1
|
Hao X, Song H, Su X, Li J, Ye Y, Wang C, Xu X, Pang G, Liu W, Li Z, Luo T. Prophylactic effects of nutrition, dietary strategies, exercise, lifestyle and environment on nonalcoholic fatty liver disease. Ann Med 2025; 57:2464223. [PMID: 39943720 PMCID: PMC11827040 DOI: 10.1080/07853890.2025.2464223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and its prevalence has risen sharply. However, whether nutrition, dietary strategies, exercise, lifestyle and environment have preventive value for NAFLD remains unclear. METHODS Through searching 4 databases (PubMed, Web of Science, Embase and the Cochrane Library) from inception to January 2025, we selected studies about nutrition, dietary strategies, exercise, lifestyle and environment in the prevention of NAFLD and conducted a narrative review on this topic. RESULTS Reasonable nutrient intake encompassing macronutrients and micronutrients have an independent protective relationship with NAFLD. Besides, proper dietary strategies including mediterranean diet, intermittent fasting diet, ketogenic diet, and dietary approaches to stop hypertension diet have their inhibitory effects on the developmental process of NAFLD. Moreover, right exercises including walking, jogging, bicycling, and swimming are recommended for the prevention of NAFLD because they could effectively reduce weight, which is an important risk factor for NAFLD, and improve liver function. In addition, embracing a healthy lifestyle including reducing sedentary behavior, not smoking, sleeping well and brushing teeth regularly is integral since it not only could reduce the risk of NAFLD but also significantly contribute to overall prevention and control. Finally, the environment, including the social and natural environments, plays a potential role in NAFLD prevention. CONCLUSION Nutrition, dietary strategies, exercise, lifestyle and environment play an important role in the prevention of NAFLD. Moreover, this review offers comprehensive prevention recommendations for people at high risk of NAFLD.
Collapse
Affiliation(s)
- Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hao Song
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xin Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Jian Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Youbao Ye
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Cailiu Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xiao Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Guanglong Pang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Wenxiu Liu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Zihan Li
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Tian Luo
- The Institute for Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Yu L, Shi H, Gao T, Xu W, Qian H, Jiang J, Yang X, Zhang X. Exomeres and supermeres: Current advances and perspectives. Bioact Mater 2025; 50:322-343. [PMID: 40276541 PMCID: PMC12020890 DOI: 10.1016/j.bioactmat.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Recent studies have revealed a great diversity and complexity in extracellular vesicles and particles (EVPs). The developments in techniques and the growing awareness of the particle heterogeneity have spurred active research on new particle subsets. Latest discoveries highlighted unique features and roles of non-vesicular extracellular nanoparticles (NVEPs) as promising biomarkers and targets for diseases. These nanoparticles are distinct from extracellular vesicles (EVs) in terms of their smaller particle sizes and lack of a bilayer membrane structure and they are enriched with diverse bioactive molecules particularly proteins and RNAs, which are widely reported to be delivered and packaged in exosomes. This review is focused on the two recently identified membraneless NVEPs, exomeres and supermeres, to provide an overview of their biogenesis and contents, particularly those bioactive substances linked to their bio-properties. This review also explains the concepts and characteristics of these nanoparticles, to compare them with other EVPs, especially EVs, as well as to discuss their isolation and identification methods, research interests, potential clinical applications and open questions.
Collapse
Affiliation(s)
- Li Yu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Tingxin Gao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Wen T, Chen W, Wang F, Zhang R, Chen C, Zhang M, Ma T. The roles and functions of ergothioneine in metabolic diseases. J Nutr Biochem 2025; 141:109895. [PMID: 40058711 DOI: 10.1016/j.jnutbio.2025.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
The global prevalence of metabolic diseases is on the increase, and it has become a significant threat to the health and lives of individuals. Ergothioneine (EGT) is a natural betaine amino acid found in various foods, particularly mushrooms. EGT cannot be synthesized by mammals; it is absorbed into small intestinal epithelial cells by a cationic protein, the novel organic cation transporter 1 (OCTN1), and transported to certain organs including liver, spleen, kidney, lung, heart, eyes and brain. EGT has been reported to exhibit antioxidant, anti-inflammatory, anti-apoptotic, anti-aging, and metal-chelating effects. The unique chemical properties and biological functions of EGT position it as a promising candidate for the research and treatment of metabolic diseases. This review summarizes EGT's capacities, potential therapeutic effects on multiple metabolic diseases, and their specific mechanisms. Finally, we outline challenges for future research on EGT and aspire to establish it as a prospective therapeutic agent for metabolic diseases.
Collapse
Affiliation(s)
- Tingting Wen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wanjing Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Fengjing Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Rui Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Cheng Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Teng Ma
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
4
|
Zhang J, Xie Z, Zhu X, Xu C, Lin J, Zhao M, Cheng Y. New insights into therapeutic strategies for targeting hepatic macrophages to alleviate liver fibrosis. Int Immunopharmacol 2025; 158:114864. [PMID: 40378438 DOI: 10.1016/j.intimp.2025.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Liver fibrosis is a wound-healing response induced by persistent liver damage, resulting from complex multicellular interactions and multifactorial networks. Without intervention, it can progress to cirrhosis and even liver cancer. Current understanding suggests that liver fibrosis is reversible, making it crucial to explore effective therapeutic strategies for its alleviation. Chronic inflammation serves as the primary driver of liver fibrosis, with hepatic macrophages playing a dual role depending on their polarization state. This review summarizes various prevention and therapeutic strategies targeting hepatic macrophages in the context of liver fibrosis. These strategies include inhibition of macrophage recruitment, modulation of macrophage activation and polarization, regulation of macrophage metabolism, and induction of phagocytosis and autophagy in hepatic macrophages. Additionally, we discuss the communication between hepatic macrophages, hepatocytes, and hepatic stellate cells (HSCs), as well as the current clinical application of anti-fibrotic drugs targeting macrophages. The goal is to identify effective therapeutic targets at each stage of macrophage participation in liver fibrosis development, with the aim of using hepatic macrophages as a target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhaojing Xie
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Xueyu Zhu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Chenxi Xu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Xiao Z, Gao S, Li S, Yang F, Zhang D, Niu Z, Zhang Y, Duan Z, Qi S, Ma S. Taohong Siwu Decoction Modulates Glutathione Metabolism to Suppress Hepatocyte Ferroptosis and Demonstrates Anti-Fibrotic Effects in the Liver. JOURNAL OF ETHNOPHARMACOLOGY 2025:120025. [PMID: 40414577 DOI: 10.1016/j.jep.2025.120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/17/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ameliorative effect of traditional Chinese medicine (TCM) on hepatic fibrosis has been widely recognized and researched, but studies on the mechanism of action have been hampered by its complex composition, which requires more in-depth studies to elucidate why and how TCM works. The theory of TCM believes that the liver is closely related to blood circulation, and hepatic fibrosis is caused by blood stagnation. Taohong Siwu Decoction (THSW) is a classic formula for nourishing and invigorating blood and has been used clinically for centuries. Current evidence has demonstrated its ameliorative effect on hepatic fibrosis, but the exact mechanism of action remains unclear. AIM OF THE STUDY Exploring the possible mechanism of the anti-hepatic fibrosis effect of THSW by proteomics and validating with in vivo and in vitro studies. MATERIALS AND METHODS The carbon tetrachloride (CCl4)-induced fibrosis model was conducted in mice and treated with THSW in vivo with colchicine as the positive control. Then serum biomarker alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathological analysis were evaluated to examine the effects of THSW. And hepatic fibrosis indicators alpha-smooth muscle actin (α-SMA) and Collagen Ⅰ (Col-Ⅰ) were detected by western blotting, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Additionally, the 4D Label-free quantitative proteomic analysis of liver samples was applied. In vitro, erastin-induced BRL-3A cells, a rat hepatocyte line, were performed as a hepatocyte ferroptosis model and treated with or without drug-containing serum of THSW. Finally, molecular docking was used to verify the binding ability of the main components of THSW to potential targets. RESULTS THSW treatment significantly ameliorated serum ALT, AST, hydroxyproline (Hyp) content, α-SMA and Col-Ⅰ mRNA expression in fibrosis mice. Further results showed that THSW decreased the malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE) content and increased the glutathione (GSH) content of liver tissue. Notably, proteomic analyses have identified 294 differentially expressed proteins in the THSW-treated group compared to the model group, with 97 proteins up-regulated and 197 down-regulated. Functional analysis of these differential proteins highlights the significant roles of inflammation and oxidative stress. Further validation in vivo and in vitro, THSW significantly improved the protein expression of glutathione S-transferase M1 (GSTM1), down-regulate the expression of transferrin receptor (TFRC), and kelch-like ECH-associated protein 1(Keap1) proteins, and promote the metabolism of GSH. Especially it reduced serum iron levels, increased total iron binding capacity, and up-regulated recombinant solute carrier family 7, member 11 (SLC7A11), nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4) protein expression, suggesting the inhibition of hepatocyte ferroptosis. In addition, the molecular docking results showed that its main components, amygdalin, hydroxysafflor yellow A, paeoniflorin, and albiflorin, possessed good binding ability with Keap1. CONCLUSIONS THSW represents a novel therapeutic effect on hepatic fibrosis in mice, accompanied by inhibiting hepatocyte ferroptosis. Mechanically, THSW may regulate the glutathione metabolic pathway and TFRC expression through its main ingredients, such as amygdalin, hydroxysafflor yellow A, paeoniflorin, and albiflorin, thereby inhibiting hepatocyte ferroptosis.
Collapse
Affiliation(s)
- Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Siqi Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Shengsheng Li
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Dingqi Zhang
- School of Pharmaceutical Sciences, School of TCM Research, Tsinghua University, Beijing 100084, China.
| | - Zhenyi Niu
- Department of Pathology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Zhongping Duan
- Beijing Institute of Hepatology, Beijing Youan Hospital Capital Medical University, Beijing 100069, China.
| | - Shenglan Qi
- Institute of Chinese Materia Medica, Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Shanghai Municipal Key Laboratory for Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Suping Ma
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Jiang S, Shu Y, Guo S, Ni Y, Zhao R, Shan H, Ma W. Proteomics-Based Exploration of the Hepatoprotective Mechanism of α-Lipoic Acid in Rats with Iron Overload-Induced Liver Injury. Int J Mol Sci 2025; 26:4774. [PMID: 40429916 PMCID: PMC12112492 DOI: 10.3390/ijms26104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Excessive iron accumulation poses a significant threat to liver health, primarily through oxidative stress and autophagy dysregulation. α-Lipoic acid (ALA), a natural antioxidant with hepatoprotective properties, may alleviate iron-induced liver damage, but its underlying mechanisms are not fully understood. This study utilized male Sprague Dawley rats and BRL-3A cells to explore the protective effects of ALA against iron overload in vivo and in vitro, respectively. ALA treatment significantly reduced hepatic iron accumulation, improved liver morphology, and alleviated iron-induced ultrastructural damage in rats. ALA also improved liver function markers in plasma, including alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), and the AST/ALT ratio. Furthermore, ALA mitigated iron-induced oxidative stress by lowering hepatic reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing the antioxidant enzyme activities of glutathione peroxidase (GSH-Px) and catalase (CAT). In BRL-3A cells, ALA improved cell viability, decreased intracellular ROS, and reduced iron levels. Proteomics analysis indicates that NAD(P)H: quinone oxidoreductase 1 (NQO1) may play a critical role in the protective effects of ALA against iron overload-induced hepatic damage in rats. Mechanistically, ALA upregulated NQO1 expression while downregulating autophagy-related proteins, including light chain 3B (LC3B), lysosomal-associated membrane protein 1 (LAMP1), and cathepsin D (CTSD). Inhibition or knockdown of NQO1 abolished ALA's protective effects, confirming its role in reducing oxidative stress and excessive autophagy. These findings highlight the potential of ALA as a therapeutic agent for managing hepatic iron toxicity through iron chelation and activation of NQO1.
Collapse
Affiliation(s)
- Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Han L, Pan Y, Luo L, Shen J, Yu Y. Advances in fluorescent probes of non-alcoholic fatty liver disease. Talanta 2025; 287:127694. [PMID: 39923673 DOI: 10.1016/j.talanta.2025.127694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant chronic liver disease worldwide, with 20-30 % of individuals going on to develop non-alcoholic steatohepatitis (NASH), which could result in serious complications such as fibrosis, liver cirrhosis, and hepatocellular carcinoma. Since NAFLD is reversible in its early stages, early diagnosis is necessary. By using particular structural and functional designs, fluorescent probes can be made to detect NAFLD-related chemicals or biological processes with a high degree of sensitivity and selectivity. In this work, we summarize the existing fluorescent probes for identifying biomarkers in NAFLD, including microenvironment (viscosity, polarity), ROS, RNS, RSS, metal ions, enzymes, and RNA. Furthermore, future directions are envisioned to inform the creation of more accurate and reliable fluorescent probes for NAFLD diagnosis, emphasizing the benefits and challenges of fluorescence probes.
Collapse
Affiliation(s)
- Lijun Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan, 430070, China
| | - Yalong Pan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan, 430070, China
| | - Li Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan, 430070, China
| | - Junxue Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan, 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan, 430070, China.
| |
Collapse
|
8
|
Lee J, Choi WG, Rhee M, Lee SH. Extracellular Vesicle-Mediated Network in the Pathogenesis of Obesity, Diabetes, Steatotic Liver Disease, and Cardiovascular Disease. Diabetes Metab J 2025; 49:348-367. [PMID: 40367986 PMCID: PMC12086558 DOI: 10.4093/dmj.2025.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles carrying bioactive cargo, including nucleic acids, proteins, and lipids, facilitating intercellular and interorgan communication. In addition to traditional mediators such as hormones, metabolites, and cytokines, increasing evidence suggests that EVs are key modulators in various physiological and pathological processes, particularly influencing metabolic homeostasis and contributing to the progression of cardiometabolic diseases. This review provides an overview of the most recent insights into EV-mediated mechanisms involved in the pathogenesis of obesity, insulin resistance, diabetes mellitus, steatotic liver disease, atherosclerosis, and cardiovascular disease. EVs play a critical role in modulating insulin sensitivity, glucose homeostasis, systemic inflammation, and vascular health by transferring functional molecules to target cells. Understanding the EV-mediated network offers potential for identifying novel biomarkers and therapeutic targets, providing opportunities for EV-based interventions in cardiometabolic disease management. Although many challenges remain, this evolving field highlights the need for further research into EV biology and its translational applications in cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Joonyub Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Gun Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Geng Y, Luo K, Stam J, Oosterhuis D, Gorter AR, van den Heuvel M, Crescitelli R, de Meijer VE, Wolters JC, Olinga P. Characterization of Extracellular Vesicles Derived From Human Precision-Cut Liver Slices in Metabolic Dysfunction-Associated Steatotic Liver Disease. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70043. [PMID: 40313415 PMCID: PMC12042696 DOI: 10.1002/jex2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
Extracellular vesicles (EVs) are cell-produced, membrane-surrounded vesicles that harbour the biological features of donor cells. In the current study, we are the first to isolate and characterize EVs isolated from human precision-cut liver slices (PCLS), obtained from both healthy and metabolic dysfunction-associated steatohepatitis (MASH) cirrhotic livers. PCLS derived from patients can faithfully represent disease conditions in humans. EVs were isolated from human PCLS after incubating in normal medium or modified medium that mimics the pathophysiological environment of metabolic dysfunction associated liver disease (MASLD). MASH PCLS produced higher amounts of EVs compared to healthy PCLS (p < 0.001). Mass spectrometry revealed that around 300 proteins were significantly different in EVs derived from MASH PCLS versus healthy PCLS (FDR < 0.05), irrespective of the type of medium. Significantly changed EV proteins were largely involved in signalling receptor binding function and showed potential in promoting fibrosis. In the liver, these ligand-associated receptors are highly expressed in hepatic stellate cells, and the MASH EVs functionally promoted the activation of hepatic stellate cells. Furthermore, the amounts of EpCAM and ITGA3 in EVs were positively associated with the progression of MASLD, which suggests the use of liver-derived EVs as potential biomarkers for MASLD. Characterization of EVs derived from human PCLS may assist future studies in investigating the pathogenesis and identifying liver-specific EVs as biomarkers of MASLD.
Collapse
Affiliation(s)
- Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Ke Luo
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janine Stam
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
- Department of Analytical Biochemistry, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Alan R. Gorter
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| | - Marius van den Heuvel
- Division of Pathology, Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Rossella Crescitelli
- Department of Surgery, Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGöteborgSweden
| | - Vincent E. de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery & Liver TransplantationUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of PharmacyUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
10
|
Liu H, Li M, Deng Y, Hou Y, Hou L, Zhang X, Zheng Z, Guo F, Sun K. The Roles of DMT1 in Inflammatory and Degenerative Diseases. Mol Neurobiol 2025; 62:6317-6332. [PMID: 39775481 DOI: 10.1007/s12035-025-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Iron homeostasis is critical for multiple physiological and pathological processes. DMT1, a core iron transporter, is expressed in almost all cells and organs and altered in response to various conditions, whereas, there is few reviews focusing on DMT1 in diseases associated with aberrant iron metabolism. Based on available knowledge, this review described a full view of DMT1 and summarized the roles of DMT1 and DMT1-mediated iron metabolism in the onset and development of inflammatory and degenerative diseases. This review also provided an overview of DMT1-related treatment in these disorders, highlighting its therapeutic potential in chronic inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Deng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Zhao X, Xia F, Dong Z, Huang W, Kong X, Cui Z, Yan M, Gao H, Rong R, Wang M, Liu G, Zhang Z, Zhang J, Yuan T, Cai H, Yan Z, Zhu L, Qin W. A novel EndMT inhibitor, xanthotoxin, attenuates non-alcoholic fatty liver disease by acting as TGFβR2 antagonist. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156823. [PMID: 40347928 DOI: 10.1016/j.phymed.2025.156823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has emerged as a key process contributing to the pathology of non-alcoholic fatty liver disease (NAFLD). Thus, identifying EndMT inhibitors may help impede NAFLD progression. PURPOSE Our research aims to identify potent natural EndMT inhibitors and explore their therapeutic potential and mechanisms of action in NAFLD. METHODS A natural compound library was employed to screen potential EndMT inhibitors. High-fat diet (HFD)-induced ApoE-/- mice and free fatty acid (FFA)-treated human hepatic sinusoidal endothelial cells (HHSECs) were employed as animal and cellular models of NAFLD. EndMT was evaluated by western blotting, qRT-PCR, immunofluorescence staining, tube formation, wound healing, and transwell assays. LC-MS/MS was applied to screen for altered secreted proteins during EndMT. Molecular docking, CETSA, and SPR assays were employed to validate the combination of xanthotoxin with TGFβR2. RESULTS Xanthotoxin was identified as a novel EndMT inhibitor. Further investigation revealed that xanthotoxin ameliorates NAFLD in ApoE-/- mice. By inhibiting EndMT, xanthotoxin improves endothelial dysfunction, reduces the pro-NAFLD factor ANGPTL2 secretion, and increases the anti-NAFLD factor SOD2 secretion, thus reducing hepatocyte steatosis, inflammation, and hepatic stellate cell fibrosis. Additional studies demonstrated that xanthotoxin binds to TGFβR2 and acts as its antagonist to block EndMT. In mice, EC-specific overexpression of TGFβR2 negated xanthotoxin's therapeutic impact on NAFLD. CONCLUSION This study reveals for the first time that xanthotoxin attenuates NAFLD by acting as a TGFβR2 antagonist to inhibit EndMT. These findings highlight the significant therapeutic potential of xanthotoxin in NAFLD treatment.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Fangjie Xia
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Zixu Dong
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Wenyang Huang
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Xinxin Kong
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, Shandong, China; School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Zhoujun Cui
- Department of General Surgery, Rizhao People's Hospital, Rizhao 276800, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Ruixue Rong
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Binzhou Medical University, Yantai 264000, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Tao Yuan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong First Medical University, Jinan 250000, Shandong, China
| | - Huiying Cai
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Zhenzhen Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Lin Zhu
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China; Department of Cardiology (Shandong Provincial Key Laboratory for Cardiovascular Disease Diagnosis and Treatment) at Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Jinan 250000, Shandong, China.
| |
Collapse
|
12
|
Kong F, Lei L, Cai L, Li J, Zhao C, Liu M, Qi D, Gao J, Li E, Gao W, Du X, Song Y, Liu G, Li X. Hypoxia-inducible factor 2α mediates nonesterified fatty acids and hypoxia-induced lipid accumulation in bovine hepatocytes. J Dairy Sci 2025; 108:4062-4078. [PMID: 39890076 DOI: 10.3168/jds.2024-25839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/03/2025]
Abstract
Ketosis is a metabolic disorder frequently occurring in the perinatal period, characterized by elevated circulating concentrations of nonesterified fatty acids (NEFA) due to negative energy balance, resulting in fatty liver in dairy cows. However, the mechanism of hepatic steatosis induced by high concentrations of NEFA in ketosis remains unclear. Hypoxia-inducible factor 2α (HIF-2α), which mediates adaptation to hypoxic stress, plays a critical role in regulating lipid metabolism. In this study, we investigate whether HIF-2α is involved in NEFA-driven hepatic lipid accumulation in dairy cows with ketosis. Liver and blood samples were collected from 10 healthy cows (blood BHB concentration <1.2 mM) and 10 ketotic cows (blood BHB concentration >3.0 mM with clinical symptoms) with similar lactation numbers (median = 3, range = 2-4) at 3 to 9 DIM (median = 6). In cows with ketosis, serum concentrations of NEFA and BHB were greater, but serum concentrations of glucose were lower. Moreover, hepatic triglyceride content increased significantly. In the liver of ketotic cows, which was accompanied by upregulated HIF-2α expression. To determine the potential association among hypoxia, HIF-2α, and the formation of hepatocellular steatosis in vitro, we isolated hepatocytes from healthy calves for the following experiments. First, hepatocytes were treated with 0, 0.6, 1.2, or 2.4 mM NEFA (52.7 mM stock NEFA solution was diluted in RPMI-1640 basic medium supplemented with 2% fatty acid-free BSA to achieve the specified concentrations) for 18 h, showing that HIF-2α expression and cellular hypoxia occurred in a dose-dependent manner. Next, hepatocytes were infected with HIF-2α (encoded by EPAS1) small interfering RNA (Si-HIF-2α) for 48 h and then treated with 1.2 mM NEFA for 18 h. Results indicated that silencing HIF-2α decreased NEFA-induced lipid accumulation in bovine hepatocytes. Subsequently, hepatocytes treated with or without NEFA were placed in an AnaeroPack System, mimicking a hypoxic condition, for 0, 12, 18, or 24 h. Results showed that hypoxia could induce and further exacerbate lipid accumulation in bovine hepatocytes. Meanwhile, normal or NEFA-treated hepatocytes were cocultured with or without PT2385, a specific HIF-2α inhibitor, showing that hypoxia promoted steatosis through HIF-2α. Activating transcription factor 4 (ATF4) is an endoplasmic reticulum (ER) stress and hypoxia-inducible transcription factor. Here, bovine hepatocytes were treated with NEFA or hypoxia following transfecting ATF4 small interfering RNA, which demonstrated that ATF4 knockdown alleviated the extent of lipid accumulation in bovine hepatocytes. In addition, we found that ATF4 expression was correlated with HIF-2α levels in both liver tissue and cultured hepatocyte models. Moreover, overexpression of ATF4 weakened the beneficial effects of HIF-2α inhibition. Overall, these data suggest that NEFA-induced hepatic hypoxia significantly contributes to the progression of hepatic steatosis which in turn, intensifies hypoxia and leads to a self-perpetuating cycle of reciprocal causation, further exacerbating hepatic lipid deposition. Additionally, accumulated HIF-2α plays a critical role in this complex-origin steatosis, potentially through ATF4.
Collapse
Affiliation(s)
- Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Cai
- College of Food and Biology of Changchun Polytechnic, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dandan Qi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Enzhu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
13
|
Shen QE, Xu C. Letter: Iron Metabolism in SLD-A Complex Puzzle That Requires Further Evaluation. Aliment Pharmacol Ther 2025; 61:1268-1269. [PMID: 40019255 DOI: 10.1111/apt.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Affiliation(s)
- Qi-En Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Yang X, Wang J, Qi X, Hou M, Liu M, Xiao Y, Liu S, Zhou J, Yu J, Wang Y, Chen G, Yu L, Batchuluun K, Batsaikhan B, Damba T, Liang Y, Liang X, Ma J, Liang Y, Li Y, Zhou L. HLF and PPARα axis regulates metabolic-associated fatty liver disease through extracellular vesicles derived from the intestinal microbiota. IMETA 2025; 4:e70022. [PMID: 40236774 PMCID: PMC11995174 DOI: 10.1002/imt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become increasingly widespread. The intestine is the primary site of lipid absorption and is important for the homeostasis of lipid metabolism. However, the mechanism underlying the participation of the intestinal tract in the development of MAFLD requires additional investigation. In this study, analysis of the single-cell transcriptome of intestinal tissue from cynomolgus monkeys found that hepatic leukemia factor (HLF) participated in the genetic regulation of intestinal lipid absorption. Results obtained from normal and intestine-specific Hlf-knockout mice confirmed that HLF alleviated intestinal barrier disorders by inhibiting peroxisome proliferator-activated receptor alpha (PPARα) expression. The HLF/PPARα axis alleviated MAFLD by mediating gut microbiota-derived extracellular vesicles (fEVs), thereby inhibiting hepatocyte ferroptosis. Lipidomics and functional experiments verified that taurochenodeoxycholic acid (TCDCA), a conjugated bile acid contained in the fEVs, had a key role in the process. In conclusion, intestinal HLF activity was mediated by fEVs and identified as a novel therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Xingzhen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Jiale Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Xinyu Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Menglong Hou
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Mengkuan Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Yang Xiao
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Siqi Liu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jinfeng Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Jingsu Yu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yang Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Guo Chen
- Wincon TheraCells Biotechnologies Co., Ltd.NanningChina
| | - Lin Yu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Khongorzul Batchuluun
- Center for Research and Development of Institute of Biomedical SciencesMongolian National University of Medical SciencesUlaanbaatarMongolia
- Department of Health Research, Graduate SchoolMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Batbold Batsaikhan
- Department of Health Research, Graduate SchoolMongolian National University of Medical SciencesUlaanbaatarMongolia
- Department of Internal Medicine, Institute of Medical SciencesMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Turtushikh Damba
- School of PharmacyMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Yuehui Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xue Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jie Ma
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Yunxiao Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Lei Zhou
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
15
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Wu B, Wang J, Yan X, Jin G, Wang Q. Cordycepin ameliorates diabetic nephropathy injury by activating the SLC7A11/GPX4 pathway. J Diabetes Investig 2025. [PMID: 40120097 DOI: 10.1111/jdi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Cordycepin (CRD) has been identified to alleviate diabetes-induced injuries and complications including diabetic nephropathy (DN). Here, this work focused on probing the specific effects and potential mechanisms of CRD on DN progression. METHODS High glucose (HG)-induced mouse podocyte cell line (MPC5) was used for in vitro functional analyses. Cell proliferation and apoptosis were determined using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry, respectively. ELISA analysis detected inflammatory factors. Cell ferroptosis was assessed by measuring the levels of Fe2+, glutathione, reactive oxygen species, and malonaldehyde. RESULTS CRD treatment suppressed HG-induced apoptosis, inflammation, and ferroptosis in podocytes. CRD treatment elevated SLC7A11 and GPX4 expression in HG-treated podocytes. The overexpression of SLC7A11 or GPX4 suppressed HG-evoked apoptosis, inflammation, and ferroptosis in podocytes. Moreover, the silencing of SLC7A11 or GPX4 abolished the protective effects of CRD on HG-treated podocytes. Moreover, CRD ameliorated renal structure injury and inflammation in STZ-induced diabetic mice by modulating SLC7A11 or GPX4 expression. CONCLUSIONS Cordycepin suppressed HG-induced apoptosis, inflammation, and ferroptosis in podocytes in vitro, and ameliorated renal injury and inflammation in STZ-induced diabetic mice by activating the SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Bing Wu
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Wang
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xiaohui Yan
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Gang Jin
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qiong Wang
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Kisseleva T, Ganguly S, Murad R, Wang A, Brenner DA. Regulation of Hepatic Stellate Cell Phenotypes in Metabolic Dysfunction-Associated Steatohepatitis. Gastroenterology 2025:S0016-5085(25)00528-1. [PMID: 40120772 DOI: 10.1053/j.gastro.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Hepatic stellate cells (HSCs) play a crucial role in the pathogenesis of liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), a condition characterized by excessive fat accumulation in the hepatocytes, unrelated to alcohol consumption. In a healthy liver, HSCs are quiescent, store vitamin A, and function as pericytes. However, in response to liver injury and inflammation, HSCs become activated. In MASH, HSC activation is driven by metabolic stress, lipotoxicity, and chronic inflammation. Injured hepatocytes, recruited macrophage, capillarized sinusoidal endothelial cells, and permeable intestinal epithelium may each contribute to activating HSCS. This leads to a unique inflammatory environment that promotes fibrosis. MASH HSCs change their metabolism to favor glycolysis, glutaminolysis, and lactate generation. Activated HSCs transform into myofibroblast-like cells, producing excessive extracellular matrix components that result in fibrosis. In addition, HSCs in MASH have inflammatory and intermediate activated phenotypes. This fibrotic process is a key feature of MASH, which can lead to cirrhosis and liver cancer. Understanding the mechanisms of HSC activation and their role in MASH progression is essential for developing targeted therapies to treat and prevent liver fibrosis in affected individuals.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, California
| | | | - Rabi Murad
- Sanford Burnham Prebys, La Jolla, California
| | - Allen Wang
- Center for Epigenetics, University of California, San Diego, La Jolla, California
| | - David A Brenner
- Sanford Burnham Prebys, La Jolla, California; Department of Medicine, University of California, La Jolla California.
| |
Collapse
|
18
|
Wang K, Farrell A, Zhou E, Qin H, Zeng Z, Zhou K, Cunha E Rocha K, Zhang D, Wang G, Atakilit A, Sheppard D, Lu LF, Jin C, Ying W. ATF4 drives regulatory T cell functional specification in homeostasis and obesity. Sci Immunol 2025; 10:eadp7193. [PMID: 40085690 DOI: 10.1126/sciimmunol.adp7193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Regulatory T cells (Tregs) have diverse functional specification in homeostasis and disease. However, how liver Tregs function and are transcriptionally regulated in obesity is not well understood. Here, we identified that effector Tregs expressing activating transcription factor 4 (ATF4) were enriched in the livers of obese mice. ATF4 was critical for driving an effector Treg transcriptional program, and ATF4-expressing Tregs promoted the development of obesity-induced liver fibrosis by enhancing transforming growth factor-β activation via integrin αvβ8. Treg-specific deletion of Atf4 resulted in reduced liver Tregs and attenuation of obesity-induced liver abnormalities. Furthermore, ATF4 was required to promote the differentiation of nonlymphoid tissue Treg precursors under steady state. These findings demonstrate that ATF4 is important for regulating Treg functional specification in homeostasis and obesity.
Collapse
Affiliation(s)
- Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Farrell
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enchen Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Houji Qin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kailun Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Amha Atakilit
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chunyu Jin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
20
|
Xie Y, Dai S, Chen Q, Shan D, Pan X, Hu Y. Serum ferritin levels and risk of gestational diabetes mellitus: A cohort study. Sci Rep 2025; 15:7525. [PMID: 40032930 PMCID: PMC11876592 DOI: 10.1038/s41598-025-91456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is a glucose metabolism disorder with an unclear etiology that occurs specifically during pregnancy. While elevated serum ferritin levels have been reported to increase the risk of GDM, these findings lack validation in large-scale studies and have yet to inform clinical practice effectively. This study enrolled 12,434 controls and 3599 GDM patients and employed binary multifactorial logistic regression, restricted cubic spline, propensity score matching, and a random forest algorithm to explore the relationship between serum ferritin and GDM, as well as the effect size of ferritin on GDM. The results indicated that GDM patients have higher serum ferritin levels compared to controls in the second and third trimesters. A weak correlation was found between serum ferritin levels and OGTT 1-hour and 2-hour blood glucose levels in the second trimester. Logistic regression (LR) and restricted cubic spline (RCS) analyses showed a significant positive correlation between serum ferritin levels and GDM in the second and third trimesters. Propensity score matching analysis indicated that the association between second-trimester serum ferritin levels and GDM remained nearly constant before and after matching. The random forest algorithm suggested that among all confounders, serum ferritin had a minimal effect on GDM risk. In conclusion, our study provides further compelling evidence for the association between serum ferritin levels and gestational diabetes mellitus. However, additional research is still needed to clarify the specific mechanisms underlying this association.
Collapse
Affiliation(s)
- Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Qingbaijiang Maternal and Child Health Hospital, Chengdu, 610300, China
| | - Xiongfei Pan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
- West China Second University Hospital, Sichuan University, No. 17 Ren Min Road, Chengdu, 610041, Sichuan, P.R. China.
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
- West China Second University Hospital, Sichuan University, No. 17 Ren Min Road, Chengdu, 610041, Sichuan, P.R. China.
| |
Collapse
|
21
|
Zhu F, Ren L, Cheng W, Zhou H, Li Y, Liu N, Rong G, Liu Y, Yu P, Lv J, Cheng Y, Chen C. A Dynamic Deferoxamine Polymer with Exceptional Performance in Mitochondrial Iron Depletion and Cytosolic Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412093. [PMID: 39945100 DOI: 10.1002/smll.202412093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Indexed: 03/20/2025]
Abstract
Deferoxamine (DFO) is an FDA-approved naturally occurring iron chelator commonly used to treat transfusion-induced iron overload. The abundant and flexible hydroxamic acid groups in DFO enable exceptional iron binding capacity and high protein binding via hydrogen bonding interactions. However, the applications of DFO to sequester intracellular iron and to deliver proteins inside cells are limited due to poor membrane-permeability. Herein, the fabrication of a dynamic DFO polymer is proposed to achieve robust intracellular protein delivery and efficient mitochondrial iron depletion. Specifically, DFO is grafted onto a polycatechol scaffold via dynamic catechol-boronate chemistry. The obtained DFO polymer shows robust protein binding capacity, and the formed protein complexes show high resistance toward serum proteins. It effectively delivers various cargo proteins into cytosol of treated cells with maintained bioactivity. In addition, the polymer delivers DFO inside cells, and the released DFO efficiently depletes mitochondrial iron, which significantly inhibits mitochondrial oxidative phosphorylation and glycolysis. Remarkable synergistic cytotoxic effects are achieved when the DFO polymer is loaded with toxic proteins. This study provides a general strategy for facile preparation of bioactive polymer toward robust protein delivery, and the designed polymer can be a promising carrier for the delivery of protein therapeutics to treat cancer.
Collapse
Affiliation(s)
- Fang Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lanfang Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenhua Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Haohan Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yuhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Guangyu Rong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Yunfeng Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Panting Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chao Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
22
|
Wang Q, Tang X, Wang Y, Zhang D, Li X, Liu S. The role of extracellular vesicles in non-alcoholic steatohepatitis: Emerging mechanisms, potential therapeutics and biomarkers. J Adv Res 2025; 69:157-168. [PMID: 38494073 PMCID: PMC11954800 DOI: 10.1016/j.jare.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an emerging global healthcare problem, has become the leading cause of liver transplantation in recent decades. No effective therapies in the clinic have been proven due to the incomplete understanding of the pathogenesis of NASH, and further studies are expected to continue to delve into the mechanisms of NASH. Extracellular vesicles (EVs), which are small lipid membrane vesicles carrying proteins, microRNAs and other molecules, have been identified to play a vital role in cell-to-cell communication and are involved in the development and progression of various diseases. In recent years, there has been increasing interest in the role of EVs in NASH. Many studies have revealed that EVs mediate important pathological processes in NASH, and the role of EVs in NASH is distinct and variable depending on their origin cells and target cells. This review outlines the emerging mechanisms of EVs in the development of NASH and the preclinical evidence related to stem cell-derived EVs as a potential therapeutic strategy for NASH. Moreover, possible strategies involving EVs as clinical diagnostic, staging and prognostic biomarkers for NASH are summarized.
Collapse
Affiliation(s)
- Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiangning Tang
- Department of endocrinology, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Danyi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
23
|
Cai F, Zhou K, Wang P, Zhang W, Liu L, Yang Y. A novel KEAP1 inhibitor, tiliroside, activates NRF2 to protect against acetaminophen-induced oxidative stress and acute liver injury. Hepatol Commun 2025; 9:e0658. [PMID: 40008899 PMCID: PMC11868432 DOI: 10.1097/hc9.0000000000000658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/13/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Acetaminophen-induced acute liver injury (AILI) is one of the common causes of abrupt liver failure in numerous nations. Several previous studies revealed that tiliroside, a glycoside flavonoid, exerts neuroprotective and renal protective effects. However, whether it has hepatoprotective effects is not known. The objective of this research is to examine whether tiliroside can protect against AILI. METHODS AILI mouse and cell models were performed to evaluate the protective effects of tiliroside. Molecular docking, cellular thermal shift assay, immunoprecipitation, and RNA-seq were performed to analyze the possible mechanisms of tiliroside. RESULTS In vivo, tiliroside attenuated AILI in mice significantly, as evidenced by lower ALT and AST levels. Molecular docking, cellular thermal shift assay, and RNA-seq analysis revealed that tiliroside promoted the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the expression of its downstream genes through disruption of the NRF2-KEAP1 protein-protein interaction to inhibit KEAP1-mediated ubiquitination and degradation of NRF2, thereby inhibiting oxidative stress in the livers of AILI mice. Furthermore, hepatocyte-specific knockout of NRF2 greatly attenuated the hepatic-protective effects of tiliroside in mice. In vitro, tiliroside protected against acetaminophen-induced oxidative stress on cultured hepatocytes through activation of NRF2. In addition, NRF2 knockout markedly blunted the protection effects of tiliroside, suggesting that NRF2 mediates the hepatic-protective effects of tiliroside. CONCLUSIONS Our study demonstrated that tiliroside could protect against AILI by activating the KEAP1/NRF2 pathway, which primarily inhibits the processing of oxidative stress and cell death. Our results suggest that tiliroside could serve as a potential agent for the clinical treatment of AILI.
Collapse
Affiliation(s)
- Fangfang Cai
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Kaiqian Zhou
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Peipei Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Liu
- Department of Central Laboratory, Shaanxi Provincial People’s Hospital, Beilin District, Xi'an, China
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
25
|
Qu H, Zhou L, Wang J, Tang D, Zhang Q, Shi J. Iron overload is closely associated with metabolic dysfunction-associated fatty liver disease in type 2 diabetes. Obesity (Silver Spring) 2025; 33:490-499. [PMID: 39915040 PMCID: PMC11897857 DOI: 10.1002/oby.24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025]
Abstract
OBJECTIVE The relationship between iron metabolism disturbances and metabolic dysfunction-associated fatty liver disease (MAFLD) remains controversial. This study aimed to investigate the association of iron overload with MAFLD in patients with type 2 diabetes mellitus (T2DM). METHODS This study included 155 Chinese inpatients with T2DM. MAFLD was diagnosed and grouped using magnetic resonance imaging (MRI). MRI biomarkers such as proton density fat fraction and iron accumulation (R 2 * ) were measured. Their clinical characteristics were compared, and the association of iron metabolism markers with MAFLD in patients with T2DM was analyzed. RESULTS Iron metabolism markers, including MRI-R 2 * , ferritin, serum iron, hepcidin, and total iron-binding capacity, were overloaded in groups with MAFLD (p < 0.001 for trend). They were positively correlated with MAFLD and reflected the severity of MAFLD. The five markers of logistic regression analysis revealed an increased MAFLD risk (p < 0.001 for trend). The areas under the curve of five markers all exceeded 0.5, indicating certain predictive values for MAFLD. CONCLUSIONS MAFLD is associated with significant iron overload in Chinese patients with T2DM. Serum iron, ferritin, total iron-binding capacity, hepcidin, andR 2 * value are essential iron metabolism markers to evaluate and predict the progression of MAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Huanjia Qu
- Department of EndocrinologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Lingling Zhou
- Department of EndocrinologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Jing Wang
- Department of EndocrinologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Dong Tang
- Department of RadiologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Qiuling Zhang
- Department of EndocrinologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Junping Shi
- Department of Metabolic Disease CenterThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
26
|
Anastasopoulos NA, Barbouti A, Goussia AC, Christodoulou DK, Glantzounis GK. Exploring the Role of Metabolic Hyperferritinaemia (MHF) in Steatotic Liver Disease (SLD) and Hepatocellular Carcinoma (HCC). Cancers (Basel) 2025; 17:842. [PMID: 40075688 PMCID: PMC11899477 DOI: 10.3390/cancers17050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing prevalence of the spectrum of Steatotic Liver Disease (SLD), including Metabolic-Associated Steatotic Liver Disease (MASLD), Metabolic-Associated Steatohepatitis (MASH), and progression to Cirrhosis and Hepatocellular Carcinoma (HCC) has led to intense research in disease pathophysiology, with many studies focusing on the role of iron. Iron overload, which is often observed in patients with SLD as a part of metabolic hyperferritinaemia (MHF), particularly in the reticuloendothelial system (RES), can exacerbate steatosis. This imbalance in iron distribution, coupled with a high-fat diet, can further promote the progression of SLD by means of oxidative stress triggering inflammation and activating hepatic stellate cells (HSCs), therefore leading to fibrosis and progression of simple steatosis to the more severe MASH. The influence of iron overload in disease progression has also been shown by the complex role of ferroptosis, a type of cell death driven by iron-dependent lipid peroxidation. Ferroptosis depletes the liver's antioxidant capacity, further contributing to the development of MASH, while its role in MASH-related HCC is potentially linked to alternations in the tumour microenvironment, as well as ferroptosis resistance. The iron-rich steatotic hepatic environment becomes prone to hepatocarcinogenesis by activation of several pro-carcinogenic mechanisms including epithelial-to-mesenchymal transition and deactivation of DNA damage repair. Biochemical markers of iron overload and deranged metabolism have been linked to all stages of SLD and its associated HCC in multiple patient cohorts of diverse genetic backgrounds, enhancing our daily clinical understanding of this interaction. Further understanding could lead to enhanced therapies for SLD management and prevention.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, University Hospital of Ioannina, 45110 Ioannina, Greece
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C. Goussia
- Department of Pathology, University Hospital of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
27
|
Qian X, Zhou Q, Ouyang Y, Wu X, Sun X, Wang S, Duan Y, Hu Z, Hou Y, Wang Z, Chen X, Wang KL, Shen Y, Dong B, Lin Y, Wen T, Tian Q, Guo Z, Li M, Xiao L, Wu Q, Meng Y, Liu G, Ying H, Zhou Y, Zhang W, Duan S, Bai X, Liu T, Zhan P, Lu Z, Xu D. Transferrin promotes fatty acid oxidation and liver tumor growth through PHD2-mediated PPARα hydroxylation in an iron-dependent manner. Proc Natl Acad Sci U S A 2025; 122:e2412473122. [PMID: 39888917 PMCID: PMC11804496 DOI: 10.1073/pnas.2412473122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/02/2025] [Indexed: 02/02/2025] Open
Abstract
Tumor cells reshape iron and lipid metabolism for their rapid proliferation. However, how tumor cells coordinate the interplay between tumor cell-specific iron homeostasis and lipid metabolism reprogramming to counteract energy shortages remains unclear. Here, we demonstrated that glucose deprivation in hepatocellular carcinoma (HCC) cells induced AMPK-dependent Transferrin S685 phosphorylation, which exposed Transferrin nuclear localization signal (NLS) for binding to importin α7 and subsequent nuclear translocation. Nucleus-translocated Transferrin interacts with PPARα and enhance its protein stability to increase fatty acid oxidation (FAO) upon glucose deprivation. Mechanistically, PPARα-associated Transferrin upregulates iron-dependent PHD2-mediated PPARα P87 hydroxylation and subsequently disrupts the binding of MDM2 to PPARα, therefore inhibiting MDM2-mediated PPARα ubiquitination and degradation. Reconstitution of Transferrin S685A and NLS mutation or knock-in expression of PPARα P87A inhibited PPARα-mediated FAO upon energy stress, enhanced HCC cell apoptosis, and impeded liver tumor growth in mice. Importantly, combined treatment with Transferrin pS685 blocking peptide suppressing AMPK-Transferrin-PPARα axis could synergize with a well-established AMPK activator Metformin to inhibit tumor growth. Additionally, Transferrin pS685-mediated PPARα P87 hydroxylation is positively correlated with PPARα expression levels in human HCC specimens and poor patient prognosis. These findings revealed a mechanism by which Transferrin can sense energy stress to promote the hydroxylation and protein stability of PPARα through iron-dependent activation of PHD2 and underscore the moonlighting function of Transferrin in lipid catabolism and liver tumor development.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, China
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai200125, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaohong Wu
- National Health Commission (NHC) Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang150081, China
| | - Xue Sun
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150081, China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Yuran Duan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Zhiqiang Hu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Yueru Hou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Zheng Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Xiaohan Chen
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150081, China
| | | | - Yuli Shen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Bofei Dong
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Yanni Lin
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Ting Wen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Qi Tian
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Zhanpeng Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Min Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Hangjie Ying
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, China
| | - Yahui Zhou
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, China
| | - Wuchang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai200125, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou310000, China
| | - Xueli Bai
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
| | - Tong Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150081, China
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang150081, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Daqian Xu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang150081, China
| |
Collapse
|
28
|
Xu W, Lv H, Xue Y, Shi X, Fu S, Li X, Wang C, Zhao D, Han D. Fraxinellone-mediated targeting of cathepsin B leakage from lysosomes induces ferroptosis in fibroblasts to inhibit hypertrophic scar formation. Biol Direct 2025; 20:17. [PMID: 39905520 PMCID: PMC11796038 DOI: 10.1186/s13062-025-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Hypertrophic scar (HS) is a common fibrotic skin disorder characterized by the excessive deposition of extracellular matrix (ECM). Fibroblasts are the most important effector cells involved in HS formation. Currently no satisfactory treatment has been developed. METHODS The impact of fraxinellone (FRA) on the proliferation and migration capacity of human hypertrophic scar-derived fibroblasts (HSFs) was assessed by EdU proliferation, wound healing and transwell assays. Quantitative real-time PCR (qRT‒PCR), Western blot (WB), immunofluorescence staining and collagen gel contraction assays were performed to evaluate the collagen production and activation capacity of HSFs. Oxford Nanopore Technologies long-read RNA sequencing (ONT long-read RNA-seq) revealed the occurrence of ferroptosis in HSF and ferroptosis executioner-cathepsin B (CTSB). The mechanisms underlying FRA-induced HSF ferroptosis were examined through fluorescence staining, qRT‒PCR, WB and molecular docking study. The therapeutic efficacy of FRA was further validated in vivo using a rabbit ear scar model. RESULTS FRA treatment significantly suppressed the proliferation, migration, collagen production and activation capacity of HSFs. ONT long-read RNA-seq discovered that FRA modulated the expression of transcripts related to ferroptosis and lysosomes. Mechanistically, FRA treatment reduced the protein expression level of glutathione peroxidase 4 (GPX4) and induced the release of CTSB from lysosomes into the cytoplasm. CTSB further induced ferroptosis via spermidine/spermine-N1-acetyltransferase (SAT1)-mediated lipid peroxidation, mitochondrial damage and mitogen-activated protein kinase (MAPK) signalling pathway activation, eventually affecting the function of HSFs. Moreover, FRA treatment attenuated the formation of HS in rabbit ears via CTSB-mediated ferroptosis. The antifibrotic effects of FRA were abrogated by pretreatment with a CTSB inhibitor (CA-074-me). CONCLUSIONS This study reveals that FRA ameliorates HS by inducing CTSB leakage from lysosomes, causing SAT1-mediated lipid peroxidation, mitochondrial damage and MAPK signalling pathway activation, thus mediating HSF ferroptosis. Therefore, FRA could be a promising therapeutic agent for treating HS.
Collapse
Affiliation(s)
- Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hao Lv
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yaxin Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaofeng Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaojun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chuandong Wang
- Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
29
|
Song BG, Goh MJ, Kang W, Gwak GY, Paik YH, Choi MS, Lee JH, Sinn DH. Serum Ferritin Levels and Liver-Related Events in Individuals With Steatotic Liver Disease: A Longitudinal Cohort Study. Aliment Pharmacol Ther 2025; 61:491-500. [PMID: 39573902 DOI: 10.1111/apt.18402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Serum ferritin has been suggested as a potential biomarker associated with disease progression in metabolic dysfunction-associated steatotic liver disease (MASLD). AIMS We investigated the association between serum ferritin levels and liver-related events (LREs) in individuals with steatotic liver disease (SLD). METHODS This cohort study included 17,560 adults with SLD (MASLD [n = 15,744], MASLD with increased alcohol intake (MetALD) [n = 1103] and cryptogenic SLD [n = 713]) without LRE at baseline. A steatotic liver was diagnosed using ultrasound, and LRE was defined as the development of decompensation (ascites, variceal bleeding and hepatic encephalopathy) or hepatocellular carcinoma. Participants were categorised into high (≥ 300 μg/L for males, ≥ 200 μg/L for females) or normal to low (< 300 μg/L for males, < 200 μg/L for females) ferritin levels. RESULTS During 211,425 person-years of follow-up (median: 12.3 years), 74 incident LRE cases were identified, with 63 cases in MASLD, 10 in MetALD and 1 in cryptogenic SLD. The multivariable-adjusted hazard ratio (aHR) for LRE comparing individuals with high and normal-to-low ferritin level was 3.13 (95% confidence interval [CI] 1.89-5.18). Increased risk of LRE in individuals with high serum ferritin level compared to those with normal to low serum ferritin level was consistent across SLD subtypes (aHR 2.69, 95% CI 1.55-4.67 for MASLD; aHR 5.73, 95% CI 1.31-25.0 for MetALD), and SLD severity assessed by Fibrosis-4 (FIB-4) index (aHR 2.38, 95% CI 1.34-4.21 for FIB-4 ≥ 1.3; aHR 3.13, 95% CI 1.18-8.29 for FIB-4 < 1.3). CONCLUSIONS Serum ferritin levels correlated with the risk of LRE in patients with SLD.
Collapse
Affiliation(s)
- Byeong Geun Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myung Ji Goh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wonseok Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geum-Youn Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hyeok Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
31
|
Rohm TV, Cunha E Rocha K, Olefsky JM. Metabolic Messengers: small extracellular vesicles. Nat Metab 2025; 7:253-262. [PMID: 39920357 DOI: 10.1038/s42255-024-01214-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 02/09/2025]
Abstract
Small extracellular vesicles (sEVs) are signalling molecules and biomarkers of cell status that govern a complex intraorgan and interorgan communication system through their cargo. Initially recognized as a waste disposal mechanism, they have emerged as important metabolic regulators. They transfer biological signals to recipient cells through their cargo content, and microRNAs (miRNAs) often mediate their metabolic effects. This review provides a concise overview of sEVs, specifically in the context of obesity-associated chronic inflammation and related metabolic disorders, describing their role as metabolic messengers, identifying their key sites of action and elucidating their mechanisms. We highlight studies that have shaped our understanding of sEV metabolism, address critical questions for future exploration, discuss the use of miRNAs as disease biomarkers and provide insights into the therapeutic potential of sEVs or specific miRNAs for treating metabolic diseases and related disorders in the future.
Collapse
Affiliation(s)
- Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
33
|
Yang X, Wang X, Yang Z, Lu H. Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects. Curr Obes Rep 2025; 14:4. [PMID: 39753935 DOI: 10.1007/s13679-024-00600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases. RECENT FINDINGS Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis. It is involved in physiological processes such as energy storage, insulin sensitivity regulation and lipid metabolism. As a unique iron-sensing tissue, AT expresses related regulatory factors, including the classic hepcidin, ferroportin (FPN), iron regulatory protein/iron responsive element (IRP/IRE) and ferritin. Consequently, the interaction between AT and iron is intricately intertwined. Imbalance of iron homeostasis produces the potential risks of steatosis, impaired glucose tolerance and insulin resistance, leading to AT dysfunction diseases, including obesity, type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the role of AT iron has garnered increasing attention in recent years, a comprehensive review that systematically organizes the connection between iron and AT remains lacking. Given the necessity of iron homeostasis, emphasizing its potential impact on AT function and metabolism regulation provides valuable insights into physiological effects such as adipocyte differentiation and thermogenesis. Futhermore, regulators including adipokines, mitochondria and macrophages have been mentioned, along with analyzing the novel perspective of iron as a key mediator influencing the fat-gut crosstalk.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
| |
Collapse
|
34
|
Luo S, Lu Z, Wang L, Li Y, Zeng Y, Lu H. Hepatocyte HIF-2α aggravates NAFLD by inducing ferroptosis through increasing extracellular iron. Am J Physiol Endocrinol Metab 2025; 328:E92-E104. [PMID: 39679942 DOI: 10.1152/ajpendo.00287.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Recent research has illuminated the pivotal role of the hypoxia-inducible factor-2α (HIF-2α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway in the progression of nonalcoholic fatty liver disease (NAFLD). Meanwhile, it has been reported that HIF-2α is involved in iron regulation, and that aberrant iron distribution leads to liver lipogenesis. Therefore, we hypothesize that HIF-2α exacerbates fatty liver by affecting iron distribution. To substantiate this hypothesis, we utilized liver-specific HIF-2α knockout mice and the LO2 cell line with overexpressed HIF-2α. HIF-2α overexpression (OE) was induced via lentiviral infection, followed by exposure to free fatty acids (FFAs) and deferoxamine (DFO). In animal experiments, hepatic HIF-2α knockout resulted in lower liver lipid levels, lower liver weight, and higher serum iron levels. Enrichment in autophagy, ferroptosis, and the PI3K-AKT pathway was demonstrated through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the liver of mice. In vitro experiments showed that HIF-2α increased supernatant iron. In the HIF-2α OE group, the addition of FFA led to decreased levels of reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4) protein, along with increased lipid peroxidation (LPO), cellular lipid droplets, and triglyceride content. Impressively, DFO intervention decreased supernatant iron, reversed these changes by increasing GSH and GPX4 levels, and simultaneously reduced LPO levels, cellular lipid droplets, and triglyceride content. In addition, the expression of proteins related to β-oxidation increased, and lipid deposition in hepatocytes improved, which may be associated with the PI3K/AKT pathway. In summary, our findings suggest that HIF-2α-mediated iron flux enhances NAFLD cell susceptibility to ferroptosis, thereby impacting lipid metabolism-related genes and contributing to lipid accumulation.NEW & NOTEWORTHY The experiment demonstrated that HIF-2α increased extracellular iron. In LO2 cells overexpressing HIF-2α, FFAs not only increased cellular lipid and triglyceride levels but also induced key features of ferroptosis, such as reduced GSH and GPX4 levels and increased LPO, despite the absence of cellular iron overload. These effects were reversed by lowering extracellular iron with DFO. Furthermore, DFO treatment increased β-oxidation protein expression and improved lipid deposition in hepatocytes, potentially through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhanjin Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lingling Wang
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingjuan Zeng
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology & Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
35
|
Li Y, Li LX, Cui H, Xu WX, Fu HY, Li JZ, Fan RF. Dietary Iron Overload Triggers Hepatic Metabolic Disorders and Inflammation in Laying Hen. Biol Trace Elem Res 2025; 203:346-357. [PMID: 38502261 DOI: 10.1007/s12011-024-04149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1β at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Lan-Xin Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
| |
Collapse
|
36
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
37
|
Yang Y, Chen Y, Feng D, Wu H, Long C, Zhang J, Wang J, Zhou B, Li S, Xiang S. Ficus hirta Vahl. ameliorates liver fibrosis by triggering hepatic stellate cell ferroptosis through GSH/GPX4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118557. [PMID: 39009327 DOI: 10.1016/j.jep.2024.118557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hirta Vahl., a traditional Chinese medicine commonly used in the Lingnan region, has been extensively used for liver disease treatment in China. Its notable antioxidant and anti-inflammatory properties have been reported in previous studies. However, its potential effect and underlying mechanism on liver fibrosis remains unclear. AIM OF STUDY This study was aimed to investigate the effect and its underlying mechanism of Ficus hirta Vahl on liver fibrosis in vitro and in vivo. MATERIALS AND METHODS The main components of Ficus hirta Vahl in blood were investigated by using UPLC-Q/TOF-MS/MS. Two animal models of liver fibrosis, the CCl4 and MCD induced mice, were used to assess the efficacy of Ficus hirta Vahl on liver fibrosis. Metabolomics was used to detect the level of metabolites in the serum of liver fibrosis mice after Ficus hirta Vahl treatment. Furthermore, the mechanism was validated in vitro using the human liver stellate cell line LX-2. The binding affinities of the active ingredients of Ficus hirta Vahl to the main targets of liver fibrosis were also determined. Finally, we identified the key active ingredients responsible for the treatment of liver fibrosis in vivo. RESULTS Fibrosis and inflammatory markers were significant down-regulation in both CCl4 and MCD induced liver fibrosis mice after Ficus hirta Vahl administration in a dose-dependent manner. We found that Ficus hirta Vahl may primarily exert its effect on liver fibrosis through the glutathione metabolic pathway. Importantly, the glutathione metabolic pathway is closely associated with ferroptosis, and our subsequent in vitro experiments provided evidence supporting this association. Ficus hirta Vahl was found to modulate the GSH/GPX4 pathway, ultimately leading to the amelioration of liver fibrosis. Moreover, using serum pharmacochemistry and molecular docking, we successfully identified apigenin as a probable efficacious monomer for the management of liver fibrosis and subsequently validated its efficacy in mice with CCl4-induced hepatic fibrosis. CONCLUSION Ficus hirta Vahl triggered the ferroptosis of hepatic stellate cell by regulating the GSH/GPX4 pathway, thereby alleviating liver fibrosis in mice. Moreover, apigenin is a key compound in Ficus hirta Vahl responsible for the effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yuxuan Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanchun Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Dongge Feng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Huixing Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Changrui Long
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Jianping Zhang
- School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, PR China.
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, PR China.
| |
Collapse
|
38
|
Zhu Z, Zhu Z, Shi Z, Wang C, Chen F. Kaempferol Remodels Liver Monocyte Populations and Treats Hepatic Fibrosis in Mice by Modulating Intestinal Flora and Metabolic Reprogramming. Inflammation 2024:10.1007/s10753-024-02184-2. [PMID: 39531210 DOI: 10.1007/s10753-024-02184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Changes in gut flora are associated with liver fibrosis. The interactions of host with intestinal flora are still unknown, with little research investigating such interactions with comprehensive multi-omics data. The present work analyzed and integrated large-scale multi-omics transcriptomics, microbiome, metabolome, and single-cell RNA-sequencing datasets from Kaempferol-treated and untreated control groups by advanced bioinformatics methods. This study concludes that kaempferol dose-dependently improved serum markers (like AST, ALT, TBil, Alb, and PT) and suppressed fibrosis markers (including HA, PC III, LN, α-SMA, and Collagen I), while kaempferol also increased body weight. Mechanistically, kaempferol improved the metabolic levels of intestinal flora dysbiosis and associated lipids. This was achieved by increasing the abundance of g__Robinsoniella, g__Erysipelotrichaceae_UCG-003, g__Coriobacteriaceae_UCG-002, and 5-Methylcytidine, all-trans-5,6- Epoxyretinoic acid, LPI (18:0), LPI (20:4), etc. to achieve this. Kaemferol exerts anti-inflammatory and immune-enhancing effects by down-regulating the Th17/IL-17 signaling pathway in PDGF-induced LX2 cells. In addition, kaempferol administration remarkably elevated CD4 + T and CD8 + T cellular proportions, thereby activating immune cells for protecting the body and controlling inflammatory conditions. The combined interaction of multiple data may explain how Kaempferol modulates the intestinal flora thereby remodeling the hepatocyte population and alleviating liver fibrosis.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Zhenyi Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical & Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, 10 Southern Medical University, Guangzhou, China
| | - Chen Wang
- The Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
39
|
Bucarey JL, Trujillo-González I, Paules EM, Espinosa A. Myokines and Their Potential Protective Role Against Oxidative Stress in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1363. [PMID: 39594505 PMCID: PMC11591161 DOI: 10.3390/antiox13111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Myokines, bioactive peptides released by skeletal muscle, have emerged as crucial regulators of metabolic and protective pathways in peripheral tissues, particularly in combating oxidative stress and inflammation. Their plasma concentration significantly increases following exercise, offering valuable insights into the role of physical activity in preventing sarcopenia and mitigating metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). This review focuses on discussing the roles of specific myokines in activating intracellular signaling pathways within the liver, which confer protection against steatosis and lipid peroxidation. We detail the mechanism underlying lipid peroxidation and highlight the liver's antioxidant defenses, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), which are pivotal in reducing ferroptosis. Furthermore, we provide an in-depth analysis of key myokines, including myostatin, brain-derived neurotrophic factor (BDNF), and irisin, among others, and their potential impact on liver function. Finally, we discuss the molecular mechanisms through which these myokines influence oxidate stress and lipid metabolism, emphasizing their capacity to modulate antioxidant responses in the liver. Finally, we underscore the therapeutic potential of exercise as a non-pharmacological intervention to enhance myokine release, thereby preventing the progression of MASD through improved hepatic antioxidant defenses. This review represents a comprehensive perspective on the intersection of exercise, myokine biology, and liver health.
Collapse
Affiliation(s)
- José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - Isis Trujillo-González
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Evan M. Paules
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Alejandra Espinosa
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| |
Collapse
|
40
|
Li C, Qu M, Tian X, Zhuang W, Zhu M, Lv S, Zhang Y, Zhu F. Epidemiological and transcriptome data identify association between iron overload and metabolic dysfunction-associated steatotic liver disease and hepatic fibrosis. Nutr Res 2024; 131:121-134. [PMID: 39383734 DOI: 10.1016/j.nutres.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The primary objective of this study was to examine the association between iron overload (IO), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatic fibrosis. We hypothesized that there is a significant association. Data from the NHANES (2017-2020) were analyzed to explore IO's impact on MASLD and hepatic fibrosis in U.S. adults. We assessed serum ferritin, controlled attenuation parameter (CAP), liver stiffness measurement (LSM), and various covariates. Gene expression data were sourced from the FerrDb V2 and GEO databases. Differential gene expression analysis, Protein-Protein Interaction (PPI) Network construction, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. The study verified the link between MASLD, hepatic fibrosis, and iron overload hub genes. This study of 5927 participants, averaging 46.78 years of age, revealed significant correlations between serum ferritin and CAP, LSM, after adjusting for covariates. Threshold effect analysis indicated nonlinear associations between serum ferritin and CAP, LSM, with distinct patterns observed by age and gender. Moreover, the area under the ROC curve for serum ferritin with MASLD and hepatic fibrosis was 0.8272 and 0.8376, respectively, demonstrating its performance in assessing these conditions. Additionally, molecular analyses identified potential hub genes associated with iron overload and MASLD, and hepatic fibrosis, revealing the underlying mechanisms. Our study findings reveal an association between iron overload, MASLD, and hepatic fibrosis. Additionally, the hub genes may be implicated in iron overload and subsequently contribute to the progression of MASLD and hepatic fibrosis. These findings support precision nutrition strategies.
Collapse
Affiliation(s)
- Chunling Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China; The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Mengqi Qu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiangfeng Tian
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyi Zhuang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Meng Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Shengxia Lv
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yongsheng Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
41
|
Yuan K, Lai K, Miao G, Zhang J, Zhao X, Tan G, Wang X, Wang X. Cholinized-Polymer Functionalized Lipid-Based Drug Carriers Facilitate Liver Fibrosis Therapy via Ultrafast Liver-Targeting Delivery. Biomacromolecules 2024; 25:6526-6538. [PMID: 39213520 DOI: 10.1021/acs.biomac.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we report novel cholinized-polymer functionalized lipid-based nanoparticles (CP-LNPs) for rapid and highly effective delivery of drugs to the liver, achieving targeting within 10 min and nearly 100% efficiency. In this study, CP-LNPs loaded with a promising antifibrotic agent curcumin (CP-LNPs/Cur) significantly improved the stability of curcumin under physiological conditions and its distribution in the liver. In vitro experiments demonstrated that CP-LNPs/Cur effectively suppressed the proliferation and migration of activated hepatic stellate cells (aHSCs), as evidenced by the decreased expression of α-SMA. Moreover, CP-LNPs/Cur attenuated oxidative stress levels in hepatocytes while improving mitochondrial physiological activity. In vivo antifibrosis studies have shown that CP-LNPs/Cur only require a low dose to significantly alleviate liver injury and collagen deposition, thereby preventing the progression of liver fibrosis. These findings indicated that CP-LNPs exhibit great potential in liver fibrosis therapy benefiting from the novel targeting strategy.
Collapse
Affiliation(s)
- Kun Yuan
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| |
Collapse
|
42
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
43
|
Xia T, Ni J, Ni Y, Wu X, Du K, Wan X, You X. Serum iron status is associated with all-cause mortality in metabolic dysfunction-associated steatotic liver disease: a prospective, observational study. Front Endocrinol (Lausanne) 2024; 15:1454193. [PMID: 39464186 PMCID: PMC11502310 DOI: 10.3389/fendo.2024.1454193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading chronic liver disease worldwide. Emerging evidence suggests a close crosstalk between iron status and metabolic syndrome. Therefore, this cohort study aimed to investigate the relationship between serum iron status and all-cause mortality in individuals with MASLD. Methods A total of 3393 subjects with MASLD identified by ultrasound from the Third National Health and Nutrition Examination Survey (NHANES III) were included in the analysis. Iron status indicators included serum iron, ferritin, transferrin saturation, total iron binding capacity, hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin concentration. Cox proportional hazards models and restricted cubic spline models with adjustment for multiple confounders were applied. Stratified analyses were performed by sex and age. Results During a median of 26.08 years of follow-up, high serum iron and transferrin saturation were significantly associated with reduced all-cause mortality in a linear pattern (P overall<0.001). Compared with the lowest quartile, individuals with serum iron and transferrin saturation in the third or fourth quartile intervals had a 20-40% reduction in long-term mortality. However, there was no independent association of serum ferritin, total iron binding capacity, and red blood cell indices with all-cause mortality in MASLD. Conclusion This study suggests that serum iron and transferrin saturation have the potential to serve as independent biomarkers of all-cause mortality in patients with MASLD and implies the therapeutic potential of modifying iron status.
Collapse
Affiliation(s)
- Ting Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Ni
- Blood Purification Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqin Ni
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinhui Wu
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kangming Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuemei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuli You
- Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Prajapati M, Chiu L, Zhang JZ, Chong GS, DaSilva NA, Bartnikas TB. Bile from the hemojuvelin-deficient mouse model of iron excess is enriched in iron and ferritin. Metallomics 2024; 16:mfae043. [PMID: 39313333 PMCID: PMC11459263 DOI: 10.1093/mtomcs/mfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Iron is an essential nutrient but is toxic in excess. Iron deficiency is the most prevalent nutritional deficiency and typically linked to inadequate intake. Iron excess is also common and usually due to genetic defects that perturb expression of hepcidin, a hormone that inhibits dietary iron absorption. Our understanding of iron absorption far exceeds that of iron excretion, which is believed to contribute minimally to iron homeostasis. Prior to the discovery of hepcidin, multiple studies showed that excess iron undergoes biliary excretion. We recently reported that wild-type mice raised on an iron-rich diet have increased bile levels of iron and ferritin, a multi-subunit iron storage protein. Given that genetic defects leading to excessive iron absorption are much more common causes of iron excess than dietary loading, we set out to determine if an inherited form of iron excess known as hereditary hemochromatosis also results in bile iron loading. We employed mice deficient in hemojuvelin, a protein essential for hepcidin expression. Mutant mice developed bile iron and ferritin excess. While lysosomal exocytosis has been implicated in ferritin export into bile, knockdown of Tfeb, a regulator of lysosomal biogenesis and function, did not impact bile iron or ferritin levels. Bile proteomes differed between female and male mice for wild-type and hemojuvelin-deficient mice, suggesting sex and iron excess impact bile protein content. Overall, our findings support the notion that excess iron undergoes biliary excretion in genetically determined iron excess.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
45
|
Wu K, Chen J, Lin J, Zhu E, Xu X, Yan X, Ju L, Huang M, Zhang Y. The role of ferroptosis in DM-induced liver injury. Biometals 2024; 37:1191-1200. [PMID: 38874821 DOI: 10.1007/s10534-024-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 06/15/2024]
Abstract
The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.
Collapse
Affiliation(s)
- Keping Wu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Jiasi Chen
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Lin
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaochang Xu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiuhong Yan
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Lang Ju
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Mingcheng Huang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yimin Zhang
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
46
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
47
|
Li Z, Zheng Y, Zhang L, Xu E. Cryptotanshinone alleviates liver fibrosis via inhibiting STAT3/CPT1A-dependent fatty acid oxidation in hepatic stellate cells. Chem Biol Interact 2024; 399:111119. [PMID: 38936533 DOI: 10.1016/j.cbi.2024.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Hepatic stellate cells (HSCs) are a major source of fibrogenic cells and play a central role in liver fibrogenesis. HSC activation depends on metabolic activation, for which it is well established that fatty acid oxidation (FAO) sustains their rapid proliferative rate. Studies have indicated that tanshinones inhibit HSC activation, however, the anti-fibrosis mechanisms of tanshinones are remain unclear. Herein, we reported that cryptotanshinone (CTS), a lipid-soluble ingredient of Salvia miltiorrhiza Bunge, exhibited the strongest inhibitory effects on HSC-LX2 proliferation and activation. CTS could induce lipocyte phenotype in mouse primary HSC and HSC-LX2. Transcriptomic sequencing and qPCR revealed that CTS regulated fatty acid metabolism and inhibited CPT1A and CPT1B expression. Target prediction suggested CTS regulates lipid metabolism by targeting STAT3. Mechanistically, the level of ATP and acetyl-CoA were reduced by the treatment of CTS, indicating that CTS could inhibit the level of FAO. Furthermore, CTS could inhibit the phosphorylation and nuclear translocation of STAT3. Additionally, CPT1A overexpression reversed the efficacy of CTS. Finally, CTS (40 mg/kg/day) attenuated CCl4-induced liver fibrosis and inhibited collagen production and HSC activation. Moreover, the results of immunofluorescence showed that α-SMA and p-STAT3 were co-located, and CTS could reduce the levels of p-STAT3 and α-SMA. In summary, CTS alleviated liver fibrosis by inhibiting the p-STAT3/CPT1A-dependent FAO both in vitro and in vivo, making it a potential candidate drug for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yaqiu Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Zhang
- Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
48
|
Xie Z, Che Y, Huang G, Su Z, Lin J, Zheng G, Ye G, Yu W, Li J, Wu Y, Shen H. Iron-dependent KDM4D activity controls the quiescence-activity balance of MSCs via the PI3K-Akt-Foxo1 pathway. Cell Mol Life Sci 2024; 81:360. [PMID: 39158700 PMCID: PMC11335281 DOI: 10.1007/s00018-024-05376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Iron deficiency is a prevalent nutritional deficit associated with organ damage and dysfunction. Recent research increasingly associates iron deficiency with bone metabolism dysfunction, although the precise underlying mechanisms remain unclear. Some studies have proposed that iron-dependent methylation-erasing enzyme activity regulates cell proliferation and differentiation under physiological or pathological conditions. However, it remains uncertain whether iron deficiency inhibits the activation of quiescent mesenchymal stem cells (MSCs) by affecting histone demethylase activity. In our study, we identified KDM4D as a key player in the activation of quiescent MSCs. Under conditions of iron deficiency, the H3K9me3 demethylase activity of KDM4D significantly decreased. This alteration resulted in increased heterochromatin with H3K9me3 near the PIK3R3 promoter, suppressing PIK3R3 expression and subsequently inhibiting the activation of quiescent MSCs via the PI3K-Akt-Foxo1 pathway. Iron-deficient mice displayed significantly impaired bone marrow MSCs activation and decreased bone mass compared to normal mice. Modulating the PI3K-Akt-Foxo1 pathway could reverse iron deficiency-induced bone loss.
Collapse
Affiliation(s)
- Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guo Huang
- Department of Rheumatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| |
Collapse
|
49
|
Gongye X, Xia P, Ma T, Chai Y, Chen Z, Zhu Y, Qu C, Liu J, Guo WW, Zhang M, Liu Y, Tian M, Yuan Y. Liver Extracellular Vesicles and Particles Enriched β-Sitosterol Effectively Promote Liver Regeneration in Mice. Int J Nanomedicine 2024; 19:8117-8137. [PMID: 39139504 PMCID: PMC11319097 DOI: 10.2147/ijn.s465346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background The liver's regenerative capacity allows it to repair itself after injury. Extracellular vesicles and particles (EVPs) in the liver's interstitial space are crucial for signal transduction, metabolism, and immune regulation. Understanding the role and mechanism of liver-derived EVPs in regeneration is significant, particularly after partial hepatectomy, where the mechanisms remain unclear. Methods A 70% hepatectomy model was established in mice, and EVPs were isolated and characterized using electron microscopy, nanocharacterization, and Western blot analysis. Combined metabolomic and transcriptomic analyses revealed β-sitosterol enrichment in EVPs and activation of the Hedgehog signaling pathway during regeneration. The role of β-sitosterol in EVPs on the Hedgehog pathway and its targets were identified using qRT-PCR, Western blot analysis. The regulation of carnitine synthesis by this pathway was determined using a dual luciferase assay. The effect of a β-sitosterol diet on liver regeneration was verified in mice. Results After 70% hepatectomy, the liver successfully regenerated without liver failure or death. At 24 hours post-surgery, tissue staining showed transient regeneration-associated steatosis (TRAS), with increased Ki67 positivity at 48 hours. EVPs displayed a spherical lipid bilayer structure with particle sizes of 70-130 nm. CD9, CD63, and CD81 in liver-derived EVPs were confirmed. Transcriptomic and metabolomic analyses showed EVPs supplementation significantly promoted carnitine synthesis and fatty acid oxidation. Tissue staining confirmed accelerated TRAS resolution and enhanced liver regeneration with EVP supplementation. Mass spectrometry identified β-sitosterol in EVPs, which binds to Smo protein, activating the Hedgehog pathway. This led to the nuclear transport of Gli3, stimulating Setd5 transcription and inducing carnitine synthesis, thereby accelerating fatty acid oxidation. Mice with increased β-sitosterol intake showed faster TRAS resolution and liver regeneration compared to controls. Conclusion Liver-derived EVPs promote regeneration after partial hepatectomy. β-sitosterol from EVPs accelerates fatty acid oxidation and promotes liver regeneration by activating Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Tianyin Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yibo Chai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yimin Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Wing Wa Guo
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
50
|
Su T, Peng X, Gan Y, Wu H, Ma S, Zhi M, Lu Y, Dai S, Yao J. Associations of genetically predicted iron status with 24 gastrointestinal diseases and gut microbiota: a Mendelian randomization study. Front Genet 2024; 15:1406230. [PMID: 39170693 PMCID: PMC11335489 DOI: 10.3389/fgene.2024.1406230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Background Iron status has been implicated in gastrointestinal diseases and gut microbiota, however, confounding factors may influence these associations. Objective We performed Mendelian randomization (MR) to investigate the associations of iron status, including blood iron content, visceral iron content, and iron deficiency anemia with the incidence of 24 gastrointestinal diseases and alterations in gut microbiota. Methods Independent genetic instruments linked with iron status were selected using a genome-wide threshold of p = 5 × 10-6 from corresponding genome-wide association studies. Genetic associations related to gastrointestinal diseases and gut microbiota were derived from the UK Biobank, the FinnGen study, and other consortia. Results Genetically predicted higher levels of iron and ferritin were associated with a higher risk of liver cancer. Higher levels of transferrin saturation were linked to a decreased risk of celiac disease, but a higher risk of non-alcoholic fatty liver disease (NAFLD) and liver cancer. Higher spleen iron content was linked to a lower risk of pancreatic cancer. Additionally, higher levels of liver iron content were linked to a higher risk of NAFLD and liver cancer. However, certain associations lost their statistical significance upon accounting for the genetically predicted usage of cigarettes and alcohol. Then, higher levels of iron and ferritin were associated with 11 gut microbiota abundance, respectively. In a secondary analysis, higher iron levels were associated with lower diverticular disease risk and higher ferritin levels with increased liver cancer risk. Higher levels of transferrin saturation were proven to increase the risk of NAFLD, alcoholic liver disease, and liver cancer, but decrease the risk of esophageal cancer. MR analysis showed no mediating relationship among iron status, gut microbiota, and gastrointestinal diseases. Conclusion This study provides evidence suggesting potential causal associations of iron status with gastrointestinal diseases and gut microbiota, especially liver disease.
Collapse
Affiliation(s)
- Tao Su
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Peng
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Gan
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongzhen Wu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shulin Ma
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhi
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiayin Yao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|