1
|
Mertens JE. The Influence of Climate Change on Vector-Borne Diseases in a Wilderness Medicine Context. Wilderness Environ Med 2025; 36:44-60. [PMID: 39399895 DOI: 10.1177/10806032241283704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The imminent climate crisis has been labeled as the biggest health threat humanity must deal with. Vector-borne disease distribution and transmission as well as the population at risk are influenced to a great degree by environmental and climactic factors affecting both the vectors themselves and the causative pathogens. Paired with an increase in worldwide travel, urbanization, and globalization, along with population displacements and migration, elucidating the effects of anthropogenic climate change on these illnesses is therefore of the essence to stave off potential negative sequelae. Outcomes on different vector-borne diseases will be diverse, but for many of them, these developments will result in a distribution shift or expansion with the possibility of (re-)introduction of vector and pathogen species in previously nonendemic areas. The consequence will be a growing likelihood for novel human, vector, and pathogen interactions with an increased risk for infection, morbidity, and mortality. Wilderness medicine professionals commonly work in close relationship to the natural environment and therefore will experience these alterations most strongly in their practice. Hence, this article attempts to bring awareness to the subject at hand in a wilderness medicine context, with a focus on malaria, the most burdensome of arthropod-borne diseases. For prevention of the potentially dire consequences on human health induced by climate change, concerted and intensified efforts to reduce the burning of fossil fuels and thus greenhouse gas emissions will be imperative on a global scale.
Collapse
Affiliation(s)
- Jonas E Mertens
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Anstead GM. A One Health Perspective on the Resurgence of Flea-Borne Typhus in Texas in the 21st Century: Part 1: The Bacteria, the Cat Flea, Urbanization, and Climate Change. Pathogens 2025; 14:154. [PMID: 40005529 PMCID: PMC11858070 DOI: 10.3390/pathogens14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Flea-borne typhus (FBT), due to Rickettsia typhi and R. felis, is an infection typically causing fever, headache, rash, hepatitis, and thrombocytopenia. About one quarter of patients suffer pulmonary, neurologic, hematologic, renal, hepatic, cardiac, ocular or other complications. In the 21st century, the incidence of FBT has increased in both Texas and California compared to the 1990s. In this paper, county-level epidemiological data for the number of cases of FBT occurring in Texas for two decades, 1990-1999 and 2010-2019, were compared with respect to county of residence, urbanization, and climatic region. Human population growth in Texas has promoted FBT by increased urbanization and the abundance of pet dogs and cats, stray/feral dogs and cats, and opossums. Increasing temperatures in Texas in the new millennium have increased the flea-borne transmission of FBT by promoting host infestation and flea feeding and defecation, accelerating the flea life cycle, and increasing rickettsial replication within the flea. Increased numbers of opossums and stray cats and dogs in the urban/suburban landscape have increased the risk of flea transfer to humans and their pets.
Collapse
Affiliation(s)
- Gregory M. Anstead
- Division of Infectious Diseases, Medical Service, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229, USA;
- Division of Infectious Diseases, Depatment of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Lorenz C, de Azevedo TS, Chiaravalloti-Neto F. Effects of climate change on the occurrence and distribution of Western equine encephalitis virus in South America. Public Health 2025; 239:1-8. [PMID: 39721139 DOI: 10.1016/j.puhe.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES The Western equine encephalitis virus (WEEV) is a globally relevant vector-borne pathogen that causes encephalitis. The role of environmental variables in the epidemiology of WEEV has become greater in the context of climate change. In December 2023, a significant resurgence of WEEV began in South America, with major ongoing outbreaks in Argentina and Uruguay. In this study, we employed a machine learning algorithm to model the distribution of WEEV in South America, considering both present and future scenarios. STUDY DESIGN Ecological retrospective study. METHODS We conducted a modelling study to identify areas with the highest prevalence of WEEV in South America, based on confirmed human and equine cases during the 2023/2024 outbreak and climatic variables. Our analysis utilised Maxent software, a machine learning algorithm for species distribution modelling. RESULTS Our results indicate that environmental variables, particularly thermal seasonality and annual rainfall, can directly influence the occurrence of WEEV, leading to increased virus incidence. Consequently, high-risk areas may shift in the future. Countries, such as Paraguay, Venezuela, Colombia, and various regions in Brazil, particularly the Northeast, Midwest, and the Pantanal biomes, will be significantly impacted, drastically altering the current distribution of WEEV. CONCLUSIONS The ongoing WEEV outbreak in South America is concerning because it coincides with migratory bird stopovers. These birds are natural hosts that can spread the virus to unaffected areas. Our results will help to identify priority areas for developing preventive measures and establishing epidemiological surveillance.
Collapse
Affiliation(s)
- Camila Lorenz
- Institute of Advanced Studies, University of Sao Paulo, R. do Anfiteatro, 513, CEP 05508-060, Sao Paulo, SP, Brazil.
| | | | - Francisco Chiaravalloti-Neto
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, CEP 05509-300, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Fomda BA, Murtaza M, Kakru DK, Lone SA, Sheikh I, Ayoub S, Nazir M. Prevalence of Emerging Arboviral Infections: A Tertiary Care Hospital-Based Study from Kashmir, Northern India. Vector Borne Zoonotic Dis 2025; 25:148-154. [PMID: 39422570 DOI: 10.1089/vbz.2024.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Background: Arboviruses are becoming a global public health menace. The common diseases worldwide caused by arboviruses are dengue, chikungunya, and Zika. This study aims to determine the prevalence of these three arboviral infections in patients with acute febrile illness at a tertiary care hospital in Kashmir, North India. Materials and Methods: A total of 812 blood samples were collected and tested for anti-dengue, anti-chikungunya immunoglobulin M (IgM), and dengue nonstructural protein 1 antigen by enzyme linked immunosorbent assay. Molecular testing of these samples was also done to detect dengue, chikungunya, and Zika viruses by using the CDC Trioplex real-time PCR assay. Results: The prevalence of diseases found among the studied patients was dengue 105/812 (12.93%) followed by chikungunya 17/812 (2.09%), and 3 cases (0.37%) were positive for both dengue and chikungunya; however, no case of Zika was detected. Interestingly, we found that only individuals that had a history of travel to different destinations within the country were positive for these viruses. Most affected cases were males 105/812 (12.93%) compared with females 20/812 (2.46%). Dengue serotyping results indicate that Dengue virus-1 was the most commonly found serotype. The most common symptoms in patients positive for dengue and chikungunya were fever, intense fatigue, myalgia, arthralgia, retro-orbital pain, anorexia, conjunctivitis, and skin rash. Conclusion: This study showed that dengue, chikungunya, and Zika viruses are not prevalent in the indigenous population of Kashmir. However, screening for these agents is required in people who have recently traveled outside Kashmir and have symptoms of acute febrile illness.
Collapse
Affiliation(s)
- Bashir Ahmad Fomda
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Masqooba Murtaza
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Dalip K Kakru
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Shabir Ahmad Lone
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Imtiyaz Sheikh
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Shahnawaz Ayoub
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Mubashir Nazir
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
5
|
Brass DP, Cobbold CA, Purse BV, Ewing DA, Callaghan A, White SM. Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus. Nat Commun 2024; 15:7823. [PMID: 39242617 PMCID: PMC11379831 DOI: 10.1038/s41467-024-52144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
The incidence of vector-borne disease is on the rise globally, with burdens increasing in endemic countries and outbreaks occurring in new locations. Effective mitigation and intervention strategies require models that accurately predict both spatial and temporal changes in disease dynamics, but this remains challenging due to the complex and interactive relationships between environmental variation and the vector traits that govern the transmission of vector-borne diseases. Predictions of disease risk in the literature typically assume that vector traits vary instantaneously and independently of population density, and therefore do not capture the delayed response of these same traits to past biotic and abiotic environments. We argue here that to produce accurate predictions of disease risk it is necessary to account for environmentally driven and delayed instances of phenotypic plasticity. To show this, we develop a stage and phenotypically structured model for the invasive mosquito vector, Aedes albopictus, and dengue, the second most prevalent human vector-borne disease worldwide. We find that environmental variation drives a dynamic phenotypic structure in the mosquito population, which accurately predicts global patterns of mosquito trait-abundance dynamics. In turn, this interacts with disease transmission to capture historic dengue outbreaks. By comparing the model to a suite of simpler models, we reveal that it is the delayed phenotypic structure that is critical for accurate prediction. Consequently, the incorporation of vector trait relationships into transmission models is critical to improvement of early warning systems that inform mitigation and control strategies.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK.
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK.
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| |
Collapse
|
6
|
Santana TDD, Rodrigues TM, Andrade LDA, Santos ER, Ardisson-Araújo DMP. Three picorna-like viruses found associated with the spider mite, Tetranychus truncatus (Acari: Tetranychidae). J Invertebr Pathol 2024; 206:108169. [PMID: 39019394 DOI: 10.1016/j.jip.2024.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Herbivorous arthropods, such as mites and insects, host a variety of microorganisms that significantly influence their ecology and evolution. While insect viruses have been extensively studied, our understanding of the diversity and composition of mite viromes and the interactions with mite hosts remains limited. The Asian spider mite, Tetranychus truncatus Ehara (Acari: Tetranychidae), a major agricultural pest, has not yet been reported to harbor any viruses. Here, using publicly available RNA-Seq data, we identified and characterized three picorna-like viruses associated with T. truncatus: Tetranychus truncatus-associated iflavirus 1 (TtAIV-1), Tetranychus truncatus-associated picorna-like virus 1 (TtAV-1), and Tetranychus truncatus-associated picorna-like virus 2 (TtAV-2). TtAIV-1 has a typical Iflaviridae genome structure with a single ORF, representing the first iflavirus associated with the Tetranychus genus. TtAV-1 and TtAV-2 exhibit bicistronic arrangements similar to dicistroviruses and other picorna-like viruses, with complex secondary structures in their non-coding regions. Phylogenetic analysis places TtAIV-1 within Iflaviridae, possibly as a new species, while TtAV-1 and TtAV-2 form distinct clades within unclassified picorna-like viruses, suggesting new families within Picornavirales. We analyzed in silico the presence and abundance of these viruses in T. truncatus across four bioproject SRAs, mostly finding them co-associated, with viral reads reaching up to 30% of total reads. Their presence and abundance varied by mite treatment and origin, with no significant impact from Wolbachia infection or abamectin exposure, although TtAV-2 was absent in abamectin-treated mites. Temperature influenced virus abundance, and variations were observed among Chinese mite populations based on geography and host plant association. Our findings offer insights into picorna-like virus diversity and dynamics in T. truncatus, revealing potential roles in mite biology and suggesting applications for mite population control, thereby enhancing agricultural productivity and food security.
Collapse
Affiliation(s)
| | - Thiago Magalhães Rodrigues
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Lucas de Araujo Andrade
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Ethiane R Santos
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF 70910-900, Brazil.
| |
Collapse
|
7
|
de Souza WM, Weaver SC. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol 2024; 22:476-491. [PMID: 38486116 DOI: 10.1038/s41579-024-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Vector-borne diseases are transmitted by haematophagous arthropods (for example, mosquitoes, ticks and sandflies) to humans and wild and domestic animals, with the largest burden on global public health disproportionately affecting people in tropical and subtropical areas. Because vectors are ectothermic, climate and weather alterations (for example, temperature, rainfall and humidity) can affect their reproduction, survival, geographic distribution and, consequently, ability to transmit pathogens. However, the effects of climate change on vector-borne diseases can be multifaceted and complex, sometimes with ambiguous consequences. In this Review, we discuss the potential effects of climate change, weather and other anthropogenic factors, including land use, human mobility and behaviour, as possible contributors to the redistribution of vectors and spread of vector-borne diseases worldwide.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|
8
|
Li XC, Qian HR, Zhang YY, Zhang QY, Liu JS, Lai HY, Zheng WG, Sun J, Fu B, Zhou XN, Zhang XX. Optimal decision-making in relieving global high temperature-related disease burden by data-driven simulation. Infect Dis Model 2024; 9:618-633. [PMID: 38645696 PMCID: PMC11026972 DOI: 10.1016/j.idm.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024] Open
Abstract
The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.
Collapse
Affiliation(s)
- Xin-Chen Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao-Ran Qian
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Yan-Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qi-Yu Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing-Shu Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Yu Lai
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Wei-Guo Zheng
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Jian Sun
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Bo Fu
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Xi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Huang J, Wang D, Zhu Y, Yang Z, Yao M, Shi X, An T, Zhang Q, Huang C, Bi X, Li J, Wang Z, Liu Y, Zhu G, Chen S, Hang J, Qiu X, Deng W, Tian H, Zhang T, Chen T, Liu S, Lian X, Chen B, Zhang B, Zhao Y, Wang R, Li H. An overview for monitoring and prediction of pathogenic microorganisms in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:430-441. [PMID: 38933199 PMCID: PMC11197502 DOI: 10.1016/j.fmre.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
Collapse
Affiliation(s)
- Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongguan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease (Guangzhou Medical University), Guangzhou 510230, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Siyu Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 510640, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Weiwei Deng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100101, China
| | - Tengfei Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinbo Lian
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bin Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beidou Zhang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingjie Zhao
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Han Li
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Gierek M, Ochała-Gierek G, Woźnica AJ, Zaleśny G, Jarosz A, Niemiec P. Winged Threat on the Offensive: A Literature Review Due to the First Identification of Aedes japonicus in Poland. Viruses 2024; 16:703. [PMID: 38793584 PMCID: PMC11125806 DOI: 10.3390/v16050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genetic studies preceded by the observation of an unknown mosquito species in Mikołów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species.
Collapse
Affiliation(s)
- Marcin Gierek
- Center for Burns Treatment, 41-100 Siemianowice Śląskie, Poland;
| | | | - Andrzej Józef Woźnica
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Grzegorz Zaleśny
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| |
Collapse
|
11
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
12
|
Buhler KJ, Snyman LP, Fuglei E, Davidson R, Ptochos S, Galloway T, Jenkins E. A circumpolar parasite: Evidence of a cryptic undescribed species of sucking louse, Linognathus sp., collected from Arctic foxes, Vulpes lagopus, in Nunavut (Canada) and Svalbard (Norway). MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:656-664. [PMID: 37220211 DOI: 10.1111/mve.12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
The North has experienced unprecedented rates of warming over the past few decades, impacting the survival and development of insects and the pathogens that they carry. Since 2019, Arctic foxes from Canada (Nunavut) have been observed with fur loss inconsistent with natural shedding of fur. Adult lice were collected from Arctic foxes from Nunavut (n = 1) and Svalbard (n = 2; Norway) and were identified as sucking lice (suborder Anoplura). Using conventional PCR targeting the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), lice from Canada and Svalbard were 100% similar (8 pooled samples from Nunavut and 3 pooled samples from Svalbard), indicating that there is potential gene flow between ectoparasites on Scandinavian and North American Arctic fox populations. The cox1 sequences of Arctic fox lice and dog sucking lice (Linognathus setosus) had significant differences (87% identity), suggesting that foxes may harbour a cryptic species that has not previously been recognised. Conventional PCR targeting the gltA gene for Bartonella bacteria amplified DNA from an unknown gammaproteobacteria from two pooled louse samples collected from Svalbard foxes. The amplified sequences were 100% identical to each other but were only 78% like Proteus mirabilis reported in GenBank (CP053614), suggesting that lice on Arctic foxes may carry unique microorganisms that have yet to be described.
Collapse
Affiliation(s)
- Kayla J Buhler
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Louwtjie P Snyman
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eva Fuglei
- The Norwegian Polar Institute, FRAM Centre, Tromsø, Norway
| | - Rebecca Davidson
- Section for Research: Food Safety and Animal Health, Norwegian Veterinary Insitute, Tromsø, Norway
| | - Sokratis Ptochos
- Section for Microbiology, Norwegian Veterinary Institute, Ås, Norway
| | - Terry Galloway
- Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Emily Jenkins
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Lionello FCP, Rotundo S, Bruno G, Marino G, Morrone HL, Fusco P, Costa C, Russo A, Trecarichi EM, Beltrame A, Torti C. Touching Base with Some Mediterranean Diseases of Interest from Paradigmatic Cases at the "Magna Graecia" University Unit of Infectious Diseases: A Didascalic Review. Diagnostics (Basel) 2023; 13:2832. [PMID: 37685370 PMCID: PMC10486464 DOI: 10.3390/diagnostics13172832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Among infectious diseases, zoonoses are increasing in importance worldwide, especially in the Mediterranean region. We report herein some clinical cases from a third-level hospital in Calabria region (Southern Italy) and provide a narrative review of the most relevant features of these diseases from epidemiological and clinical perspectives. Further, the pathogenic mechanisms involved in zoonotic diseases are reviewed, focusing on the mechanisms used by pathogens to elude the immune system of the host. These topics are of particular concern for individuals with primary or acquired immunodeficiency (e.g., people living with HIV, transplant recipients, patients taking immunosuppressive drugs). From the present review, it appears that diagnostic innovations and the availability of more accurate methods, together with better monitoring of the incidence and prevalence of these infections, are urgently needed to improve interventions for better preparedness and response.
Collapse
Affiliation(s)
- Ferdinando Carmelo Pio Lionello
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Gabriele Bruno
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Gabriella Marino
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Helen Linda Morrone
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Chiara Costa
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Anna Beltrame
- College of Public Health, University of South Florida, Gainesville, FL 33620, USA;
| | - Carlo Torti
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| |
Collapse
|
14
|
Bellone R, Lechat P, Mousson L, Gilbart V, Piorkowski G, Bohers C, Merits A, Kornobis E, Reveillaud J, Paupy C, Vazeille M, Martinet JP, Madec Y, De Lamballerie X, Dauga C, Failloux AB. Climate change and vector-borne diseases: a multi-omics approach of temperature-induced changes in the mosquito. J Travel Med 2023; 30:taad062. [PMID: 37171132 DOI: 10.1093/jtm/taad062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Climate change and globalization contribute to the expansion of mosquito vectors and their associated pathogens. Long spared, temperate regions have had to deal with the emergence of arboviruses traditionally confined to tropical regions. Chikungunya virus (CHIKV) was reported for the first time in Europe in 2007, causing a localized outbreak in Italy, which then recurred repeatedly over the years in other European localities. This raises the question of climate effects, particularly temperature, on the dynamics of vector-borne viruses. The objective of this study is to improve the understanding of the molecular mechanisms set up in the vector in response to temperature. METHODS We combine three complementary approaches by examining Aedes albopictus mosquito gene expression (transcriptomics), bacterial flora (metagenomics) and CHIKV evolutionary dynamics (genomics) induced by viral infection and temperature changes. RESULTS We show that temperature alters profoundly mosquito gene expression, bacterial microbiome and viral population diversity. We observe that (i) CHIKV infection upregulated most genes (mainly in immune and stress-related pathways) at 20°C but not at 28°C, (ii) CHIKV infection significantly increased the abundance of Enterobacteriaceae Serratia marcescens at 28°C and (iii) CHIKV evolutionary dynamics were different according to temperature. CONCLUSION The substantial changes detected in the vectorial system (the vector and its bacterial microbiota, and the arbovirus) lead to temperature-specific adjustments to reach the ultimate goal of arbovirus transmission; at 20°C and 28°C, the Asian tiger mosquito Ae. albopictus was able to transmit CHIKV at the same efficiency. Therefore, CHIKV is likely to continue its expansion in the northern regions and could become a public health problem in more countries than those already affected in Europe.
Collapse
Affiliation(s)
- Rachel Bellone
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
- Institut Pasteur, Collège Doctoral, Sorbonne Université, Paris, France
| | - Pierre Lechat
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Valentine Gilbart
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | | | - Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Etienne Kornobis
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Julie Reveillaud
- UMR MIVEGEC (IRD 224-CNRS 5290-UM), IRD, INRAe, Montpellier, France
| | - Christophe Paupy
- UMR MIVEGEC (IRD 224-CNRS 5290-UM), IRD, INRAe, Montpellier, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Jean-Philippe Martinet
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Yoann Madec
- Institut Pasteur, Université Paris Cité, Emerging Diseases Epidemiology Unit, Paris, France
| | | | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| |
Collapse
|
15
|
Ren S, Chen H, Yuan L, Yang X, Afera TB, Rehman ZU, Wang H, Wang X, Ma C, Lin Y, Qiu X, Yin X, Sun Y. Phylogenetic and pathogenic characterization of lumpy skin disease virus circulating in China. Virology 2023; 585:127-138. [PMID: 37336054 DOI: 10.1016/j.virol.2023.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The genomic characterization of emerging pathogens is critical for unraveling their origin and tracking their dissemination. Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia including China. Although the first Lumpy skin disease (LSD) outbreak was reported in 2019, the origin, transmission, and evolutionary trajectory of LSDV in China have remained obscure. The viral genome of a circulating LSDV strain in China, abbreviated LSDV/FJ/CHA/2021, was sequenced using the next-generation sequencing technique. The morphology and cytoplasmic viral factory of these LSDV isolates were observed using transmission electron microscopy. Subsequently, the genomic characterization of this LSDV isolate was systematically analyzed for the first time using the bioinformatics software. The current study revealed that several mutations in the genome of LSDV isolates circulating in China were identified using single nucleotide polymorphisms (SNPs) analysis, an instrument to evaluate for continuous adaptive evaluation of a virus. Furthermore, phylogenomic analysis was used to identify the lineage using the whole genome sequences of 44 LSDV isolates. The result revealed that the isolates from China were closely similar to that of the LSDV isolates from Vietnam, which are divided into a monophyletic lineage sub-group I. The SNPs and Simplot analysis indicate no significant occurrence of the recombinant event on the genome of LSDV isolates in China. Notably, the live virus challenge experiment demonstrated that the pathogenic characterization of this LSDV isolate belongs to a virulent strain. Collectively, we gain the first insight into the evolutionary trajectory, spatiotemporal transmission, and pathogenic characterization of circulating LSDV in China. This study provides a unique reference for risk assessment, guiding diagnostics, and prevention in epizootic and non-epizootic areas.
Collapse
Affiliation(s)
- Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Haotai Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China.
| | - Lvfeng Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Xue Yang
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Tadele Berihun Afera
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Zaib Ur Rehman
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Huibao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Chunling Ma
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yuguang Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China; Laboratory of Veterinary Microbiology, College of Animal Science and Technology, Tarim University, Alar, 843300, PR China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, PR China.
| |
Collapse
|
16
|
Duval P, Antonelli P, Aschan-Leygonie C, Valiente Moro C. Impact of Human Activities on Disease-Spreading Mosquitoes in Urban Areas. J Urban Health 2023; 100:591-611. [PMID: 37277669 PMCID: PMC10322816 DOI: 10.1007/s11524-023-00732-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
Urbanization is one of the leading global trends of the twenty-first century that has a significant impact on health. Among health challenges caused by urbanization, the relationship of urbanization between emergence and the spread of mosquito-borne infectious diseases (MBIDs) is a great public health concern. Urbanization processes encompass social, economic, and environmental changes that directly impact the biology of mosquito species. In particular, urbanized areas experience higher temperatures and pollution levels than outlying areas but also favor the development of infrastructures and objects that are favorable to mosquito development. All these modifications may influence mosquito life history traits and their ability to transmit diseases. This review aimed to summarize the impact of urbanization on mosquito spreading in urban areas and the risk associated with the emergence of MBIDs. Moreover, mosquitoes are considered as holobionts, as evidenced by numerous studies highlighting the role of mosquito-microbiota interactions in mosquito biology. Taking into account this new paradigm, this review also represents an initial synthesis on how human-driven transformations impact microbial communities in larval habitats and further interfere with mosquito behavior and life cycle in urban areas.
Collapse
Affiliation(s)
- Pénélope Duval
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Bât. André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| | - Pierre Antonelli
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Bât. André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| | - Christina Aschan-Leygonie
- University of Lyon, Université Lumière Lyon 2, UMR 5600 CNRS Environnement Ville Société, F-69007, Lyon, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Bât. André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France.
| |
Collapse
|
17
|
Obame-Nkoghe J, Makanga BK, Zongo SB, Koumba AA, Komba P, Longo-Pendy NM, Mounioko F, Akone-Ella R, Nkoghe-Nkoghe LC, Ngangue-Salamba MF, Yangari P, Aboughe-Angone S, Fournet F, Kengne P, Paupy C. Urban Green Spaces and Vector-Borne Disease Risk in Africa: The Case of an Unclean Forested Park in Libreville (Gabon, Central Africa). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105774. [PMID: 37239503 DOI: 10.3390/ijerph20105774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023]
Abstract
In Africa, vector-borne diseases are a major public health issue, especially in cities. Urban greening is increasingly considered to promote inhabitants' well-being. However, the impact of urban green spaces on vector risk remains poorly investigated, particularly urban forests in poor hygienic conditions. Therefore, using larval sampling and human landing catches, this study investigated the mosquito diversity and the vector risk in a forest patch and its inhabited surroundings in Libreville, Gabon, central Africa. Among the 104 water containers explored, 94 (90.4%) were artificial (gutters, used tires, plastic bottles) and 10 (9.6%) were natural (puddles, streams, tree holes). In total, 770 mosquitoes belonging to 14 species were collected from such water containers (73.1% outside the forested area). The mosquito community was dominated by Aedes albopictus (33.5%), Culex quinquefasciatus (30.4%), and Lutzia tigripes (16.5%). Although mosquito diversity was almost double outside compared to inside the forest (Shannon diversity index: 1.3 vs. 0.7, respectively), the species relative abundance (Morisita-Horn index = 0.7) was similar. Ae. albopictus (86.1%) was the most aggressive species, putting people at risk of Aedes-borne viruses. This study highlights the importance of waste pollution in urban forested ecosystems as a potential driver of mosquito-borne diseases.
Collapse
Affiliation(s)
- Judicaël Obame-Nkoghe
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Boris Kevin Makanga
- Institut de Recherche en Écologie Tropicale (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Sylvie Brizard Zongo
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
- Département Faune et Aires Protégées, École Nationale des Eaux et Forêts (ENEF), Libreville BP 3960, Gabon
| | - Aubin Armel Koumba
- Institut de Recherche en Écologie Tropicale (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Prune Komba
- Unité de Recherche GéoHydrosystèmes Continentaux (UR GéHCo), Département Géosciences et Environnement, Université de Tours, 37000 Tours, France
| | - Neil-Michel Longo-Pendy
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Franck Mounioko
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Rodolphe Akone-Ella
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Lynda Chancelya Nkoghe-Nkoghe
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Marc-Flaubert Ngangue-Salamba
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Patrick Yangari
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Sophie Aboughe-Angone
- Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA), Libreville BP 1156, Gabon
| | - Florence Fournet
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 34193 Montpellier, France
| | - Pierre Kengne
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 34193 Montpellier, France
| | - Christophe Paupy
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 34193 Montpellier, France
| |
Collapse
|
18
|
Peña-García VH, Luvall JC, Christofferson RC. Arbovirus Transmission Predictions Are Affected by Both Temperature Data Source and Modeling Methodologies across Cities in Colombia. Microorganisms 2023; 11:1249. [PMID: 37317223 PMCID: PMC10223750 DOI: 10.3390/microorganisms11051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Weather variables has been described as major drivers of vector proliferation and arbovirus transmission. Among them, temperature has consistently been found to be impactful in transmission dynamics, and models that incorporate temperature have been widely used to evaluate and forecast transmission or arboviruses like dengue, zika, or chikungunya virus. Further, there is growing evidence of the importance of micro-environmental temperatures in driving transmission of Aedes aegypti-borne viruses, as these mosquitoes tend to live within domiciles. Yet there is still a considerable gap in our understanding of how accounting for micro-environmental temperatures in models varies from the use of other widely-used, macro-level temperature measures. This effort combines field-collected data of both indoor and outdoor household associated temperatures and weather station temperature data from three Colombian cities to describe the relationship between the measures representing temperature at the micro- and macro-levels. These data indicate that weather station data may not accurately capture the temperature profiles of indoor micro-environments. However, using these data sources, the basic reproductive number for arboviruses was calculated by means of three modeling efforts to investigate whether temperature measure differences translated to differential transmission predictions. Across all three cities, it was determined that the modeling method was more often impactful rather than the temperature data-source, though no consistent pattern was immediately clear. This suggests that temperature data sources and modeling methods are important for precision in arbovirus transmission predictions, and more studies are needed to parse out this complex interaction.
Collapse
Affiliation(s)
- Víctor Hugo Peña-García
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín 50010, Colombia
| | - Jeffrey C. Luvall
- Marshall Space Flight Center, National Aeronautics Space Administration (NASA), Huntsville, AL 35824, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Relevant Day/Night Temperatures Simulating Belgian Summer Conditions Reduce Japanese Encephalitis Virus Dissemination and Transmission in Belgian Field-Collected Culex pipiens Mosquitoes. Viruses 2023; 15:v15030764. [PMID: 36992473 PMCID: PMC10053291 DOI: 10.3390/v15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic mosquito-borne Flavivirus, can be considered an emerging infectious disease. Therefore, vector competence studies with indigenous mosquitoes from regions where JEV is not yet endemic are of great importance. In our study, we compared the vector competence of Culex pipiens mosquitoes emerged from Belgian field-caught larvae under two different temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient representing typical summer temperatures in Belgium. Three- to seven-day-old F0-generation mosquitoes were fed on a JEV genotype 3 Nakayama strain spiked blood-meal and incubated for 14 days at the two aforementioned temperature conditions. Similar infection rates of 36.8% and 35.2% were found in both conditions. The observed dissemination rate in the gradient condition was, however, significantly lower compared to the constant temperature condition (8% versus 53.6%, respectively). JEV was detected by RT-qPCR in the saliva of 13.3% of dissemination positive mosquitoes in the 25 °C condition, and this transmission was confirmed by virus isolation in 1 out of 2 RT-qPCR positive samples. No JEV transmission to saliva was detected in the gradient condition. These results suggest that JEV transmission by Culex pipiens mosquitoes upon an accidental introduction in our region is unlikely under current climatic conditions. This could change in the future when temperatures increase due to climate change.
Collapse
|
20
|
Vector Competence of a Coastal Population of Aedes aegypti for Dengue 2 and 3 Virus Serotypes in Kenya. BIOMED RESEARCH INTERNATIONAL 2023. [DOI: 10.1155/2023/8402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aedes aegypti is the primary vector of dengue, an arboviral disease caused by dengue virus (DENV) that exists as four distinct serotypes (DENV 1-4). While all four DENV serotypes circulate in Kenya, differential distribution of the serotypes in specific regions suggests virus transmission may differ among local vector populations. In this study, we tested the hypothesis that a coastal Ae. aegypti population (Rabai, Kilifi County) varies in its ability to transmit DENV-2 (predominant) and DENV-3 (less dominant) and that transmission is related to Ae. aegypti subspecies—domestic Ae. aegypti aegypti (Aaa) and sylvtic Ae. aegypti formosus (Aaf). We orally exposed F1 females (3-10 days old) to blood meals containing DENV-2 (10 5.30 pfu/ml) or DENV-3 (10 5.13 pfu/ml), tested them individually for infection (body), dissemination (legs), and transmission (saliva) at 7, 14, and 21 days postinfection (DPI), respectively, and compared the rates between the serotypes. We analyzed cytochrome c oxidase I gene (cox-I) sequences among DENV-susceptible and nonsusceptible cohorts. Of 489 mosquitoes tested (DENV-2: 240; DENV-3: 249), we found consistently higher but nonsignificant rates of infection (16% vs. 10%), dissemination (47% (18/38) vs. 35% (9/26)), and transmission (39% (7/18) vs. 11% (1/9)) for DENV-2 than DENV-3. However, DENV-2 exhibited a shorter extrinsic incubation period (EIP) for disseminated infection (7-DPI vs. 14-DPI) and transmission (14-DPI vs. 21-DPI) compared to DENV-3. Two cox-I lineages were recovered in phylogeny, one predominantly clustered with referenced Aaa and a minor lineage grouped with Aaf. Infected mosquitoes and those with disseminated infection were represented in both lineages; those that transmitted the viruses grouped with the Aaa-associated lineage only. We conclude that the coastal Ae. aegypti population is a competent vector for DENV-2 and DENV-3 likely driven by the domestic Aaa that is predominant. The shorter EIP to attain dissemination and transmission for DENV-2 could favour its transmission over DENV-3.
Collapse
|
21
|
Kramer IM, Pfenninger M, Feldmeyer B, Dhimal M, Gautam I, Shreshta P, Baral S, Phuyal P, Hartke J, Magdeburg A, Groneberg DA, Ahrens B, Müller R, Waldvogel AM. Genomic profiling of climate adaptation in Aedes aegypti along an altitudinal gradient in Nepal indicates nongradual expansion of the disease vector. Mol Ecol 2023; 32:350-368. [PMID: 36305220 DOI: 10.1111/mec.16752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion. By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Aedes aegypti, sampled along an altitudinal gradient in Nepal (200-1300 m), we identify putatively adaptive traits and describe the species' genomic footprint of climate adaptation to colder ecoregions. We found two differentiated clusters with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300 m) and all other lowland populations (≤800 m). We revealed nonsynonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern. Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. Local high-altitude adaptation could be one explanation of the population's phenotypic cold tolerance. Carrying alleles relevant for survival under colder climate increases the likelihood of this highland population to a worldwide expansion into other colder ecoregions.
Collapse
Affiliation(s)
- Isabelle Marie Kramer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | | - Ishan Gautam
- Natural History Museum, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Parbati Phuyal
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Axel Magdeburg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Bodo Ahrens
- Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany
| | - Ruth Müller
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.,Unit Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ann-Marie Waldvogel
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Vector Competence of Mosquitoes from Germany for Sindbis Virus. Viruses 2022; 14:v14122644. [PMID: 36560650 PMCID: PMC9785343 DOI: 10.3390/v14122644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transmission of arthropod-borne viruses (arboviruses) are an emerging global health threat in the last few decades. One important arbovirus family is the Togaviridae, including the species Sindbis virus within the genus Alphavirus. Sindbis virus (SINV) is transmitted by mosquitoes, but available data about the role of different mosquito species as potent vectors for SINV are scarce. Therefore, we investigated seven mosquito species, collected from the field in Germany (Ae. koreicus, Ae. geniculatus, Ae. sticticus, Cx. torrentium, Cx. pipiens biotype pipiens) as well as lab strains (Ae. albopictus, Cx. pipiens biotype molestus, Cx. quinquefasciatus), for their vector competence for SINV. Analysis was performed via salivation assay and saliva was titrated to calculate the amount of infectious virus particles per saliva sample. All Culex and Aedes species were able to transmit SINV. Transmission could be detected at all four investigated temperature profiles (of 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C), and no temperature dependency could be observed. The concentration of infectious virus particles per saliva sample was in the same range for all species, which may suggest that all investigated mosquito species are able to transmit SINV in Germany.
Collapse
|
23
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
24
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
25
|
Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 2022; 14:v14050880. [PMID: 35632622 PMCID: PMC9144726 DOI: 10.3390/v14050880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus and public health concern. We evaluated the influence of temperature on Aedes aegypti responses to MAYV oral infection and transmission at two constant temperatures (20 °C and 30 °C). Infection of mosquito tissues (bodies and legs) and salivary secretions with MAYV was determined at 3, 9, 15, 21, and 27 days post ingestion. At both temperatures, we observed a trend of increase in progression of MAYV infection and replication kinetics over time, followed by a decline during later periods. Peaks of MAYV infection, titer, and dissemination from the midgut were detected at 15 and 21 days post ingestion at 30 °C and 20 °C, respectively. Mosquitoes were able to transmit MAYV as early as day 3 at 30 °C, but MAYV was not detectable in salivary secretions until day 15 at 20 °C. Low rates of MAYV in salivary secretions collected from infected mosquitoes provided evidence supporting the notion that a substantial salivary gland barrier(s) in Florida Ae. aegypti can limit the risk of MAYV transmission. Our results provide insights into the effects of temperature and time on the progression of infection and replication of MAYV in Ae. aegypti vectors.
Collapse
|
26
|
Drouin A, Chevalier V, Durand B, Balenghien T. Vector Competence of Mediterranean Mosquitoes for Rift Valley Fever Virus: A Meta-Analysis. Pathogens 2022; 11:pathogens11050503. [PMID: 35631024 PMCID: PMC9146998 DOI: 10.3390/pathogens11050503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by a virus mainly transmitted by Aedes and Culex mosquitoes. Infection leads to high abortion rates and considerable mortality in domestic livestock. The combination of viral circulation in Egypt and Libya and the existence of unregulated live animal trade routes through endemic areas raise concerns that the virus may spread to other Mediterranean countries, where there are mosquitoes potentially competent for RVF virus (RVFV) transmission. The competence of vectors for a given pathogen can be assessed through laboratory experiments, but results may vary greatly with the study design. This research aims to quantify the competence of five major potential RVFV vectors in the Mediterranean Basin, namely Aedes detritus, Ae. caspius, Ae. vexans, Culex pipiens and Cx. theileri, through a systematic literature review and meta-analysis. We first computed the infection rate, the dissemination rate among infected mosquitoes, the overall dissemination rate, the transmission rate among mosquitoes with a disseminated infection and the overall transmission rate for these five mosquito species. We next assessed the influence of laboratory study designs on the variability of these five parameters. According to experimental results and our analysis, Aedes caspius may be the most competent vector among the five species considered.
Collapse
Affiliation(s)
- Alex Drouin
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University Paris-Est, 94701 Maisons-Alfort, France; (A.D.); (B.D.)
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France;
| | - Véronique Chevalier
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France;
- CIRAD, UMR ASTRE, Antananarivo 101, Madagascar
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo 101, Madagascar
- Correspondence:
| | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University Paris-Est, 94701 Maisons-Alfort, France; (A.D.); (B.D.)
| | - Thomas Balenghien
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France;
- CIRAD, UMR ASTRE, Rabat 10101, Morocco
- IAV Hassan II, UR MIMC, Rabat 10101, Morocco
| |
Collapse
|
27
|
Holmes CJ, Brown ES, Sharma D, Nguyen Q, Spangler AA, Pathak A, Payton B, Warden M, Shah AJ, Shaw S, Benoit JB. Bloodmeal regulation in mosquitoes curtails dehydration-induced mortality, altering vectorial capacity. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104363. [PMID: 35121007 PMCID: PMC8885900 DOI: 10.1016/j.jinsphys.2022.104363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Mosquitoes readily lose water when exposed to any humidity less than that of near saturated air unless mitigated, leading to shifts in behavior, survival, distribution, and reproduction. In this study, we conducted a series of physiological experiments on two prominent species in the Culicinae subfamily: Culex pipiens, a vector of West Nile virus, and Aedes aegypti, a vector of yellow fever and Zika to examine the effects of dehydration. We exposed C. pipiens and A. aegypti to non-dehydrating conditions (saturated air), dehydrating conditions (air at a 0.89 kPa saturation vapor pressure deficit), several recovery conditions, as well as to bloodfeeding opportunities. We show that dehydrated mosquitoes increase bloodfeeding propensity, improve retention, and decrease excretion of a post-dehydration bloodmeal. In addition, mosquitoes that take a bloodmeal prior to dehydration exposure show increased survival over non-bloodfed counterparts. Dehydration-induced alterations in survival, reproduction, and bloodfeeding propensity of C. pipiens and A. aegypti resulted in marked changes to vectorial capacity. Ultimately, these results become increasingly important as drought intensifies in association with climate change and mosquitoes become more likely to experience arid periods.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| | - Elliott S Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Dhriti Sharma
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Quynh Nguyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Austin A Spangler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Atit Pathak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Blaine Payton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew Warden
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Ashay J Shah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Samantha Shaw
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
28
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
29
|
Cunze S, Glock G, Klimpel S. Spatial and temporal distribution patterns of tick-borne diseases (Tick-borne Encephalitis and Lyme Borreliosis) in Germany. PeerJ 2021; 9:e12422. [PMID: 34993011 PMCID: PMC8675256 DOI: 10.7717/peerj.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In the face of ongoing climate warming, vector-borne diseases are expected to increase in Europe, including tick-borne diseases (TBD). The most abundant tick-borne diseases in Germany are Tick-Borne Encephalitis (TBE) and Lyme Borreliosis (LB), with Ixodes ricinus as the main vector. METHODS In this study, we display and compare the spatial and temporal patterns of reported cases of human TBE and LB in relation to some associated factors. The comparison may help with the interpretation of observed spatial and temporal patterns. RESULTS The spatial patterns of reported TBE cases show a clear and consistent pattern over the years, with many cases in the south and only few and isolated cases in the north of Germany. The identification of spatial patterns of LB disease cases is more difficult due to the different reporting practices in the individual federal states. Temporal patterns strongly fluctuate between years, and are relatively synchronized between both diseases, suggesting common driving factors. Based on our results we found no evidence that weather conditions affect the prevalence of both diseases. Both diseases show a gender bias with LB bing more commonly diagnosed in females, contrary to TBE being more commonly diagnosed in males. CONCLUSION For a further investigation of of the underlying driving factors and their interrelations, longer time series as well as standardised reporting and surveillance system would be required.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
| | - Gustav Glock
- Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
- Biodiversity and Climate Research Centre, Senckenberg Nature Research Society, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
30
|
Mulvey P, Duong V, Boyer S, Burgess G, Williams DT, Dussart P, Horwood PF. The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens 2021; 10:1534. [PMID: 34959489 PMCID: PMC8704921 DOI: 10.3390/pathogens10121534] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus mainly spread by Culex mosquitoes that currently has a geographic distribution across most of Southeast Asia and the Western Pacific. Infection with JEV can cause Japanese encephalitis (JE), a severe disease with a high mortality rate, which also results in ongoing sequalae in many survivors. The natural reservoir of JEV is ardeid wading birds, such as egrets and herons, but pigs commonly play an important role as an amplifying host during outbreaks in human populations. Other domestic animals and wildlife have been detected as hosts for JEV, but their role in the ecology and epidemiology of JEV is uncertain. Safe and effective JEV vaccines are available, but unfortunately, their use remains low in most endemic countries where they are most needed. Increased surveillance and diagnosis of JE is required as climate change and social disruption are likely to facilitate further geographical expansion of Culex vectors and JE risk areas.
Collapse
Affiliation(s)
- Peter Mulvey
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia;
| | - Veasna Duong
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Sebastien Boyer
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Graham Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| | - David T. Williams
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong 3220, Australia;
| | - Philippe Dussart
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Paul F. Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia;
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| |
Collapse
|
31
|
Kim D, Rusch TW, Lee DK. Response of Culex pipiens pallens to Visual and Olfactory Stimuli from a Mosquito Trap. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2021; 37:76-82. [PMID: 34184047 DOI: 10.2987/20-6966.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study examined Culex pipiens pallens responses to different combinations of colors and chemicals employed via a mosquito trap under semifield conditions. Our results indicated that Cx. p. pallens has color and chemical concentration preferences. Culex p. pallens had a 38.0% greater response to white than black color treated traps. Further, Cx. p. pallens showed differences in olfactory attraction depending on the chemical and concentration. Culex p. pallens was 107.6% more attracted to traps employing 500 ppm ammonia than control (i.e., unscented). Similarly, Cx. p. pallens was 117.5%, 128.8%, and 140.3% more attracted to traps employing, respectively, 1,000, 10,000, and 20,000 ppm of ammonia hydrogen carbonate compared to controls. And the response to lactic acid showed that Cx. p. pallens was most attracted to concentrations of 100 and 500 ppm (135.7% and 142.9%, respectively) compared to controls.
Collapse
|
32
|
Kopanke J, Lee J, Stenglein M, Carpenter M, Cohnstaedt LW, Wilson WC, Mayo C. Exposure of Culicoides sonorensis to Enzootic Strains of Bluetongue Virus Demonstrates Temperature- and Virus-Specific Effects on Virogenesis. Viruses 2021; 13:v13061016. [PMID: 34071483 PMCID: PMC8228769 DOI: 10.3390/v13061016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/25/2023] Open
Abstract
Bluetongue virus (BTV) is a segmented RNA virus transmitted by Culicoides midges. Climatic factors, animal movement, vector species, and viral mutation and reassortment may all play a role in the occurrence of BTV outbreaks among susceptible ruminants. We used two enzootic strains of BTV (BTV-2 and BTV-10) to explore the potential for Culicoides sonorensis, a key North American vector, to be infected with these viruses, and identify the impact of temperature variations on virogenesis during infection. While BTV-10 replicated readily in C. sonorensis following an infectious blood meal, BTV-2 was less likely to result in productive infection at biologically relevant exposure levels. Moreover, when C. sonorensis were co-exposed to both viruses, we did not detect reassortment between the two viruses, despite previous in vitro findings indicating that BTV-2 and BTV-10 are able to reassort successfully. These results highlight that numerous factors, including vector species and exposure dose, may impact the in vivo replication of varying BTV strains, and underscore the complexities of BTV ecology in North America.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture—Agricultural Research Service, Manhattan, KS 66502, USA;
| | - William C. Wilson
- National Bio and Agro-Defense Facility (NBAF), United States Department of Agriculture—Agricultural Research Service, 1880 Kimball Ave, Suite 300 CGAHR, Manhattan, KS 66502, USA;
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
- Correspondence:
| |
Collapse
|
33
|
Ewing DA, Purse BV, Cobbold CA, White SM. A novel approach for predicting risk of vector-borne disease establishment in marginal temperate environments under climate change: West Nile virus in the UK. J R Soc Interface 2021; 18:20210049. [PMID: 34034529 PMCID: PMC8150030 DOI: 10.1098/rsif.2021.0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Vector-borne diseases (VBDs), such as dengue, Zika, West Nile virus (WNV) and tick-borne encephalitis, account for substantial human morbidity worldwide and have expanded their range into temperate regions in recent decades. Climate change has been proposed as a likely driver of past and future expansion, however, the complex ecology of host and vector populations and their interactions with each other, environmental variables and land-use changes makes understanding the likely impacts of climate change on VBDs challenging. We present an environmentally driven, stage-structured, host-vector mathematical modelling framework to address this challenge. We apply our framework to predict the risk of WNV outbreaks in current and future UK climates. WNV is a mosquito-borne arbovirus which has expanded its range in mainland Europe in recent years. We predict that, while risks will remain low in the coming two to three decades, the risk of WNV outbreaks in the UK will increase with projected temperature rises and outbreaks appear plausible in the latter half of this century. This risk will increase substantially if increased temperatures lead to increases in the length of the mosquito biting season or if European strains show higher replication at lower temperatures than North American strains.
Collapse
Affiliation(s)
- David A. Ewing
- UK Centre for Ecology and Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Bethan V. Purse
- UK Centre for Ecology and Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| | - Christina A. Cobbold
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
- Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, UK
| | - Steven M. White
- UK Centre for Ecology and Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| |
Collapse
|
34
|
Dellicour S, Lequime S, Vrancken B, Gill MS, Bastide P, Gangavarapu K, Matteson NL, Tan Y, du Plessis L, Fisher AA, Nelson MI, Gilbert M, Suchard MA, Andersen KG, Grubaugh ND, Pybus OG, Lemey P. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat Commun 2020; 11:5620. [PMID: 33159066 PMCID: PMC7648063 DOI: 10.1038/s41467-020-19122-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paul Bastide
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Alexander A Fisher
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
35
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
36
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
37
|
Robert MA, Stewart-Ibarra AM, Estallo EL. Climate change and viral emergence: evidence from Aedes-borne arboviruses. Curr Opin Virol 2020; 40:41-47. [PMID: 32569752 PMCID: PMC7305058 DOI: 10.1016/j.coviro.2020.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Climate change is leading to increases in global temperatures and erratic precipitation patterns, both of which are contributing to the expansion of mosquito-borne arboviruses and the populations of the mosquitos that vector them. Herein, we review recent evidence of emergence and expansion of arboviruses transmitted by Aedes mosquitos that has been driven in part by environmental changes. We present as a case study of recent work from Córdoba, Argentina, where dengue has been actively emerging in the past decade. We review recent empirical and modeling studies that aim to understand the impact of climate on future expansion of arboviruses, and we highlight gaps in empirical studies linking climate to arbovirus transmission at regional levels.
Collapse
Affiliation(s)
- Michael A Robert
- Department of Mathematics, Physics, and Statistics, University of the Sciences, Philadelphia, PA, 19104, United States.
| | - Anna M Stewart-Ibarra
- Inter-American Institute for Global Change Research (IAI), Montevideo, Department of Montevideo, Uruguay
| | - Elizabet L Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield1611, CP (X5016GCA), Ciudad Universitaria, Córdoba Capital, Argentina
| |
Collapse
|
38
|
An RNA Thermometer Activity of the West Nile Virus Genomic 3'-Terminal Stem-Loop Element Modulates Viral Replication Efficiency during Host Switching. Viruses 2020; 12:v12010104. [PMID: 31952291 PMCID: PMC7019923 DOI: 10.3390/v12010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The 3′-terminal stem-loop (3′SL) of the RNA genome of the flavivirus West Nile (WNV) harbors, in its stem, one of the sequence elements that are required for genome cyclization. As cyclization is a prerequisite for the initiation of viral replication, the 3′SL was proposed to act as a replication silencer. The lower part of the 3′SL is metastable and confers a structural flexibility that may regulate the switch from the linear to the circular conformation of the viral RNA. In the human system, we previously demonstrated that a cellular RNA-binding protein, AUF1 p45, destabilizes the 3′SL, exposes the cyclization sequence, and thus promotes flaviviral genome cyclization and RNA replication. By investigating mutant RNAs with increased 3′SL stabilities, we showed the specific conformation of the metastable element to be a critical determinant of the helix-destabilizing RNA chaperone activity of AUF1 p45 and of the precision and efficiency of the AUF1 p45-supported initiation of RNA replication. Studies of stability-increasing mutant WNV replicons in human and mosquito cells revealed that the cultivation temperature considerably affected the replication efficiencies of the viral RNA variants and demonstrated the silencing effect of the 3′SL to be temperature dependent. Furthermore, we identified and characterized mosquito proteins displaying similar activities as AUF1 p45. However, as the RNA remodeling activities of the mosquito proteins were found to be considerably lower than those of the human protein, a potential cell protein-mediated destabilization of the 3′SL was suggested to be less efficient in mosquito cells. In summary, our data support a model in which the 3′SL acts as an RNA thermometer that modulates flavivirus replication during host switching.
Collapse
|
39
|
Diagne MM, Gaye A, Ndione MHD, Faye M, Fall G, Dieng I, Widen SG, Wood TG, Popov V, Guzman H, Bâ Y, Weaver SC, Diallo M, Tesh R, Faye O, Vasilakis N, Sall AA. Dianke virus: A new mesonivirus species isolated from mosquitoes in Eastern Senegal. Virus Res 2020; 275:197802. [PMID: 31697989 PMCID: PMC7075714 DOI: 10.1016/j.virusres.2019.197802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
An increasing number of insect-specific viruses are found around the world. Very recently, a new group of insect-specific viruses, the Mesoniviridae family, was discovered in Africa, Asia, North America and Australia. Here we report the first detection and isolation of a new virus belonging to Mesonivirus genus in Senegal, West Africa. The so-called Dianke virus was detected in 21 species of arthropods trapped in the eastern part of the country. Male individuals were also infected, supporting vertical transmission assertion of insect specific viruses. As described for other mesoniviruses, no viral replication was observed after inoculation of mammalian cells. Viral replication in mosquito cells was blocked at a temperature of 37 °C, highlighting the importance of thermal conditions in Mesonivirus host restriction. Similar to our study, where a diverse range of arthropod vectors were found infected by the new virus, several studies have detected mesonivirus infection in mosquitoes with concerns for human health. It has been shown that dual infections in mosquito can alter viral infectivity. Due to their extensive geographic distribution and host range, as well as their use as potential disease control agents in vector populations, more studies should be done for a better knowledge of arthropod-restricted viruses prevalence and diversity.
Collapse
Affiliation(s)
- Moussa M Diagne
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Alioune Gaye
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Marie Henriette Dior Ndione
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Martin Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Idrissa Dieng
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Vsevolod Popov
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Hilda Guzman
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Yamar Bâ
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Mawlouth Diallo
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Robert Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Ousmane Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Amadou A Sall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
40
|
ELLWANGER JOELHENRIQUE, KULMANN-LEAL BRUNA, KAMINSKI VALÉRIAL, VALVERDE-VILLEGAS JACQUELINEMARÍA, VEIGA ANABEATRIZGDA, SPILKI FERNANDOR, FEARNSIDE PHILIPM, CAESAR LÍLIAN, GIATTI LEANDROLUIZ, WALLAU GABRIELL, ALMEIDA SABRINAE, BORBA MAUROR, HORA VANUSAPDA, CHIES JOSÉARTURB. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. ACTA ACUST UNITED AC 2020; 92:e20191375. [DOI: 10.1590/0001-3765202020191375] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | | | | | - LÍLIAN CAESAR
- Universidade Federal do Rio Grande do Sul/UFRGS, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Cunze S, Kochmann J, Koch LK, Genthner E, Klimpel S. Vector distribution and transmission risk of the Zika virus in South and Central America. PeerJ 2019; 7:e7920. [PMID: 31745446 PMCID: PMC6863140 DOI: 10.7717/peerj.7920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a better understanding of geographic patterns of the Zika virus transmission risk. This study aims to map the Zika virus transmission risk in South and Central America. We applied the maximum entropy approach, which is common for species distribution modelling, but is now also widely in use for estimating the geographical distribution of infectious diseases. Methods As predictor variables we used a set of variables considered to be potential drivers of both direct and indirect effects on the emergence of Zika. Specifically, we considered (a) the modelled habitat suitability for the two main vector species Aedes aegypti and Ae. albopictus as a proxy of vector species distributions; (b) temperature, as it has a great influence on virus transmission; (c) commonly called evidence consensus maps (ECM) of human Zika virus infections on a regional scale as a proxy for virus distribution; (d) ECM of human dengue virus infections and, (e) as possibly relevant socio-economic factors, population density and the gross domestic product. Results The highest values for the Zika transmission risk were modelled for the eastern coast of Brazil as well as in Central America, moderate values for the Amazon basin and low values for southern parts of South America. The following countries were modelled to be particularly affected: Brazil, Colombia, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. While modelled vector habitat suitability as predictor variable showed the highest contribution to the transmission risk model, temperature of the warmest quarter contributed only comparatively little. Areas with optimal temperature conditions for virus transmission overlapped only little with areas of suitable habitat conditions for the two main vector species. Instead, areas with the highest transmission risk were characterised as areas with temperatures below the optimum of the virus, but high habitat suitability modelled for the two main vector species. Conclusion Modelling approaches can help estimating the spatial and temporal dynamics of a disease. We focused on the key drivers relevant in the Zika transmission cycle (vector, pathogen, and hosts) and integrated each single component into the model. Despite the uncertainties generally associated with modelling, the approach applied in this study can be used as a tool and assist decision making and managing the spread of Zika.
Collapse
Affiliation(s)
- Sarah Cunze
- Goethe University, Institute of Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Judith Kochmann
- Goethe University, Institute of Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Lisa K Koch
- Goethe University, Institute of Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Elisa Genthner
- Goethe University, Institute of Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Sven Klimpel
- Goethe University, Institute of Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Holmes CJ, Benoit JB. Biological Adaptations Associated with Dehydration in Mosquitoes. INSECTS 2019; 10:insects10110375. [PMID: 31661928 PMCID: PMC6920799 DOI: 10.3390/insects10110375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Abstract
Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
43
|
Gale P. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. MICROBIAL RISK ANALYSIS 2019; 12:27-43. [PMID: 32289057 PMCID: PMC7104215 DOI: 10.1016/j.mran.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 05/21/2023]
Abstract
Arboviruses such as West Nile virus (WNV), bluetongue virus (BTV), dengue virus (DENV) and chikungunya virus (CHIKV) infect their arthropod vectors over a range of average temperatures depending on the ambient temperature. How the transmission efficiency of an arbovirus (i.e. vector competence) varies with temperature influences not only the short term risk of arbovirus outbreaks in humans and livestock but also the long term impact of climate change on the geographical range of the virus. The strength of the interaction between viral surface (glyco)protein (GP) and the host cell receptor (Cr) on binding of virus to host cell is defined by the thermodynamic dissociation constant Kd_receptor which is assumed to equal 10-3 M (at 37 °C) for binding of a sialic acid (SA) on the arthropod midgut epithelial cell surface to a SA-binding site on the surface of BTV, for example. Here virus binding affinity is modelled with increasing number of GP/Cr contacts at temperatures from 10 °C to 35 °C taking into account the change in entropy on immobilization of the whole virus on binding (ΔSa_immob). Based on published data, three thermodynamic GP/Cr binding scenarios, namely enthalpy-driven, entropy-assisted and entropy-driven, are shown to affect the temperature sensitivity of virus binding in different ways. Thus for enthalpy-driven GP/Cr binding, viruses bind host cells much more strongly at 10 °C than 35 °C. A mechanistic model is developed for the number of arthropod midgut cells with bound virus and by building in a kinetic component for the rate of arbovirus replication and subsequent spread to the arthropod salivary glands, a model for the effect of temperature on vector competence is developed. The model separates the opposing effects of temperature on midgut cell binding affinity from the kinetic component of virogenesis. It successfully accommodates both increases in vector competence with temperature as for DENV and WNV in mosquitoes and decreases as for the CHIKV 2010-1909 strain in various populations of Aedes albopictus mosquitoes. Enhanced cell binding at lower temperatures through enthalpy-driven GP/Cr binding compensates for the lower replication rate to some degree such that some transmission can still occur at lower temperatures. In contrast, the strength of entropy-driven GP/Cr binding diminishes at low temperatures although there is no minimum temperature threshold for transmission efficiency. The magnitude of ΔSa_immob is an important data gap. It is concluded that thermodynamic and kinetic data obtained at the molecular level will prove important in modelling vector competence with temperature.
Collapse
Key Words
- AIV, avian influenza virus
- Arbovirus
- BBF, brush border fragments from midgut
- C.VT, number of arthropod midgut cells with bound arbovirus at temperature T
- CHIKV, chikungunya virus
- Cfree, number of midgut epithelial cells which can bind virus with no virus bound
- Cr, host cell receptor
- Ctotal_midgut, number of midgut epithelial cells which can bind virus
- DENV, dengue fever virus
- EA, activation energy
- EBOV, Zaire ebolavirus
- EIP, extrinsic incubation period
- Enthalpy
- Entropy
- Fc, fraction of arthropod midgut cells with bound virus at temperature T
- GP, viral (glyco)protein on virus surface that binds to Cr
- HA, haemagglutinin
- HRV3, human rhinovirus serotype 3
- ICAM-1, intercellular adhesion molecule-1
- IDR, intrinsically disordered region of a protein
- Ka, binding affinity for virus to host cells at temperature T
- Kd_receptor, dissociation constant for GP from Cr
- Kd_virus, dissociation constant for virus from host cell
- M, molar (moles dm−3)
- NA, neuraminidase
- R, ideal gas constant
- RdRp, RNA dependent RNA polymerase
- SA, sialic acid
- Temperature
- VEEV, Venezuelan equine encephalitis virus
- VSV, vesicular stomatitis virus
- Vector competence
- Vfree, virus not bound to cells
- Vtotal, virus challenge dose to midgut
- WEEV, Western equine encephalitis virus
- WNV, West Nile virus
- k, rate of reaction
- n, number of GP/Cr contacts made on virus binding to cell
- pcompleteT, probability, given a virion has bound to the surface of a midgut cell, that that midgut cell becomes infected and that its progeny viruses go on to infect the salivary gland so completing the arthropod infection process within the life time of the arthropod at temperature T
- pfu, plaque-forming unit
- ptransmissionT, probability of successful infection of the arthropod salivary glands given oral exposure at temperature T
- ΔGa_receptor, change in Gibbs free energy on association of GP and Cr receptor
- ΔHa_receptor, change in enthalpy for binding of virus GP to host Cr receptor
- ΔHa_virus, change in enthalpy for binding of virus to host cell
- ΔSa_immob, change in entropy on immobilization of virus to cell surface
- ΔSa_receptor, change in entropy for binding of virus GP to host Cr receptor
- ΔSa_virus, change in entropy for binding of virus to host cell
- ΔSconf, change in conformation entropy within GP or Cr
Collapse
Affiliation(s)
- Paul Gale
- 15 Weare Close, Portland, Dorset DT5 1JP, United Kingdom
| |
Collapse
|
44
|
Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep 2018; 8:6804. [PMID: 29717151 PMCID: PMC5931509 DOI: 10.1038/s41598-018-24893-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/11/2018] [Indexed: 11/27/2022] Open
Abstract
Current insights into the mosquito dehydration response rely on studies that examine specific responses but ultimately fail to provide an encompassing view of mosquito biology. Here, we examined underlying changes in the biology of mosquitoes associated with dehydration. Specifically, we show that dehydration increases blood feeding in the northern house mosquito, Culex pipiens, which was the result of both higher activity and a greater tendency to land on a host. Similar observations were noted for Aedes aegypti and Anopheles quadrimaculatus. RNA-seq and metabolome analyses in C. pipiens following dehydration revealed that factors associated with carbohydrate metabolism are altered, specifically the breakdown of trehalose. Suppression of trehalose breakdown in C. pipiens by RNA interference reduced phenotypes associated with lower hydration levels. Lastly, mesocosm studies for C. pipiens confirmed that dehydrated mosquitoes were more likely to host feed under ecologically relevant conditions. Disease modeling indicates dehydration bouts will likely enhance viral transmission. This dehydration-induced increase in blood feeding is therefore likely to occur regularly and intensify during periods when availability of water is low.
Collapse
|
45
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
46
|
Thermal experiments with the Asian bush mosquito (Aedes japonicus japonicus) (Diptera: Culicidae) and implications for its distribution in Germany. Parasit Vectors 2018; 11:81. [PMID: 29402295 PMCID: PMC5800082 DOI: 10.1186/s13071-018-2659-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/18/2018] [Indexed: 11/21/2022] Open
Abstract
Background As ectothermic animals, temperature influences insects in almost every aspect. The potential disease spreading Asian bush mosquito (Aedes japonicus japonicus) is native to temperate East Asia but invasive in several parts of the world. We report on the previously poorly understood temperature-dependence of its life history under laboratory conditions to understand invasion processes and to model temperature niches. Results To evaluate winter survival, eggs were exposed between 1 day and 14 days to low temperatures (5 °C, 0 °C, -5 °C and -9 °C). Hatching success was drastically decreased after exposure to 0 °C and -5 °C, and the minimal hatching success of 0% was reached at -9 °C after two days. We then exposed larvae to 14 temperatures and assessed their life trait parameters. Larval survival to adulthood was only possible between 10 °C and 31 °C. Based on this, we modelled the optimal (25 °C), minimal (7 °C) and maximal (31 °C) temperature for cumulative female survival. The time to adult emergence ranges from 12 days to 58 days depending on temperature. We used an age-at-emergence-temperature model to calculate the number of potential generations per year for the Asian bush mosquito in Germany with an average of 4.72 potential generations. At lower temperatures, individuals grew larger than at higher temperatures with female R1 length ranging from 3.04 ± 0.1 mm at 31 °C to 4.26 ± 0.2 mm at 15 °C. Conclusions Reduced egg hatch after exposure to sub-zero temperatures prohibits the establishment of the Asian bush mosquito in large parts of Germany. Larval overwintering is not possible at temperature ≤ 5 °C. The many potential generations displayed per year may contribute to the species’ invasion success. This study on the thermal ecology of the Asian bush mosquito adds to our knowledge on the temperature dependence of the species and data could be incorporated in epidemiological and population dynamic modelling. Electronic supplementary material The online version of this article (10.1186/s13071-018-2659-1) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Stoks R, Verheyen J, Van Dievel M, Tüzün N. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. CURRENT OPINION IN INSECT SCIENCE 2017; 23:35-42. [PMID: 29129280 DOI: 10.1016/j.cois.2017.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 05/28/2023]
Abstract
We review the major patterns on the effects of daily temperature variation (DTV) and extreme high temperatures (EXT) on performance traits and the resulting outcome of biotic interactions in insects. EXT profoundly affects the outcome of all types of biotic interactions: competitive, predator-prey, herbivore-plant, host-pathogen/parasitoid and symbiotic interactions. Studies investigating effects of DTV on biotic interactions are few but also show strong effects on competitive and host-pathogen/parasitoid interactions. EXT typically reduces predation, and is expected to reduce parasitoid success. The effects of EXT and DTV on the outcome of the other interaction types are highly variable, yet can be predicted based on comparisons of the TPCs of the interacting species, and challenges the formulation of general predictions about the change in biotic interactions in a warming world.
Collapse
Affiliation(s)
- Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Meister H, Tammaru T, Sandre SL, Freitak D. Sources of variance in immunological traits: evidence of congruent latitudinal trends across species. ACTA ACUST UNITED AC 2017; 220:2606-2615. [PMID: 28495866 DOI: 10.1242/jeb.154310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/04/2017] [Indexed: 11/20/2022]
Abstract
Among-population differences in immunological traits allow assessment of both evolutionary and plastic changes in organisms' resistance to pathogens. Such knowledge also provides information necessary to predict responses of such traits to environmental changes. Studies on latitudinal trends in insect immunity have so far yielded contradictory results, suggesting that multispecies approaches with highly standardised experimental conditions are needed. Here, we studied among-population differences of two parameters reflecting constitutive immunity-phenoloxidase (PO) and lytic activity, using common-garden design on three distantly related moth species represented by populations ranging from northern Finland to Georgia (Caucasus). The larvae were reared at different temperatures and on different host plants under a crossed factors experimental design. Haemolymph samples for measurement of immune status were taken from the larvae strictly synchronously. Clear among-population differences could be shown only for PO activity in one species (elevated activity in the northern populations). There was some indication that the cases of total absence of lytic activity were more common in southern populations. The effects of temperature, host and sex on the immunological traits studied remained highly species specific. Some evidence was found that lytic activity may be involved in mediating trade-offs between immunity and larval growth performance. In contrast, PO activity rarely covaried with fitness-related traits, and neither were the values of PO and lytic activity correlated with each other. The relatively inconsistent nature of the detected patterns suggests that studies on geographic differences in immunological traits should involve multiple species, and rely on several immunological indices if general trends are a point of interest.
Collapse
Affiliation(s)
- Hendrik Meister
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Siiri-Lii Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|