1
|
Swensen AC, Piehowski PD, Chen J, Chan XY, Kelly SS, Petyuk VA, Moore RJ, Nasif L, Butterworth EA, Atkinson MA, Kulkarni RN, Campbell-Thompson M, Mathews CE, Qian WJ. Increased inflammation as well as decreased endoplasmic reticulum stress and translation differentiate pancreatic islets from donors with pre-symptomatic stage 1 type 1 diabetes and non-diabetic donors. Diabetologia 2025; 68:1463-1475. [PMID: 40457096 DOI: 10.1007/s00125-025-06417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/12/2025] [Indexed: 06/11/2025]
Abstract
AIMS/HYPOTHESIS Progression to type 1 diabetes is associated with genetic factors, the presence of autoantibodies and a decline in beta cell insulin secretion in response to glucose. Very little is known regarding the molecular changes that occur in human insulin-secreting beta cells prior to the onset of type 1 diabetes. Herein, we applied an unbiased proteomics approach to identify changes in proteins and potential mechanisms of islet dysfunction in islet-autoantibody-positive organ donors with pre-symptomatic stage 1 type 1 diabetes (HbA1c ≤42 mmol/mol [6.0%]). We aimed to identify pathways in islets that are indicative of beta cell dysfunction. METHODS Multiple islet sections were collected through laser microdissection of frozen pancreatic tissues from organ donors positive for single or multiple islet autoantibodies (AAb+, n=5), and age (±2 years)- and sex-matched non-diabetic (ND) control donors ( n=5) obtained from the Network for Pancreatic Organ donors with Diabetes (nPOD). Islet sections were subjected to MS-based proteomics and analysed with label-free quantification followed by pathway and functional annotations. RESULTS Analyses resulted in ~4500 proteins identified with low false discovery rate (<1%), with 2165 proteins reliably quantified in every islet sample. We observed large inter-donor variations that presented a challenge for statistical analysis of proteome changes between donor groups. We therefore focused on only the donors with stage 1 type 1 diabetes who were positive for multiple autoantibodies (mAAb+, n=3) and genetic risk compared with their matched ND controls (n=3) for the final statistical analysis. Approximately 10% of the proteins (n=202) were significantly different (unadjusted p<0.025, q<0.15) for mAAb+ vs ND donor islets. The significant alterations clustered around major functions for upregulation in the immune response and glycolysis, and downregulation in endoplasmic reticulum (ER) stress response as well as protein translation and synthesis. The observed proteome changes were further supported by several independent published datasets, including a proteomics dataset from in vitro proinflammatory cytokine-treated human islets and single-cell RNA-seq datasets from AAb+ individuals. CONCLUSIONS/INTERPRETATION In situ human islet proteome alterations in stage 1 type 1 diabetes centred around several major functional categories, including an expected increase in immune response genes (elevated antigen presentation/HLA), with decreases in protein synthesis and ER stress response, as well as compensatory metabolic response. The dataset serves as a proteomics resource for future studies on beta cell changes during type 1 diabetes progression and pathogenesis. DATA AVAILABILITY The LC-MS raw datasets that support the findings of this study have been deposited in the online repository: MassIVE ( https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp ) with accession no. MSV000090212.
Collapse
Affiliation(s)
- Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA
| | - X'avia Y Chan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shane S Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lith Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth A Butterworth
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA.
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Vazquez EM, Marselli L, Orr K, Felton JL, Liu J, Kaddis JS, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. EBioMedicine 2025:105734. [PMID: 40335415 DOI: 10.1016/j.ebiom.2025.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Tyrosine protein-kinase 2 (TYK2) mediates inflammatory signalling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. TYK2 missense mutations protect against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in other autoimmune conditions. METHODS We evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D, including human β cells, cadaveric islets, iPSC-derived islets, and mouse models. FINDINGS In vitro studies showed that TYK2is prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with TYK2i prevented IFNα-induced antigenic peptide presentation and alloreactive and autoreactive T cell degranulation. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP and NOD mice) reduced systemic and tissue-localised inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes, and spleen highlighted a role for TYK2 inhibition in modulating signalling pathways associated with inflammation, translational control, stress signalling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues. INTERPRETATION These findings indicate that TYK2i has beneficial effects on both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2is in human T1D. FUNDING This work was supported by the National Institutes of Health (NIH), Veteran Affairs (VA), Breakthrough T1D, and gifts from the Sigma Beta Sorority, the Ball Brothers Foundation, and the George and Frances Ball Foundation.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Diabetes-Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A Weaver
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugenia Martin Vazquez
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L Felton
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | | | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Ahmad F, Uzair SA, Lakshmanan AP, Alabduljabbar S, Ahmed SH, Kabeer BSA, Marr AK, Kino T, Brummaier T, McGready R, Nosten F, Chaussabel D, Khodor SA, Terranegra A. Placental and Cord Blood DNA Methylation Changes Associated With Gestational Diabetes Mellitus in a Marginalized Population: The Untold Role of Saturated Fats. Mol Nutr Food Res 2025:e70058. [PMID: 40270325 DOI: 10.1002/mnfr.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
The role of DNA methylation (DNAm) and its modulation by dietary factors in gestational diabetes mellitus (GDM) remains underexplored, particularly in marginalized populations. This study investigates DNAm alterations in GDM-exposed cord blood and placenta and their association with maternal dietary quality and single nutrient intake in a low-income population from the Myanmar-Thailand border. A matched case-control design (GDM: n = 38, controls: n = 34) was selected from a Myanmar-Thailand pregnancy cohort. Dietary intake was assessed via 24-h recalls and analyzed using Nutritionist Pro, with dietary quality evaluated by the healthy eating index (HEI). DNAm was profiled in 72 cord blood and 72 placental samples using the Infinium MethylationEPIC array. Significant differences in dietary vitamin D, total folate, and saturated fat intake were observed between the groups. RnBeads analyses revealed hypomethylation as the predominant DNAm pattern in GDM, particularly at ADORA2B (placenta) and ZFP57 (cord blood) promoters. The excessive intake of saturated fats was associated with GDM hypomethylation profiles and negatively correlated with ZFP57 methylation levels. This study highlights the influence of saturated fat intake on epigenetic changes in pregnancy, revealing potential biomarkers for GDM and emphasizing the need for tailored, population-specific nutritional interventions to mitigate transgenerational health impacts.
Collapse
Affiliation(s)
- Fatima Ahmad
- College of Health and Life Sciences, Hamad bin, Khalifa University, Doha, Qatar
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | | | | | | | - Salma H Ahmed
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Basirudeen Syed Ahamed Kabeer
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | - Tomoshige Kino
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Damien Chaussabel
- Computational Sciences Department, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Souhaila Al Khodor
- College of Health and Life Sciences, Hamad bin, Khalifa University, Doha, Qatar
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- College of Health and Life Sciences, Hamad bin, Khalifa University, Doha, Qatar
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
4
|
Tiwari K, Saravanan A, Anil A, Tiwari VK, Shamim MA, Singh S, Dwivedi P, Deora S, Varthya SB. Molecular and Functional Significance of Growth Differentiation Factor-15: A Review on Cardiovascular-Kidney-Metabolic Biomarker. Curr Cardiol Rev 2025; 21:e1573403X332671. [PMID: 39781722 DOI: 10.2174/011573403x332671241121063641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling. GDF-15 decreases cardiac dysfunction and hypertrophy by inducing HIF-α (hypoxia-inducible factor-1α). It causes increased fractional shortening and a significant decrease in ventricular dilation through the induction of the SMAD 2/3. GDF-15 prevents hyperglycemia-induced apoptosis in diabetes mellitus. GDF-15 causes anorexia by influencing the central systems regulating metabolism and appetite. Therefore, targeting GDF-15 can be useful for the treatment of anorexia caused by cancer as well as the prevention of resulting weight loss. GDF-15 has an important role in predicting mortality in acute kidney injury. Its high levels are related to eGFR decline and also have a prognostic role in CKD patients. Growth differentiation factor-15 (GDF-15) is a vital biomarker for diagnosis, treatment, and prognosis of CKM syndrome. Elevated GDF-15 levels can be utilised as a biomarker to determine the suitable metformin dosage. In light chain amyloidosis, a raised level of GDF-15 predicts early death in heart failure and renal disease patients. In vivo, studies using GDF-15 analogs and antibodies against GFRAL to affect metabolic parameters and ventricular dilatation have shown potential for GDF-15-based therapeutic interventions. This review aims to study the role of GDF-15 in CKM syndrome and establish it as a CKM biomarker.
Collapse
Affiliation(s)
- Krishna Tiwari
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Aswini Saravanan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Abhishek Anil
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Vikas Kumar Tiwari
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physiology, JIET Medical College and Hospital, Jodhpur, India
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Surjit Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Surender Deora
- Department of Cardiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Shoban Babu Varthya
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
5
|
Cobo‐Vuilleumier N, Rodríguez‐Fernandez S, López‐Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López‐Férnandez‐Sobrino R, Fernández‐Santos B, Serrano CE, Salas‐Lloret D, van Overbeek N, Ramos‐Rodriguez M, Mateo‐Rodríguez C, Hidalgo L, Marin‐Canas S, Nano R, Arroba AI, Caro AC, Vertegaal ACO, Martín‐Montalvo A, Martín F, Aguilar‐Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez‐Brocca MA, Vives‐Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 PMCID: PMC11659195 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
|
6
|
Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, Webb-Robertson BJM, Nakayasu ES, Qian WJ, Metz TO. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med 2024; 30:1137-1151. [PMID: 39152082 PMCID: PMC11631641 DOI: 10.1016/j.molmed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yu Mi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
7
|
Auddino S, Aiello E, Grieco GE, Dotta F, Sebastiani G. A three-layer perspective on miRNA regulation in β cell inflammation. Trends Endocrinol Metab 2024:S1043-2760(24)00257-1. [PMID: 39532586 DOI: 10.1016/j.tem.2024.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.
Collapse
Affiliation(s)
- Stefano Auddino
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| | - Guido Sebastiani
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
8
|
Rampazzo Morelli N, Préfontaine C, Pipella J, Thompson PJ. Secreted GDF15 maintains transcriptional responses during DNA damage-mediated senescence in human beta cells. Am J Physiol Endocrinol Metab 2024; 327:E552-E562. [PMID: 39196800 PMCID: PMC11482276 DOI: 10.1152/ajpendo.00257.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease resulting from an autoimmune destruction of pancreatic beta cells. Beta cells activate various stress responses during the development of T1D, including senescence, which involves cell cycle arrest, prosurvival signaling, and a proinflammatory secretome termed the senescence-associated secretory phenotype (SASP). We previously identified growth and differentiation factor 15 (GDF15) as a major SASP factor in human islets and human EndoC-βH5 beta cells in a model of DNA damage-mediated senescence that recapitulates features of senescent beta cells in T1D. Soluble GDF15 has been shown to exert protective effects on human and mouse beta cells during various forms of stress relevant to T1D; therefore, we hypothesized that secreted GDF15 may play a prosurvival role during DNA damage-mediated senescence in human beta cells. We found that elevated GDF15 secretion was associated with endogenous senescent beta cells in an islet preparation from a T1D donor, supporting the validity of our DNA damage model. Using antibody-based neutralization, we found that secreted endogenous GDF15 was not required for senescent human islet or EndoC cell viability. Rather, neutralization of GDF15 led to reduced expression of specific senescence-associated genes, including GDF15 itself and the prosurvival gene BCL2-like protein 1 (BCL2L1). Taken together, these data suggest that SASP factor GDF15 is not required to sustain senescent human islet viability, but it is required to maintain senescence-associated transcriptional responses.NEW & NOTEWORTHY Beta cell senescence is an emerging contributor to the pathogenesis of type 1 diabetes, but candidate therapeutic targets have not been identified in human beta cells. In this study, we examined the role of a secreted factor, GDF15, and found that although it is not required to maintain viability during senescence, it is required to fine-tune gene expression programs involved in the senescence response during DNA damage in human beta cells.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Camille Préfontaine
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jasmine Pipella
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter J Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Swensen AC, Piehowski PD, Chen J, Chan XY, Kelly SS, Petyuk VA, Moore RJ, Nasif L, Butterworth EA, Atkinson MA, Kulkarni RN, Campbell-Thompson M, Mathews CE, Qian WJ. Increased Inflammation as well as Decreased Endoplasmic Reticulum Stress and Translation Differentiate Pancreatic Islets of Pre-symptomatic Stage 1 Type 1 Diabetes and Non-diabetic Cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612933. [PMID: 39345556 PMCID: PMC11429719 DOI: 10.1101/2024.09.13.612933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aims/hypothesis Progression to type 1 diabetes (T1D) is associated with genetic factors, the presence of autoantibodies, and a decline in β cell insulin secretion in response to glucose. Very little is known regarding the molecular changes that occur in human insulin-secreting β-cells prior to the onset of T1D. Herein, we applied an unbiased proteomics approach to identify changes in proteins and potential mechanisms of islet dysfunction in islet autoantibody-positive organ donors with pre-symptomatic stage 1 T1D (HbA1c ≤ 6). We aimed to identify pathways in islets that are indicative of β-cell dysfunction. Methods Multiple islet sections were collected through laser microdissection of frozen pancreatic tissues of organ donors positive for islet autoantibodies (AAb+, n=5), compared to age/sex-matched nondiabetic controls (ND, n=5) obtained from the Network for Pancreatic Organ donors with Diabetes (nPOD). Islet sections were subjected to mass spectrometry-based proteomics and analyzed with label-free quantification followed by pathway and functional annotations. Results Analyses resulted in ~4,500 proteins identified with low false discovery rate (FDR) <1%, with 2,165 proteins reliably quantified in every islet sample. We observed large inter-donor variations that presented a challenge for statistical analysis of proteome changes between donor groups. We therefore focused on the three multiple AAb+ cases (mAAb+) with high genetic risk and their three matched controls for a final statistical analysis. Approximately 10% of the proteins (n=202) were significantly different between mAAb+ cases versus ND. The significant alterations clustered around major functions for upregulation in the immune response and glycolysis, and downregulation in endoplasmic reticulum (ER) stress response as well as protein translation and synthesis. The observed proteome changes were further supported by several independent published datasets, including proteomics dataset from in vitro proinflammatory cytokine-treated human islets and single cell RNA-seq data sets from AAb+ cases. Conclusion/interpretation In-situ human islet proteome alterations at the stage 1 of AAb+ T1D centered around several major functional categories, including an expected increase in immune response genes (elevated antigen presentation / HLA), with decreases in protein synthesis and ER stress response, as well as compensatory metabolic response. The dataset serves as a proteomics resource for future studies on β cell changes during T1D progression and pathogenesis.
Collapse
Affiliation(s)
- Adam C. Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Paul D. Piehowski
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL
| | - X’avia Y. Chan
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Shane S. Kelly
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Vladislav A. Petyuk
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Ronald J. Moore
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Lith Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Elizabeth A. Butterworth
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Rohit N. Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| |
Collapse
|
10
|
Li J, Hu X, Xie Z, Li J, Huang C, Huang Y. Overview of growth differentiation factor 15 (GDF15) in metabolic diseases. Biomed Pharmacother 2024; 176:116809. [PMID: 38810400 DOI: 10.1016/j.biopha.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFβ) superfamily, its levels increase in response to cell stress and certain diseases in the serum. To exert its effects, GDF15 binds to glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which was firstly identified in 2017 and highly expressed in the brain stem. Many studies have demonstrated that elevated serum GDF15 is associated with anorexia and weight loss. Herein, we focus on the biology of GDF15, specifically how this circulating protein regulates appetite and metabolism in influencing energy homeostasis through its actions on hindbrain neurons to shed light on its impact on diseases such as obesity and anorexia/cachexia syndromes. It works as an endocrine factor and transmits metabolic signals leading to weight reduction effects by directly reducing appetite and indirectly affecting food intake through complex mechanisms, which could be a promising target for the treatment of energy-intake disorders.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, China
| | - Xiangjun Hu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zichuan Xie
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiajin Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chen Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Chrysafi P, Valenzuela-Vallejo L, Stefanakis K, Kelesidis T, Connelly MA, Mantzoros CS. Total and H-specific GDF-15 levels increase in caloric deprivation independently of leptin in humans. Nat Commun 2024; 15:5190. [PMID: 38890300 PMCID: PMC11189399 DOI: 10.1038/s41467-024-49366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial-secreted growth differentiation factor-15 (GDF-15) promotes weight loss in animals. Its effects in humans remain unclear, due to limited research and potential measurement interference from the H202D-variant. Our post-hoc analysis investigates total (irrespective of genetic variants) and H-specific GDF-15 (detected only in H202D-variant absence) in humans under acute and chronic energy deprivation, examining GDF-15 interaction with leptin (energy homeostasis regulator) and GDF-15 biologic activity modulation by the H202D-variant. Total and H-specific GDF-15 increased with acute starvation, and total GDF-15 increased with chronic energy deprivation, compared with healthy subjects and regardless of leptin repletion. Baseline GDF-15 positively correlated with triglyceride-rich particles and lipoproteins. During acute metabolic stress, GDF-15 associations with metabolites/lipids appeared to differ in subjects with the H202D-variant. Our findings suggest GDF-15 increases with energy deprivation in humans, questioning its proposed weight loss and suggesting its function as a mitokine, reflecting or mediating metabolic stress response.
Collapse
Affiliation(s)
- Pavlina Chrysafi
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 02215, USA
| | | | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Boston VA Healthcare System, Boston, MA, 90095, USA.
| |
Collapse
|
12
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
13
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Marselli L, Orr K, Felton JL, Liu J, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585925. [PMID: 38766166 PMCID: PMC11100605 DOI: 10.1101/2024.03.20.585925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A. Weaver
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F. Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L. Felton
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | | | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
14
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
15
|
Zhang SY, Danaei Z, Bruce K, Chiu JFM, Lam TKT. Acute Activation of GFRAL in the Area Postrema Contributes to Glucose Regulation Independent of Weight. Diabetes 2024; 73:426-433. [PMID: 38064571 DOI: 10.2337/db23-0705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/03/2023] [Indexed: 02/22/2024]
Abstract
GDF15 regulates energy balance and glucose homeostasis in rodents by activating its receptor GFRAL, expressed in the area postrema of the brain. However, whether GDF15-GFRAL signaling in the area postrema regulates glucose tolerance independent of changes in food intake and weight and contributes to the glucose-lowering effect of metformin remain unknown. Herein, we report that direct, acute GDF15 infusion into the area postrema of rats fed a high-fat diet increased intravenous glucose tolerance and insulin sensitivity to lower hepatic glucose production independent of changes in food intake, weight, and plasma insulin levels under conscious, unrestrained, and nonstressed conditions. In parallel, metformin infusion concurrently increased plasma GDF15 levels and glucose tolerance. Finally, a knockdown of GFRAL expression in the area postrema negated administration of GDF15, as well as metformin, to increase glucose tolerance independent of changes in food intake, weight, and plasma insulin levels. In summary, activation of GFRAL in the area postrema contributes to glucose regulation of GDF15 and metformin in vivo. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zahra Danaei
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kyla Bruce
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer F M Chiu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Sarkar S, Deiter C, Kyle JE, Guney MA, Sarbaugh D, Yin R, Li X, Cui Y, Ramos-Rodriguez M, Nicora CD, Syed F, Juan-Mateu J, Muralidharan C, Pasquali L, Evans-Molina C, Eizirik DL, Webb-Robertson BJM, Burnum-Johnson K, Orr G, Laskin J, Metz TO, Mirmira RG, Sussel L, Ansong C, Nakayasu ES. Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis. Cell Commun Signal 2024; 22:141. [PMID: 38383396 PMCID: PMC10880366 DOI: 10.1186/s12964-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Lipids are regulators of insulitis and β-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate β-cell death. METHODS We performed lipidomics using three models of insulitis: human islets and EndoC-βH1 β cells treated with the pro-inflammatory cytokines interlukine-1β and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced β-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS Our data provide insights into the change of lipidomics landscape in β cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cailin Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yi Cui
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- NanoString Technologies, Seattle, WA, 98109, USA
| | - Mireia Ramos-Rodriguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Kristin Burnum-Johnson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Galya Orr
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
17
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
18
|
Sarkar S, Syed F, Webb-Robertson BJ, Melchior JT, Chang G, Gritsenko M, Wang YT, Tsai CF, Liu J, Yi X, Cui Y, Eizirik DL, Metz TO, Rewers M, Evans-Molina C, Mirmira RG, Nakayasu ES. Protection of β cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298904. [PMID: 38076918 PMCID: PMC10705646 DOI: 10.1101/2023.11.27.23298904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Aim/hypothesis Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development. Here, we investigate the GDF15 signaling in pancreatic islets towards opening possibilities for therapeutic targeting in β cells and to understand why this protection fails to occur naturally. Methods GDF15 signaling in islets was determined by proximity-ligation assay, untargeted proteomics, pathway analysis, and treatment of cells with specific inhibitors. To determine if GDF15 levels would increase prior to disease onset, plasma levels of GDF15 were measured in a longitudinal prospective study of children during T1D development (n=132 cases vs. n=40 controls) and in children with islet autoimmunity but normoglycemia (n=47 cases vs. n=40 controls) using targeted mass spectrometry. We also investigated the regulation of GDF15 production in islets by fluorescence microscopy and western blot analysis. Results The proximity-ligation assay identified ERBB2 as the GDF15 receptor in islets, which was confirmed using its specific antagonist, tucatinib. The untargeted proteomics analysis and caspase assay showed that ERBB2 activation by GDF15 reduces β cell apoptosis by downregulating caspase 8. In plasma, GDF15 levels were higher (p=0.0024) during T1D development compared to controls, but not in islet autoimmunity with normoglycemia. However, in the pancreatic islets GDF15 was depleted via sequestration of its mRNA into stress granules, resulting in translation halting. Conclusions/interpretation GDF15 protects against T1D via ERBB2-mediated decrease of caspase 8 expression in pancreatic islets. Circulating levels of GDF15 increases pre-T1D onset, which is insufficient to promote protection due to its localized depletion in the islets. These findings open opportunities for targeting GDF15 downstream signaling for pancreatic β cell protection in T1D and help to explain the lack of natural protection by the endogenous protein.
Collapse
|
19
|
Dong XC, Xu DY. Research Progress on the Role and Mechanism of GDF15 in Body Weight Regulation. Obes Facts 2023; 17:1-11. [PMID: 37989122 PMCID: PMC10836939 DOI: 10.1159/000535089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Growth differentiation factor-15 (GDF15) is a member of the growth differentiation factor subfamily in the transforming growth factor beta superfamily. GDF15 has multiple functions and can regulate biological processes. High levels of GDF15 in the circulation can affect metabolic processes. Studies have shown that GDF15 is associated with changes in body weight. SUMMARY This review reviews the current knowledge on the relationship between GDF15 and body weight change, focusing on the role and mechanism of GDF15 in body weight regulation. GDF15 plays an important role in reducing food intake, improving insulin resistance, and breaking down fat, suggesting that GDF15 has an important regulatory effect on body weight. The mechanism by which GDF15 causes reduced food intake may be related to changes in food preference, delayed gastric emptying, and conditioned taste aversion. GDF15 can combat insulin resistance induced by inflammation or protect β cell from apoptosis. GDF15 probably promotes lipolysis through a brain-somatic tissue circuit. Several factors and related signaling pathways are also mentioned that can contribute to the effects of GDF15 on reducing weight. KEY MESSAGE GDF15 plays an important role in weight regulation and provides a new direction for the treatment of obesity. Its effects on resisting obesity are of great significance to inhibiting the progression of metabolic diseases. It is expected to become a new target for regulating body weight, improving obesity, and treating metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Xiao-Chen Dong
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
20
|
Thomaidou S, Munoz Garcia A, de Lange S, Gan J, van der Slik AR, Hoeben RC, Roep BO, Carlotti F, Zaldumbide A. IFNɣ but not IFNα increases recognition of insulin defective ribosomal product-derived antigen to amplify islet autoimmunity. Diabetologia 2023; 66:2075-2086. [PMID: 37581620 PMCID: PMC10542729 DOI: 10.1007/s00125-023-05991-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
AIMS/HYPOTHESIS The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells. METHODS Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-βH1 was monitored using peptide-specific CD8 T cells. RESULTS We found that IFNγ induces the expression of the PSMB10 transcript encoding the β2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes. DATA AVAILABILITY The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the accession number GSE218316 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218316 ).
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Amadeo Munoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine de Lange
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jin Gan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno R van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Nakayasu ES, Gritsenko MA, Kim YM, Kyle JE, Stratton KG, Nicora CD, Munoz N, Navarro KM, Claborne D, Gao Y, Weitz KK, Paurus VL, Bloodsworth KJ, Allen KA, Bramer LM, Montes F, Clark KA, Tietje G, Teeguarden J, Burnum-Johnson KE. Elucidating regulatory processes of intense physical activity by multi-omics analysis. Mil Med Res 2023; 10:48. [PMID: 37853489 PMCID: PMC10583322 DOI: 10.1186/s40779-023-00477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Nathalie Munoz
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kathleen M Navarro
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, 80204, USA
| | - Daniel Claborne
- Computational Analytics Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kelsey A Allen
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Fernando Montes
- Los Angeles County Fire Department, Los Angeles, CA, 90063, USA
| | - Kathleen A Clark
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, USA
| | - Grant Tietje
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Kristin E Burnum-Johnson
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
| |
Collapse
|
22
|
Weldemariam MM, Sudhir PR, Woo J, Zhang Q. Effects of multiple stressors on pancreatic human islets proteome reveal new insights into the pathways involved. Proteomics 2023; 23:e2300022. [PMID: 37489002 PMCID: PMC10591809 DOI: 10.1002/pmic.202300022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic β-cell dysfunction is an early hallmark of type 1 diabetes mellitus. Among the potentially critical factors that cause β-cell dysfunction are cytokine attack, glucotoxicity, induction of endoplasmic reticulum (ER) or mitochondria stress. However, the exact molecular mechanism underlying β-cell's inability to maintain glucose homeostasis under severe stresses is unknown. This study used proinflammatory cytokines, thapsigargin, and rotenone in the presence of high concentration glucose to mimicking the conditions experienced by dysfunctional β-cells in human pancreatic islets, and profiled the alterations to the islet proteome with TMT-based proteomics. The results were further verified with label-free quantitative proteomics. The differentially expressed proteins under stress conditions reveal that immune related pathways are mostly perturbed by cytokines, while the respiratory electron transport chains and protein processing in ER pathways by rotenone. Thapsigargin together with high glucose induces dramatic increases of proteins in lipid synthesis and peroxisomal protein import pathways, with energy metabolism and vesicle secretion related pathways downregulated. High concentration glucose, on the other hand, alleviated complex I inhibition induced by rotenone. Our results contribute to a more comprehensive understanding of the molecular events involved in β-cell dysfunction.
Collapse
Affiliation(s)
- Mehari Muuz Weldemariam
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Putty-Reddy Sudhir
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
23
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
24
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Iglesias P, Silvestre RA, Díez JJ. Growth differentiation factor 15 (GDF-15) in endocrinology. Endocrine 2023; 81:419-431. [PMID: 37129758 DOI: 10.1007/s12020-023-03377-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Human growth differentiation factor 15 (GDF-15) is a widely distributed protein that has shown to play multiple roles in both physiological and pathological conditions. In healthy individuals, GDF-15 is mainly expressed in the placenta, followed by the prostate, although low levels of expression have also been detected in different organs. GDF-15 acts through a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) which signals through the rearranged during transfection (RET) tyrosine kinase receptor. The effects of GDF-15 are pleiotropic and include appetite regulation, and actions on metabolism, pregnancy, cell survival, immune response, and inflammation. GDF-15 also plays different roles in the pathophysiology of cardiovascular disease, autoimmunity, cancer-associated anorexia/cachexia, and diabetes. In recent years, several studies have reported a link between GDF-15 and the endocrine system. In this review, we up-date and summarize the relevant investigations of the relationships between GDF-15 and different endocrine conditions. We also assess the potential pathogenic role and potential therapeutic applications of GDF-15 in the field of endocrinology.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain.
| | - Ramona A Silvestre
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Physiology, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan J Díez
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| |
Collapse
|
26
|
He F, Jiang H, Peng C, Wang T, Xiao R, Chen M, Song N, Du Z, Wang H, Ding X, Shao Y, Fang J, Zang Y, Hua R, Li J, Ding K. Hepatic glucuronyl C5-epimerase combats obesity by stabilising GDF15. J Hepatol 2023; 79:605-617. [PMID: 37217020 DOI: 10.1016/j.jhep.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND & AIMS Disturbed hepatic metabolism frequently results in excessive lipid accumulation in the adipose tissue. However, the specific role of the liver-adipose axis in maintaining lipid homeostasis, as well as the underlying mechanism, has not yet been fully elucidated. In this study, we investigated the role of hepatic glucuronyl C5-epimerase (Glce) in the progression of obesity. METHODS We determined the association between the expression of hepatic Glce and body mass index (BMI) in obese patients. Obesity models were established in hepatic Glce-knockout and wild-type mice fed a high-fat diet (HFD) to understand the effect of Glce on obesity development. The role of Glce in the progression of disrupted hepatokine secretion was examined via secretome analysis. RESULTS Hepatic Glce expression was inversely correlated with BMI in obese patients. Moreover, Glce level was found to be decreased in the liver of a HFD murine model. Hepatic Glce deficiency led to impaired thermogenesis in adipose tissue and exacerbated HFD-induced obesity. Interestingly, decreased level of growth differentiation factor 15 (GDF15) was observed in the culture medium of Glce-knockout mouse hepatocytes. Treatment with recombinant GDF15 obstructed obesity progression derived from the absence of hepatic Glce, similar to the effect of Glce or its inactive mutant overexpressed both in vitro and in vivo. Furthermore, liver Glce deficiency led to diminished production and increased degradation of mature GDF15, resulting in reduced hepatic GDF15 secretion. CONCLUSIONS Hepatic Glce deficiency facilitated obesity development, and decreased Glce expression further reduced hepatic secretion of GDF15, thereby perturbing lipid homeostasis in vivo. Therefore, the novel Glce-GDF15 axis plays an important role in maintaining energy balance and may act as a potential target for combating obesity. IMPACT AND IMPLICATIONS Evidence suggests that GDF15 plays a key role in hepatic metabolism; however, the molecular mechanism for regulating its expression and secretion is largely unknown. Our work observes that hepatic Glce, as a key Golgi-localised epimerase, may work on the maturation and post-translational regulation of GDF15. Hepatic Glce deficiency reduces the production of mature GDF15 protein and facilitates its ubiquitination, resulting in the aggravation of obesity development. This study sheds light on the new function and mechanism of the Glce-GDF15 axis in lipid metabolism and provides a potential therapeutic target against obesity.
Collapse
Affiliation(s)
- Fei He
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chang Peng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Wang
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Xiao
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Meilin Chen
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Nixue Song
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyun Du
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hanlin Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Ding
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yikai Shao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jianping Fang
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Rong Hua
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China.
| | - Jia Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Kan Ding
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
27
|
Zhang H, Mulya A, Nieuwoudt S, Vandanmagsar B, McDowell R, Heintz EC, Zunica ER, Collier JJ, Bozadjieva-Kramer N, Seeley RJ, Axelrod CL, Kirwan JP. GDF15 Mediates the Effect of Skeletal Muscle Contraction on Glucose-Stimulated Insulin Secretion. Diabetes 2023; 72:1070-1082. [PMID: 37224335 PMCID: PMC10382648 DOI: 10.2337/db22-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Exercise is a first-line treatment for type 2 diabetes and preserves β-cell function by hitherto unknown mechanisms. We postulated that proteins from contracting skeletal muscle may act as cellular signals to regulate pancreatic β-cell function. We used electric pulse stimulation (EPS) to induce contraction in C2C12 myotubes and found that treatment of β-cells with EPS-conditioned medium enhanced glucose-stimulated insulin secretion (GSIS). Transcriptomics and subsequent targeted validation revealed growth differentiation factor 15 (GDF15) as a central component of the skeletal muscle secretome. Exposure to recombinant GDF15 enhanced GSIS in cells, islets, and mice. GDF15 enhanced GSIS by upregulating the insulin secretion pathway in β-cells, which was abrogated in the presence of a GDF15 neutralizing antibody. The effect of GDF15 on GSIS was also observed in islets from GFRAL-deficient mice. Circulating GDF15 was incrementally elevated in patients with pre- and type 2 diabetes and positively associated with C-peptide in humans with overweight or obesity. Six weeks of high-intensity exercise training increased circulating GDF15 concentrations, which positively correlated with improvements in β-cell function in patients with type 2 diabetes. Taken together, GDF15 can function as a contraction-induced protein that enhances GSIS through activating the canonical signaling pathway in a GFRAL-independent manner. ARTICLE HIGHLIGHTS Exercise improves glucose-stimulated insulin secretion through direct interorgan communication. Contracting skeletal muscle releases growth differentiation factor 15 (GDF15), which is required to synergistically enhance glucose-stimulated insulin secretion. GDF15 enhances glucose-stimulated insulin secretion by activating the canonical insulin release pathway. Increased levels of circulating GDF15 after exercise training are related to improvements in β-cell function in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Anny Mulya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Stephan Nieuwoudt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Bolormaa Vandanmagsar
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Ruth McDowell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth C. Heintz
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Elizabeth R.M. Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - J. Jason Collier
- Islet Biology and Inflammation Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christopher L. Axelrod
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - John P. Kirwan
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
28
|
Nakayasu ES, Bramer LM, Ansong C, Schepmoes AA, Fillmore TL, Gritsenko MA, Clauss TR, Gao Y, Piehowski PD, Stanfill BA, Engel DW, Orton DJ, Moore RJ, Qian WJ, Sechi S, Frohnert BI, Toppari J, Ziegler AG, Lernmark Å, Hagopian W, Akolkar B, Smith RD, Rewers MJ, Webb-Robertson BJM, Metz TO. Plasma protein biomarkers predict the development of persistent autoantibodies and type 1 diabetes 6 months prior to the onset of autoimmunity. Cell Rep Med 2023; 4:101093. [PMID: 37390828 PMCID: PMC10394168 DOI: 10.1016/j.xcrm.2023.101093] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of β cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Therese R Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bryan A Stanfill
- Computational Analytics Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dave W Engel
- Computational Analytics Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland; Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes, Technical University of Munich, Klinikum Rechts der Isar, Munich, Germany; Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Åke Lernmark
- Unit for Diabetes and Celiac Disease, Wallenberg/CRC, Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, 21428 Malmö, Sweden
| | | | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | | | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
29
|
Li N, He F, Shang Y. Growth differentiation factor 15 protects the airway by inhibiting cell pyroptosis in obese asthmatic mice through the phosphoinositide 3-kinase/AKT pathway. Int Immunopharmacol 2023; 119:110149. [PMID: 37058747 DOI: 10.1016/j.intimp.2023.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Obese asthma is a form of refractory asthma with inflammation as the underlying mechanism. The specific mechanism of action of anti-inflammatory growth differentiation factor 15 (GDF15) in obese asthma is unclear. The purpose of this study was to explore the effect of GDF15 on cell pyroptosis in obese asthma and to determine its mechanism of airway protection. Male C57BL6/J mice were fed with a high-fat diet, sensitized, and challenged with ovalbumin. Recombinant human (rh)GDF15 was administered 1 h before the challenge. GDF15 treatment significantly reduced airway inflammatory cell infiltration, mucus hypersecretion and airway resistant, and decreased cell counts and inflammatory factors in bronchoalveolar lavage fluid. Serum inflammatory factors decreased, and the increased levels of NLR family pyrin domain containing 3 (NLRP3), caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and gasdermin-D (GSDMD-N) in obese asthmatic mice were inhibited. Furthermore, the suppressed phosphoinositide 3-kinase (PI3K)/AKT signal pathway was activated after rhGDF15 treatment. The same result was obtained by overexpression of GDF15 in human bronchial epithelial cells induced by lipopolysaccharide (LPS) in vitro, and the effect of GDF15 was reversed after the application of a PI3K pathway inhibitor. Thus, GDF15 could protect the airway by inhibiting cell pyroptosis in obese asthmatic mice through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Na Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China; Department of Pediatrics, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian 116021, Liaoning Province, China
| | - Fanghan He
- Department of Pediatrics, Xi'an Children's Hospital, No. 69, Xi Ju Yuan Xiang, Lianhu District, Xi'an 710002, Shanxi Province, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
30
|
BET inhibitors synergize with sunitinib in melanoma through GDF15 suppression. Exp Mol Med 2023; 55:364-376. [PMID: 36720918 PMCID: PMC9981764 DOI: 10.1038/s12276-023-00936-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 02/02/2023] Open
Abstract
Targeting bromodomain and extra-terminal domain (BET) proteins has shown a promising therapeutic effect on melanoma. The development of strategies to better kill melanoma cells with BET inhibitor treatment may provide new clinical applications. Here, we used a drug synergy screening approach to combine JQ1 with 240 antitumor drugs from the Food and Drug Administration (FDA)-approved drug library and found that sunitinib synergizes with BET inhibitors in melanoma cells. We further demonstrated that BET inhibitors synergize with sunitinib in melanoma by inducing apoptosis and cell cycle arrest. Mechanistically, BET inhibitors sensitize melanoma cells to sunitinib by inhibiting GDF15 expression. Strikingly, GDF15 is transcriptionally regulated directly by BRD4 or indirectly by the BRD4/IL6/STAT3 axis. Xenograft assays revealed that the combination of BET inhibitors with sunitinib causes melanoma suppression in vivo. Altogether, these findings suggest that BET inhibitor-mediated GDF15 inhibition plays a critical role in enhancing sunitinib sensitivity in melanoma, indicating that BET inhibitors synergize with sunitinib in melanoma.
Collapse
|
31
|
Ho LC, Wu HT, Hung HC, Chou HW, Cheng KP, Lin CH, Wang CC, Ou HY. Growth differentiation factor-15 is independently associated with metabolic syndrome and hyperglycemia in non-elderly subjects. Biofactors 2023; 49:119-126. [PMID: 35686301 DOI: 10.1002/biof.1871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023]
Abstract
Metabolic syndrome (MetS) is a major health issue worldwide accompanied by cardiovascular comorbidities. Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine expressed in cardiomyocytes, adipocytes, macrophages, and endothelial cells. Previous research in elderly subjects revealed that GDF-15 levels were associated with the MetS. However, the association between GDF-15 levels and MetS or its components in the non-elderly subjects remains unclear. In this study, a total of 279 subjects younger than 65-year-old with (n = 84) or without (n = 195) MetS were recruited. MetS was defined according to modified NCEP/ATP III criteria. The GDF-15 levels were measured by an enzyme-linked immunosorbent assay. A multiple linear regression analysis was conducted to identify factors independently associated with GDF-15 levels. Subjects with MetS had higher GDF-15 levels than those without MetS (median (interquartile range), 1.72 ng/mL (1.38, 2.26) vs. 1.63 ng/mL (1.27, 2.07), P = 0.037). With the number of MetS components increased, the GDF-15 levels increased significantly (P for trend = 0.005). Multiple linear regression analysis revealed that the presence of MetS was positively associated with the GDF-15 levels (β = 0.132, P = 0.037). When substituting MetS with its components, only the presence of hyperglycemia was positively associated with the GDF-15 levels after adjustment for covariates (β = 0.193, P = 0.003). Taken together, the presence of the MetS in non-elderly was associated with higher GDF-15 levels. Among the MetS components, only hyperglycemia was significantly associated with the GDF-15 levels. Future longitudinal studies will be needed to explore whether GDF-15 has the potential to be a biomarker of gluco-metabolic dysfunction in non-elderly subjects.
Collapse
Affiliation(s)
- Li-Chung Ho
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsuan-Wen Chou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Pi Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Han Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chen Wang
- Department of Internal Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Syed F, Singhal D, Raedschelders K, Krishnan P, Bone RN, McLaughlin MR, Van Eyk JE, Mirmira RG, Yang ML, Mamula MJ, Wu H, Liu X, Evans-Molina C. A discovery-based proteomics approach identifies protein disulphide isomerase (PDIA1) as a biomarker of β cell stress in type 1 diabetes. EBioMedicine 2023; 87:104379. [PMID: 36463755 PMCID: PMC9719098 DOI: 10.1016/j.ebiom.2022.104379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stress responses within the β cell have been linked with both increased β cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet β cell protein expression during T1D development is lacking. METHODS Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. FINDINGS In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. INTERPRETATION We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D. FUNDING NIH (R01DK093954, DK127308, U01DK127786, UC4DK104166, R01DK060581, R01GM118470, and 5T32DK101001-09). VA Merit Award I01BX001733. JDRF (2-SRA-2019-834-S-B, 2-SRA-2018-493-A-B, 3-PDF-20016-199-A-N, 5-CDA-2022-1176-A-N, and 3-PDF-2017-385-A-N).
Collapse
Affiliation(s)
- Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Divya Singhal
- Department of Biochemistry and Molecular Biology, University of Calgary, 2500 University Drive NW, Alberta, Canada, T2N1N4
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Robert N Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Madeline R McLaughlin
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Raghavendra G Mirmira
- Kovler Diabetes Center, University of Chicago, 900 E 57th St, Chicago, IL, USA, 60637
| | - Mei-Ling Yang
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Mark J Mamula
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Huanmei Wu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 535 W. Michigan Street, Indianapolis, IN, USA, 46202; Department of Health Services Administration and Policy, Temple University College of Public Health, 1101 W. Montgomery Ave, Philadelphia, PA, USA, 19122
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA, 70112
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202; Department of Medicine, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN, USA, 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, USA, 46202; Richard L. Roudebush VA Medical Center, Indiana University School of Informatics and Computing, 1481 W 10th St, Indianapolis, IN, USA, 46202.
| |
Collapse
|
33
|
Tran DT, Pottekat A, Lee K, Raghunathan M, Loguercio S, Mir SA, Paton AW, Paton JC, Arvan P, Kaufman RJ, Itkin-Ansari P. Inflammatory Cytokines Rewire the Proinsulin Interaction Network in Human Islets. J Clin Endocrinol Metab 2022; 107:3100-3110. [PMID: 36017587 PMCID: PMC10233482 DOI: 10.1210/clinem/dgac493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 01/19/2023]
Abstract
CONTEXT Aberrant biosynthesis and secretion of the insulin precursor proinsulin occurs in both type I and type II diabetes. Inflammatory cytokines are implicated in pancreatic islet stress and dysfunction in both forms of diabetes, but the mechanisms remain unclear. OBJECTIVE We sought to determine the effect of the diabetes-associated cytokines on proinsulin folding, trafficking, secretion, and β-cell function. METHODS Human islets were treated with interleukin-1β and interferon-γ for 48 hours, followed by analysis of interleukin-6, nitrite, proinsulin and insulin release, RNA sequencing, and unbiased profiling of the proinsulin interactome by affinity purification-mass spectrometry. RESULTS Cytokine treatment induced secretion of interleukin-6, nitrites, and insulin, as well as aberrant release of proinsulin. RNA sequencing showed that cytokines upregulated genes involved in endoplasmic reticulum stress, and, consistent with this, affinity purification-mass spectrometry revealed cytokine induced proinsulin binding to multiple endoplasmic reticulum chaperones and oxidoreductases. Moreover, increased binding to the chaperone immunoglobulin binding protein was required to maintain proper proinsulin folding in the inflammatory environment. Cytokines also regulated novel interactions between proinsulin and type 1 and type 2 diabetes genome-wide association studies candidate proteins not previously known to interact with proinsulin (eg, Ataxin-2). Finally, cytokines induced proinsulin interactions with a cluster of microtubule motor proteins and chemical destabilization of microtubules with Nocodazole exacerbated cytokine induced proinsulin secretion. CONCLUSION Together, the data shed new light on mechanisms by which diabetes-associated cytokines dysregulate β-cell function. For the first time, we show that even short-term exposure to an inflammatory environment reshapes proinsulin interactions with critical chaperones and regulators of the secretory pathway.
Collapse
Affiliation(s)
- Duc T Tran
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Plexium, San Diego, CA, USA
| | - Anita Pottekat
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Illumina, San Diego, CA, USA
| | - Kouta Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Saiful A Mir
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- University of Calcutta, West Bengal, India
| | | | | | - Peter Arvan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Randal J Kaufman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | |
Collapse
|
34
|
Aguilar-Recarte D, Barroso E, Palomer X, Wahli W, Vázquez-Carrera M. Knocking on GDF15's door for the treatment of type 2 diabetes mellitus. Trends Endocrinol Metab 2022; 33:741-754. [PMID: 36151002 DOI: 10.1016/j.tem.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Although a large number of drugs are available for the treatment of type 2 diabetes mellitus (T2DM), many patients do not achieve adequate disease control despite adhering to medication. Recent findings indicate that the pharmacological modulation of the stress-induced cytokine growth differentiation factor 15 (GDF15) shows promise for the treatment of T2DM. GDF15 suppresses appetite and reduces inflammation, increases thermogenesis and lipid catabolism, sustains AMP-activated protein kinase (AMPK) activity, and ameliorates insulin resistance and hepatic steatosis. In addition, circulating GDF15 levels are elevated in response to several antidiabetic drugs, including metformin, with GDF15 mediating some of their effects. Here, we review the mechanistic insights into the beneficial effects of recently explored therapeutic approaches that target GDF15 for the treatment of T2DM.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
35
|
Mei Y, Lyu Y, Le J, Li D, Liu H, Zhao Z, Li Y. Raised circulating soluble growth differentiation factor 15 is negatively associated with testosterone level in hypogonadic men with type 2 diabetes. Diabetes Metab Res Rev 2022; 38:e3564. [PMID: 35801986 DOI: 10.1002/dmrr.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
AIMS Epidemiological studies consistently show that decreases in serum testosterone level are observed more frequently in men with type 2 diabetes mellitus (T2DM), while clinical investigations have demonstrated that an increased level of circulating growth differentiation factor-15 (GDF-15) are also related closely to T2DM. The aim of this study was to examine the potential relationship between serum GDF-15 levels and hypogonadism in Chinese male patients with T2DM. MATERIALS AND METHODS A total of 305 T2DM men were recruited between July 2020 and August 2021. GDF-15 and total testosterone concentrations were quantified by an enzyme-linked immunosorbent assay and LC/MS mass spectrometry, respectively. Multiple linear regression analysis, logistic regression, and restricted cubic splined models were used to examine the correlation between GDF-15 levels and hypogonadism in these patients. RESULTS When compared with T2DM patients without hypogonadism circulating GDF-15 levels were significantly higher in the hypogonadism group [1081.83 (746.79,1539.94) versus 779.49 (548.46,1001.27), p < 0.001] and were associated positively with hypogonadism in unadjusted and fully adjusted multivariate regression models (p < 0.01). The fully adjusted regression coefficients with 95% confidence intervals for circulating GDF-15 and testosterone deficiency were -1.795 (-2.929, -0.661). Serum GDF-15 levels were also associated positively with testosterone deficiency in each logistic regression model (p < 0.05), while after adjustment for all risk factors, the same findings were obtained in the restricted cubic splined models (p < 0.01). CONCLUSIONS In hypogonadal men with T2DM, an elevated serum GDF-15 level is associated negatively with serum testosterone concentration. GDF-15 may be a novel cytokine related to T2DM men with hypogonadism.
Collapse
Affiliation(s)
- Yufeng Mei
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongnan Lyu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Le
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Liu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiming Zhao
- Department of Geratology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Fiorucci S, Urbani G. GDF15 in Vascular and Liver Metabolic Disorders: A Novel Therapeutic Target. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:55-59. [PMID: 36578252 DOI: 10.2174/277227081602221221113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
37
|
Bronczek GA, Soares GM, Marmentini C, Boschero AC, Costa-Júnior JM. Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models. Int J Mol Sci 2022; 23:ijms23169427. [PMID: 36012692 PMCID: PMC9409046 DOI: 10.3390/ijms23169427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.
Collapse
Affiliation(s)
- Gabriela Alves Bronczek
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - José Maria Costa-Júnior
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
- Center for Diabetes Research, Division of Endocrinology, Erasmus Hospital, Universite Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-455-11-02-04
| |
Collapse
|
38
|
Giusti L, Tesi M, Ciregia F, Marselli L, Zallocco L, Suleiman M, De Luca C, Del Guerra S, Zuccarini M, Trerotola M, Eizirik DL, Cnop M, Mazzoni MR, Marchetti P, Lucacchini A, Ronci M. The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 2022; 11:2465. [PMID: 35954309 PMCID: PMC9368307 DOI: 10.3390/cells11152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human β-cells exposed to gluco- and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human β-cell stress induced by pro-inflammatory cytokines (which mediate β-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1β plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up- and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 up- and 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human β-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for β-cell protection in other types of diabetes, possibly including early T1D.
Collapse
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mariachiara Zuccarini
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
39
|
Brawerman G, Pipella J, Thompson PJ. DNA damage to β cells in culture recapitulates features of senescent β cells that accumulate in type 1 diabetes. Mol Metab 2022; 62:101524. [PMID: 35660116 PMCID: PMC9213768 DOI: 10.1016/j.molmet.2022.101524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Type 1 Diabetes (T1D) is characterized by progressive loss of insulin-producing pancreatic β cells as a result of autoimmune destruction. In addition to β cell death, recent work has shown that subpopulations of β cells acquire dysfunction during T1D. We previously reported that β cells undergoing a DNA damage response (DDR) and senescence accumulate during the pathogenesis of T1D. However, the question of how senescence develops in β cells has not been investigated. METHODS Here, we tested the hypothesis that unrepaired DNA damage in the context of genetic susceptibility triggers β cell senescence using culture models including the mouse NIT1 β cell line derived from the T1D-susceptible nonobese diabetic (NOD) strain, human donor islets and EndoC β cells. DNA damage was chemically induced using etoposide or bleomycin and cells or islets were analyzed by a combination of molecular assays for senescence phenotypes including Western blotting, qRT-PCR, Luminex assays, flow cytometry and histochemical staining. RNA-seq was carried out to profile global transcriptomic changes in human islets undergoing DDR and senescence. Insulin ELISAs were used to quantify glucose-stimulated insulin secretion from chemically-induced senescent human islets, EndoC β cells and mouse β cell lines in culture. RESULTS Sub-lethal DNA damage in NIT1 cells led to several classical hallmarks of senescence including sustained DDR activation, growth arrest, enlarged flattened morphology and a senescence-associated secretory phenotype (SASP) resembling what occurs in primary β cells during T1D in NOD mice. These phenotypes differed between NIT1 cells and the MIN6 β cell line derived from a non-T1D susceptible mouse strain. RNA-seq analysis of DNA damage-induced senescence in human islets from two different donors revealed a p53 transcriptional program and upregulation of prosurvival and SASP genes, with inter-donor variability in this response. Inter-donor variability in human islets was also apparent in the extent of persistent DDR activation and SASP at the protein level. Notably, chemically induced DNA damage also led to DDR activation and senescent phenotypes in EndoC-βH5 human β cells, confirming that this response can occur directly in a human β cell line. Finally, DNA damage led to different effects on glucose-stimulated insulin secretion in mouse β cell lines as compared with human islets and EndoC β cells. CONCLUSIONS Taken together, these findings suggest that some of the phenotypes of senescent β cells that accumulate during the development of T1D in the NOD mouse and humans can be modeled by chemically induced DNA damage to mouse β cell lines, human islets and EndoC β cells in culture. The differences between β cells from different mouse strains and different human islet donors and EndoC β cells highlights species differences and the role for genetic background in modifying the β cell response to DNA damage and its effects on insulin secretion. These culture models will be useful tools to understand some of the mechanisms of β cell senescence in T1D.
Collapse
Affiliation(s)
- Gabriel Brawerman
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, 715 McDermot ave, Winnipeg, MB R3E 3P4, Canada
| | - Jasmine Pipella
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, 715 McDermot ave, Winnipeg, MB R3E 3P4, Canada
| | - Peter J Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, 715 McDermot ave, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
40
|
Mallone R, Halliez C, Rui J, Herold KC. The β-Cell in Type 1 Diabetes Pathogenesis: A Victim of Circumstances or an Instigator of Tragic Events? Diabetes 2022; 71:1603-1610. [PMID: 35881836 PMCID: PMC9490354 DOI: 10.2337/dbi21-0036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
Recent reports have revived interest in the active role that β-cells may play in type 1 diabetes pathogenesis at different stages of disease. In some studies, investigators suggested an initiating role and proposed that type 1 diabetes may be primarily a disease of β-cells and only secondarily a disease of autoimmunity. This scenario is possible and invites the search for environmental triggers damaging β-cells. Another major contribution of β-cells may be to amplify autoimmune vulnerability and to eventually drive it into an intrinsic, self-detrimental state that turns the T cell-mediated homicide into a β-cell suicide. On the other hand, protective mechanisms are also mounted by β-cells and may provide novel therapeutic targets to combine immunomodulatory and β-cell protective agents. This integrated view of autoimmunity as a disease of T-cell/β-cell cross talk will ultimately advance our understanding of type 1 diabetes pathogenesis and improve our chances of preventing or reversing disease progression.
Collapse
Affiliation(s)
- Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Jinxiu Rui
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
41
|
Mei Y, Zhao Z, Lyu Y, Li Y. Circulating growth differentiation factor 15 levels and apolipoprotein B to apolipoprotein A1 ratio in coronary artery disease patients with type 2 diabetes mellitus. Lipids Health Dis 2022; 21:59. [PMID: 35842724 PMCID: PMC9287968 DOI: 10.1186/s12944-022-01667-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/29/2022] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Clinical investigations have found that there was a close association between T2DM and adverse cardiovascular events, with possible mechanisms included inflammation, apoptosis, and lipid metabolism disorders. High serum GDF-15 concentration and the apolipoprotein B/apolipoprotein A1 ratio (ApoB/ApoA1) are involved in the above-mentioned mechanisms and are thought to be related to the occurrence of adverse cardiovascular events. However, it remains unclear whether circulating GDF-15 levels and the ApoB/ApoA1 ratio are related to T2DM patients with CAD. METHODS T2DM patients with or without CAD were eligible for this study. According to the inclusion and exclusion criteria, 502 T2DM patients were enrolled between January 2021 and December 2021 and were then divided into T2DM group (n = 249) and CAD group (n = 253). The ApoB, ApoA1 and GDF-15 concentrations were measured at hospital admission and the ApoB/ApoA1 ratio was then calculated. RESULTS Compared with T2DM group, serum GDF-15 levels and ApoB/ApoA1 ratio increased in CAD group. Furthermore, a positive relationship between the occurrence of CAD in diabetic population and circulating GDF-15 concentrations and ApoB/ApoA1 ratio was observed in logistic regression analysis (p < 0.01). Restrictive cubic spline analysis after adjusted for multiple risky variables showed that serum GDF-15 or ApoB/ApoA1 ratio correlated positively with CAD. CONCLUSIONS Circulating GDF-15 levels and serum ApoB/ApoA1 ratio vary in CAD group and T2DM group. ApoB/ApoA1 and GDF-15 may be helpful for predicting the occurrence of CAD in patients with T2DM.
Collapse
Affiliation(s)
- Yufeng Mei
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Zhiming Zhao
- Department of Geratology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yongnan Lyu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| |
Collapse
|
42
|
Wang Y, Chen J, Sang T, Chen C, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. NAG-1/GDF15 protects against streptozotocin-induced type 1 diabetes by inhibiting apoptosis, preserving beta-cell function, and suppressing inflammation in pancreatic islets. Mol Cell Endocrinol 2022; 549:111643. [PMID: 35398052 DOI: 10.1016/j.mce.2022.111643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/01/2023]
Abstract
The loss of functional insulin-producing β-cells is a hallmark of type 1 diabetes mellitus (T1DM). Previously, we reported that the non-steroidal anti-inflammatory drug activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and improves insulin sensitivity in both genetic and dietary-induced obese mice. However, the regulatory role of NAG-1/GDF15 in the structure and function of β-cells and the prevention of T1DM is largely unknown. In the current study, we reported that NAG-1/GDF15 transgenic (Tg) mice are resistant to diabetogenesis induced by multiple low-dose streptozotocin (MLD-STZ) treatment. NAG-1/GDF15 overexpression significantly reduced diabetes incidence, alleviated symptoms of T1DM, and improved MLD-STZ-induced glucose intolerance and insulin resistance. Both the mass and function of pancreatic β cells were preserved in the NAG-1/GDF15 Tg mice as evidenced by significantly increased islet area and insulin production. The mechanistic study revealed that NAG-1/GDF15 significantly inhibited STZ-induced apoptosis and preserved the reduction of proliferation in the islets of the Tg mice as compared to the wild-type (WT) mice upon MLD-STZ treatment. Additionally, NAG-1/GDF15 significantly reduced both the serum and islet levels of the inflammatory cytokines (IL-1β, IL-6, and TNFα), and reduced the expression of NF-κB expression and immune cells infiltration in the islets. Collectively, these results indicate that NAG-1/GDF15 is effective in improving STZ-induced glucose intolerance, probably was mediated via suppressing inflammation, inhibiting apoptosis, and preserving β-cell mass and function.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Tingting Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Thomas Eling
- Scientist Emeritus, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| |
Collapse
|
43
|
Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, Janssen P, Pinney J, van Loo G, Elewaut D, Massie A, Hoste E, Ravichandran KS. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 2022; 606:776-784. [PMID: 35614212 DOI: 10.1038/s41586-022-04754-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are a major complication of diabetes, which affects 1 in 10 people worldwide. Dying cells in the wound perpetuate the inflammation and contribute to dysregulated tissue repair1-3. Here we reveal that the membrane transporter SLC7A11 acts as a molecular brake on efferocytosis, the process by which dying cells are removed, and that inhibiting SLC7A11 function can accelerate wound healing. Transcriptomics of efferocytic dendritic cells in mouse identified upregulation of several SLC7 gene family members. In further analyses, pharmacological inhibition of SLC7A11, or deletion or knockdown of Slc7a11 using small interfering RNA enhanced efferocytosis in dendritic cells. Slc7a11 was highly expressed in dendritic cells in skin, and single-cell RNA sequencing of inflamed skin showed that Slc7a11 was upregulated in innate immune cells. In a mouse model of excisional skin wounding, inhibition or loss of SLC7A11 expression accelerated healing dynamics and reduced the apoptotic cell load in the wound. Mechanistic studies revealed a link between SLC7A11, glucose homeostasis and diabetes. SLC7A11-deficient dendritic cells were dependent on aerobic glycolysis using glucose derived from glycogen stores for increased efferocytosis; also, transcriptomics of efferocytic SLC7A11-deficient dendritic cells identified increased expression of genes linked to gluconeogenesis and diabetes. Further, Slc7a11 expression was higher in the wounds of diabetes-prone db/db mice, and targeting SLC7A11 accelerated their wound healing. The faster healing was also linked to the release of the TGFβ family member GDF15 from efferocytic dendritic cells. In sum, SLC7A11 is a negative regulator of efferocytosis, and removing this brake improves wound healing, with important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Sophia Maschalidi
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Burcu N Keçeli
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hannah K L De Cleene
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kim Lecomte
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Renée Van der Cruyssen
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Pinney
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Esther Hoste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
44
|
Weldemariam MM, Woo J, Zhang Q. Pancreatic INS-1 β-Cell Response to Thapsigargin and Rotenone: A Comparative Proteomics Analysis Uncovers Key Pathways of β-Cell Dysfunction. Chem Res Toxicol 2022; 35:1080-1094. [PMID: 35544339 DOI: 10.1021/acs.chemrestox.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-secreting β-cells in the pancreatic islets are exposed to various endogenous and exogenous stressing conditions, which may lead to β-cell dysfunction or apoptosis and ultimately to diabetes mellitus. However, the detailed molecular mechanisms underlying β-cell's inability to survive under severe stresses remain to be explored. This study used two common chemical stressors, thapsigargin and rotenone, to induce endoplasmic reticulum (ER) and mitochondria stress in a rat insuloma INS-1 832/13 β-cell line, mimicking the conditions experienced by dysfunctional β-cells. Proteomic changes of cells upon treatment with stressors at IC50 were profiled with TMT-based quantitative proteomics and further verified using label-free quantitive proteomics. The differentially expressed proteins under stress conditions were selected for in-depth bioinformatic analysis. Thapsigargin treatment specifically perturbed unfolded protein response (UPR) related pathways; in addition, 58 proteins not previously linked to the UPR related pathways were identified with consistent upregulation under stress induced by thapsigargin. Conversely, rotenone treatment resulted in significant proteome changes in key mitochondria regulatory pathways such as fatty acid β-oxidation, cellular respiration, citric acid cycle, and respiratory electron transport. Our data also demonstrated that both stressors increased reactive oxygen species production and depleted adenosine triphosphate synthesis, resulting in significant dysregulation of oxidative phosphorylation signaling pathways. These novel dysregulated proteins may suggest an alternative mechanism of action in β-cell dysfunction and provide potential targets for probing ER- and mitochondria stress-induced β-cell death.
Collapse
Affiliation(s)
- Mehari Muuz Weldemariam
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
45
|
Xu G, Chen J, Jo S, Grayson TB, Ramanadham S, Koizumi A, Germain-Lee EL, Lee SJ, Shalev A. Deletion of Gdf15 Reduces ER Stress-induced Beta-cell Apoptosis and Diabetes. Endocrinology 2022; 163:6548945. [PMID: 35290443 PMCID: PMC9272264 DOI: 10.1210/endocr/bqac030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/12/2023]
Abstract
Endoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear. In this study, we have discovered that GDF15 promotes ER stress-induced beta-cell apoptosis and that downregulation of GDF15 has beneficial effects on beta-cell survival in diabetes. Specifically, we found that GDF15 is induced by ER stress in beta cells and human islets, and that the transcription factor C/EBPβ is involved in this process. Interestingly, ER stress-induced apoptosis was significantly reduced in INS-1 cells with Gdf15 knockdown and in isolated Gdf15 knockout mouse islets. In vivo, we found that Gdf15 deletion attenuates streptozotocin-induced diabetes by preserving beta cells and insulin levels. Moreover, deletion of Gdf15 significantly delayed diabetes development in spontaneous ER stress-prone Akita mice. Thus, our findings suggest that GDF15 contributes to ER stress-induced beta-cell apoptosis and that inhibition of GDF15 may represent a novel strategy to promote beta-cell survival and treat diabetes.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: Guanlan Xu, PhD, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Shelby Bldg 1272, Birmingham, AL 35294-2182, USA. E-mail:
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - SeongHo Jo
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sasanka Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Akio Koizumi
- Institute of Public Health and Social Welfare Public Interest Incorporation Associations, Kyoto Hokenkai, Ukyo-ku Kyoto 615-8577, Japan
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Connecticut Children’s Center for Rare Bone Disorders, Farmington, CT 06032, USA
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Asrih M, Dusaulcy R, Gosmain Y, Philippe J, Somm E, Jornayvaz FR, Kang BE, Jo Y, Choi MJ, Yi HS, Ryu D, Gariani K. Growth differentiation factor-15 prevents glucotoxicity and connexin-36 downregulation in pancreatic beta-cells. Mol Cell Endocrinol 2022; 541:111503. [PMID: 34763008 DOI: 10.1016/j.mce.2021.111503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023]
Abstract
Pancreatic beta cell dysfunction is a hallmark of type 2 diabetes. Growth differentiation factor 15 (GDF15), which is an energy homeostasis regulator, has been shown to improve several metabolic parameters in the context of diabetes. However, its effects on pancreatic beta-cell remain to be identified. We, therefore, performed experiments using cell models and histological sectioning of wild-type and knock-out GDF15 mice to determine the effect of GDF15 on insulin secretion and cell viability. A bioinformatics analysis was performed to identify GDF15-correlated genes. GDF15 prevents glucotoxicity-mediated altered glucose-stimulated insulin secretion (GSIS) and connexin-36 downregulation. Inhibition of endogenous GDF15 reduced GSIS in cultured mouse beta-cells under standard conditions while it had no impact on GSIS in cells exposed to glucolipotoxicity, which is a diabetogenic condition. Furthermore, this inhibition exacerbated glucolipotoxicity-reduced cell survival. This suggests that endogenous GDF15 in beta-cell is required for cell survival but not GSIS in the context of glucolipotoxicity.
Collapse
Affiliation(s)
- Mohamed Asrih
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Rodolphe Dusaulcy
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Yvan Gosmain
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Jacques Philippe
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419, Suwon, Republic of Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419, Suwon, Republic of Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University School of Medicine, 35015, Daejeon, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419, Suwon, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 16419, Suwon, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, 06351, Seoul, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland; University of Geneva Medical School, 1211, Geneva, Switzerland.
| |
Collapse
|
47
|
Lu JF, Zhu MQ, Xie BC, Shi XC, Liu H, Zhang RX, Xia B, Wu JW. Camptothecin effectively treats obesity in mice through GDF15 induction. PLoS Biol 2022; 20:e3001517. [PMID: 35202387 PMCID: PMC8870521 DOI: 10.1371/journal.pbio.3001517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15's anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15's specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.
Collapse
Affiliation(s)
- Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Cai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
48
|
Fasolino M, Schwartz GW, Patil AR, Mongia A, Golson ML, Wang YJ, Morgan A, Liu C, Schug J, Liu J, Wu M, Traum D, Kondo A, May CL, Goldman N, Wang W, Feldman M, Moore JH, Japp AS, Betts MR, Faryabi RB, Naji A, Kaestner KH, Vahedi G. Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat Metab 2022; 4:284-299. [PMID: 35228745 PMCID: PMC8938904 DOI: 10.1038/s42255-022-00531-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The aetiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets of 24 T1D, autoantibody-positive and nondiabetic organ donors across multiple quantitative modalities including ~80,000 cells using single-cell transcriptomics, ~7,000,000 cells using cytometry by time of flight and ~1,000,000 cells using in situ imaging mass cytometry. We develop an advanced integrative analytical strategy to assess pancreatic islets and identify canonical cell types. We show that a subset of exocrine ductal cells acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune suppression in T1D donors. Our multimodal analyses delineate cell types and processes that may contribute to T1D immunopathogenesis and provide an integrative procedure for exploration and discovery of human pancreatic function.
Collapse
Affiliation(s)
- Maria Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory W Schwartz
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aanchal Mongia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maria L Golson
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashleigh Morgan
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chengyang Liu
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Schug
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jinping Liu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Minghui Wu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Traum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayano Kondo
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Catherine L May
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Goldman
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenliang Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Feldman
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason H Moore
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alberto S Japp
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert B Faryabi
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Aamir K, Khan HU, Hossain CF, Afrin MR, Jusuf PR, Waheed I, Sethi G, Arya A. Arjunolic acid downregulates elevated blood sugar and pro-inflammatory cytokines in streptozotocin (STZ)-nicotinamide induced type 2 diabetic rats. Life Sci 2022; 289:120232. [PMID: 34919901 DOI: 10.1016/j.lfs.2021.120232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide health issue primarily due to failure of pancreatic β-cells to release sufficient insulin. PURPOSE The present work aimed to assess the antidiabetic potential of arjunolic acid (AA) isolated from Terminalia arjuna in type 2 diabetic rats. STUDY DESIGN After extraction, isolation and purification, AA was orally administered to type 2 diabetic Sprague Dawley rats to investigate antidiabetic effect of AA. METHOD T2DM was induced via single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NIC) in adult male rats. After 10 days, fasting and random blood glucose (FBG and RBG), body weight (BW), food and water intake, serum C-peptide, insulin and glycated hemoglobin (HbA1c) was measured to confirm T2DM development. Dose dependent effects of orally administered AA (25 and 50 mg/kg/day) for 4 weeks was investigated by measuring BW variation, fasting and postprandial hyperglycemia, oral glucose tolerance test (OGTT), and levels of serum HbA1c, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), serum and pancreatic C-peptide, insulin, growth differentiation factor 15 (GDF-15), serum and pancreatic inflammatory cytokines. RESULTS The oral administration of AA in preclinical model of T2DM significantly normalized FBG and RBG, restored BW, controlled polyphagia, polydipsia and glucose tolerance. In addition, AA notably reduced serum HbA1c, TC, TG, LDL with non-significant increase in HDL. On the other hand, significant increase in serum and pancreatic C-peptide and insulin was observed with AA treatment, while serum and pancreatic GDF-15 were non-significantly altered in AA treated diabetic rats. Moreover, AA showed dose dependent reduction in serum and pancreatic proinflammatory cytokines including TNF-α, IL-1β and IL-6. CONCLUSION For the first time our findings highlighted AA as a potential candidate in type 2 diabetic conditions.
Collapse
Affiliation(s)
- Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Akhtar Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan
| | - Hidayat Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selengor, Malaysia
| | - Chowdhury Faiz Hossain
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Mst Rejina Afrin
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | | | - Imran Waheed
- Akhtar Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aditya Arya
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia; Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
50
|
Yu L, Zhou Y, Wang L, Zhou X, Sun J, Xiao J, Xu X, Larsson SC, Yuan S, Li X. GDF-15 as a Therapeutic Target of Diabetic Complications Increases the Risk of Gallstone Disease: Mendelian Randomization and Polygenic Risk Score Analysis. Front Genet 2022; 13:814457. [PMID: 35769993 PMCID: PMC9234303 DOI: 10.3389/fgene.2022.814457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) levels have been revealed as a robust biomarker for metformin use. We conducted Mendelian randomization (MR) analysis to explore the association between GDF-15 and gallstone disease to inform potential therapeutic effects targeting GDF-15. Four genetic variants associated with GDF-15 levels at p < 5 × 10-8 were selected as instrumental variables from a genome-wide association meta-analysis including 21,758 individuals. Two-sample MR analysis was conducted using summary-level data from UK Biobank (10,520 gallstone cases and 350,674 controls) and FinnGen consortium (19,023 gallstone cases and 195,144 controls). Polygenic risk score analysis using individual-level data in UK biobank was performed to complement the MR findings by examining the non-linearity of the association. Diabetic complications were taken as positive controls to validate the therapeutic effect of targeting GDF-15. Linear and nonlinear associations between genetically predicted GDF-15 levels and gallstones were estimated with stratification by the diabetic status. In the two-sample MR analysis, the odds ratio (OR) of gallstones was 1.09 (95% confidence interval (CI), 1.03-1.15; p = 0.001) for one standard deviation increase in genetically predicted GDF-15 levels in the meta-analysis of two datasets. Polygenic risk score analysis found this association to be U-shaped (p = 0.037). The observed association was predominantly seen in nondiabetic population (OR = 1.11, 95% CI: 1.01-1.21; p = 0.003). An inverse association between genetically predicted GDF-15 levels and diabetic complications (OR = 0.77, 95% CI: 0.62-0.96; p = 0.023) was observed, validating the potential therapeutic effects of targeting GDF-15 levels. This MR study indicates that the increased risk of gallstone disease should be taken into account when considering GDF-15 as a therapeutic target for diabetic complications.
Collapse
Affiliation(s)
- Lili Yu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yajing Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiarui Xiao
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Xu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Shuai Yuan
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|