1
|
Bergentall M, Tremaroli V, Sun C, Henricsson M, Khan MT, Mannerås Holm L, Olsson L, Bergh PO, Molinaro A, Mardinoglu A, Caesar R, Nieuwdorp M, Bäckhed F. Gut microbiota mediates SREBP-1c-driven hepatic lipogenesis and steatosis in response to zero-fat high-sucrose diet. Mol Metab 2025; 97:102162. [PMID: 40345386 DOI: 10.1016/j.molmet.2025.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVES Sucrose-rich diets promote hepatic de novo lipogenesis (DNL) and steatosis through interactions with the gut microbiota. However, the role of sugar-microbiota dynamics in the absence of dietary fat remains unclear. This study aimed to investigate the effects of a high-sucrose, zero-fat diet (ZFD) on hepatic steatosis and host metabolism in conventionally raised (CONVR) and germ-free (GF) mice. METHODS CONVR and GF mice were fed a ZFD, and hepatic lipid accumulation, gene expression, and metabolite levels were analyzed. DNL activity was assessed by measuring malonyl-CoA levels, expression of key DNL enzymes, and activation of the transcription factor SREBP-1c. Metabolomic analyses of portal vein plasma identified microbiota-derived metabolites linked to hepatic steatosis. To further examine the role of SREBP-1c, its hepatic expression was knocked down using antisense oligonucleotides in CONVR ZFD-fed mice. RESULTS The gut microbiota was essential for sucrose-induced DNL and hepatic steatosis. In CONVR ZFD-fed mice, hepatic fat accumulation increased alongside elevated expression of genes encoding DNL enzymes, higher malonyl-CoA levels, and upregulation of SREBP-1c. Regardless of microbiota status, ZFD induced fatty acid elongase and desaturase gene expression and increased hepatic monounsaturated fatty acids. Metabolomic analyses identified microbiota-derived metabolites associated with hepatic steatosis. SREBP-1c knockdown in CONVR ZFD-fed mice reduced hepatic steatosis and suppressed fatty acid synthase expression. CONCLUSIONS Sucrose-microbiota interactions and SREBP-1c are required for DNL and hepatic steatosis in the absence of dietary fat. These findings provide new insights into the complex interplay between diet, gut microbiota, and metabolic regulation.
Collapse
Affiliation(s)
- Mattias Bergentall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Chuqing Sun
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Muhammad Tanweer Khan
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Louise Mannerås Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Lisa Olsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Robert Caesar
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden.
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden; Department of Clinical Physiology Region Västra Götaland, Sahlgrenska University Hospital Gothenburg Sweden, Sweden.
| |
Collapse
|
2
|
Seeger DR, Kotha P, Golovko SA, Murphy EJ, Golovko MY. Fatty acid synthase global inducible knockout does not alter brain fatty acid concentrations but attenuates cholesterol synthesis in the adult mouse. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102679. [PMID: 40185011 DOI: 10.1016/j.plefa.2025.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Fatty acid (FA) de novo synthesis, also called de novo lipogenesis (DNL), has a central role in peripheral energy storage and provides structural components for lipid membranes. However, less is known regarding its contribution to brain FA homeostasis. DNL is catalyzed by fatty acid synthase (FAS), which is a multifunctional enzyme expressed in all mammalian tissues. In the present study, we addressed, for the first time, the effect of FAS gene global conditional inducible knockout (Fasn KO) on the adult brain FA concentrations and lipid metabolism. We achieved a 67 % reduction in the brain FAS protein levels, with a significant reduction in total FA synthesis measured by 3H2O incorporation into FA, which was lethal 10 days after gene recombination induction. However, the concentrations of all 44 FA molecular species assayed by LC-MS were unchanged in the brain. We also did not detect changes in the major proteins involved in FA synthesis regulation and remodeling, including peroxisome proliferator-activated receptor α (PPARα), PPARδ, FA desaturase-1, -2, and -3, and Stearoyl-CoA desaturase 1 but did observe a decrease in PPARɣ levels. In addition, brain cholesterol synthesis was significantly reduced in the Fasn KO brains. These data indicate that DNL is not required to maintain measured FA concentrations in the brain and that dietary FA and liver-derived pools might compensate for decreased brain DNL within the duration of the study. However, our data indicate a possible role of FAS in PPARɣ regulation and cholesterol metabolism in the adult brain.
Collapse
Affiliation(s)
- Drew R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, United States
| | - Peddanna Kotha
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, United States
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, United States
| | - Eric J Murphy
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, United States
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, United States.
| |
Collapse
|
3
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Meade R, Ibrahim D, Engel C, Belaygorod L, Arif B, Hsu FF, Adak S, Catlett R, Zhou M, Ilagan MXG, Semenkovich CF, Zayed MA. Targeting fatty acid synthase reduces aortic atherosclerosis and inflammation. Commun Biol 2025; 8:262. [PMID: 39972116 PMCID: PMC11840040 DOI: 10.1038/s42003-025-07656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Fatty acid synthase (FAS) is predominantly expressed in the liver and adipose tissue. It plays vital roles in de novo synthesis of saturated fatty acids and regulates insulin sensitivity. We previously demonstrated that serum circulating FAS (cFAS) is a clinical biomarker for advanced atherosclerosis, and that it is conjugated to low-density lipoproteins (LDL). However, it remains unknown whether cFAS can directly impact atheroprogression. To investigate this, we evaluate whether cFAS impacts macrophage foam cell formation - an important cellular process leading to atheroprogression. Macrophages exposed to human serum containing high levels of cFAS show increased foam cell formation as compared to cells exposed to serum containing low levels of cFAS. This difference is not observed using serum containing either high or low LDL. Pharmacological inhibition of cFAS using Platensimycin (PTM) decreases foam cell formation in vitro. In Apoe-/- mice with normal FAS expression, administration of PTM over 16 weeks along with a high fat diet decreases cFAS activity and aortic atherosclerosis without affecting circulating total cholesterol. This effect is also observed in Apoe-/- mice with liver-specific knockout of hepatic Fasn. Reductions in aortic root plaque are associated with decreased macrophage infiltration. These findings demonstrate that cFAS plays an important role in arterial atheroprogression.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Dina Ibrahim
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Larisa Belaygorod
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangeeta Adak
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Catlett
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mingzhou Zhou
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ma Xenia G Ilagan
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McKelvey School of Engineering, Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- CardioVascular Research Innovation in Surgery & Engineering Center, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Rowland LA, Santos KB, Guilherme A, Munroe S, Lifshitz LM, Nicoloro S, Wang H, Yee MF, Czech MP. The autophagy receptor Ncoa4 controls PPARγ activity and thermogenesis in brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636110. [PMID: 39974946 PMCID: PMC11838434 DOI: 10.1101/2025.02.02.636110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Adipose tissue dysfunction leads to a variety of deleterious systemic consequences including ectopic lipid deposition and impaired insulin sensitivity. PPARγ is a major regulator of adipocyte differentiation and functionality and is thus a determinant of systemic metabolic health. We recently reported that deletion of adipocyte fatty acid synthase (AdFasnKO) impairs autophagy in association with a striking upregulation of genes controlled by PPARγ, including thermogenic uncoupling protein 1 (Ucp1). In this present study, screening for PPARγ coactivators regulated by autophagy revealed a protein denoted as Nuclear receptor coactivator 4 (Ncoa4), known to mediate ferritinophagy and interact with PPARγ and other nuclear receptors. Indeed, we found Ncoa4 is upregulated in the early phase of adipocyte differentiation and is required for adipogenesis. Ncoa4 is also elevated in FasnKO adipocytes and necessary for full upregulation of Ucp1 expression in vitro , even in response to norepinephrine. Consistent with these findings, adipose-selective knockout of Ncoa4 (AdNcoa4KO mice) impairs Ucp1 expression in brown adipose tissue and cold-induced thermogenesis. Adipose-selective double KO of Fasn plus Ncoa4 (AdFasnNcoa4DKO mice) prevents the upregulation of classic PPARγ target genes normally observed in the white adipose tissue of AdFasnKO mice, but not thermogenic Ucp1 expression. These findings reveal Ncoa4 is a novel determinant of adipocyte PPARγ activity and regulator of white and brown adipocyte biology and suggest that manipulation of autophagy flux modulates PPARγ activity and key adipocyte functions via Ncoa4 actions.
Collapse
|
6
|
Wang P, Hu L, Chen Y, Zhou D, Zhu S, Zhang T, Cen Z, He Q, Wu B, Huang X. Enhancing newborn screening sensitivity and specificity for missed NICCD using selected amino acids and acylcarnitines. Orphanet J Rare Dis 2025; 20:17. [PMID: 39799340 PMCID: PMC11724517 DOI: 10.1186/s13023-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis. METHODS In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing. Receiver Operating Characteristic (ROC) analysis evaluated the predictive value of amino acids and acylcarnitines in dried blood spots (DBS) for identifying missed patients including 40 missed patients and 17,269 healthy individuals, with additional validation using 12 missed patients and 454 healthy controls. RESULTS The age of diagnosis was significantly higher in the "Missed Screening" group compared to the "Newborn Screening" group (74.50 vs. 18.00 days, P < 0.001). ROC analysis revealed that citrulline had excellent diagnostic accuracy for missed patients, with an AUC of 0.970 and a cut-off value of 17.57 µmol/L. Additionally, glycine, phenylalanine, ornithine, and C8 were significant markers, each with an AUC greater than 0.70. A combination of these markers achieved an AUC of 0.996 with a cut-off value of 0.00195. Validation demonstrated a true positive rate of 91.67% and a true negative rate of 96.48%. Common SLC25A13 mutations in both groups were c.852_855del, IVS16ins3kb, and c.615 + 5G > A. CONCLUSIONS Combining multiple metabolic markers during NBS significantly improves sensitivity and specificity for detecting missed NICCD cases. However, the relationship between genetic mutations and missed cases remains unclear.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yuhe Chen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shasha Zhu
- Department of Pediatric Health, Taizhou Women and Children's Hospital, Taizhou, 318000, Zhejiang, China
| | - Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Ziyan Cen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Qimin He
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Benqing Wu
- Children's Medical Center, University of the Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
7
|
Singh P, Gautam A, Trujillo M, Galligan J, Hensley L, Kapahi P, Bartke A. Growth Hormone Excess Drives Liver Aging via increased Glycation stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631635. [PMID: 39829894 PMCID: PMC11741365 DOI: 10.1101/2025.01.06.631635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Growth hormone (GH) plays a crucial role in various physiological functions, with its secretion tightly regulated by complex endocrine mechanisms. Pathological conditions such as acromegaly or pituitary tumors result in elevated circulating GH levels, which have been implicated in a spectrum of metabolic disorders, potentially by regulating liver metabolism. In this study, we focused on the liver, a key organ in metabolic regulation and a primary target of GH, to investigate the impact of high circulating GH on liver metabolism. We used bovine GH overexpressing transgenic (bGH-Tg) mice to conduct a comprehensive transcriptomic analysis of hepatic tissues. The bGH-Tg mouse livers exhibit dysregulated fatty acid metabolism and heightened inflammatory responses. Notably, the transcriptomic profile of young bGH-Tg mouse livers resembled that of aged livers and displayed markers of increased cellular senescence. Furthermore, these mice exhibited a significant accumulation of advanced glycation end products (AGEs). Intervention with glycation-lowering compounds effectively reversed the insulin resistance and aberrant transcriptomic signatures in the liver that are associated with elevated GH levels. These findings underscore the potential therapeutic value of glycation-lowering agents in mitigating the deleterious effects of chronic GH overexpression. Highlights Overexpression of bovine growth hormone impacts transcriptional changes in liver fat metabolism and inflammatory response in mice.High circulating growth hormone leads to transcriptional changes that suggest enhanced liver aging and induce cellular senescence.Detoxification pathways in bGH-Tg mice are inhibited, leading to the accumulation of Advanced Glycation End (AGE) products.Glycation-lowering compounds can mitigate pathologies associated with high GH levels.
Collapse
|
8
|
Korenfeld N, Charni-Natan M, Bruse J, Goldberg D, Marciano-Anaki D, Rotaro D, Gorbonos T, Radushkevitz-Frishman T, Polizzi A, Nasereddin A, Gover O, Bar-Shimon M, Fougerat A, Guillou H, Goldstein I. Repeated fasting events sensitize enhancers, transcription factor activity and gene expression to support augmented ketogenesis. Nucleic Acids Res 2025; 53:gkae1161. [PMID: 39673515 PMCID: PMC11724283 DOI: 10.1093/nar/gkae1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024] Open
Abstract
Mammals withstand frequent and prolonged fasting periods due to hepatic production of glucose and ketone bodies. Because the fasting response is transcriptionally regulated, we asked whether enhancer dynamics impose a transcriptional program during recurrent fasting and whether this generates effects distinct from a single fasting bout. We found that mice undergoing alternate-day fasting (ADF) respond profoundly differently to a following fasting bout compared to mice first experiencing fasting. Hundreds of genes enabling ketogenesis are 'sensitized' (i.e. induced more strongly by fasting following ADF). Liver enhancers regulating these genes are also sensitized and harbor increased binding of PPARα, the main ketogenic transcription factor. ADF leads to augmented ketogenesis compared to a single fasting bout in wild-type, but not hepatocyte-specific PPARα-deficient mice. Thus, we found that past fasting events are 'remembered' in hepatocytes, sensitizing their enhancers to the next fasting bout and augment ketogenesis. Our findings shed light on transcriptional regulation mediating adaptation to repeated signals.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Justine Bruse
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Dorin Marciano-Anaki
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Dan Rotaro
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Tali Gorbonos
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Abed Nasereddin
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem-Hadassah Medical School, Kalman Ya'Akov Man Street, Jerusalem 9112001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Rauckhorst AJ, Sheldon RD, Pape DJ, Ahmed A, Falls-Hubert KC, Merrill RA, Brown RF, Deshmukh K, Vallim TA, Deja S, Burgess SC, Taylor EB. A hierarchical hepatic de novo lipogenesis substrate supply network utilizing pyruvate, acetate, and ketones. Cell Metab 2025; 37:255-273.e6. [PMID: 39471817 PMCID: PMC11856365 DOI: 10.1016/j.cmet.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive 13C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Reid F Brown
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kshitij Deshmukh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Thomas A Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
10
|
Liu JY, Kuna RS, Pinheiro LV, Nguyen PTT, Welles JE, Drummond JM, Murali N, Sharma PV, Supplee JG, Shiue M, Zhao S, Farria AT, Kumar A, Ruchhoeft ML, Demetriadou C, Kantner DS, Chatoff A, Megill E, Titchenell PM, Snyder NW, Metallo CM, Wellen KE. Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase. Cell Metab 2025; 37:239-254.e7. [PMID: 39471816 PMCID: PMC11711013 DOI: 10.1016/j.cmet.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramya S Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn E Welles
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nivitha Murali
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prateek V Sharma
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia Shiue
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee T Farria
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mauren L Ruchhoeft
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Demetriadou
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniel S Kantner
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily Megill
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Paul M Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christian M Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Yao L, Zhao L, Liu F, Al-Bukhaiti WQ, Huang X, Lin T, Qiu SX. New stilbenes from Cajanus cajan inhibit adipogenesis in 3T3-L1 adipocytes through down-regulation of PPARγ. Bioorg Chem 2024; 153:107851. [PMID: 39368142 DOI: 10.1016/j.bioorg.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Two new stilbenes, denominated Cajanotone B (CAB) and Cajanotone C (CAC), were isolated from the leaves of Cajanus cajan. In this study, the structures of CAB and CAC were unambiguously elucidated by a combination of various spectral methods. Both compounds significantly inhibited the adipogenesis in 3T3-L1 adipocytes by reducing the lipid accumulation, triglyceride content and FFA secretion. CAB and CAC also substantially inhibit the mRNA expression of HSL, ATGL, C/EBPα and PPARγ as deciphered based by RT-PCR assay. Down-regulation of PPAR is believed to be the primary mechanism underlying which CAB and CAC inhibited adipogenic differentiation because the lipid-promoting activity of PPAR agonists can be counteracted by these compounds. The molecular interaction between CAB/CAC and PPARγ was revealed with the help of molecular docking. Taken together, CAB and CAC could serve as new lead compounds with the potential to speed up the development of novel lipid-lowering and weight-control therapies.
Collapse
Affiliation(s)
- Liyuan Yao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liyun Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Fen Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wedad Q Al-Bukhaiti
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaobao Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Visiting Student from the Department of Chemistry, University of Wisconsin-Madison, USA
| | - Tingting Lin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Sheng-Xiang Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Laboratory of Natural Product Chemical Biology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| |
Collapse
|
12
|
Diab F, Zbeeb H, Zeaiter L, Baldini F, Pagano A, Minicozzi V, Vergani L. Unraveling the metabolic activities of bioactive compounds on cellular models of hepatosteatosis and adipogenesis through docking analysis with PPARs. Sci Rep 2024; 14:28196. [PMID: 39548141 PMCID: PMC11568224 DOI: 10.1038/s41598-024-78374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Obesity is associated with fatty liver disease. Available therapies show modest efficacy, and nutraceuticals with good effectiveness and safety are largely investigated. We focused on five natural compounds, three plant phenolic compounds (carvacrol, rosmarinic acid, silybin), and two thyroid hormones (T2: 3,5-diiodo-l-thyronine; T3: 3,5,3'-triiodo-L-thyronine) as comparison, to assess their beneficial effects on two cellular models of hepatosteatosis and adipogenesis. All compounds ameliorated the lipid accumulation and oxidative stress in both models, but with different potencies. The peroxisome proliferator-activated receptors (PPARs) are pivotal controllers of adipogenesis and lipid metabolism. For the main isoforms, PPARγ and PPARa, we assessed their possible binding to the compounds by molecular docking calculations, and their expression pattern by real-time PCR. All compounds bind both PPARs with different affinity, while not all compounds affect their expression. The results may clarify the distinctive molecular mechanisms underlying the action of the five compounds in the different cell models with possible applications to treat obesity.
Collapse
Affiliation(s)
- Farah Diab
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Hawraa Zbeeb
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lama Zeaiter
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- Istituto Italiano Tecnologia, Genova, Italy
| | | | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata and INFN - Section of Rome Tor Vergata, Rome, Italy
| | - Laura Vergani
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
13
|
Vaezi MA, Nekoufar S, Robati AK, Salimi V, Tavakoli-Yaraki M. Therapeutic potential of β-hydroxybutyrate in the management of pancreatic neoplasms: exploring novel diagnostic and treatment strategies. Lipids Health Dis 2024; 23:376. [PMID: 39543582 PMCID: PMC11562866 DOI: 10.1186/s12944-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pancreatic neoplasm, a highly aggressive and often fatal cancer, poses challenges due to late detection and nonspecific symptoms. Therefore, both early diagnosis and appropriate therapeutic approaches are necessary to augment the condition of these patients. Cancer cells undergo metabolic deregulation, which enables their proliferation, survival, and invasion. As a result, it is crucial to focus on the metabolic pathways in prevalent cancers and explore treatment strategies that target these pathways to control tumor growth effectively. This is particularly relevant in cancers like pancreatic cancer, which undergo numerous metabolic alterations. The ketogenic regimen, characterized by low carbohydrate and protein contents and high-fat sources, does not involve caloric restriction. This allows for the induction of ketogenesis and an increase in ketone bodies, while insulin and glucose levels remain low even after meals. This unique metabolic state may influence the tumor microenvironment. Given the lack of unanimous agreement on the precise role and mechanism of the ketogenic diet, this review aims to clarify the diagnostic value and accuracy of ketone bodies in various types of pancreatic tumors and explore the potential anti-cancer effects of the ketogenic diet when used alone or in conjunction with chemotherapy, also to determine the potential of the ketogenic diet to be used as adjuvant therapy. The outcomes of this study are instrumental in enhancing our understanding of the benefits and drawbacks associated with employing this diet for the management and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
- Finetech in Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
15
|
Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res 2024; 96:101303. [PMID: 39521352 DOI: 10.1016/j.plipres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) constitute a small family of three nuclear receptors that act as lipid sensors, and thereby regulate the transcription of genes having key roles in hepatic and whole-body energy homeostasis, and in other processes (e.g., inflammation), which have far-reaching health consequences. Peroxisome proliferator-activated receptor isotype α (PPARα) is expressed in oxidative tissues, particularly in the liver, carrying out critical functions during the adaptive fasting response. Advanced omics technologies have provided insight into the vast complexity of the regulation of PPAR expression and activity, as well as their downstream effects on the physiology of the liver and its associated metabolic organs. Here, we provide an overview of the gene regulatory networks controlled by PPARα in the liver in response to fasting. We discuss impacts on liver metabolism, the systemic repercussions and benefits of PPARα-regulated ketogenesis and production of fibroblast growth factor 21 (FGF21), a fasting- and stress-inducible metabolic hormone. We also highlight current challenges in using novel methods to further improve our knowledge of PPARα in health and disease.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France.
| | - Justine Bruse
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR1297, Toulouse III University, University Paul Sabatier (UPS), Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France; Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Song Z, Yan A, Li Z, Shang Y, Chen R, Yang Z, Guo Z, Zhang Y, Wen T, Ogaji OD, Wang Y. Integrated metabolomic and transcriptomic analysis reveals the effects and mechanisms of Jinqi Jiangtang tablets on type 2 diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155957. [PMID: 39181101 DOI: 10.1016/j.phymed.2024.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Type 2 diabetes (T2DM) is one of the major metabolic diseases and poses a serious challenge to human life and global economic development. Jinqi Jiangtang Tablets (JQJT) is effective in ameliorating the effects of T2DM, but the mechanism of JQJT is unclear. PURPOSE This study integrated metabolomics and transcriptomics to reveal the mechanism by which JQJT improves T2DM. METHODS The T2DM mouse model was established, and the effects of JQJT on improving T2DM were evaluated by determining the levels of blood lipids, fasting blood glucose (FBG), insulin metabolism and hepatic lipid accumulation in mice after JQJT administration for 8 weeks. Serum metabolites were detected using ultra-performance liquid chromatography/quadrupole time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS) technology, and mouse liver differential genes were detected using transcriptomic technology. Correlation analysis was used to extract metabolites and RNA with correlations, and potential pathways were enriched and constructed using the common pathway analysis function of MetaboAnalyst 5.0. Finally, the expression of key target proteins and genes was verified by Western blot (WB) and Polymerase Chain Reaction (PCR) to further elucidate the mechanism by which JQJT improves T2DM. RESULTS JQJT reduced FBG and lipid levels, improved insulin resistance (IR) and hepatic lipoatrophy in mice. A total of 35 differentially abundant metabolites were identified by metabolomics, and 328 differential genes were detected by transcriptomics. The integrated metabolomics and transcriptomics results suggested that JQJT may ameliorate T2DM mainly by regulating glucose and lipid metabolic pathways. WB and PCR results showed that JQJT regulates the insulin signaling pathway, involved in fatty acid metabolism, glycogen synthesis and catabolism. CONCLUSIONS JQJT improved IR in T2DM mice by regulating the insulin signaling pathway, improving glycogen synthesis and glycolysis, and increasing hepatic triglyceride and fatty acid metabolism.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - An Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
17
|
Kim DH. Endoplasmic reticulum stress induces hepatic steatosis through interaction between PPARα and FoxO6 in vivo and in vitro. J Mol Med (Berl) 2024; 102:1267-1284. [PMID: 39198274 PMCID: PMC11416408 DOI: 10.1007/s00109-024-02480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is a major cause of hepatic steatosis through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signaling to glucose and lipid metabolism. Therefore, dysregulated FoxO6 is involved in hepatic lipogenesis. This study elucidated the role of FoxO6 in ER stress-induced hepatic steatosis in vivo and in vitro. Hepatic ER stress responses and β-oxidation were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. For the in vitro study, liver cells overexpressing constitutively active FoxO6 and FoxO6-siRNA were treated with high glucose, and lipid metabolism alterations were measured. ER stress-induced FoxO6 activation suppressed hepatic β-oxidation in vivo. The expression and transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) were significantly decreased in the constitutively active FoxO6 allele. Otherwise, inhibiting β-oxidation genes were reduced in the FoxO6-siRNA and FoxO6-KO mice. Our data showed that the FoxO6-induced hepatic lipid accumulation was negatively regulated by insulin signaling. High glucose treatment as a hyperglycemia condition caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in liver cells. However, high glucose-mediated ER stress suppressed β-oxidation gene expression through interactions between PPARα and FoxO6 corresponding to findings in the in vivo study-lipid catabolism is also regulated by FoxO6. Furthermore, insulin resistance suppressed b-oxidation through the interaction between FoxO6 and PPARα promotes hepatic steatosis, which, due to hyperglycemia-induced ER stress, impairs insulin signaling. KEY MESSAGES: Our original aims were to delineate the interrelation between the regulation of PPARα and the transcription factor FoxO6 pathway in relation to lipid metabolism at molecular levels. Evidence on high glucose promoted FoxO6 activation induced lipid accumulation in liver cells. The effect of PPARα activation of the insulin signaling. FoxO6 plays a pivotal role in hepatic lipid accumulation through inactivation of PPARα in FoxO6-overexpression mice.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Food Science & Technology, College of Natural Resources and Life Science, Pusan National University, Miryang-Si, Gyeongsangnam-Do, 50463, Republic of Korea.
| |
Collapse
|
18
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
19
|
Murru E, Carta G, Manca C, Verce M, Everard A, Serra V, Aroni S, Melis M, Banni S. Impact of prenatal THC exposure on lipid metabolism and microbiota composition in rat offspring. Heliyon 2024; 10:e35637. [PMID: 39170117 PMCID: PMC11336829 DOI: 10.1016/j.heliyon.2024.e35637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Recent studies have demonstrated that prenatal exposure to the psychoactive ingredient of cannabis that is tetrahydrocannabinol (THC) disrupts fatty acid (FA) signaling pathways in the developing brain, potentially linking to psychopathologic consequences. Our research aims to investigate whether changes in midbrain FA metabolism are linked to modifications in peripheral metabolism of FAs and shifts in microbiota composition. Methods In order to model prenatal exposure to THC (PTE) in rats, Sprague Dawley dams were systemically administered with THC (2 mg/kg, s.c.) or vehicle once daily from gestational day 5-20. To evaluate the metabolic impact of PTE in the offspring during preadolescence (postnatal day, PND, 25-28), we analyzed FA profiles and their bioactive metabolites in liver and midbrain tissues, and microbiota alterations. Results Our findings indicate that PTE leads to sex-specific metabolic changes. In both sexes, PTE resulted in increased liver de novo lipogenesis (DNL) and alterations in FA profiles, as well as changes in N-acylethanolamines (NAEs), ligands of peroxisome proliferator-activated receptor alpha (PPAR-α). In females only, PTE influenced gene expression of PPAR-α and fibroblast growth factor 21 (Fgf21). In male offspring only, PTE was associated with significantly reduced fasting glycaemia and with alterations in the levels of midbrain NAEs. Our analysis of the progeny gut microbiota revealed sex-dependent effects of PTE, notably an increased abundance of Ileibacterium in PTE-exposed male offspring, a change previously associated with the long-term effects of a maternal unbalanced diet. Conclusions Our data suggest that in male PTE offspring a reduced fasting glycaemia, resulting from increased liver DNL and the absence of a compensatory effect by Ppar-α and FGF21 on glycemic homeostasis, are associated to alterations in midbrain NAEs ligands of PPAR-α. These metabolic changes within the midbrain, along with Ileibacterium abundance, may partly elucidate the heightened susceptibility to psychopathologic conditions previously observed in male offspring following PTE.
Collapse
Affiliation(s)
- Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sonia Aroni
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| |
Collapse
|
20
|
Rajendran R, Suman S, Divakaran SJ, Swatikrishna S, Tripathi P, Jain R, Sagar K, Rajakumari S. Sesaminol alters phospholipid metabolism and alleviates obesity-induced NAFLD. FASEB J 2024; 38:e23835. [PMID: 39037555 DOI: 10.1096/fj.202400412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
The prevalence of obesity-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance is increasing worldwide. We previously demonstrated that sesaminol increases thermogenesis in adipocytes, improves insulin sensitivity, and mitigates obesity in mice. In this study, we demonstrated that sesaminol increased mitochondrial activity and reduced ROS production in hepatocytes. Therefore, we delve into the metabolic action of sesaminol in obesity-induced NAFLD or metabolic dysfunction-associated liver disease (MAFLD). Here, we report that sesaminol induces OXPHOS proteins and mitochondrial function in vivo. Further, our data suggest that sesaminol administration reduces hepatic triacylglycerol accumulation and LDL-C levels. Prominently, the lipidomics analyses revealed that sesaminol administration decreased the major phospholipids such as PC, PE, PI, CL, and PS to maintain membrane lipid homeostasis in the liver upon HFD challenge. Besides, SML reduced ePC and SM molecular species and increased PA levels in the HFD-fed mice. Also, sesaminol renders anti-inflammatory properties and dampens fibrosis markers in the liver. Remarkably, SML lowers the hepatic levels of ALT and AST enzymes and alleviates NAFLD in diet-induced obese mice. The molecular docking analysis identifies peroxisome proliferator-activated receptors as potential endogenous receptors for sesaminol. Together, our study demonstrates plant lignan sesaminol as a potential small molecule that alters the molecular species of major phospholipids, including sphingomyelin and ether-linked PCs in the liver tissue, improves metabolic parameters, and alleviates obesity-induced fatty liver disease in mice.
Collapse
Affiliation(s)
- Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sanskriti Suman
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Soumya Jaya Divakaran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sahu Swatikrishna
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Purnima Tripathi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Karan Sagar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Asantewaa G, Tuttle ET, Ward NP, Kang YP, Kim Y, Kavanagh ME, Girnius N, Chen Y, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales TQ, Taylor K, Alimohammadi F, Duncan RP, Sechrist ZR, Agostini-Vulaj D, Schafer XL, Chang H, Smith ZR, O'Connor TN, Whelan S, Selfors LM, Crowdis J, Gray GK, Bronson RT, Brenner D, Rufini A, Dirksen RT, Hezel AF, Huber AR, Munger J, Cravatt BF, Vasiliou V, Cole CL, DeNicola GM, Harris IS. Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression. Nat Commun 2024; 15:6152. [PMID: 39034312 PMCID: PMC11271484 DOI: 10.1038/s41467-024-50454-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.
Collapse
Affiliation(s)
- Gloria Asantewaa
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily T Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nathan P Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yumi Kim
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Madeline E Kavanagh
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Katherine Rodriguez
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Leonid Smorodintsev-Schiller
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - TashJaé Q Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Kira Taylor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Fatemeh Alimohammadi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Renae P Duncan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary R Sechrist
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xenia L Schafer
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Hayley Chang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary R Smith
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sarah Whelan
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jett Crowdis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alessandro Rufini
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Calvin L Cole
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
22
|
Cigliano A, Simile MM, Vidili G, Pes GM, Dore MP, Urigo F, Cossu E, Che L, Feo C, Steinmann SM, Ribback S, Pascale RM, Evert M, Chen X, Calvisi DF. Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27 KIP1 Regulation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1160. [PMID: 39064589 PMCID: PMC11278665 DOI: 10.3390/medicina60071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Maria M. Simile
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Gianpaolo Vidili
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Giovanni M. Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Maria P. Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Francesco Urigo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Eleonora Cossu
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Fracisco, CA 94143, USA; (L.C.); (X.C.)
| | - Claudio Feo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Sara M. Steinmann
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, 17489 Greifswald, Germany;
| | - Rosa M. Pascale
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Fracisco, CA 94143, USA; (L.C.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| |
Collapse
|
23
|
Hayasaka K. Pathogenesis and Management of Citrin Deficiency. Intern Med 2024; 63:1977-1986. [PMID: 37952953 PMCID: PMC11309867 DOI: 10.2169/internalmedicine.2595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Japan
| |
Collapse
|
24
|
Li X, Zhuang R, Zhang K, Zhang Y, Lu Z, Wu F, Wu X, Li W, Zhang Z, Zhang H, Zhu W, Zhang B. Nobiletin Protects Against Alcoholic Liver Disease in Mice via the BMAL1-AKT-Lipogenesis Pathway. Mol Nutr Food Res 2024; 68:e2300833. [PMID: 38850176 DOI: 10.1002/mnfr.202300833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Indexed: 06/10/2024]
Abstract
SCOPE Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.
Collapse
Affiliation(s)
- Xudong Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Runxuan Zhuang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ke Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchun Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhitian Lu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fan Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoli Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenxue Li
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Shock and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Zhu
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
25
|
Gao G, Liu R, Hu S, He M, Zhang J, Gao D, Li J, Hu J, Wang J, Wang Q, Li M, Jin L. Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet. J Anim Sci Biotechnol 2024; 15:60. [PMID: 38693536 PMCID: PMC11064361 DOI: 10.1186/s40104-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. RESULTS In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. CONCLUSIONS We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.
Collapse
Affiliation(s)
- Guangliang Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Rui Liu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengfeng Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwei Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwen Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qigui Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
26
|
Ruppert PMM, Kersten S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol Metab 2024; 35:107-124. [PMID: 37940485 DOI: 10.1016/j.tem.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 C Odense, Denmark
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
27
|
Yao S, Li W, Cai C, Wang C, Kang J, Hu H, Wu P, Cao X, Ye Y. Comparative Study on the Effects of Four Plant Protein Sources on the Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides. AQUACULTURE NUTRITION 2024; 2024:6337005. [PMID: 38298207 PMCID: PMC10830314 DOI: 10.1155/2024/6337005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The effects of plant protein sources (PPSs) on the health of the liver and intestine of the largemouth bass, Micropterus salmoides, were compared to verify the potential damaging effects of dietary fiber (DF). A diet containing 55% fish meal (FM) was used as the control. The test diets contained 25% soybean meal (SBM), rapeseed meal (RSM), cottonseed meal, or peanut meal, and the FM content was decreased to 30%. The protein and lipid contents of these five diets were balanced by casein and oil. Fish were raised for 8 weeks. The fish fed the diet containing PPS showed a trend of decreasing growth and apparent digestibility coefficients. The contents of total bile acid, lipid, and collagen in the liver were increased, and the mRNA expression levels of genes encoding inflammatory factors and enzymes involved in de novo fatty acid synthesis and bile acid synthesis were upregulated. Both the lipid and collagen contents in the liver were positively correlated with the DF content in the diet significantly. Morphology and histology showed reduced liver size, hepatic steatosis, and fibrosis in fish fed diets containing PPS. The lowest hepatosomatic index was observed in fish fed the SBM diet, and the most severe damage was observed in fish fed the RSM diet. No obvious histological abnormalities were observed in the hindgut. The bile acid profile in the liver could be used to distinguish the types of PPS very well by Fisher discriminant analysis. These results indicated that 25% of each of the four PPSs in the diet exceeded the tolerance range of largemouth bass and caused liver damage, which might be mediated by bile acid. DF in PPS might be an important agent contributing to liver damage.
Collapse
Affiliation(s)
- Shibin Yao
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wenjian Li
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunfang Cai
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chengrui Wang
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jia Kang
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Honglin Hu
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Wu
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiamin Cao
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yuantu Ye
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
28
|
Ding H, Ge K, Fan C, Liu D, Wu C, Li R, Yan FJ. Chlorogenic Acid Attenuates Hepatic Steatosis by Suppressing ZFP30. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:245-258. [PMID: 38148374 DOI: 10.1021/acs.jafc.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major global health problem with no approved pharmacological treatment for this disease. Thus, it is urgent to develop effective therapeutic targets for clinical intervention. Here, we show for the first time that ZFP30, a member of the KRAB-ZFP family, is significantly increased in NAFLD models. ZFP30 silencing ameliorates free fatty acid (FFA)-induced lipid accumulation; in contrast, the ZFP30 overexpression exacerbates the triglyceride accumulation and steatosis in hepatocytes. Further investigation revealed that the effects of ZFP30 on hepatic lipid accumulation were mainly attributed to the PPARα downregulation in the NAFLD model. Mechanistically, ZFP30 directly binded to the promoter of PPARα and recruited KAP1 to suppress its transcription. Moreover, chlorogenic acid (CGA) reversed the upregulation of ZFP30 in NAFLD, promoting the PPARα expression, resulting in enhanced fatty acid oxidation and alleviated hepatic steatosis. Collectively, our study indicates ZFP30 as a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Han Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Kunyi Ge
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Changyu Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dandan Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chenyu Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Rongpeng Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Feng-Juan Yan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
29
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
30
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
31
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
32
|
Mukhi D, Li L, Liu H, Doke T, Kolligundla LP, Ha E, Kloetzer K, Abedini A, Mukherjee S, Wu J, Dhillon P, Hu H, Guan D, Funai K, Uehara K, Titchenell PM, Baur JA, Wellen KE, Susztak K. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J Clin Invest 2023; 134:e172963. [PMID: 38051585 PMCID: PMC10866669 DOI: 10.1172/jci172963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Worldwide, over 800 million people are affected by kidney disease, yet its pathogenesis remains elusive, hindering the development of novel therapeutics. In this study, we used kidney-specific expression of quantitative traits and single-nucleus open chromatin analysis to show that genetic variants linked to kidney dysfunction on chromosome 20 target the acyl-CoA synthetase short-chain family 2 (ACSS2). By generating ACSS2-KO mice, we demonstrated their protection from kidney fibrosis in multiple disease models. Our analysis of primary tubular cells revealed that ACSS2 regulated de novo lipogenesis (DNL), causing NADPH depletion and increasing ROS levels, ultimately leading to NLRP3-dependent pyroptosis. Additionally, we discovered that pharmacological inhibition or genetic ablation of fatty acid synthase safeguarded kidney cells against profibrotic gene expression and prevented kidney disease in mice. Lipid accumulation and the expression of genes related to DNL were elevated in the kidneys of patients with fibrosis. Our findings pinpoint ACSS2 as a critical kidney disease gene and reveal the role of DNL in kidney disease.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Lingzhi Li
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Hongbo Liu
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Lakshmi P. Kolligundla
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Eunji Ha
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Konstantin Kloetzer
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Amin Abedini
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Sarmistha Mukherjee
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junnan Wu
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Poonam Dhillon
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Hailong Hu
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Dongyin Guan
- Division of Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Kahealani Uehara
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Wellen
- Department of Cancer Biology
- Abramson Family Cancer Research Institute, and
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
- Penn-CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Gao R, Li Y, Xu Z, Zhang F, Xu J, Hu Y, Yin J, Yang K, Sun L, Wang Q, He X, Huang K. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 2023; 78:1800-1815. [PMID: 36651176 DOI: 10.1097/hep.0000000000000279] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS NAFLD has become a major metabolic disease worldwide. A few studies have reported the potential relationship between mitochondrial pyruvate carrier 1 (MPC1) and inflammation, fibrosis, and insulin sensitivity in obese or NASH mouse models. However, the impact of MPC1 on NAFLD-related liver lipid metabolism and its role in the NAFLD progression require further investigation. APPROACH AND RESULTS MPC1 expression was measured in liver tissues from normal controls and patients with NAFLD. We characterized the metabolic phenotypes and expression of genes involved in hepatic lipid accumulation in MPC1 systemic heterozygous knockout (MPC1 +/- ) mice. Hepatic protein lactylation was detected using Tandem Mass Tags proteomics and verified by the overexpression of lactylation mutants in cells. Finally, the effect of MPC1 inhibition on liver inflammation was examined in mice and AML-12 cells. Here, we found that MPC1 expression was positively correlated to liver lipid deposition in patients with NAFLD. MPC1 +/- mice fed with high-fat diet had reduced hepatic lipid accumulation but no change in the expression of lipid synthesis-related genes. MPC1 knockout affected the lactylation of several proteins, especially fatty acid synthase, through the regulation of lactate levels in hepatocytes. Lactylation at the K673 site of fatty acid synthase inhibited fatty acid synthase activity, which mediated the downregulation of liver lipid accumulation by MPC1. Moreover, although MPC1 knockout caused lactate accumulation, inflammation level was controlled because of mitochondrial protection and macrophage polarization. CONCLUSIONS In NAFLD, MPC1 levels are positively correlated with hepatic lipid deposition; the enhanced lactylation at fatty acid synthase K673 site may be a downstream mechanism.
Collapse
Affiliation(s)
- Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhimeng Xu
- MOE Key Laboratory of Bioinformatics, Department of Automation, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Jingya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| |
Collapse
|
34
|
Yiew NK, Deja S, Ferguson D, Cho K, Jarasvaraparn C, Jacome-Sosa M, Lutkewitte AJ, Mukherjee S, Fu X, Singer JM, Patti GJ, Burgess SC, Finck BN. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice. iScience 2023; 26:108196. [PMID: 37942005 PMCID: PMC10628847 DOI: 10.1016/j.isci.2023.108196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.
Collapse
Affiliation(s)
- Nicole K.H. Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chaowapong Jarasvaraparn
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Miriam Jacome-Sosa
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Jason M. Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gary J. Patti
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shawn C. Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
35
|
Sun Z, Wu K, Feng C, Lei XG. Selenium-dependent glutathione peroxidase 1 regulates transcription of elongase 3 in murine tissues. Free Radic Biol Med 2023; 208:708-717. [PMID: 37726091 DOI: 10.1016/j.freeradbiomed.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
We have previously shown dysregulated lipid metabolism in tissues of glutathione peroxidase 1 (GPX1) overexpressing (OE) or deficient (KO) mice. This study explored underlying mechanisms of GPX1 in regulating tissue fatty acid (FA) biosynthesis. GPX1 OE, KO, and wild-type (WT) mice (n = 5, male, 3-6 months old) were fed a Se-adequate diet (0.3 mg/kg) and assayed for liver and adipose tissue FA profiles and mRNA levels of key enzymes of FA biosynthesis and redox-responsive transcriptional factors (TFs). These three genotypes of mice (n = 5) were injected intraperitoneally with diquat, ebselen, and N-acetylcysteine (NAC) at 10, 50, and 50 mg/kg of body weight, respectively, and killed at 0 and 12 h after the injections to detect mRNA levels of FA elongases and desaturases and the TFs in the liver and adipose tissue. A luciferase reporter assay with targeted deletions of mouse Elovl3 promoter was performed to determine transcriptional regulations of the gene by GPX1 mimic ebselen in HEK293T cells. Compared with WT, GPX1 OE and KO mice had 9-42% lower (p < 0.05) and 36-161% higher (p < 0.05) concentrations of C20:0, C22:0, and C24:0 in these two tissues, respectively, along with reciprocal increases and decreases (p < 0.05) of Elovl3 transcripts. Ebselen and NAC decreased (p < 0.05), whereas diquat decreased (p < 0.05), Elovl3 transcripts in the two tissues. Overexpression and knockout of GPX1 decreased (p < 0.05) and increased (p < 0.05) ELOVL3 levels in the two tissues, respectively. Three TFs (GABP, SP1, and DBP) were identified to bind the Elovl3 promoter (-1164/+33 base pairs). Deletion of DBP (-98/-86 base pairs) binding domain in the promoter attenuated (13%, p < 0.05) inhibition of ebselen on Elovl3 promoter activation. In summary, GPX1 overexpression down-regulated very long-chain FA biosynthesis via transcriptional inhibition of the Elovl3 promoter activation.
Collapse
Affiliation(s)
- Ziqiao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kun Wu
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chenhan Feng
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
36
|
Xue Y, Gong Y, Li X, Peng F, Ding G, Zhang Z, Shi J, Savul IS, Xu Y, Chen Q, Han L, Mao S, Sun Z. Sex differences in paternal arsenic-induced intergenerational metabolic effects are mediated by estrogen. Cell Biosci 2023; 13:165. [PMID: 37691128 PMCID: PMC10493026 DOI: 10.1186/s13578-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences. METHODS After weaning, C57BL/6 WT male mice were treated with 250 ppb iAs in drinking water (iAsF0) or normal water (conF0) for 6 weeks and then bred with 15-week-old, non-exposed females for 3 days in cages with only normal water (without iAs), to generate iAsF1 or conF1 mice, respectively. F0 females and all F1 mice drank normal water without iAs all the time. RESULTS We find that exposure of male mice to 250 ppb iAs leads to glucose intolerance and insulin resistance in F1 female offspring (iAsF1-F), with almost no change in blood lipid profiles. In contrast, F1 males (iAsF1-M) show lower liver and blood triglyceride levels than non-exposed control, with improved glucose tolerance and insulin sensitivity. The liver of F1 offspring shows sex-specific transcriptomic changes, with hepatocyte-autonomous alternations of metabolic fluxes in line with the sex-specific phenotypes. The iAsF1-F mice show altered levels of circulating estrogen and follicle-stimulating hormone. Ovariectomy or liver-specific knockout of estrogen receptor α/β made F1 females resemble F1 males in their metabolic responses to paternal iAs exposure. CONCLUSIONS These results demonstrate that disrupted reproductive hormone secretion in alliance with hepatic estrogen signaling accounts for the sex-specific intergenerational effects of paternal iAs exposure, which shed light on the sex disparities in long-term gene-environment interactions.
Collapse
Affiliation(s)
- Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yingyun Gong
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Li
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fei Peng
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guolian Ding
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junchao Shi
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ilma Saleh Savul
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zheng Sun
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
37
|
Matsukawa T, Yagi T, Uchida T, Sakai M, Mitsushima M, Naganuma T, Yano H, Inaba Y, Inoue H, Yanagida K, Uematsu M, Nakao K, Nakao H, Aiba A, Nagashima Y, Kubota T, Kubota N, Izumida Y, Yahagi N, Unoki-Kubota H, Kaburagi Y, Asahara SI, Kido Y, Shindou H, Itoh M, Ogawa Y, Minami S, Terauchi Y, Tobe K, Ueki K, Kasuga M, Matsumoto M. Hepatic FASN deficiency differentially affects nonalcoholic fatty liver disease and diabetes in mouse obesity models. JCI Insight 2023; 8:e161282. [PMID: 37681411 PMCID: PMC10544238 DOI: 10.1172/jci.insight.161282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes are interacting comorbidities of obesity, and increased hepatic de novo lipogenesis (DNL), driven by hyperinsulinemia and carbohydrate overload, contributes to their pathogenesis. Fatty acid synthase (FASN), a key enzyme of hepatic DNL, is upregulated in association with insulin resistance. However, the therapeutic potential of targeting FASN in hepatocytes for obesity-associated metabolic diseases is unknown. Here, we show that hepatic FASN deficiency differentially affects NAFLD and diabetes depending on the etiology of obesity. Hepatocyte-specific ablation of FASN ameliorated NAFLD and diabetes in melanocortin 4 receptor-deficient mice but not in mice with diet-induced obesity. In leptin-deficient mice, FASN ablation alleviated hepatic steatosis and improved glucose tolerance but exacerbated fed hyperglycemia and liver dysfunction. The beneficial effects of hepatic FASN deficiency on NAFLD and glucose metabolism were associated with suppression of DNL and attenuation of gluconeogenesis and fatty acid oxidation, respectively. The exacerbation of fed hyperglycemia by FASN ablation in leptin-deficient mice appeared attributable to impairment of hepatic glucose uptake triggered by glycogen accumulation and citrate-mediated inhibition of glycolysis. Further investigation of the therapeutic potential of hepatic FASN inhibition for NAFLD and diabetes in humans should thus consider the etiology of obesity.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Takashi Yagi
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Tohru Uchida
- Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa, Hyogo, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Masaru Mitsushima
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Takao Naganuma
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Hiroyuki Yano
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, and
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, and
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | - Kazuki Nakao
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, Japan
| | - Yoshihiko Izumida
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Unoki-Kubota
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, NCGM, Tokyo, Japan
| | - Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, NCGM, Tokyo, Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
- Division of Medical Chemistry, Department of Metabolism and Disease, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, NCGM, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michiko Itoh
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, NCGM, Tokyo, Japan
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Yiew NK, Deja S, Ferguson D, Cho K, Jarasvaraparn C, Jacome-Sosa M, Lutkewitte AJ, Mukherjee S, Fu X, Singer JM, Patti GJ, Burgess SC, Finck BN. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and glycerol-mediated gluconeogenesis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528992. [PMID: 36824879 PMCID: PMC9949129 DOI: 10.1101/2023.02.17.528992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by liver MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway essentially reversing glycolysis and an indirect mitochondrial pathway requiring the MPC. MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites but not into newly synthesized glucose. However, suppression of glycerol metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice. Thus, glucose production by kidney and intestine may compensate for MPC deficiency in hepatocytes.
Collapse
Affiliation(s)
- Nicole K.H. Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Kevin Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Chaowapong Jarasvaraparn
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Miriam Jacome-Sosa
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Jason M. Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Gary J. Patti
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Shawn C. Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| |
Collapse
|
39
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
40
|
Zhou S, Li H, Wang H, Wang R, Song W, Li D, Wei C, Guo Y, He X, Deng Y. Nickel Nanoparticles Induced Hepatotoxicity in Mice via Lipid-Metabolism-Dysfunction-Regulated Inflammatory Injury. Molecules 2023; 28:5757. [PMID: 37570729 PMCID: PMC10421287 DOI: 10.3390/molecules28155757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation.
Collapse
Affiliation(s)
- Shuang Zhou
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| | - Hua Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Hui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Rui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Wei Song
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Da Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Changlei Wei
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yu Guo
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Xueying He
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yulin Deng
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| |
Collapse
|
41
|
Elshinshawy S, Elhaddad H, Abdel Alem S, Shaker O, Salam R, Yosry A, Elebrashy I. The Interrelation Between Hypothyroidism and Non-alcoholic Fatty Liver Disease, a Cross-sectional Study. J Clin Exp Hepatol 2023; 13:638-648. [PMID: 37440948 PMCID: PMC10333950 DOI: 10.1016/j.jceh.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background Thyroid hormones play an important role in the regulation of diverse metabolic processes and might play a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, their association remains controversial. Therefore, our aim is to clarify whether overt or subclinical hypothyroidism was associated with NAFLD. Methods This cross-sectional study included 60 participants with a new diagnosis of hypothyroidism and 30 age- and gender-matched healthy participants with thyroid-stimulating hormone (TSH) level <4.5 mIU/L. Anthropometric measurements, laboratory parameters, plasma fibroblast growth factor 21 (FGF21), and hepatic steatosis diagnosed via controlled attenuation parameter (CAP) using transient elastography between the hypothyroid groups and control group were analyzed. Results Participants with hypothyroidism displayed significantly higher serum aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, total cholestrol, triglycerides, low-density lipoprotein cholesterol, TSH, hemoglobin A1c, fasting insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) but significantly lower serum albumin, high-density lipoprotein cholesterol, and free thyroxine levels than the control group (P = <0.001). The CAP values were significantly higher in participants with overt and subclinical hypothyroidism than the control group (P = <0.001). The only significant independent predictors of steatosis in our study were free T4, body mass index, and HOMA-IR after using multivariate logistic regression. The mean serum FGF21 levels were increased in hypothyroid participants with hepatic steatosis than those without hepatic steatosis (126.9 ± 272.6) pg/ml vs. (106.8 ± 138.7) pg/ml, P = 0.8). Receiver operating characteristic (ROC) curve showed that FGF21 was not a significant marker for hepatic steatosis in hypothyroid participants (area under curve (AUC) = 0.44, P = 0.54). Conclusion Individuals with subclinical or overt hypothyroidism were more likely to have NAFLD than those with normal thyroid function. Serum FGF21 levels were increased in hypothyroid individuals and its role as a marker of hepatic steatosis in hypothyroid individuals needs further assessment.
Collapse
Affiliation(s)
- Sarah Elshinshawy
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Hemmat Elhaddad
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Shereen Abdel Alem
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Randa Salam
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Ayman Yosry
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Ibrahim Elebrashy
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
42
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Guilherme A, Rowland LA, Wetoska N, Tsagkaraki E, Santos KB, Bedard AH, Henriques F, Kelly M, Munroe S, Pedersen DJ, Ilkayeva OR, Koves TR, Tauer L, Pan M, Han X, Kim JK, Newgard CB, Muoio DM, Czech MP. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep 2023; 42:112488. [PMID: 37163372 PMCID: PMC10286105 DOI: 10.1016/j.celrep.2023.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
45
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
46
|
Rowland LA, Guilherme A, Henriques F, DiMarzio C, Munroe S, Wetoska N, Kelly M, Reddig K, Hendricks G, Pan M, Han X, Ilkayeva OR, Newgard CB, Czech MP. De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics. Nat Commun 2023; 14:1362. [PMID: 36914626 PMCID: PMC10011520 DOI: 10.1038/s41467-023-37016-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Adipocytes robustly synthesize fatty acids (FA) from carbohydrate through the de novo lipogenesis (DNL) pathway, yet surprisingly DNL contributes little to their abundant triglyceride stored in lipid droplets. This conundrum raises the hypothesis that adipocyte DNL instead enables membrane expansions to occur in processes like autophagy, which requires an abundant supply of phospholipids. We report here that adipocyte Fasn deficiency in vitro and in vivo markedly impairs autophagy, evident by autophagosome accumulation and severely compromised degradation of the autophagic substrate p62. Our data indicate the impairment occurs at the level of autophagosome-lysosome fusion, and indeed, loss of Fasn decreases certain membrane phosphoinositides necessary for autophagosome and lysosome maturation and fusion. Autophagy dependence on FA produced by Fasn is not fully alleviated by exogenous FA in cultured adipocytes, and interestingly, imaging studies reveal that Fasn colocalizes with nascent autophagosomes. Together, our studies identify DNL as a critical source of FAs to fuel autophagosome and lysosome maturation and fusion in adipocytes.
Collapse
Affiliation(s)
- Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Keith Reddig
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Gregory Hendricks
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
47
|
Zeng H, Chen P, Wang Z, Hu X, Zhang Y, Zheng B. Porphyra haitanensis Polysaccharides Attenuates Blood Lipid via Gut-Liver Axis in Diet-Induced High-Fat Mesocricetus auratus through Multiple Integrated Omics. Mol Nutr Food Res 2023; 67:e2200638. [PMID: 36517709 DOI: 10.1002/mnfr.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Indexed: 12/23/2022]
Abstract
SCOPE Hyperlipidemia is currently a global public health problem severely affecting people's physical and mental health, as well as their quality of life. METHODS AND RESULTS The present study is aimed at revealing the mechanism of Porphyra haitanensis polysaccharide (PHP) in decreasing blood lipids by acting through gut-liver axis in Mesocricetus auratus fed a high-fat diet. PHP significantly prevented increases in serum total cholesterol, triglycerides and low-density lipoprotein cholesterol, and alleviated damage to liver cells induced by a high-fat diet M. auratus, in a dose-dependent manner. PHP promotes proliferation of Muribaculaceae and Faecalibaculum, thereby enhancing the production of butyric acid both in the colon and liver, particularly high-dose PHP (HPHP). Low-dose PHP (LPHP) promotes the expression of phosphatidylcholine metabolites and fatty acid transport genes, and inhibits the expression of genes involved in fat degradation (Abhd5), adipogenesis (Me1), fatty acid synthesis (Fasn and Pnpla3), and fatty acid chain elongation (Elovl6) in the liver. However, HPHP inhibits the expression of triglyceride metabolites and promotes the expression of fatty acid transporter (CD36), fatty acid oxidation (Acacb), and peroxisome proliferator-activated receptor gamma (PPARg) genes in the liver. CONCLUSION PHP regulates lipid metabolism through the gut microbiota, and the gut-liver axis plays an important role in its hypolipidemic effects.
Collapse
Affiliation(s)
- Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhiyun Wang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
48
|
Chaves-Filho AB, Peixoto AS, Castro É, Oliveira TE, Perandini LA, Moreira RJ, da Silva RP, da Silva BP, Moretti EH, Steiner AA, Miyamoto S, Yoshinaga MY, Festuccia WT. Futile cycle of β-oxidation and de novo lipogenesis are associated with essential fatty acids depletion in lipoatrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159264. [PMID: 36535597 DOI: 10.1016/j.bbalip.2022.159264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Total absence of adipose tissue (lipoatrophy) is associated with the development of severe metabolic disorders including hepatomegaly and fatty liver. Here, we sought to investigate the impact of severe lipoatrophy induced by deletion of peroxisome proliferator-activated receptor gamma (PPARγ) exclusively in adipocytes on lipid metabolism in mice. Untargeted lipidomics of plasma, gastrocnemius and liver uncovered a systemic depletion of the essential linoleic (LA) and α-linolenic (ALA) fatty acids from several lipid classes (storage lipids, glycerophospholipids, free fatty acids) in lipoatrophic mice. Our data revealed that such essential fatty acid depletion was linked to increased: 1) capacity for liver mitochondrial fatty acid β-oxidation (FAO), 2) citrate synthase activity and coenzyme Q content in the liver, 3) whole-body oxygen consumption and reduced respiratory exchange rate in the dark period, and 4) de novo lipogenesis and carbon flux in the TCA cycle. The key role of de novo lipogenesis in hepatic steatosis was evidenced by an accumulation of stearic, oleic, sapienic and mead acids in liver. Our results thus indicate that the simultaneous activation of the antagonic processes FAO and de novo lipogenesis in liver may create a futile metabolic cycle leading to a preferential depletion of LA and ALA. Noteworthy, this previously unrecognized cycle may also explain the increased energy expenditure displayed by lipoatrophic mice, adding a new piece to the metabolic regulation puzzle in lipoatrophies.
Collapse
Affiliation(s)
- Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil; Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil.
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Railmara P da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Beatriz P da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil.
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil.
| |
Collapse
|
49
|
Asantewaa G, Tuttle ET, Ward NP, Kang YP, Kim Y, Kavanagh ME, Girnius N, Chen Y, Duncan R, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales TQ, Taylor K, Alimohammadi F, Sechrist ZR, Agostini-Vulaj D, Schafer XL, Chang H, Smith Z, O'Connor TN, Whelan S, Selfors LM, Crowdis J, Gray GK, Bronson RT, Brenner D, Rufini A, Dirksen RT, Hezel AF, Huber AR, Munger J, Cravatt BF, Vasiliou V, Cole CL, DeNicola GM, Harris IS. Glutathione supports lipid abundance in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.524960. [PMID: 36798186 PMCID: PMC9934595 DOI: 10.1101/2023.02.10.524960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are reported to be highest in liver tissue, which is also a hub for lipid production. While the loss of GSH did not cause liver failure, it decreased lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we found that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.
Collapse
Affiliation(s)
- Gloria Asantewaa
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Emily T Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Nathan P Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Yumi Kim
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Madeline E Kavanagh
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06520
| | - Renae Duncan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Katherine Rodriguez
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Leonid Smorodintsev-Schiller
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - TashJaé Q Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Kira Taylor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Fatemeh Alimohammadi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA, 14642
| | - Zachary R Sechrist
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Diana Agostini-Vulaj
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Xenia L Schafer
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Hayley Chang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Zachary Smith
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Thomas N O'Connor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Sarah Whelan
- Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Jett Crowdis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Roderick T Bronson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alessandro Rufini
- Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA, 14642
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Josh Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06520
| | - Calvin L Cole
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| |
Collapse
|
50
|
Khan I, Lu Y, Li N, Shi H, Ding L, Hong M, Fang Z. Effect of ammonia stress on AMPK regulating-carbohydrate and lipid metabolism in Chinese striped-neck turtle (Mauremys sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109491. [PMID: 36257571 DOI: 10.1016/j.cbpc.2022.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
In aquatic organisms, ammonia is one of the major factors that affect energy levels when it exceeds its optimal concentration. Numerous studies have examined the effects of ammonia on aquatic animals, but its effect on metabolism is still unknown. The effect of ammonia on carbohydrates and lipid metabolism in the Chinese striped neck turtle (Mauremys sinensis) was investigated in this study by exposing the turtle to two different ammonia concentrations (A100: 1.53 mg L-1) and (A200: 2.98 mg L-1) for 24 and 48 h, respectively. Our results showed that the mRNA expression of adenosine monophosphate-activated protein kinase α1 (AMPKα1) significantly increased only in A100 at 24 h, whereas its activity increased in both ammonia-exposed groups. The two AMPK-regulated transcription factors responsible for carbohydrate metabolism also exhibited changes in ammonia-treated groups, as hepatocyte nuclear factor-4-alpha (HNF4α) increased and forkhead box protein O1 (FoxO1) decreased. The expression of phosphofructokinase (PFK) and glucose-6-phosphatase (G-6-PAS) was subsequently downregulated. In addition, transcription factors, carbohydrate-responsive element-binding protein (ChREBP), and sterol regulatory element-binding protein 1c (SREBP-1c), which are known to be involved in lipogenesis, were suppressed. These downstream genes include fatty acid synthase, stearoyl CoA desaturase, and acetyl-CoA carboxylase (FAS, SCD-1 and ACC). Moreover, the glucose content decreased, whereas the triglyceride content increased significantly in A200 at 24 h. We concluded that AMPK signaling inhibits gluconeogenesis and lipogenesis, and promotes glycolysis to meet energy demand under stressful conditions in M. sinensis.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yingnan Lu
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Na Li
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Zhenhua Fang
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou 570216, China.
| |
Collapse
|