAIN BODY "Obesity-linked insulin resistance", "obesity-linked cardiometabolic disease", "anti-inflammatory adipokines", "pro-inflammatory adipokines", "adipose tissue dysfunction" and "obesity-linked microvascular dysfunction" are the keywords used for searching article. Google scholar, Google, Pubmed and Scopus were used as search engines for the articles. CONCLUSIONS This review offers an overview on the pathophysiology of obesity, management of obesity-linked disorders, and areas in need of attention such as novel therapeutic adipokines and their possible future perspectives as therapeutic agents.
Collapse
Affiliation(s)
- Probin Kr Roy
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India.
| | - Johirul Islam
- Coromandel International Limited, Hyderabad, Telangana, 500101, India
| | - Hauzel Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India
| |
Collapse
|
16
|
Woollett LA, Catov JM, Jones HN. Roles of maternal HDL during pregnancy. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159106. [PMID: 34995789 DOI: 10.1016/j.bbalip.2021.159106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND High density lipoproteins (HDL) were first linked to cardiovascular disease (CVD) over 30 years ago when an inverse relationship was shown between CVD and HDL-cholesterol levels. It is now apparent that HDL composition and function, not cholesterol levels, are the pertinent measurements describing HDL's role in various disease processes, especially those with subclinical or overt inflammation. SCOPE OF REVIEW Pregnancy is also an inflammatory state. When inflammation becomes excessive during pregnancy, there is an increased risk for adverse outcomes that affect the health of the mother and fetus, including preterm birth and preeclampsia. Though studies on HDL during pregnancy are limited, recent evidence demonstrates that HDL composition and function change during pregnancy and in women with adverse outcomes. GENERAL SIGNIFICANCE In this review, we will discuss how HDL may play a role in maintaining a healthy pregnancy and how impairments in function could lead to pregnancies with adverse outcomes.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical School, Cincinnati, OH, United States of America.
| | - Janet M Catov
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, PA, United States of America.
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States of America; Center for Research in Perinatal Outcomes, Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
17
|
Li C, Qu L, Matz AJ, Murphy PA, Liu Y, Manichaikul AW, Aguiar D, Rich SS, Herrington DM, Vu D, Johnson WC, Rotter JI, Post WS, Vella AT, Rodriguez-Oquendo A, Zhou B. AtheroSpectrum Reveals Novel Macrophage Foam Cell Gene Signatures Associated With Atherosclerotic Cardiovascular Disease Risk. Circulation 2022; 145:206-218. [PMID: 34913723 PMCID: PMC8766929 DOI: 10.1161/circulationaha.121.054285] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Patrick A. Murphy
- Center for Vascular Biology, School of Medicine, University of Connecticut, Farmington, CT
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Derek Aguiar
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - David M Herrington
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - David Vu
- Department of Biostatistics, University of Washington, Seattle, WA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| | | | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| |
Collapse
|
18
|
Zhao Q, Wang Z, Meyers AK, Madenspacher J, Zabalawi M, Zhang Q, Boudyguina E, Hsu FC, McCall CE, Furdui CM, Parks JS, Fessler MB, Zhu X. Hematopoietic Cell-Specific SLC37A2 Deficiency Accelerates Atherosclerosis in LDL Receptor-Deficient Mice. Front Cardiovasc Med 2021; 8:777098. [PMID: 34957260 PMCID: PMC8702732 DOI: 10.3389/fcvm.2021.777098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a central role in the pathogenesis of atherosclerosis. Our previous study demonstrated that solute carrier family 37 member 2 (SLC37A2), an endoplasmic reticulum-anchored phosphate-linked glucose-6-phosphate transporter, negatively regulates macrophage Toll-like receptor activation by fine-tuning glycolytic reprogramming in vitro. Whether macrophage SLC37A2 impacts in vivo macrophage inflammation and atherosclerosis under hyperlipidemic conditions is unknown. We generated hematopoietic cell-specific SLC37A2 knockout and control mice in C57Bl/6 Ldlr−/− background by bone marrow transplantation. Hematopoietic cell-specific SLC37A2 deletion in Ldlr−/− mice increased plasma lipid concentrations after 12-16 wks of Western diet induction, attenuated macrophage anti-inflammatory responses, and resulted in more atherosclerosis compared to Ldlr−/− mice transplanted with wild type bone marrow. Aortic root intimal area was inversely correlated with plasma IL-10 levels, but not total cholesterol concentrations, suggesting inflammation but not plasma cholesterol was responsible for increased atherosclerosis in bone marrow SLC37A2-deficient mice. Our in vitro study demonstrated that SLC37A2 deficiency impaired IL-4-induced macrophage activation, independently of glycolysis or mitochondrial respiration. Importantly, SLC37A2 deficiency impaired apoptotic cell-induced glycolysis, subsequently attenuating IL-10 production. Our study suggests that SLC37A2 expression is required to support alternative macrophage activation in vitro and in vivo. In vivo disruption of hematopoietic SLC37A2 accelerates atherosclerosis under hyperlipidemic pro-atherogenic conditions.
Collapse
Affiliation(s)
- Qingxia Zhao
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Zhan Wang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allison K Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jennifer Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Qianyi Zhang
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Elena Boudyguina
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Targeted theranostic photoactivation on atherosclerosis. J Nanobiotechnology 2021; 19:338. [PMID: 34689768 PMCID: PMC8543964 DOI: 10.1186/s12951-021-01084-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Photoactivation targeting macrophages has emerged as a therapeutic strategy for atherosclerosis, but limited targetable ability of photosensitizers to the lesions hinders its applications. Moreover, the molecular mechanistic insight to its phototherapeutic effects on atheroma is still lacking. Herein, we developed a macrophage targetable near-infrared fluorescence (NIRF) emitting phototheranostic agent by conjugating dextran sulfate (DS) to chlorin e6 (Ce6) and estimated its phototherapeutic feasibility in murine atheroma. Also, the phototherapeutic mechanisms of DS-Ce6 on atherosclerosis were investigated. Results The phototheranostic agent DS-Ce6 efficiently internalized into the activated macrophages and foam cells via scavenger receptor-A (SR-A) mediated endocytosis. Customized serial optical imaging-guided photoactivation of DS-Ce6 by light illumination reduced both atheroma burden and inflammation in murine models. Immuno-fluorescence and -histochemical analyses revealed that the photoactivation of DS-Ce6 produced a prominent increase in macrophage-associated apoptotic bodies 1 week after laser irradiation and induced autophagy with Mer tyrosine-protein kinase expression as early as day 1, indicative of an enhanced efferocytosis in atheroma. Conclusion Imaging-guided DS-Ce6 photoactivation was able to in vivo detect inflammatory activity in atheroma as well as to simultaneously reduce both plaque burden and inflammation by harmonic contribution of apoptosis, autophagy, and lesional efferocytosis. These results suggest that macrophage targetable phototheranostic nanoagents will be a promising theranostic strategy for high-risk atheroma. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01084-z.
Collapse
|
20
|
Petkevicius K, Bidault G, Virtue S, Jenkins B, van Dierendonck XAMH, Dugourd A, Saez-Rodriguez J, Stienstra R, Koulman A, Vidal-Puig A. Norepinephrine promotes triglyceride storage in macrophages via beta2-adrenergic receptor activation. FASEB J 2021; 35:e21266. [PMID: 33484195 PMCID: PMC7898725 DOI: 10.1096/fj.202001101r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Tissue‐resident macrophages are required for homeostasis, but also contribute to tissue dysfunction in pathophysiological states. The sympathetic neurotransmitter norepinephrine (NE) induces an anti‐inflammatory and tissue‐reparative phenotype in macrophages. As NE has a well‐established role in promoting triglyceride lipolysis in adipocytes, and macrophages accumulate triglyceride droplets in various physiological and disease states, we investigated the effect of NE on primary mouse bone marrow‐derived macrophage triglyceride metabolism. Surprisingly, our data show that in contrast to the canonical role of NE in stimulating lipolysis, NE acting via beta2‐adrenergic receptors (B2ARs) in macrophages promotes extracellular fatty acid uptake and their storage as triglycerides and reduces free fatty acid release from triglyceride‐laden macrophages. We demonstrate that these responses are mediated by a B2AR activation‐dependent increase in Hilpda and Dgat1 gene expression and activity. We further show that B2AR activation favors the storage of extracellular polyunsaturated fatty acids. Finally, we present evidence that macrophages isolated from hearts after myocardial injury, for which survival critically depends on leukocyte B2ARs, have a transcriptional signature indicative of a transient triglyceride accumulation. Overall, we describe a novel and unexpected role of NE in promoting triglyceride storage in macrophages that could have potential implications in multiple diseases.
Collapse
Affiliation(s)
- Kasparas Petkevicius
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Guillaume Bidault
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Sam Virtue
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Faculty of Medicine & Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Faculty of Medicine & Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Albert Koulman
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
21
|
Chaves LD, Abyad S, Honan AM, Bryniarski MA, McSkimming DI, Stahura CM, Wells SC, Ruszaj DM, Morris ME, Quigg RJ, Yacoub R. Unconjugated p-cresol activates macrophage macropinocytosis leading to increased LDL uptake. JCI Insight 2021; 6:144410. [PMID: 33914709 PMCID: PMC8262368 DOI: 10.1172/jci.insight.144410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/28/2021] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic kidney disease (CKD) and end-stage renal disease suffer from increased cardiovascular events and cardiac mortality. Prior studies have demonstrated that a portion of this enhanced risk can be attributed to the accumulation of microbiota-derived toxic metabolites, with most studies focusing on the sulfonated form of p-cresol (PCS). However, unconjugated p-cresol (uPC) itself was never assessed due to rapid and extensive first-pass metabolism that results in negligible serum concentrations of uPC. These reports thus failed to consider the host exposure to uPC prior to hepatic metabolism. In the current study, not only did we measure the effect of altering the intestinal microbiota on lipid accumulation in coronary arteries, but we also examined macrophage lipid uptake and handling pathways in response to uPC. We found that atherosclerosis-prone mice fed a high-fat diet exhibited significantly higher coronary artery lipid deposits upon receiving fecal material from CKD mice. Furthermore, treatment with uPC increased total cholesterol, triglycerides, and hepatic and aortic fatty deposits in non-CKD mice. Studies employing an in vitro macrophage model demonstrated that uPC exposure increased apoptosis whereas PCS did not. Additionally, uPC exhibited higher potency than PCS to stimulate LDL uptake and only uPC induced endocytosis- and pinocytosis-related genes. Pharmacological inhibition of varying cholesterol influx and efflux systems indicated that uPC increased macrophage LDL uptake by activating macropinocytosis. Overall, these findings indicate that uPC itself had a distinct effect on macrophage biology that might have contributed to increased cardiovascular risk in patients with CKD.
Collapse
Affiliation(s)
- Lee D Chaves
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sham Abyad
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and
| | - Amanda M Honan
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and
| | - Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Daniel I McSkimming
- Department of Medicine, Bioinformatics and Computational Biology Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Corrine M Stahura
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and
| | - Steven C Wells
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and
| | - Donna M Ruszaj
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Richard J Quigg
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and
| | - Rabi Yacoub
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, and
| |
Collapse
|
22
|
Li Y, Tang J, Gao H, Xu Y, Han Y, Shang H, Lu Y, Qin C. Ganoderma lucidum triterpenoids and polysaccharides attenuate atherosclerotic plaque in high-fat diet rabbits. Nutr Metab Cardiovasc Dis 2021; 31:1929-1938. [PMID: 33992512 DOI: 10.1016/j.numecd.2021.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is characterized by lipid deposition, oxidative stress, and inflammation in the arterial intima. Ganoderma lucidum triterpenoids (GLTs) and polysaccharides (GLPs) are traditional Chinese medicines with potential cardiovascular benefits. We aimed to comprehensively evaluate the effect of GLTs and GLPs on atherosclerosis and the associated underlying mechanisms in vivo and in vitro. METHODS AND RESULTS Japanese big-ear white rabbits were randomly divided into three groups of blank, model, and treatment, and the treatment group was fed with GLSO and GLSP (0.3 g/kg body-weight/day) for 4 months. Serum levels of triglyceride (TG), total (TC), and low density lipoprotein cholesterol (LDL-C) in GL treatment group were significantly lower than those in the model group. The area of aortic plaques was significantly reduced in the treatment group. Further, GL administration in oxidized low-density lipoprotein (ox-LDL) stimulated human umbilical vein endothelial cells (HUVECs) reduced the generation of reactive oxygen species (ROS) and malondialdehyde (MDA) by inhibiting the upregulation of the nuclear transcription factor (NF)-κB p65 and the relative receptor LOX-1. In THP-1 cells treated with phorbol myristate acetate, GL inhibited the inflammatory polarization of macrophages (as evidenced by reduced TNF-α levels) via regulation of Notch1 and DLL4 pathways. Ox-LDL-stimulated THP-1 cells treated with GL showed an increase in the apoptosis of foam cells. CONCLUSIONS GLTs and GLPs attenuated the progression of atherosclerosis by alleviating endothelial dysfunction and inflammatory polarization of macrophages, thus promoting apoptosis of foam cells.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Jun Tang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Hongling Gao
- Department of Pathology, Qinghai Provincial People's Hospital, Qinghai, 810007, China
| | - Yanfeng Xu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Yunlin Han
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Haiquan Shang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Yaozeng Lu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, CAMS & PUMC, Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.
| |
Collapse
|
23
|
Khan M, Sherwani S, Khan S, Alouffi S, Alam M, Al-Motair K, Khan S. Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules 2021; 26:molecules26082262. [PMID: 33919694 PMCID: PMC8069805 DOI: 10.3390/molecules26082262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.
Collapse
Affiliation(s)
- Mohd Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Correspondence: or
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Mohammad Alam
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Khalid Al-Motair
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
| | - Shahper Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, U.P., India;
| |
Collapse
|
24
|
Zhang YF, Zhang Y, Jia DD, Yang HY, Cheng MD, Zhu WX, Xin H, Li PF, Zhang YF. Insights into the regulatory role of Plexin D1 signalling in cardiovascular development and diseases. J Cell Mol Med 2021; 25:4183-4194. [PMID: 33837646 PMCID: PMC8093976 DOI: 10.1111/jcmm.16509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Plexin D1 (PLXND1), which was previously thought to mediate semaphorin signalling, belongs to the Plexin family of transmembrane proteins. PLXND1 cooperates mostly with the coreceptor neuropilin and participates in many aspects of axonal guidance. PLXND1 can also act as both a tumour promoter and a tumour suppressor. Emerging evidence suggests that mutations in PLXND1 or Semaphorin 3E, the canonical ligand of PLXND1, can lead to serious cardiovascular diseases, such as congenital heart defects, CHARGE syndrome and systemic sclerosis. Upon ligand binding, PLXND1 can act as a GTPase‐activating protein (GAP) and modulate integrin‐mediated cell adhesion, cytoskeletal dynamics and cell migration. These effects may play regulatory roles in the development of the cardiovascular system and disease. The cardiovascular effects of PLXND1 signalling have gradually been elucidated. PLXND1 was recently shown to detect physical forces and translate them into intracellular biochemical signals in the context of atherosclerosis. Therefore, the role of PLXND1 in cardiovascular development and diseases is gaining research interest because of its potential as a biomarker and therapeutic target. In this review, we describe the cardiac effects, vascular effects and possible molecular mechanisms of PLXND1 signalling.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Meng-Die Cheng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Xiu Zhu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Sun SM, Xie ZF, Zhang YM, Zhang XW, Zhou CD, Yin JP, Yu YY, Cui SC, Jiang HW, Li TT, Li J, Nan FJ, Li JY. AMPK activator C24 inhibits hepatic lipogenesis and ameliorates dyslipidemia in HFHC diet-induced animal models. Acta Pharmacol Sin 2021; 42:585-592. [PMID: 32724176 PMCID: PMC8115652 DOI: 10.1038/s41401-020-0472-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023]
Abstract
Dyslipidemia is a chronic metabolic disease characterized by elevated levels of lipids in plasma. Recently, various studies demonstrate that the increased activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) causes health benefits in energy regulation. Thus, great efforts have been made to develop AMPK activators as a metabolic syndrome treatment. In the present study, we investigated the effects of the AMPK activator C24 on dyslipidemia and the potential mechanisms. We showed that C24 (5-40 μM) dose-dependently increased the phosphorylation of AMPKα and acetyl-CoA carboxylase (ACC), and inhibited lipogenesis in HepG2 cells. Using compound C, an AMPK inhibitor, or hepatocytes isolated from liver tissue-specific AMPK knockout AMPKα1α2fl/fl;Alb-cre mice (AMPK LKO), we demonstrated that the lipogenesis inhibition of C24 was dependent on hepatic AMPK activation. In rabbits with high-fat and high-cholesterol diet-induced dyslipidemia, administration of C24 (20, 40, and 60 mg · kg-1· d-1, ig, for 4 weeks) dose-dependently decreased the content of TG, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma and played a role in protecting against hepatic dysfunction by decreasing lipid accumulation. A lipid-lowering effect was also observed in high-fat and high-cholesterol diet-fed hamsters. In conclusion, our results demonstrate that the small molecular AMPK activator C24 alleviates hyperlipidemia and represents a promising compound for the development of a lipid-lowering drug.
Collapse
Affiliation(s)
- Shui-Mei Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Fu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang-Ming Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Xin-Wen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chen-Dong Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Peng Yin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Yan-Yan Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Chao Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Wen Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Teng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fa-Jun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China.
| | - Jing-Ya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Moerman AM, Visscher M, Slijkhuis N, Van Gaalen K, Heijs B, Klein T, Burgers PC, De Rijke YB, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Gijsen FJH, Van der Heiden K, Van Soest G. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J Lipid Res 2021; 62:100020. [PMID: 33581415 PMCID: PMC7881220 DOI: 10.1194/jlr.ra120000974] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.
Collapse
Affiliation(s)
- Astrid M Moerman
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam Visscher
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nuria Slijkhuis
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van Gaalen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen M M Van Beusekom
- Department of Experimental Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular and Endovascular Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W Van der Steen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gijs Van Soest
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Quiroga IY, Pellon-Maison M, Gonzalez MC, Coleman RA, Gonzalez-Baro MR. Triacylglycerol synthesis directed by glycerol-3-phosphate acyltransferases -3 and -4 is required for lipid droplet formation and the modulation of the inflammatory response during macrophage to foam cell transition. Atherosclerosis 2021; 316:1-7. [PMID: 33260006 PMCID: PMC7803380 DOI: 10.1016/j.atherosclerosis.2020.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context. Here we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). METHODS We used RAW 264.7 cells and bone marrow derived macrophages (BMDM) treated with oxidized LDL (oxLDL). RESULTS We showed that TAG synthesis is induced during the macrophage to foam cell transition. The expression and activity of GPAT3 and GPAT4 also increased during this process, and these two isoforms were required for the accumulation of cell TAG and PL. Compared to cells from wildtype mice after macrophage to foam cell transition, Gpat4-/- BMDM released more pro-inflammatory cytokines and chemokines, suggesting that the activity of GPAT4 could be associated with a decrease in the inflammatory response, probably by sequestering signaling precursors into lipid droplets. CONCLUSIONS Our results provide evidence that TAG synthesis directed by GPAT3 and GPAT4 is required for lipid droplet formation and the modulation of the inflammatory response during the macrophage-foam cell transition.
Collapse
Affiliation(s)
- Ivana Y Quiroga
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Magali Pellon-Maison
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Marina C Gonzalez
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina.
| |
Collapse
|
28
|
In Vitro Photodynamic Effects of the Inclusion Nanocomplexes of Glucan and Chlorin e6 on Atherogenic Foam Cells. Int J Mol Sci 2020; 22:ijms22010177. [PMID: 33375356 PMCID: PMC7795021 DOI: 10.3390/ijms22010177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Macrophage-derived foam cells play critical roles in the initiation and progression of atherosclerosis. Activated macrophages and foam cells are important biomarkers for targeted imaging and inflammatory disease therapy. Macrophages also express the dectin-1 receptor, which specifically recognizes β-glucan (Glu). Here, we prepared photoactivatable nanoagents (termed Glu/Ce6 nanocomplexes) by encapsulating hydrophobic chlorin e6 (Ce6) within the triple-helix structure of Glu in aqueous condition. Glu/Ce6 nanocomplexes generate singlet oxygen upon laser irradiation. The Glu/Ce6 nanocomplexes were internalized into foam cells and delivered Ce6 molecules into the cytoplasm of foam cells. Upon laser irradiation, they induced significant membrane damage and apoptosis of foam cells. These results suggest that Glu/Ce6 nanocomplexes can be a photoactivatable material for treating atherogenic foam cells.
Collapse
|
29
|
Jung BC, Lim J, Kim SH, Kim YS. Cathepsin B Is Implicated in Triglyceride (TG)-Induced Cell Death of Macrophage. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2020. [DOI: 10.15324/kjcls.2020.52.3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Byung Chul Jung
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, United States
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Jaewon Lim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Daegu Haany University, Gyeongsan, Korea
| | - Sung Hoon Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| | - Yoon Suk Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| |
Collapse
|
30
|
Biomimetic 3D Models for Investigating the Role of Monocytes and Macrophages in Atherosclerosis. Bioengineering (Basel) 2020; 7:bioengineering7030113. [PMID: 32947976 PMCID: PMC7552756 DOI: 10.3390/bioengineering7030113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis, the inflammation of artery walls due to the accumulation of lipids, is the most common underlying cause for cardiovascular diseases. Monocytes and macrophages are major cells that contribute to the initiation and progression of atherosclerotic plaques. During this process, an accumulation of LDL-laden macrophages (foam cells) and an alteration in the extracellular matrix (ECM) organization leads to a local vessel stiffening. Current in vitro models are carried out onto two-dimensional tissue culture plastic and cannot replicate the relevant microenvironments. To bridge the gap between in vitro and in vivo conditions, we utilized three-dimensional (3D) collagen matrices that allowed us to mimic the ECM stiffening during atherosclerosis by increasing collagen density. First, human monocytic THP-1 cells were embedded into 3D collagen matrices reconstituted at low and high density. Cells were subsequently differentiated into uncommitted macrophages (M0) and further activated into pro- (M1) and anti-inflammatory (M2) phenotypes. In order to mimic atherosclerotic conditions, cells were cultured in the presence of oxidized LDL (oxLDL) and analyzed in terms of oxLDL uptake capability and relevant receptors along with their cytokine secretomes. Although oxLDL uptake and larger lipid size could be observed in macrophages in a matrix dependent manner, monocytes showed higher numbers of oxLDL uptake cells. By analyzing major oxLDL uptake receptors, both monocytes and macrophages expressed lectin-like oxidized low-density lipoprotein receptor-1 (LOX1), while enhanced expression of scavenger receptor CD36 could be observed only in M2. Notably, by analyzing the secretome of macrophages exposed to oxLDL, we demonstrated that the cells could, in fact, secrete adipokines and growth factors in distinct patterns. Besides, oxLDL appeared to up-regulate MHCII expression in all cells, while an up-regulation of CD68, a pan-macrophage marker, was found only in monocytes, suggesting a possible differentiation of monocytes into a pro-inflammatory macrophage. Overall, our work demonstrated that collagen density in the plaque could be one of the major factors driving atherosclerotic progression via modulation of monocyte and macrophages behaviors.
Collapse
|
31
|
Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun 2020; 11:2622. [PMID: 32457361 PMCID: PMC7251120 DOI: 10.1038/s41467-020-16439-7] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Vascular disease remains the leading cause of death and disability, the etiology of which often involves atherosclerosis. The current treatment of atherosclerosis by pharmacotherapy has limited therapeutic efficacy. Here we report a biomimetic drug delivery system derived from macrophage membrane coated ROS-responsive nanoparticles (NPs). The macrophage membrane not only avoids the clearance of NPs from the reticuloendothelial system, but also leads NPs to the inflammatory tissues, where the ROS-responsiveness of NPs enables specific payload release. Moreover, the macrophage membrane sequesters proinflammatory cytokines to suppress local inflammation. The synergistic effects of pharmacotherapy and inflammatory cytokines sequestration from such a biomimetic drug delivery system lead to improved therapeutic efficacy in atherosclerosis. Comparison to macrophage internalized with ROS-responsive NPs, as a live-cell based drug delivery system for treatment of atherosclerosis, suggests that cell membrane coated drug delivery approach is likely more suitable for dealing with an inflammatory disease than the live-cell approach.
Collapse
|
32
|
Li L, Xu W, Fu X, Huang Y, Wen Y, Xu Q, He X, Wang K, Huang S, Lv Z. Blood miR-1275 is associated with risk of ischemic stroke and inhibits macrophage foam cell formation by targeting ApoC2 gene. Gene 2020; 731:144364. [PMID: 31935511 DOI: 10.1016/j.gene.2020.144364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/05/2023]
Abstract
Apolipoprotein C2 (ApoC2) is an important member of the apolipoprotein C family and functions as a major activator of lipoprotein lipase (LPL). In cardiovascular and cerebrovascular systems, the lipolytic activity of the LPL-ApoC2 complex is critical for the metabolism of triglyceride-rich lipoproteins and contributes to the pathogenesis of ischemic stroke (IS). However, the regulation of ApoC2 in IS development remains unclear. In this study, we first explored potential ApoC2-targeting microRNAs (miRNAs) by bioinformatics tool and compared the miRNA expression profiles in the blood cells of 25 IS patients and 25 control subjects by miRNA microarray. miR-1275 was predicted to bind with the 3' untranslated region of ApoC2, and a significant reduction of blood miR-1275 levels was observed in IS patients. Dual-luciferase reporter assay and quantitative RT-PCR confirmed the regulation of ApoC2 by miR-1275 in THP-1 derived macrophages. miR-1275 also inhibited cellular uptake of ox-LDL and suppressed formation of macrophage foam cell. Furthermore, the whole blood miR-1275 levels were validated in 279 IS patients and 279 control subjects by TaqMan assay. miR-1275 levels were significantly lower in IS cases and logistic regression analysis showed that miR-1275 level was negatively associated with the occurrence of IS (adjusted OR, 0.76; 95% CI, 0.69-0.85; p < 0.001). Addition of miR-1275 to traditional risk factors showed an additive prediction value for IS. Our study shows that blood miR-1275 levels were negatively associated with the occurrence of IS, and miR-1275 might exert an athero-protective role against the development of IS by targeting ApoC2 and blocking the formation of macrophage foam cells.
Collapse
Affiliation(s)
- Lu Li
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wang Xu
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xuejun Fu
- Department of Neurology, People's Hospital of Shenzhen, Guangdong, China
| | - Ying Huang
- Department of Neurology, People's Hospital of Shenzhen, Guangdong, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Qianhui Xu
- Department of Neurology, People's Hospital of Shenzhen, Guangdong, China
| | - Xinpeng He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Kan Wang
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China.
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China.
| |
Collapse
|
33
|
Park S, Ahn JW, Jo Y, Kang HY, Kim HJ, Cheon Y, Kim JW, Park Y, Lee S, Park K. Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs. ACS NANO 2020; 14:1856-1865. [PMID: 31909985 DOI: 10.1021/acsnano.9b07993] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Lipid droplet (LD) accumulation, a key feature of foam cells, constitutes an attractive target for therapeutic intervention in atherosclerosis. However, despite advances in cellular imaging techniques, current noninvasive and quantitative methods have limited application in living foam cells. Here, using optical diffraction tomography (ODT), we performed quantitative morphological and biophysical analysis of living foam cells in a label-free manner. We identified LDs in foam cells by verifying the specific refractive index using correlative imaging comprising ODT integrated with three-dimensional fluorescence imaging. Through time-lapse monitoring of three-dimensional dynamics of label-free living foam cells, we precisely and quantitatively evaluated the therapeutic effects of a nanodrug (mannose-polyethylene glycol-glycol chitosan-fluorescein isothiocyanate-lobeglitazone; MMR-Lobe) designed to affect the targeted delivery of lobeglitazone to foam cells based on high mannose receptor specificity. Furthermore, by exploiting machine-learning-based image analysis, we further demonstrated therapeutic evaluation at the single-cell level. These findings suggest that refractive index measurement is a promising tool to explore new drugs against LD-related metabolic diseases.
Collapse
Affiliation(s)
- Sangwoo Park
- Gwangju Center , Korea Basic Science Institute (KBSI) , Gwangju , 61186 , Korea
| | - Jae Won Ahn
- Department of Systems Biotechnology , Chung-Ang University , Anseong , Gyeonggi 17546 , Korea
| | - YoungJu Jo
- Department of Physics , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 34141 , Korea
- KAIST Institute for Health Science and Technology, KAIST , Daejeon , 34141 , Korea
| | - Ha-Young Kang
- Gwangju Center , Korea Basic Science Institute (KBSI) , Gwangju , 61186 , Korea
| | - Hyun Jung Kim
- Cardiovascular Center , Korea University Guro Hospital , Seoul , 08308 , Korea
| | - Yeongmi Cheon
- Gwangju Center , Korea Basic Science Institute (KBSI) , Gwangju , 61186 , Korea
| | - Jin Won Kim
- Cardiovascular Center , Korea University Guro Hospital , Seoul , 08308 , Korea
| | - YongKeun Park
- Department of Physics , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 34141 , Korea
- KAIST Institute for Health Science and Technology, KAIST , Daejeon , 34141 , Korea
- Tomocube Inc. , Daejeon , 34051 , Korea
| | - Seongsoo Lee
- Gwangju Center , Korea Basic Science Institute (KBSI) , Gwangju , 61186 , Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology , Chung-Ang University , Anseong , Gyeonggi 17546 , Korea
| |
Collapse
|
34
|
Li J, Wang S, Li Y, Zhang N, Gribskov M, Zhang X, Lin M, Shao D, Zhang C, Dai L, Qin C, Duan X, Li J, Xu F, Yang H. miRNA-mediated macrophage behaviors responding to matrix stiffness and ox-LDL. J Cell Physiol 2020; 235:6139-6153. [PMID: 32020590 DOI: 10.1002/jcp.29543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is one of the leading causes of morbidity and mortality, mainly due to the immune response triggered by the recruitment of monocytes/macrophages in the artery wall. Accumulating evidence have shown that matrix stiffness and oxidized low-density lipoproteins (ox-LDL) play important roles in atherosclerosis through modulating cellular behaviors. However, whether there is a synergistic effect for ox-LDL and matrix stiffness on macrophages behavior has not been explored yet. In this study, we developed a model system to investigate the synergistic role of ox-LDL and matrix stiffness on macrophage behaviors, such as migration, inflammatory and apoptosis. We found that there was a matrix stiffness-dependent behavior of monocyte-derived macrophages stimulated with ox-LDL. What's more, macrophages were more sensitive to ox-LDL on the stiff matrices compared to cells cultured on the soft matrices. Through next-generation sequencing, we identified miRNAs in response to matrix stiffness and ox-LDL and predicted pathways that showed the capability of miRNAs in directing macrophages fates. Our study provides a novel understanding of the important synergistic role of ox-LDL and matrix stiffness in modulating macrophages behaviors, especially through miRNAs signaling pathways, which could be potential key regulators in atherosclerosis and immune-targeted therapies.
Collapse
Affiliation(s)
- Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Yuhui Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Xi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Min Lin
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Chen Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Chuanguang Qin
- Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, P.R. China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Juntang Li
- Collaborative Innovation Centre of Medical Engineering, Luoyang, Henan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.,Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
35
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
36
|
Yalcinkaya A, Unal S, Oztas Y. Altered HDL particle in sickle cell disease: decreased cholesterol content is associated with hemolysis, whereas decreased Apolipoprotein A1 is linked to inflammation. Lipids Health Dis 2019; 18:225. [PMID: 31861992 PMCID: PMC6924024 DOI: 10.1186/s12944-019-1174-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hypocholesterolemia is the most frequently encountered lipid abnormality in sickle cell disease (SCD). We enrolled pediatric patients to determine the relationships between lipid profile and parameters of hemolysis, oxidative stress and chronic inflammation in SCD. Methods The study involved 35 pediatric SCD patients and 19 healthy controls. Patients were crisis-free and had not received transfusions for the last 3 months. Total cholesterol, triglyceride, HDL-C, LDL-C, VLDL-C, apolipoprotein A1, apolipoprotein B, LCAT, LDH, bilirubin, haptoglobin, iron, ferritin, hemin, serum amyloid A (SAA), myeloperoxidase (MPO), uric acid, ALT and GGT levels were evaluated in patients’ blood. Results Patients had hypocholesterolemia depicted by lower levels of total cholesterol, HDL-C, LDL-C, as well as Apolipoprotein A1 and Apolipoprotein B compared to controls. The chronic hemolysis of SCD was evident in patients by higher LDH and bilirubin and almost undetectable haptoglobin levels. Hemin levels (as a measure of oxidized heme) were significantly increased in patients with SCD. Inflammation markers, SAA and MPO, were significantly increased in the patients as well. There were negative correlations between HDL-C and LDH, and Apo A1 and SAA. Hemin was positively correlated to MPO. Conclusion Hemolysis was associated with decreased HDL –C, and Inflammation was linked to decreased apolipoprotein A1 levels in our SCD patients. Therefore, we suggest that the HDL particle is altered during the course of the disease. The altered HDL in SCD may become dysfunctional and result with a slowing down of the reverse cholesterol transport.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Selma Unal
- Department of Pediatric Hematology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Yesim Oztas
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
37
|
Singh RK, Haka AS, Bhardwaj P, Zha X, Maxfield FR. Dynamic Actin Reorganization and Vav/Cdc42-Dependent Actin Polymerization Promote Macrophage Aggregated LDL (Low-Density Lipoprotein) Uptake and Catabolism. Arterioscler Thromb Vasc Biol 2019; 39:137-149. [PMID: 30580573 DOI: 10.1161/atvbaha.118.312087] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective- During atherosclerosis, LDLs (low-density lipoproteins) accumulate in the arteries, where they become modified, aggregated, and retained. Such deposits of aggregated LDL (agLDL) can be recognized by macrophages, which attempt to digest and clear them. AgLDL catabolism promotes internalization of cholesterol and foam cell formation, which leads to the progression of atherosclerosis. Therapeutic blockade of this process may delay disease progression. When macrophages interact with agLDL in vitro, they form a novel extracellular, hydrolytic compartment-the lysosomal synapse (LS)-aided by local actin polymerization to digest agLDL. Here, we investigated the specific regulators involved in actin polymerization during the formation of the LS. Approach and Results- We demonstrate in vivo that atherosclerotic plaque macrophages contacting agLDL deposits polymerize actin and form a compartment strikingly similar to those made in vitro. Live cell imaging revealed that macrophage cortical F-actin depolymerization is required for actin polymerization to support the formation of the LS. This depolymerization is cofilin-1 dependent. Using siRNA-mediated silencing, pharmacological inhibition, genetic knockout, and stable overexpression, we elucidate key roles for Cdc42 Rho GTPase and GEF (guanine nucleotide exchange factor) Vav in promoting actin polymerization during the formation of the LS and exclude a role for Rac1. Conclusions- These results highlight critical roles for dynamic macrophage F-actin rearrangement and polymerization via cofilin-1, Vav, and Cdc42 in LS formation, catabolism of agLDL, and foam cell formation. These proteins might represent therapeutic targets to treat atherosclerotic disease.
Collapse
Affiliation(s)
- Rajesh K Singh
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| | - Abigail S Haka
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| | - Priya Bhardwaj
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| | - Xiaohui Zha
- Department of Biochemistry, Microbiology, and Immunology (X.Z.), University of Ottawa, ON, Canada.,Department of Medicine (X.Z.), University of Ottawa, ON, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, ON, Canada (X.Z.)
| | - Frederick R Maxfield
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| |
Collapse
|
38
|
Visscher M, Moerman AM, Burgers PC, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Van der Heiden K, Van Soest G. Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1790-1800. [PMID: 31250318 PMCID: PMC6695360 DOI: 10.1007/s13361-019-02254-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/25/2019] [Accepted: 05/20/2019] [Indexed: 05/09/2023]
Abstract
Atherosclerosis is a lipid and inflammation-driven disease of the arteries that is characterized by gradual buildup of plaques in the vascular wall. A so-called vulnerable plaque, consisting of a lipid-rich necrotic core contained by a thin fibrous cap, may rupture and trigger thrombus formation, which can lead to ischemia in the heart (heart attack) or in the brain (stroke). In this study, we present a protocol to investigate the lipid composition of advanced human carotid plaques using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI), providing a framework that should enable the discrimination of vulnerable from stable plaques based on lipid composition. We optimized the tissue preparation and imaging methods by systematically analyzing data from three specimens: two human carotid endarterectomy samples (advanced plaque) and one autopsy sample (early stage plaque). We show a robust data reduction method and evaluate the variability of the endarterectomy samples. We found diacylglycerols to be more abundant in a thrombotic area compared to other plaque areas and could distinguish advanced plaque from early stage plaque based on cholesteryl ester composition. We plan to use this systematic approach to analyze a larger dataset of carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Mirjam Visscher
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - Astrid M Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Heleen M M Van Beusekom
- Department of Experimental Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular and Endovascular Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antonius F W Van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, Rotterdam, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gijs Van Soest
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Bartlett B, Ludewick HP, Misra A, Lee S, Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol 2019; 317:H375-H386. [DOI: 10.1152/ajpheart.00206.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is now considered a chronic maladaptive inflammatory disease. The hallmark feature in both human and murine disease is atherosclerotic plaques. Macrophages and various T-cell lineages play a crucial role in atherosclerotic plaque establishment and disease progression. Humans and mice share many of the same processes that occur within atherogenesis. The various similarities enable considerable insight into disease mechanisms and those which contribute to cardiovascular complications. The apolipoprotein E-null and low-density lipoprotein receptor-null mice have served as the foundation for further immunological pathway manipulation to identify pro- and antiatherogenic pathways in attempt to reveal more novel therapeutic targets. In this review, we provide a translational perspective and discuss the roles of macrophages and various T-cell lineages in contrasting proatherosclerotic and atheroprotective settings.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
40
|
Tsui L, Wang IJ. Analysis and Quantification of Oxidized Low-Density Lipoprotein-Induced Lipid Droplets in Macrophages Through High-Content Screening: Application for Antiatherogenic Drugs Discovery. Assay Drug Dev Technol 2019; 17:223-230. [PMID: 31149834 DOI: 10.1089/adt.2019.930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Leo Tsui
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Republic of China
| |
Collapse
|
41
|
Liu S, Sui Q, Zhao Y, Chang X. Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7157-7166. [PMID: 31146527 DOI: 10.1021/acs.jafc.9b02045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lonicera caerulea berry polyphenols (LCBP) are known to reduce cholesterol accumulation. Currently, it is unknown whether LCBP can activate Sirtuin 1 (SIRT1) to regulate the formation of RAW264.7 macrophage foam cells. In this study, the effect of LCBP on lipid accumulation in macrophages was evaluated. Fluorescently labeled ox-LDL and 25-NBD cholesterol were used to detect the ox-LDL uptake and cholesterol outflow rate from macrophages. Gene silencing was performed using siRNA to detect changes in the expression of the ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 2 (SREBP2), and SIRT1 proteins using Western blotting, and changes in the expression of miR-33 were detected by real-time polymerase chain reaction. The results showed that treatment with 80 μg/mL LCBP significantly inhibited the accumulation of lipids in RAW264.7 macrophages induced by ox-LDL and reduced intracellular cholesterol levels by activating SIRT1 to enhance the expression of ABCA1, a cholesterol efflux gene, but not independent effect. Of the three key LCBP components investigated, chlorogenic acid was found to activate SIRT1 and regulate the expression of the cholesterol-related factors ABCA1, SREBP2, and miR-33; cyanidin-3-glucoside and catechins were effective to a lesser extent. Our results suggest a novel hypolipidemic mechanism of LCBP.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Qianqian Sui
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Yanxue Zhao
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Xuedong Chang
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
- Hebei Yanshan Special Industrial Technology Research Institute , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
42
|
Wang MJ, Peng XY, Lian ZQ, Zhu HB. The cordycepin derivative IMM-H007 improves endothelial dysfunction by suppressing vascular inflammation and promoting AMPK-dependent eNOS activation in high-fat diet-fed ApoE knockout mice. Eur J Pharmacol 2019; 852:167-178. [DOI: 10.1016/j.ejphar.2019.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023]
|
43
|
Cai C, Zhu H, Ning X, Li L, Yang B, Chen S, Wang L, Lu X, Gu D. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019; 285:31-39. [PMID: 31003090 DOI: 10.1016/j.atherosclerosis.2019.04.204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Long non-coding RNAs (lncRNAs) have proven to be involved in the progression of atherosclerosis and dyslipidemia. In addition, vascular smooth muscle cells (VSMCs) phenotype switching, including VSMCs-derived foam cells formation, plays a key role in the pathogenesis of atherosclerosis. LncRNA ENST00000602558.1, one of the differentially expressed lncRNAs between coronary artery disease (CAD) patients and healthy controls identified by our previous study, was located to TG and HDL susceptibility loci, but its role and underlying mechanism in the pathogenesis of atherosclerosis remain unclear. The present study aims to explore the role and underlying mechanism of ENST00000602558.1 in the regulation of cholesterol efflux from VSMCs. METHODS ABCG1 mRNA and protein expression in VSMCs was detected using qRT-PCR and Western blot, respectively. ABCG1-mediated cholesterol efflux to HDL from VSMCs was measured by means of NBD-cholesterol fluorescence intensity. The binding of ENST00000602558.1 to p65 and p65 to ABCG1 promoter region was detected by RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay, respectively. RESULTS Overexpression of ENST00000602558.1 downregulated ABCG1 mRNA and protein expression, while knockdown of ENST00000602558.1 upregulated ABCG1 mRNA and protein expression. Consistently, ENST00000602558.1 overexpression decreased ABCG1-mediated cholesterol efflux to HDL from VSMCs by 30.38% (p < 0.001), and knockdown of ENST00000602558.1 increased ABCG1-mediated cholesterol efflux to HDL from VSMCs by 30.41% (p = 0.001). In addition to cholesterol efflux, overexpression of ENST00000602558.1 increased lipid accumulation and TC/TG levels, while knockdown of ENST00000602558.1 decreased lipid accumulation and TC/TG levels in VSMCs. Furthermore, we confirmed that ENST00000602558.1 regulated ABCG1 expression and ABCG1-mediated cholesterol efflux from VSMCs through binding to p65. CONCLUSIONS In conclusion, ENST00000602558.1 played an important role in mediating cholesterol efflux to HDL from VSMCs by regulating ABCG1 expression through binding to p65.
Collapse
Affiliation(s)
- Can Cai
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Huijuan Zhu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Xiaotong Ning
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Lin Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| |
Collapse
|
44
|
Hu S, Zhu L. Semaphorins and Their Receptors: From Axonal Guidance to Atherosclerosis. Front Physiol 2018; 9:1236. [PMID: 30405423 PMCID: PMC6196129 DOI: 10.3389/fphys.2018.01236] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022] Open
Abstract
Semaphorins are a large family of secreted, transmembrane, or GPI-anchored proteins initially identified as axon guidance cues signaling through their receptors, neuropilins, and plexins. Emerging evidence suggests that beyond the guidance, they also function in a broad spectrum of pathophysiological conditions, including atherosclerosis, a vascular inflammatory disease. Particular semaphorin members have been demonstrated to participate in atherosclerosis via eliciting endothelial dysfunction, leukocyte infiltration, monocyte-macrophage retention, platelet hyperreactivity, and neovascularization. In this review, we focus on the role of those semaphorin family members in the development of atherosclerosis and highlight the mechanistic relevance of semaphorins to atherogenesis.
Collapse
Affiliation(s)
- Shuhong Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Yang BR, Yuen SC, Fan GY, Cong WH, Leung SW, Lee SMY. Identification of certain Panax species to be potential substitutes for Panax notoginseng in hemostatic treatments. Pharmacol Res 2018; 134:1-15. [DOI: 10.1016/j.phrs.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
|
46
|
Deepika P, Rajeshwary A, Usha S, Goutham MK, Raghav S. Does dyslipidemia worsen the hearing level in diabetics? J Otol 2018; 12:198-201. [PMID: 29937856 PMCID: PMC6002627 DOI: 10.1016/j.joto.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023] Open
Abstract
Objective To identify the effect of dyslipidemia on auditory function detected by Pure Tone Audiometry. To check if dyslipidemia worsens the hearing level in diabetics. Design This was a comparative study where 120 subjects between the age group of 20 and 50 years underwent pure tone audiometry, lipid profile and blood sugars. Group 1 consisted of 30 subjects with type 2 diabetes and dyslipidemia; Group 2 had 30 subjects with isolated diabetes; Group 3 had 30 with isolated dyslipidemia and Group 4 included 30 normal subjects as control. Results Significant hearing loss was seen only in the group with isolated diabetes (63%). The most common type of hearing loss was high frequency sensorineural hearing loss. When comparison was made between the combinations of different lipid profiles, no association was found to the level of hearing. Conclusions Diabetics are more prone to high frequency hearing loss. Altered lipid profile has no role in causing hearing loss.
Collapse
Affiliation(s)
- Pratap Deepika
- Dept of Otorhinolaryngology, KSHEMA, Nitte University, Mangalore 575018, India
| | - A Rajeshwary
- Dept of Otorhinolaryngology, KSHEMA, Nitte University, Mangalore 575018, India
| | - Shastri Usha
- Dept of Audiology and Speech Language Pathology, Nitte Institute of Speech and Hearing, Mangalore 575018, India
| | - M K Goutham
- Dept of Otorhinolaryngology, KSHEMA, Nitte University, Mangalore 575018, India
| | - Sharma Raghav
- Dept of Medicine, KSHEMA, Nitte University, Mangalore 575018, India
| |
Collapse
|
47
|
A Snake Venom-Secreted Phospholipase A 2 Induces Foam Cell Formation Depending on the Activation of Factors Involved in Lipid Homeostasis. Mediators Inflamm 2018; 2018:2547918. [PMID: 30013451 PMCID: PMC6022332 DOI: 10.1155/2018/2547918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/29/2018] [Accepted: 05/06/2018] [Indexed: 01/18/2023] Open
Abstract
MT-III, a snake venom GIIA sPLA2, which shares structural and functional features with mammalian GIIA sPLA2s, activates macrophage defense functions including lipid droplet (LDs) formation, organelle involved in both lipid metabolism and inflammatory processes. Macrophages (MΦs) loaded with LDs, termed foam cells, characterize early blood vessel fatty-streak lesions during atherosclerosis. However, the factors involved in foam cell formation induced by a GIIA sPLA2 are still unknown. Here, we investigated the participation of lipid homeostasis-related factors in LD formation induced by MT-III in macrophages. We found that MT-III activated PPAR-γ and PPAR-β/δ and increased the protein levels of both transcription factors and CD36 in macrophages. Pharmacological interventions evidenced that PPAR-γ, PPAR-β/δ, and CD36 as well as the endoplasmic reticulum enzymes ACAT and DGAT are essential for LD formation. Moreover, PPAR-β/δ, but not PPAR-γ, is involved in MT-III-induced PLIN2 protein expression, and both PPAR-β/δ and PPAR-γ upregulated CD36 protein expression, which contributes to MT-III-induced COX-2 expression. Furthermore, production of 15-d-PGJ2, an activator of PPARs, induced by MT-III, was dependent on COX-1 being LDs an important platform for generation of this mediator.
Collapse
|
48
|
Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, Srikanth V, Münch G. Activation of Macrophages and Microglia by Interferon-γ and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus? J Alzheimers Dis 2018; 59:467-479. [PMID: 28582854 DOI: 10.3233/jad-161152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MGO), a dicarbonyl compound derived from glucose, is elevated in diabetes mellitus and contributes to vascular complications by crosslinking collagen and increasing arterial stiffness. It is known that MGO contributes to inflammation as it forms advanced glycation end products (AGEs), which activate macrophages via the receptor RAGE. The aim of study was to investigate whether inflammatory activation can increase MGO levels, thereby completing a vicious cycle. In order to validate this, macrophage (RAW264.7, J774A.1) and microglial (N11) cells were stimulated with IFN-γ and LPS (5 + 5 and 10 + 10 IFN-γ U/ml or μg/ml LPS), and extracellular MGO concentration was determined after derivatization with 5,6-Diamino-2,4-dihydroxypyrimidine sulfate by HPLC. MGO levels in activated macrophage cells (RAW264.7) peaked at 48 h, increasing 2.86-fold (3.14±0.4 μM) at 5 U/ml IFN-γ+5 μg/ml LPS, and 4.74-fold (5.46±0.30 μM) at 10 U/ml IFN-γ+10 μg/ml LPS compared to the non-activated controls (1.15±0.02 μM). The other two cell lines, J774A.1 macrophages and N11 microglia, showed a similar response. We suggest that inflammation increases MGO production, possibly exacerbating arterial stiffness, cardiovascular complications, and diabetes-related cognitive decline.
Collapse
Affiliation(s)
- Karthik Dhananjayan
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Dhanushka Gunawardena
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Nerissa Hearn
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Tanja Sonntag
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia.,National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
49
|
Jiang C, Zhao Y, Yang Y, He J, Zhang W, Liu J. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle. Mol Pharm 2018; 15:1017-1027. [DOI: 10.1021/acs.molpharmaceut.7b00923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Yi Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Yun Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210008, PR China
| |
Collapse
|
50
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|