1
|
Wei Y, Yang J, Zu W, Wang M, Zhao Y. Progression in the In Vitro Macrophage Expansion. J Immunol Res 2025; 2025:9994439. [PMID: 40331017 PMCID: PMC12052461 DOI: 10.1155/jimr/9994439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Macrophages play essential roles in homeostasis and disease, and they were considered terminally differentiated cells that cannot proliferate. However, growing evidence shows that macrophages can self-renew in homeostasis and multiple pathological states in vivo and artificial induction in vitro. With the rise of immune cell therapy based on macrophages, large-scale in vitro expansion of macrophages has become more and more urgent. However, the proliferation of macrophages in vitro is still inefficient because of the heterogeneity of macrophages, complicated crosstalk between macrophages and their microenvironments, and poor understanding of macrophage proliferation regulations. In this review, we summarized the discoveries known to stimulate macrophage proliferation in vitro, including cytokines, small molecule compounds, metabolites, the composition of pathogens and apoptotic cells, natural product extracts, gene editing, and other factors, as well as related mechanisms. It can be concluded that the promotion of macrophage proliferation in vitro covers various approaches and mechanisms. However, it is still necessary to test more strategies and learn more macrophage proliferation mechanisms to achieve large-scale engineering expansion of macrophages in vitro.
Collapse
Affiliation(s)
- Yunpeng Wei
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Jingzhao Yang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Wenhong Zu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Mengran Wang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Yong Zhao
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Zeng X, Yu P, Li D, Li Y, Wang X, Yang X, Ren D. Structural characterization and alleviative effects of novel polysaccharides from Artemisia sphaerocephala Krasch seed on obese mice by regulating gut microbiota. Int J Biol Macromol 2025; 310:143407. [PMID: 40274139 DOI: 10.1016/j.ijbiomac.2025.143407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
This study aimed to investigate the efficacy of polysaccharides from Artemisia sphaerocephala Krasch (ASK) seed in alleviating high fat diet (HFD) caused obesity. Here, three polysaccharide fractions (ASKP1, ASKP2 and ASKP3) were purified from ASK seed. Chemical characteristic analysis revealed that ASKP1 is a neutral heteropolysaccharide with the average molecular weight of 9.08 × 105 Da, while ASKP2 and ASKP3 are acidic heteropolysaccharides with the molecular weight of 9.39 × 105 and 8.41 × 105 Da, respectively. Animal experiment found that three ASKP fractions obviously relieved obesity and related metabolic disorders induced by HFD, while ASKP1 was more effective in reducing the blood glucose and serum LDL levels. 16S rDNA sequencing showed that ASKP fractions improved the gut microbiota imbalance of obese mice, and ASKP1 promoted the proliferation of beneficial bacterium Akkermansia more effectively than ASKP2 and ASKP3. Furthermore, ASKP fractions facilitated thermogenesis of brown adipose tissue (BAT) of obese mice, as evidenced by increased expression of thermogenic marker genes UCP1 in BAT, and the thermogenesis effect of ASKP1 was the most obvious. Taken together, our results show that ASKP1 is a novel prebiotic that may be used to treat obesity and its related abnormal metabolism.
Collapse
Affiliation(s)
- Xiaoqian Zeng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pinglian Yu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of YunNan University for Plateau Characteristic Functional Food, School of Chemistry and Chemical Engineering, Zhaotong University, 657000, China.
| | - Donglu Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yixiao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xuejie Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
3
|
Chiu YH, Chou WL, Ko MC, Liao JC, Huang TH. Curcumin mitigates obesity-driven dysbiosis and liver steatosis while promoting browning and thermogenesis in white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 2025:109920. [PMID: 40239823 DOI: 10.1016/j.jnutbio.2025.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Curcumin, recognized for its antioxidant and anti-inflammatory properties, is a promising dietary supplement for liver protection. However, its role in preventing obesity-induced hepatic steatosis is not fully understood. This study aims to show that curcumin mitigates hepatic steatosis and promotes browning and thermogenesis in white adipose tissue (WAT) under obesity. Male C57BL/6 mice were assigned to four groups: standard diet (STD), STD supplemented with 100 mg/kg curcumin, high-fat diet (HFD), or HFD supplemented with 100 mg/kg curcumin, administered for 4 weeks. Compared to STD mice, HFD-fed mice exhibited significantly greater body weight, epididymal fat mass, liver weight, postprandial blood glucose (PBG), insulin, and plasma/hepatic alanine aminotransferase (ALT) and triglyceride (TG) levels, alongside an inflammatory response and macrophage infiltration. Additionally, HFD-fed mice showed reduced adiponectin, adiponectin receptor-1, and PI3K/AKT phosphorylation in liver tissue. Except for liver weight, these effects were reversed in curcumin-treated HFD mice. Curcumin inhibited adipocyte hypertrophy and elevated the expression of PGC-1α, PPARγ, and UCP-1 proteins, as well as Zic1, Prdm16, Tnfrsf9, and Tmem26 genes in epididymal fat pads (EFPs). It also significantly altered gut microbiota composition, reducing pro-inflammatory bacteria such as Helicobacter, Oscillospira, Parabacteroides, and Alistipes, thereby alleviating intestinal dysbiosis and improving obesity-related metabolic parameters. In conclusion, curcumin's protective effects against hepatic steatosis and adiposity in HFD-fed mice stem from its ability to upregulate adiponectin, enhance insulin signaling, promote WAT browning, increase thermogenesis, and modulate intestinal dysbiosis.
Collapse
Affiliation(s)
- Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Min-Chi Ko
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Jun-Cheng Liao
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Traditional Chinese Medicine, Xiamen Chang Gung Hospital, Xiamen, China.
| |
Collapse
|
4
|
Wu X, Zhang Z, Li J, Zong J, Yuan L, Shu L, Cheong LY, Huang X, Jiang M, Ping Z, Xu A, Hoo RL. Chchd10: A Novel Metabolic Sensor Modulating Adipose Tissue Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408763. [PMID: 39985288 PMCID: PMC12005791 DOI: 10.1002/advs.202408763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Indexed: 02/24/2025]
Abstract
Dysregulation of adipose tissue (AT) homeostasis in obesity contributes to metabolic stress and disorders. Here, we identified that Coiled-coil-helix-coiled-coil-helix domain containing 10 (Chchd10) is a novel regulator of AT remodeling upon excess energy intake. Chchd10 is significantly reduced in the white adipose tissue (WAT) of mice in response to high-fat diet (HFD) feeding. AT-Chchd10 deficiency accelerates adipogenesis predominantly in subcutaneous AT of mice to store excess energy in response to short-term HFD feeding while upregulates glutathione S-transferase A4 (GSTA4) to facilitate 4-HNE clearance mainly in visceral AT to prevent protein carbonylation-induced cell dysfunction after long-term HFD feeding. Hence, Chchd10 deficiency attenuates diet-induced obesity and related metabolic disorders in mice. Mechanistically, Chchd10 deficiency enhances adipogenesis and GSTA4 expression by activating TDP43/Raptor/p62/Keap1/NRF2 axis. Notably, the beneficial effect of Chchd10 deficiency is eliminated in hypertrophic adipocytes, where p62 is strikingly reduced. Collectively, Chchd10 is a metabolic sensor maintaining AT homeostasis, and the loss of p62 in adipose tissue under obese conditions impairs Chchd10-mediated AT remodeling.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Jingjing Li
- Department of Rehabilitation SciencesFaculty of Health and Social SciencesHong Kong Polytechnic UniversityHong Kong SARChina
| | - Jiuyu Zong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lufengzi Yuan
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerDepartment of Hematological OncologySun Yat‐sen University Cancer CenterChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Xiaowen Huang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Mengxue Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zhihui Ping
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| |
Collapse
|
5
|
Priya A, Mol N, Singh AK, Aditya AK, Ray AK. "Unveiling the impacts of climatic cold events on the cardiovascular health in animal models". THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179028. [PMID: 40073773 DOI: 10.1016/j.scitotenv.2025.179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Climate change is increasingly driving extreme weather events, leading to drastic temperature fluctuations worldwide. While overall temperatures rise, many regions are simultaneously experiencing severe cold spells that threaten the health of human populations, especially to vulnerable populations including the elderly and those with pre-existing conditions. Exposure to cold stress triggers significant physiological and biochemical disruptions. As cardiovascular diseases (CVDs) rank among the leading causes of global morbidity and mortality, the exacerbation of these conditions by cold exposure underscores critical public health challenges. The complex pathophysiological processes in cold-induced CVDs require careful analysis at an organ-system level, making animal models an ideal tool for replicating human physiological and molecular responses in a controlled environment. However, a detailed mechanism linking cold exposure and cardiovascular dysfunction remains incompletely understood, particularly in the context of animal models. Therefore, this comprehensive review aims to address and analyze from traditional rodent models to less conventional ruminants, broilers, canines, and primate animal models to understand cold stress-induced CVDs, with an extensive account of the potential molecular mechanisms and pathways such as oxidative stress, inflammation, vasomotor dysfunction, and apoptosis, along with emerging roles of cold shock proteins (CSPs), etc. We also delve into various potential therapeutic approaches and preventive measures in cold stress conditions. In conclusion, this review is the first to comprehensively address the underexplored cardiovascular complications arising from cold stress and their underlying mechanisms, particularly using animal models. Furthermore, it provides a foundation for advancing the development of more effective and targeted therapies through translational research.
Collapse
Affiliation(s)
- Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Nidhi Mol
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Centre, Mathura, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
Zhang S, Li J, Lv X, Pan G, Liu Q, Zheng L, Xu L. Adropin-Driven Browning: Targeting M2 Macrophages to Combat PCOS. Int Immunopharmacol 2025; 149:114273. [PMID: 39933360 DOI: 10.1016/j.intimp.2025.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age, associated with chronic low-grade inflammation and metabolic disorders. The exact pathogenesis of PCOS remains unclear. Adropin, a secreted protein encoded by the energy homeostasis gene (Enho), has immunometabolic regulatory functions. In the present study, the serum levels of adropin were significantly lower (P < 0.001) in PCOS mice than controls, and adropin deficiency exacerbated the obesity and inflammatory phenotypes in letrozole (LTZ)-induced PCOS mice. In vitro experiments, it has shown that adropin mediated the phenotypic change of RAW264.7 macrophages to M2 through upregulation of heme oxygenase-1 (HO-1), and then adropin-treated macrophage-conditioned medium (Adr-CM) induced browning of fully differentiated 3T3-L1 adipocytes. Finally, vivo experiments by injecting adropin into PCOS model mice showed that adropin treatment significantly reduced body weight, and promoted macrophage M2 anti-inflammatory phenotypic transformation and browning of white adipose tissue. In summary, the present study reveals a novel mechanism by which adropin indirectly promotes adipose tissue browning by regulating macrophage polarisation, which provides a new perspective and experimental basis for the therapeutic strategy of PCOS and its related metabolic disorders.
Collapse
Affiliation(s)
- Shuyu Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Jinhong Li
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, Fujian, China
| | - Xiaoting Lv
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Guobin Pan
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350028, Fujian, China
| | - Qicai Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350028, Fujian, China.
| | - Lin Zheng
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China.
| |
Collapse
|
7
|
Checa-Ros A, Locascio A, Okojie OJ, Abellán-Galiana P, D'Marco L. Perirenal fat differs in patients with chronic kidney disease receiving different vitamin D-based treatments: a preliminary study. BMC Nephrol 2025; 26:119. [PMID: 40045219 PMCID: PMC11883930 DOI: 10.1186/s12882-025-04041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) patients show high rates of cardiovascular disease (CVD) and mortality. In the general population, obesity, hypertension, and diabetes are known as the classical CVD risk factors. However, CKD patients have other predisposing CVD factors more associated with bone and mineral metabolism disorders (BMD). BMD originates from reduced 1,25-dihydroxy vitamin D and hypocalcemia, which lead to secondary hyperparathyroidism, with increased parathyroid hormone (PTH) levels and hyperphosphatemia as the progression of renal damage. Due to their pleiotropic effects, vitamin D and its analogs, such as cholecalciferol, calcitriol, or paricalcitol, have proven effective in controlling BMD and CVD. On the other hand, visceral adiposity has been shown to increase the risk for CVD in both the general and CKD populations via complex autocrine and paracrine hormonal mechanisms. This seems to be the case with fat surrounding the epicardium. Although it has not been widely evaluated, the fat surrounding the kidneys, or the perirenal adipose tissue (PAT), could also share similarities with the epicardial in terms of its potential contribution to the CVD risk observed in these patients. We conducted a preliminary study to assess differences in PAT on a sample of patients with CKD presenting diverse CVD history and who were receiving different vitamin D-receptor activators. METHODS/RESULTS An observational study was performed at UNIRENAL Center (Venezuela), from January to November 2015. Analytical and clinical parameters were evaluated. The PAT thickness was measured in centimeters through a B-mode ultrasound. Thus, we included 83 CKD patients treated with vitamin D or analogs (mean age 58.3 ± 16y); 57.83% were females. Nearly half of the sample was classified as CKD-G3 (n = 40). Prior history of CVD was present in 55.4% (N = 46) of participants. Must of the patients (n = 46;55.42%) receiving oral cholecalciferol (1000 IU/day) as part of the treatment for lower levels of vitamin D or BMD related to CKD (mainly elevated PTH), followed by those under calcitriol at 0.5 mcg/day (n = 27;32.53%), and around 12% (n = 10;12.05%) on paricalcitol (1 mcg/day). The mean treatment vintage was 20 ± 6 months for cholecalciferol, 18 ± 4 months for calcitriol, and 16 ± 2 months for paricalcitol. Those with a history of CVD (n = 46) showed higher levels of urea (mean 62.0vs45.2 mg/dl, p < 0.05), uric acid (mean 5.5vs4.3 mg/dl; p < 0.03), and iPTH (mean 186.2vs65.2pcg/dl; p < 0.05) than patients free of CVD events (n = 37). These findings were also in parallel with decreased renal function in the group with previous CVD history, as evidenced by a significantly lower eGFR (mean 53.55vs89.00 ml/min/1.73 m2,p < 0.001). Similarly, the mean PAT thickness was elevated in the group with a history of CVD in relation to those with no previous CVD events (0.99vs0.80 cm; SD ± 0.30;p ~ 0.05). The comparative analysis for the patients with prior cardiovascular events between the three treatments revealed that those on paricalcitol had lesser PAT accumulation than those treated with cholecalciferol or calcitriol (p < 0.05). In conclusion, our study shows that PAT thickness in CKD may be influenced by vitamin D analog-based treatment. Further research is needed to better understand the mechanistic links between PAT, BMD, and CVD in this population.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
- Aston Institute of Health & Neurodeveloment (AIHN), School of Life & Health Sciences, The Aston Triangle, Aston University, Birmingham, B4 7ET, UK
| | - Antonella Locascio
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | - Owahabanun-Joshua Okojie
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | - Pablo Abellán-Galiana
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | - Luis D'Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain.
| |
Collapse
|
8
|
Alarcon PC, Ulanowicz CJ, Damen MSMA, Eom J, Sawada K, Chung H, Alahakoon T, Oates JR, Wayland JL, Stankiewicz TE, Moreno-Fernandez ME, Zacharias WJ, Salomonis N, Divanovic S. Obesity Uncovers the Presence of Inflammatory Lung Macrophage Subsets With an Adipose Tissue Transcriptomic Signature in Influenza Virus Infection. J Infect Dis 2025; 231:e317-e327. [PMID: 39494998 PMCID: PMC11841630 DOI: 10.1093/infdis/jiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024] Open
Abstract
Obesity is an independent risk factor for increased disease severity during influenza A virus (IAV) infection. White adipose tissue (WAT) inflammation promotes disease pathogenesis in obesity. Whether obesity modifies lung and WAT immune cells to amplify influenza severity is unknown. We show that obesity establishes a proinflammatory transcriptome in lung immune cells that is augmented during IAV infection and that IAV infection changes WAT immune cell milieu in obesity. Notably, a decrease in WAT macrophages (ATM) inversely correlates with an increase in infiltrating lung macrophages in obese IAV-infected mice. Further analyses of lung immune cell uncovered a macrophage subset that shares a transcriptomic signature with inflammatory ATMs. Importantly, adoptive transfer of ATMs from obese mice into lean IAV infected mice promotes host immune cell infiltration to the lungs. These findings suggest that, in an obese state, ATMs may exacerbate the inflammatory milieu important in pathologic responses to IAV infection.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
| | - Cassidy J Ulanowicz
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
| | - Michelle S M A Damen
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - John Eom
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - Keisuke Sawada
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
| | - Hak Chung
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - Tara Alahakoon
- Program in Biochemistry and Biophysics, Amherst College, Massachusetts
| | - Jarren R Oates
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
| | - Jennifer L Wayland
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
| | - Traci E Stankiewicz
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - William J Zacharias
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
- Pulmonary Biology
| | - Nathan Salomonis
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Immunology Graduate Program
- Biomedical Informatics
| | - Senad Divanovic
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Ohio
| |
Collapse
|
9
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
10
|
Xiao H, Xing T, Qiu M, Zhang G, Yang G, Chen W, Hu D, Xue D, Peng J, Du B. Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production. J Adv Res 2024:S2090-1232(24)00610-6. [PMID: 39725008 DOI: 10.1016/j.jare.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear. OBJECTIVE To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis. METHODS Studies were performed in GEO database, colonic tissues of UC patients, dextran sulfate sodium (DSS)-induced colonic fibrosis in male wild-type (WT) and APN-/- mice, mouse L929 and human CCD-18Co fibroblasts treated with recombinant CXCL13 protein, and colonic fibrosis in WT mice infected with shRNA of CXCL13. RESULTS APN was highly expressed in the colonic tissues of UC patients and positively correlated with the colonoscopy score and colonic fibrosis markers COL1A1 and COL3A1. APN deficiency significantly improved chronic colitis-induced colonic fibrosis in mice with down-regulating collagenase accumulation and expressions of TGF-β, α-SMA, COL1A1, COL3A1, and MMP-9 in colonic tissues. Transcriptomics showed that APN deficiency mainly affected cytokine-cytokine receptor interactions, especially CXCL13 signaling. Follow-up studies showed that APN deficiency significantly decreased the number of colonic F4/80+CD206+CXCL13+ macrophages by weakening Akt phosphorylation. Additional experiments confirmed that CXCL13 notably increased the expressions of α-SMA and COL1A1 in mouse and human fibroblasts by activating p-Akt, p-p38, p-ERK, and p-JNK. Moreover, inhibiting CXCL13 with shRNA significantly ameliorated colonic fibrosis in mice with DSS-induced chronic colitis. Immunohistochemistry analysis revealed high expression of CXCL13 in the colon tissues of patients with UC, showing a positive correlation with APN, COL1A1, and COL3A1. CONCLUSION APN contributes to the progression of colonic fibrosis and can exacerbate this condition by regulating the secretion of CXCL13 in the colon, offering potential new perspectives on the pathophysiology of colonic fibrosis.
Collapse
Affiliation(s)
- Haitao Xiao
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Tianhang Xing
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China; Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Miao Qiu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Guangtao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Gongli Yang
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wenke Chen
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Die Hu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Deao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
11
|
Morciano C, Gugliandolo S, Capece U, Di Giuseppe G, Mezza T, Ciccarelli G, Soldovieri L, Brunetti M, Avolio A, Splendore A, Pontecorvi A, Giaccari A, Cinti F. SGLT2 inhibition and adipose tissue metabolism: current outlook and perspectives. Cardiovasc Diabetol 2024; 23:449. [PMID: 39702365 PMCID: PMC11660748 DOI: 10.1186/s12933-024-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as important agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT2 inhibitors have been associated with improved cardiovascular outcomes, not only through their immediate hemodynamic effects-such as glycosuria and (at least temporary) increased natriuresis-but also due to their multifaceted impact on metabolism. Recently, studies have also focused on the effects of SGLT2 inhibitors on adipose tissue. Aside from the well-documented effects on human adiposity, SGLT2i have shown, both in vitro and in murine models, the ability to reduce fat mass, upregulate genes related to browning of white adipose tissue, influence adipocyte size and fatty acid oxidation, and improve oxidative stress and overall metabolic health. In humans, even though data are still limited, recent evidence seems to confirm that the SGLT2i effects observed in cardiovascular outcome trials could be partially explained by their impact on adipose tissue. This review aims to clarify the impact of SGLT2i on adipose tissue, highlighting their role in metabolic health and their potential to transform treatment strategies for T2DM beyond glucose metabolism.
Collapse
Affiliation(s)
- Cassandra Morciano
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Cliniche e Sperimentali, Medicina Interna - Università degli studi di Brescia, Brescia, BS, Italy
| | - Shawn Gugliandolo
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianfranco Di Giuseppe
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Brunetti
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Adriana Avolio
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Amelia Splendore
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Cinti
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Zhang A, Jiang J, Zhang C, Xu H, Yu W, Zhang ZN, Yuan L, Lu Z, Deng Y, Fan H, Fang C, Wang X, Shao A, Chen S, Li H, Ni J, Wang W, Zhang X, Zhang J, Luan B. Thermogenic Adipocytes Promote M2 Macrophage Polarization through CNNM4-Mediated Mg Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401140. [PMID: 39517124 DOI: 10.1002/advs.202401140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
M2 macrophages promote adipose tissue thermogenesis which dissipates energy in the form of heat to combat obesity. However, the regulation of M2 macrophages by thermogenic adipocytes is unclear. Here, it is identified magnesium (Mg) as a thermogenic adipocyte-secreted factor to promote M2 macrophage polarization. Mg transporter Cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) induced by ADRB3-PKA-CREB signaling in thermogenic adipocytes during cold exposure mediates Mg efflux and Mg in turn binds to the DFG motif in mTOR to facilitate mTORC2 activation and M2 polarization in macrophages. In obesity, downregulation of CNNM4 expression inhibits Mg secretion from thermogenic adipocytes, which leads to decreased M2 macrophage polarization and thermogenesis. As a result, CNNM4 overexpression in adipocytes or Mg supplementation in adipose tissue ameliorates obesity by promoting thermogenesis. Importantly, an Mg wire implantation (AMI) approach is introduced to achieve adipose tissue-specific long-term Mg supplement. AMI promotes M2 macrophage polarization and thermogenesis and ameliorates obesity in mice. Taken together, a reciprocal regulation of thermogenic adipocytes and M2 macrophages important for thermogenesis is identified, and AMI is offered as a promising strategy against obesity.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, P. R. China
| | - Junkun Jiang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Chuan Zhang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Houshi Xu
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, School of Medicine, Fudan University, Shanghai, 200040, P. R. China
| | - Wenjing Yu
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Ling Yuan
- School of Public Health, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Zhangming Lu
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Yuqing Deng
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Haonan Fan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P. R. China
| | - Xiaoyu Wang
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Anwen Shao
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Sheng Chen
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Huaming Li
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Jiahua Ni
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wenhui Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, P. R. China
- Brain Research Institute, Zhejiang University, Hangzhou, 310009, P. R. China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Bing Luan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| |
Collapse
|
13
|
Blaszkiewicz M, Johnson CP, Willows JW, Gardner ML, Taplin DR, Freitas MA, Townsend KL. The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells. Adipocyte 2024; 13:2428938. [PMID: 39641403 PMCID: PMC11633174 DOI: 10.1080/21623945.2024.2428938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation. While several RNA-sequencing studies have been performed in WAT, including newer single cell and single nuclei studies, little work has been done to investigate changes to the adipose proteome, particularly during dynamic periods of tissue remodelling such as cold stimulation. Here, we conducted a comprehensive proteomic analysis of inguinal subcutaneous (sc) WAT during the initial 'browning' period of 24 or 72hrs of cold exposure in mice. We identified four significant pathways impacted by cold stimulation that are involved in tissue remodelling, which included mitochondrial function and metabolism, cytoskeletal remodelling, the immune response, and the nervous system. Taken together, we found that early changes in the proteome of WAT with cold stimulation predicted later structural and functional changes in the tissue that are important for tissue and whole-body remodelling to meet energetic and metabolic needs.
Collapse
Affiliation(s)
| | - Cory P. Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Jake W. Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Miranda L. Gardner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dylan R. Taplin
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Kristy L. Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
14
|
Yang Y, Huang B, Qin Y, Wang D, Jin Y, Su L, Wang Q, Pan Y, Zhang Y, Shen Y, Hu W, Cao Z, Jin L, Zhang F. Adipocyte microRNA-802 promotes adipose tissue inflammation and insulin resistance by modulating macrophages in obesity. eLife 2024; 13:e99162. [PMID: 39589393 DOI: 10.7554/elife.99162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yimeng Qin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Danwei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yinuo Jin
- NanJing HanKai Academy, Nanjing, China
| | - Linmin Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qingxin Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenjun Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Zhang Y, Wang R, Liu T, Wang R. Exercise as a Therapeutic Strategy for Obesity: Central and Peripheral Mechanisms. Metabolites 2024; 14:589. [PMID: 39590824 PMCID: PMC11596326 DOI: 10.3390/metabo14110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.
Collapse
Affiliation(s)
- Yiyin Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| |
Collapse
|
16
|
Chu JMT, Chiu SPW, Wang J, Chang RCC, Wong GTC. Adiponectin deficiency is a critical factor contributing to cognitive dysfunction in obese mice after sevoflurane exposure. Mol Med 2024; 30:177. [PMID: 39415089 PMCID: PMC11481458 DOI: 10.1186/s10020-024-00954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The number of major operations performed in obese patients is expected to increase given the growing prevalence of obesity. Obesity is a risk factor for a range of postoperative complications including perioperative neurocognitive disorders. However, the mechanisms underlying this vulnerability are not well defined. We hypothesize that obese subjects are more vulnerable to general anaesthesia induced neurotoxicity due to reduced levels of adiponectin. This hypothesis was tested using a murine surgical model in obese and adiponectin knockout mice exposed to the volatile anaesthetic agent sevoflurane. METHODS Obese mice were bred by subjecting C57BL/6 mice to a high fat diet. Cognitive function, neuroinflammatory responses and neuronal degeneration were assessed in both obese and lean mice following exposure to 2 h of sevoflurane to confirm sevoflurane-induced neurotoxicity. Thereafter, to confirm the role of adiponectin deficiency in, adiponectin knockout mice were established and exposed to the sevoflurane. Finally, the neuroprotective effects of adiponectin receptor agonist (AdipoRon) were examined. RESULTS Sevoflurane triggered significant cognitive dysfunction, neuroinflammatory responses and neuronal degeneration in the obese mice while no significant impact was observed in the lean mice. Similar cognitive dysfunction and neuronal degeneration were also observed in the adiponectin knockout mice after sevoflurane exposure. Administration of AdipoRon partially prevented the deleterious effects of sevoflurane in both obese and adiponectin knockout mice. CONCLUSIONS Our findings demonstrate that obese mice are more susceptible to sevoflurane-induced neurotoxicity and cognitive impairment in which adiponectin deficiency is one of the underlying mechanisms. Treatment with adiponectin receptor agonist ameliorates this vulnerability. These findings may have therapeutic implications in reducing the incidence of anaesthesia related neurotoxicity in obese subjects.
Collapse
Affiliation(s)
- John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China
| | - Suki Pak Wing Chiu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Jiaqi Wang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, HKSAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China.
| |
Collapse
|
17
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Hu Y, Huang Y, Jiang Y, Weng L, Cai Z, He B. The Different Shades of Thermogenic Adipose Tissue. Curr Obes Rep 2024; 13:440-460. [PMID: 38607478 DOI: 10.1007/s13679-024-00559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field. RECENT FINDINGS Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects. A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lvkan Weng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
19
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
20
|
Vamvini M, Nigro P, Caputo T, Stanford KI, Hirshman MF, Middelbeek RJW, Goodyear LJ. Exercise training and cold exposure trigger distinct molecular adaptations to inguinal white adipose tissue. Cell Rep 2024; 43:114481. [PMID: 39003734 PMCID: PMC11309084 DOI: 10.1016/j.celrep.2024.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well established. Here, we tested the hypothesis that inguinal white adipose tissue (iWAT) adaptations are critical for these beneficial effects and determined the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improves glucose tolerance, while cold-exposed iWAT transplantation shows no such benefit. Compared to training, cold leads to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting the thermogenic capacity of iWAT. In contrast, only training increases extracellular space and vesicle transport proteins, and only training upregulates proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.
Collapse
Affiliation(s)
- Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Kristin I Stanford
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Department of Physiology and Cell Biology, Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
22
|
Wang Q, Hartig SM, Ballantyne CM, Wu H. The multifaceted life of macrophages in white adipose tissue: Immune shift couples with metabolic switch. Immunol Rev 2024; 324:11-24. [PMID: 38683173 PMCID: PMC11262992 DOI: 10.1111/imr.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sean M. Hartig
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
23
|
Yuan Y, Hu R, Park J, Xiong S, Wang Z, Qian Y, Shi Z, Wu R, Han Z, Ong SG, Lin S, Varady KA, Xu P, Berry DC, Shu G, Jiang Y. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. SCIENCE ADVANCES 2024; 10:eadn5229. [PMID: 38924414 PMCID: PMC11204298 DOI: 10.1126/sciadv.adn5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.
Collapse
Affiliation(s)
- Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
24
|
Luo Y, Ma W, Cheng S, Yuan T, Li J, Hao H, Liu K, Zeng M, Pan Y. Transplantation of Cold-Stimulated Subcutaneous Adipose Tissue Improves Fat Retention and Recipient Metabolism. Aesthet Surg J 2024; 44:NP486-NP500. [PMID: 38518754 DOI: 10.1093/asj/sjae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Induction of beige fat for grafting is an emerging transplantation strategy. However, safety concerns associated with pharmaceutical interventions limit its wider application. Moreover, because beige fat is a special type of fat with strong metabolic functions, its effect on the metabolism of recipients after grafting has not been explored in the plastic surgery domain. OBJECTIVES The aim of this study was to explore whether cold-induced inguinal white adipose tissue (iWAT) transplantation has a higher retention rate and beneficial effects on recipient metabolism. METHODS C57/BL6 mice were subjected to cold stimulation for 48 hours to induce the browning of iWAT and harvested immediately. Subsequently, each mouse received a transplant of 0.2 mL cold-induced iWAT or normal iWAT. Fat grafts and recipients' iWAT, epididymal adipose tissue, and brown adipose tissue were harvested at 8 weeks after operation. Immunofluorescence staining, real-time polymerase chain reaction, and western blot were used for histological and molecular analysis. RESULTS Cold-induced iWAT grafting had a higher mean [standard error of the mean] retention rate (67.33% [1.74%] vs 55.83% [2.94%], P < .01) and more satisfactory structural integrity than normal iWAT. Histological changes identified improved adipose tissue homeostasis after cold challenge, including abundant smaller adipocytes, higher levels of adipogenesis, angiogenesis, and proliferation, but lower levels of fibrosis. More importantly, cold-induced iWAT grafting suppressed the inflammation of epididymal adipose tissue caused by conventional fat grafting, and activated the glucose metabolism and thermogenic activity of recipients' adipose tissues. CONCLUSIONS Cold-induced iWAT grafting is an effective nonpharmacological intervention strategy to improve the retention rate and homeostasis of grafts. Furthermore, it improves the adverse effects caused by traditional fat grafting, while also conferring metabolic benefits.
Collapse
|
25
|
Huang Z, Sung HK, Yan X, He S, Jin L, Wang Q, Wu X, Hsu HH, Pignalosa A, Crawford K, Sweeney G, Xu A. The adiponectin-derived peptide ALY688 protects against the development of metabolic dysfunction-associated steatohepatitis. Clin Transl Sci 2024; 17:e13760. [PMID: 38847320 PMCID: PMC11157418 DOI: 10.1111/cts.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.
Collapse
Affiliation(s)
- Zhe Huang
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
- Department of Genetics and Developmental Science, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Xingqun Yan
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Shiyu He
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Leigang Jin
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Qin Wang
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | - Xuerui Wu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
| | | | | | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong KongChina
| |
Collapse
|
26
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Yuan LQ. Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev 2024; 25:e13740. [PMID: 38571458 DOI: 10.1111/obr.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Jun Lin
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Liu W, Wu Y, Ma R, Zhu X, Wang R, He L, Shu M. Multi-omics analysis of a case of congenital microtia reveals aldob and oxidative stress associated with microtia etiology. Orphanet J Rare Dis 2024; 19:218. [PMID: 38802922 PMCID: PMC11129396 DOI: 10.1186/s13023-024-03149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/27/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Microtia is reported to be one of the most common congenital craniofacial malformations. Due to the complex etiology and the ethical barrier of embryonic study, the precise mechanisms of microtia remain unclear. Here we report a rare case of microtia with costal chondrodysplasia based on bioinformatics analysis and further verifications on other sporadic microtia patients. RESULTS One hundred fourteen deleterious insert and deletion (InDel) and 646 deleterious SNPs were screened out by WES, candidate genes were ranked in descending order according to their relative impact with microtia. Label-free proteomic analysis showed that proteins significantly different between the groups were related with oxidative stress and energy metabolism. By real-time PCR and immunohistochemistry, we further verified the candidate genes between other sporadic microtia and normal ear chondrocytes, which showed threonine aspartase, cadherin-13, aldolase B and adiponectin were significantly upregulated in mRNA levels but were significantly lower in protein levels. ROS detection and mitochondrial membrane potential (∆ Ψ m) detection proved that oxidative stress exists in microtia chondrocytes. CONCLUSIONS Our results not only spot new candidate genes by WES and label-free proteomics, but also speculate for the first time that metabolism and oxidative stress may disturb cartilage development and this might become therapeutic targets and potential biomarkers with clinical usefulness in the future.
Collapse
Affiliation(s)
- Wenbo Liu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yi Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University Medical College, Xi'an, Shaanxi, China
| | - Xinxi Zhu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lin He
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Maoguo Shu
- The First Affiliated Hospital of Xi'an Jiao Tong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
28
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
29
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
32
|
Wei W, Yu S, Zeng H, Tan W, Hu M, Huang J, Li X, Mao L. Docosahexaenoic and Eicosapentaenoic Acids Promote the Accumulation of Browning-Related Myokines via Calcium Signaling in Insulin-Resistant Mice. J Nutr 2024; 154:1271-1281. [PMID: 38367811 DOI: 10.1016/j.tjnut.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.
Collapse
Affiliation(s)
- Wenting Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China; Department of Nutriology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Weifeng Tan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
33
|
Tang J, Tam E, Song E, Xu A, Sweeney G. Crosstalk between myocardial autophagy and sterile inflammation in the development of heart failure. AUTOPHAGY REPORTS 2024; 3:2320605. [PMID: 40395524 PMCID: PMC11864620 DOI: 10.1080/27694127.2024.2320605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 05/22/2025]
Abstract
Heart failure, a leading driver of global mortality, remains a topic of intense contemporary research interest due to the prevailing unmet need in cardiometabolic therapeutics. Numerous mechanisms with the potential to influence the onset and development of heart failure remain incompletely understood. Firstly, myocardial autophagy, which involves lysosomal degradation of damaged cellular components, confers context-dependent beneficial and detrimental effects. Secondly, sterile inflammation may arise following cardiac stress and exacerbate the progression of heart failure. Inflammation changes in a temporal manner and its onset must be adequately resolved to limit progression of heart failure. Mitochondria are an important factor in contributing to sterile inflammation by releasing damage associated molecular patterns (DAMPs) including mitochondrial DNA (mtDNA). Accordingly, this is one reason why the selective autophagy of mitochondria to maintain optimal function is important in determining cardiac function. In this review, we examine the increasing evidence suggesting crosstalk between autophagy and sterile inflammation together with their role in the development of heart failure. In particular, this is exemplified in the preclinical models of ischaemia/reperfusion injury and pressure overload induced heart failure. We also highlight potential therapeutic approaches focusing on autophagy and addressing sterile inflammation, aiming to enhance outcomes in heart failure.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Eddie Tam
- Department of Biology, York University, Toronto, ON, Canada
| | - Erfei Song
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
34
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
35
|
Bauzá-Thorbrügge M, Vujičić M, Chanclón B, Palsdottir V, Pillon NJ, Benrick A, Wernstedt Asterholm I. Adiponectin stimulates Sca1 +CD34 --adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue. Metabolism 2024; 151:155716. [PMID: 37918793 DOI: 10.1016/j.metabol.2023.155716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The adipocyte hormone adiponectin improves insulin sensitivity and there is an inverse correlation between adiponectin levels and type-2 diabetes risk. Previous research shows that adiponectin remodels the adipose tissue into a more efficient metabolic sink. For instance, mice that overexpress adiponectin show increased capacity for hyperplastic adipose tissue expansion as evident from smaller and metabolically more active white adipocytes. In contrast, the brown adipose tissue (BAT) of these mice looks "whiter" possibly indicating reduced metabolic activity. Here, we aimed to further establish the effect of adiponectin on adipose tissue expansion and adipocyte mitochondrial function as well as to unravel mechanistic aspects in this area. METHODS Brown and white adipose tissues from adiponectin overexpressing (APN tg) mice and littermate wildtype controls, housed at room and cold temperature, were studied by histological, gene/protein expression and flow cytometry analyses. Metabolic and mitochondrial functions were studied by radiotracers and Seahorse-based technology. In addition, mitochondrial function was assessed in cultured adiponectin deficient adipocytes from APN knockout and heterozygote mice. RESULTS APN tg BAT displayed increased proliferation prenatally leading to enlarged BAT. Postnatally, APN tg BAT turned whiter than control BAT, confirming previous reports. Furthermore, elevated adiponectin augmented the sympathetic innervation/activation within adipose tissue. APN tg BAT displayed reduced metabolic activity and reduced mitochondrial oxygen consumption rate (OCR). In contrast, APN tg inguinal white adipose tissue (IWAT) displayed enhanced metabolic activity. These metabolic differences between genotypes were apparent also in cultured adipocytes differentiated from BAT and IWAT stroma vascular fraction, and the OCR was reduced in both brown and white APN heterozygote adipocytes. In both APN tg BAT and IWAT, the mesenchymal stem cell-related genes were upregulated along with an increased abundance of Lineage-Sca1+CD34- "beige-like" adipocyte precursor cells. In vitro, the adiponectin receptor agonist Adiporon increased the expression of the proliferation marker Pcna and decreased the expression of Cd34 in Sca1+ mesenchymal stem cells. CONCLUSIONS We propose that the seemingly opposite effect of adiponectin on BAT and IWAT is mediated by a common mechanism; while reduced adiponectin levels are linked to lower adipocyte OCR, elevated adiponectin levels stimulate expansion of adipocyte precursor cells that produce adipocytes with intrinsically higher metabolic rate than classical white but lower metabolic rate than classical brown adipocytes. Moreover, adiponectin can modify the adipocytes' metabolic activity directly and by enhancing the sympathetic innervation within a fat depot.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Unit for Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Milica Vujičić
- Unit for Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Belén Chanclón
- Unit for Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Vilborg Palsdottir
- Unit for Endocrine Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Anna Benrick
- Unit for Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Ingrid Wernstedt Asterholm
- Unit for Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
36
|
Zhu Y, Liu W, Qi Z. Adipose tissue browning and thermogenesis under physiologically energetic challenges: a remodelled thermogenic system. J Physiol 2024; 602:23-48. [PMID: 38019069 DOI: 10.1113/jp285269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Metabolic diseases such as obesity and diabetes are often thought to be caused by reduced energy expenditure, which poses a serious threat to human health. Cold exposure, exercise and caloric restriction have been shown to promote adipose tissue browning and thermogenesis. These physiological interventions increase energy expenditure and thus have emerged as promising strategies for mitigating metabolic disorders. However, that increased adipose tissue browning and thermogenesis elevate thermogenic consumption is not a reasonable explanation when humans and animals confront energetic challenges imposed by these interventions. In this review, we collected numerous results on adipose tissue browning and whitening and evaluated this bi-directional conversion of adipocytes from the perspective of energy homeostasis. Here, we propose a new interpretation of the role of adipose tissue browning under energetic challenges: increased adipose tissue browning and thermogenesis under energy challenge is not to enhance energy expenditure, but to reestablish a more economical thermogenic pattern to maintain the core body temperature. This can be achieved by enhancing the contribution of non-shivering thermogenesis (adipose tissue browning and thermogenesis) and lowering shivering thermogenesis and high intensity shivering. Consequently, the proportion of heat production in fat increases and that in skeletal muscle decreases, enabling skeletal muscle to devote more energy reserves to overcoming environmental stress.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
37
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
38
|
Oliveras-Cañellas N, Moreno-Navarrete JM, Lorenzo PM, Garrido-Sánchez L, Becerril S, Rangel O, Latorre J, de la Calle Vargas E, Pardo M, Valentí V, Romero-Cabrera JL, Oliva-Olivera W, Silva C, Diéguez C, Villarroya F, López M, Crujeiras AB, Seoane LM, López-Miranda J, Frühbeck G, Tinahones FJ, Fernández-Real JM. Downregulated Adipose Tissue Expression of Browning Genes With Increased Environmental Temperatures. J Clin Endocrinol Metab 2023; 109:e145-e154. [PMID: 37560997 DOI: 10.1210/clinem/dgad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Climate change and global warming have been hypothesized to influence the increased prevalence of obesity worldwide. However, the evidence is scarce. OBJECTIVE We aimed to investigate how outside temperature might affect adipose tissue physiology and metabolic traits. METHODS The expression of genes involved in thermogenesis/browning and adipogenesis were evaluated (through quantitative polymerase chain reaction) in the subcutaneous adipose tissue (SAT) from 1083 individuals recruited in 5 different regions of Spain (3 in the North and 2 in the South). Plasma biochemical variables and adiponectin (enzyme-linked immunosorbent assay) were collected through standardized protocols. Mean environmental outdoor temperatures were obtained from the National Agency of Meteorology. Univariate, multivariate, and artificial intelligence analyses (Boruta algorithm) were performed. RESULTS The SAT expression of genes associated with browning (UCP1, PRDM16, and CIDEA) and ADIPOQ were significantly and negatively associated with minimum, average, and maximum temperatures. The latter temperatures were also negatively associated with the expression of genes involved in adipogenesis (FASN, SLC2A4, and PLIN1). Decreased SAT expression of UCP1 and ADIPOQ messenger RNA and circulating adiponectin were observed with increasing temperatures in all individuals as a whole and within participants with obesity in univariate, multivariate, and artificial intelligence analyses. The differences remained statistically significant in individuals without type 2 diabetes and in samples collected during winter. CONCLUSION Decreased adipose tissue expression of genes involved in browning and adiponectin with increased environmental temperatures were observed. Given the North-South gradient of obesity prevalence in these same regions, the present observations could have implications for the relationship of the obesity pandemic with global warming.
Collapse
Affiliation(s)
- Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| | - Paula M Lorenzo
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Epigenomics in Endocinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela 15706, Spain
| | - Lourdes Garrido-Sánchez
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Virgen de la Victoria, Universidad de Málaga, Málaga 29590, Spain
| | - Sara Becerril
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Oriol Rangel
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Nutrigenomics, Metabolic Syndrome Department, Servicio de Medicina Interna, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| | - Elena de la Calle Vargas
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
| | - Maria Pardo
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (IDIS/SERGAS), Santiago de Compostela 15706, Spain
| | - Victor Valentí
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Juan L Romero-Cabrera
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Nutrigenomics, Metabolic Syndrome Department, Servicio de Medicina Interna, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Wilfredo Oliva-Olivera
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Virgen de la Victoria, Universidad de Málaga, Málaga 29590, Spain
| | - Camilo Silva
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Carlos Diéguez
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Francesc Villarroya
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Department of Biochemistry and Molecular Biomedicine, Insitut de Biomedicina (IBUB), University of Barcelona, Barcelona 08028, Spain
| | - Miguel López
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Ana B Crujeiras
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Epigenomics in Endocinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela 15706, Spain
| | - Luisa-Maria Seoane
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela 15706, Spain
| | - José López-Miranda
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Nutrigenomics, Metabolic Syndrome Department, Servicio de Medicina Interna, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Gema Frühbeck
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Obesity Area, Clínica Universidad de Navarra, University of Navarra, Pamplona 31009, Spain
| | - Francisco José Tinahones
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Virgen de la Victoria, Universidad de Málaga, Málaga 29590, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona 17007, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona 17003, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid 28029, Spain
| |
Collapse
|
39
|
Pang J, Koh TJ. Proliferation of monocytes and macrophages in homeostasis, infection, injury, and disease. J Leukoc Biol 2023; 114:532-546. [PMID: 37555460 PMCID: PMC10673715 DOI: 10.1093/jleuko/qiad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Monocytes (Mo) and macrophages (Mφ) play important roles in the function of tissues, organs, and systems of all animals during homeostasis, infection, injury, and disease. For decades, conventional wisdom has dictated that Mo and Mφ are end-stage cells that do not proliferate and that Mφ accumulation in tissues is the result of infiltration of Mo from the blood and subsequent differentiation to Mφ. However, reports from the early 1900s to the present describe evidence of Mo and Mφ proliferation in different tissues and contexts. The purpose of this review is to summarize both historical and current evidence for the contribution of Mφ proliferation to their accumulation in different tissues during homeostasis, infection, injury, and disease. Mφ proliferate in different organs and tissues, including skin, peritoneum, lung, heart, aorta, kidney, liver, pancreas, brain, spinal cord, eye, adipose tissue, and uterus, and in different species including mouse, rat, rabbit, and human. Mφ can proliferate at different stages of differentiation with infiltrating Mo-like cells proliferating in certain inflammatory contexts (e.g. skin wounding, kidney injury, bladder and liver infection) and mature resident Mφ proliferating in other inflammatory contexts (e.g. nematode infection, acetaminophen liver injury) and during homeostasis. The pathways involved in stimulating Mφ proliferation also may be context dependent, with different cytokines and transcription factors implicated in different studies. Although Mφ are known to proliferate in health, injury, and disease, much remains to be learned about the regulation of Mφ proliferation in different contexts and its impact on the homeostasis, injury, and repair of different organs and tissues.
Collapse
Affiliation(s)
- Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612-7246, United States
| |
Collapse
|
40
|
Ortiz GU, de Freitas EC. Physical activity and batokines. Am J Physiol Endocrinol Metab 2023; 325:E610-E620. [PMID: 37819193 DOI: 10.1152/ajpendo.00160.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Brown and beige adipose tissue share similar functionality, being both tissues specialized in producing heat through nonshivering thermogenesis and also playing endocrine roles through the release of their secretion factors called batokines. This review elucidates the influence of physical exercise, and myokines released in response, on the regulation of thermogenic and secretory functions of these adipose tissues and discusses the similarity of batokines actions with physical exercise in the remodeling of adipose tissue. This adipose tissue remodeling promoted by autocrine and paracrine batokines or physical exercise seems to optimize its functionality associated with better health outcomes.
Collapse
Affiliation(s)
- Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo-FMRP USP, São Paulo, Brazil
| | - Ellen Cristini de Freitas
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo-FMRP USP, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Xie L, Wang H, Wu D, Zhang F, Chen W, Ye Y, Hu F. CXCL13 promotes thermogenesis in mice via recruitment of M2 macrophage and inhibition of inflammation in brown adipose tissue. Front Immunol 2023; 14:1253766. [PMID: 37936696 PMCID: PMC10627189 DOI: 10.3389/fimmu.2023.1253766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brown adipose tissue (BAT) is mainly responsible for mammalian non-shivering thermogenesis and promotes energy expenditure. Meanwhile, similar to white adipose tissue (WAT), BAT also secretes a variety of adipokines to regulate metabolism through paracrine, autocrine, or endocrine ways. The chemokine C-X-C motif chemokine ligand-13 (CXCL13), a canonical B cell chemokine, functions in inflammation and tumor-related diseases. However, the role of CXCL13 in the adipose tissues is unclear. Methods The expression of CXCL13 in BAT and subcutaneous white adipose tissue (SWAT) of mice under cold stimulation were detected. Local injection of CXCL13 into BAT of normal-diet and high-fat-diet induced obese mice was used to detect thermogenesis and determine cold tolerance. The brown adipocytes were treated with CXCL13 alone or in the presence of macrophages to determine the effects of CXCL13 on thermogenic and inflammation related genes expression in vitro. Results In this study, we discovered that the expression of CXCL13 in the stromal cells of brown adipose tissue significantly elevated under cold stimulation. Overexpression of CXCL13 in the BAT via local injection could increase energy expenditure and promote thermogenesis in obese mice. Mechanically, CXCL13 could promote thermogenesis via recruiting M2 macrophages in the BAT and, in the meantime, inhibiting pro-inflammatory factor TNFα level. Discussion This study revealed the novel role of adipose chemokine CXCL13 in the regulation of BAT activity and thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Vamvini M, Nigro P, Caputo T, Stanford KI, Hirshman MF, Middelbeek RJ, Goodyear LJ. Exercise Training and Cold Exposure Trigger Distinct Molecular Adaptations to Inguinal White Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562635. [PMID: 37905018 PMCID: PMC10614850 DOI: 10.1101/2023.10.16.562635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well-established. We tested the hypothesis that adaptations to inguinal white adipose tissue (iWAT) are critical for these beneficial effects by determining the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improved glucose tolerance, while cold-exposed iWAT transplantation showed no such benefit. Compared to training, cold led to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting iWAT's thermogenic capacity. In contrast, only training increased extracellular space and vesicle transport proteins, and only training upregulated proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.
Collapse
Affiliation(s)
- Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Kristin I. Stanford
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Physiology and Cell Biology, Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael F. Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Roeland J.W. Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
44
|
Ni Y, Qian L, Siliceo SL, Long X, Nychas E, Liu Y, Ismaiah MJ, Leung H, Zhang L, Gao Q, Wu Q, Zhang Y, Jia X, Liu S, Yuan R, Zhou L, Wang X, Li Q, Zhao Y, El-Nezami H, Xu A, Xu G, Li H, Panagiotou G, Jia W. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab 2023; 35:1530-1547.e8. [PMID: 37673036 DOI: 10.1016/j.cmet.2023.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. To investigate the effects of resistant starch (RS) as a microbiota-directed dietary supplement for NAFLD treatment, we coupled a 4-month randomized placebo-controlled clinical trial in individuals with NAFLD (ChiCTR-IOR-15007519) with metagenomics and metabolomics analysis. Relative to the control (n = 97), the RS intervention (n = 99) resulted in a 9.08% absolute reduction of intrahepatic triglyceride content (IHTC), which was 5.89% after adjusting for weight loss. Serum branched-chain amino acids (BCAAs) and gut microbial species, in particular Bacteroides stercoris, significantly correlated with IHTC and liver enzymes and were reduced by RS. Multi-omics integrative analyses revealed the interplay among gut microbiota changes, BCAA availability, and hepatic steatosis, with causality supported by fecal microbiota transplantation and monocolonization in mice. Thus, RS dietary supplementation might be a strategy for managing NAFLD by altering gut microbiota composition and functionality.
Collapse
Affiliation(s)
- Yueqiong Ni
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Lingling Qian
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sara Leal Siliceo
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Xiaoxue Long
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Emmanouil Nychas
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Marsena Jasiel Ismaiah
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland; School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Lei Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiongmei Gao
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qian Wu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ying Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuangbo Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hani El-Nezami
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland; School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany; Department of Medicine, The University of Hong Kong, Hong Kong, China; Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
45
|
Velickovic K, Leija HAL, Kosic B, Sacks H, Symonds ME, Sottile V. Leptin deficiency impairs adipogenesis and browning response in mouse mesenchymal progenitors. Eur J Cell Biol 2023; 102:151342. [PMID: 37467572 DOI: 10.1016/j.ejcb.2023.151342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Although phenotypically different, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) are able to produce heat through non-shivering thermogenesis due to the presence of mitochondrial uncoupling protein 1 (UCP1). The appearance of thermogenically active beige adipocytes in iWAT is known as browning. Both brown and beige cells originate from mesenchymal stem cells (MSCs), and in culture conditions a browning response can be induced with hypothermia (i.e. 32 °C) during which nuclear leptin immunodetection was observed. The central role of leptin in regulating food intake and energy consumption is well recognised, but its importance in the browning process at the cellular level is unclear. Here, immunocytochemical analysis of MSC-derived adipocytes established nuclear localization of both leptin and leptin receptor suggesting an involvement of the leptin pathway in the browning response. In order to elucidate whether leptin modulates the expression of brown and beige adipocyte markers, BAT and iWAT samples from leptin-deficient (ob/ob) mice were analysed and exhibited reduced brown/beige marker expression compared to wild-type controls. When MSCs were isolated and differentiated into adipocytes, leptin deficiency was observed to induce a white phenotype, especially when incubated at 32 °C. These adaptations were accompanied with morphological signs of impaired adipogenic differentiation. Overall, our results indicate that leptin supports adipocyte browning and suggest a potential role for leptin in adipogenesis and browning.
Collapse
Affiliation(s)
- Ksenija Velickovic
- School of Medicine, The University of Nottingham, UK; Faculty of Biology, The University of Belgrade, Serbia.
| | | | - Bojana Kosic
- Faculty of Biology, The University of Belgrade, Serbia
| | - Harold Sacks
- VA Endocrinology and Diabetes Division, Department of Medicine, University of California, Los Angeles, USA
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, UK; Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, The University of Nottingham, UK.
| | - Virginie Sottile
- School of Medicine, The University of Nottingham, UK; Department of Molecular Medicine, The University of Pavia, Italy.
| |
Collapse
|
46
|
Laiglesia LM, Escoté X, Sáinz N, Felix-Soriano E, Santamaría E, Collantes M, Fernández-Galilea M, Colón-Mesa I, Martínez-Fernández L, Quesada-López T, Quesada-Vázquez S, Rodríguez-Ortigosa C, Arbones-Mainar JM, Valverde ÁM, Martínez JA, Dalli J, Herrero L, Lorente-Cebrián S, Villarroya F, Moreno-Aliaga MJ. Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice. Mol Metab 2023; 74:101749. [PMID: 37271337 PMCID: PMC10331312 DOI: 10.1016/j.molmet.2023.101749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. METHODS MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6-/-) mice. RESULTS In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6-/- mice. CONCLUSIONS These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.
Collapse
Affiliation(s)
- Laura M Laiglesia
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Xavier Escoté
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204 Spain
| | - Neira Sáinz
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Elisa Felix-Soriano
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Eva Santamaría
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Division of Hepatology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - María Collantes
- Department of Nuclear Medicine/ Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Marta Fernández-Galilea
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Colón-Mesa
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Leyre Martínez-Fernández
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain
| | - Tania Quesada-López
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - José M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Instituto de Investigación Sanitaria Aragón, Instituto Aragonés de Ciencias de la Salud, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángela M Valverde
- Alberto Sols Biomedical Research Institute (IIBm) (CSIC/UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J Alfredo Martínez
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Center for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Lorente-Cebrián
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Current address: Department of Pharmacology, Physiology, Legal and Forensic Medicine. Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María J Moreno-Aliaga
- University of Navarra, Center for Nutrition Research, Pamplona, 31008, Spain; University of Navarra, Department of Nutrition, Food Science and Physiology, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
47
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Wang S, Liu Y, Chen J, He Y, Ma W, Liu X, Sun X. Effects of multi-organ crosstalk on the physiology and pathology of adipose tissue. Front Endocrinol (Lausanne) 2023; 14:1198984. [PMID: 37383400 PMCID: PMC10293893 DOI: 10.3389/fendo.2023.1198984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
In previous studies, adipocytes were found to play an important role in regulating whole-body nutrition and energy balance, and are also important in energy metabolism, hormone secretion, and immune regulation. Different adipocytes have different contributions to the body, with white adipocytes primarily storing energy and brown adipocytes producing heat. Recently discovered beige adipocytes, which have characteristics in between white and brown adipocytes, also have the potential to produce heat. Adipocytes interact with other cells in the microenvironment to promote blood vessel growth and immune and neural network interactions. Adipose tissue plays an important role in obesity, metabolic syndrome, and type 2 diabetes. Dysfunction in adipose tissue endocrine and immune regulation can cause and promote the occurrence and development of related diseases. Adipose tissue can also secrete multiple cytokines, which can interact with organs; however, previous studies have not comprehensively summarized the interaction between adipose tissue and other organs. This article reviews the effect of multi-organ crosstalk on the physiology and pathology of adipose tissue, including interactions between the central nervous system, heart, liver, skeletal muscle, and intestines, as well as the mechanisms of adipose tissue in the development of various diseases and its role in disease treatment. It emphasizes the importance of a deeper understanding of these mechanisms for the prevention and treatment of related diseases. Determining these mechanisms has enormous potential for identifying new targets for treating diabetes, metabolic disorders, and cardiovascular diseases.
Collapse
Affiliation(s)
- Sufen Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuejing He
- Clinical Laboratory, Dongguan Eighth People’s Hospital, Dongguan, China
| | - Wanrui Ma
- Department of General Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
49
|
Aquilano K, Zhou B, Brestoff JR, Lettieri-Barbato D. Multifaceted mitochondrial quality control in brown adipose tissue. Trends Cell Biol 2023; 33:517-529. [PMID: 36272883 PMCID: PMC11657393 DOI: 10.1016/j.tcb.2022.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Brown adipose tissue (BAT) controls mammalian core body temperature by non-shivering thermogenesis. BAT is extraordinarily rich in mitochondria, which have the peculiarity of generating heat by uncoupled respiration. Since the mitochondrial activity of BAT is subject to cycles of activation and deactivation in response to environmental temperature changes, an integrated mitochondrial quality control (MQC) system is of fundamental importance to ensure BAT physiology. Here, we provide an overview of the conventional and alternative mechanisms through which thermogenic adipocytes selectively remove damaged parts of mitochondria and how macrophages participate in the MQC system by removing extracellular mitochondrial waste to maintain the thermogenic function of BAT.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; IRCCS, Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
50
|
Naing YT, Sun L. The Role of Splicing Factors in Adipogenesis and Thermogenesis. Mol Cells 2023; 46:268-277. [PMID: 37170770 PMCID: PMC10183792 DOI: 10.14348/molcells.2023.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023] Open
Abstract
Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.
Collapse
Affiliation(s)
- Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|