1
|
Nie HY, Wen JR, Liao HX, Zhao J, Xu FR, Liu XY, Dong X. 4-Allylanisole Promotes the Root Growth of Arabidopsis thaliana by Inhibiting AtHDA9 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8978-8989. [PMID: 40153710 DOI: 10.1021/acs.jafc.4c11582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
This study elucidates the epigenetic mechanism through which 4-allylanisole, a key monoterpene in Foeniculum vulgare essential oils, regulates plant growth. Integrated RNA-Seq and ChIP-Seq analyses revealed 4-allylanisole enhances histone H3K9 acetylation (H3K9ac) at promoters of growth-related genes in Arabidopsis thaliana, concomitant with improved root development and biomass accumulation. Biochemical assays identified AtHDA9 histone deacetylase as the molecular target, showing 4-allylanisole directly inhibits its enzymatic activity through stable interactions with catalytic residues (Asp95, Phe202, Leu268, His174) confirmed by molecular docking and dynamics simulations. The suppressed deacetylation elevated endogenous indole-3-acetic acid (IAA) levels and amplified auxin signaling transduction. These findings establish a dual mechanism whereby 4-allylanisole epigenetically activates growth-related gene expression through H3K9ac accumulation while coordinately enhancing IAA biosynthesis and signaling. This work provides the first evidence of plant-derived volatile compounds regulating growth through histone modification-auxin crosstalk, proposing novel strategies for developing eco-friendly plant growth regulators.
Collapse
Affiliation(s)
- Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Xiao-Yun Liu
- College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin/Jianghan University, Wuhan 430056, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| |
Collapse
|
2
|
Škyvarová D, Brunoni F, Žukauskaitė A, Pěnčík A. Glycosylation pathways in auxin homeostasis. PHYSIOLOGIA PLANTARUM 2025; 177:e70170. [PMID: 40133767 PMCID: PMC11936858 DOI: 10.1111/ppl.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Auxin glycosylation plays a fundamental role in the regulation of auxin homeostasis, activity, and transport, contributing to the dynamic control of plant growth and development. Glycosylation enhances auxin stability, solubility, and storage capacity, serving as a key mechanism for both temporary inactivation and long-term storage of auxin molecules. Specific glycosyltransferases are critical for this process, catalyzing glycosylation at either the carboxyl group or the nitrogen atom of the indole ring. The storage roles of glycosylated auxins, such as IAA-N-Glc, have been shown to be essential during embryogenesis and seed germination, while irreversible conjugation into catabolic products helps to maintain auxin homeostasis in vegetative tissues. This review highlights the diversity, enzymatic specificity, and physiological relevance of auxin glycosylation pathways, including a frequently overlooked N-glycosylation, underscoring its importance in the complex network of auxin metabolism.
Collapse
Affiliation(s)
- Daniela Škyvarová
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Federica Brunoni
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
3
|
Liu Q, Zhao Y, Yang J, Xiao F, Wang X. Study on the physiological mechanism and transcriptional regulatory network of early fruit development in Gleditsia sinensis Lam. (Fabaceae). BMC PLANT BIOLOGY 2024; 24:1213. [PMID: 39701956 DOI: 10.1186/s12870-024-05895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization. A comprehensive understanding of the cellular events, physiological and biochemical processes, and molecular regulatory mechanisms underlying fruit initiation and early fruit development is essential for enhancing yield. However, such information for G. sinensis remains largely unexplored. RESULTS In this study, we identified that the early fruit development process in G. sinensis can be categorized into three distinct stages: pollination, the critical period of fertilization, and the initial fruit development followed by subsequent growth. The dynamic changes in non-structural carbohydrates and endogenous plant hormones within the ovary were found to play a significant role during fruit set and the early stages of fruit development. Additionally, the high activity of gibberellin, cytokinin, and sucrose-metabolizing enzymes in the ovary was conducive to early fruit development. Furthermore, we generated high-resolution spatiotemporal gene expression profiles in the ovary from the stage of efflorescence to early fruit development. Comparative transcriptomics and weighted gene co-expression network analysis revealed specific genes and gene modules predominant at distinct developmental stages, thereby highlighting unique genetic programming. Overall, we identified the potential regulatory network governing fruit initiation and subsequent development, as well as the sets of candidate genes involved, based on the aforementioned results. CONCLUSIONS The results offer a valuable reference and resource for the application of exogenous substances, such as hormones and sugars, during critical fruit development periods, and for the development of molecular tools aimed at improving yield.
Collapse
Affiliation(s)
- Qiao Liu
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Yang Zhao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Ju Yang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Feng Xiao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China.
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Moosavi SF, Haghighi M, Mirmazloum I. Interacting effects of phytohormones and fruit pruning on the morpho-physiological and biochemical attributes of bell pepper. Sci Rep 2024; 14:14801. [PMID: 38926600 PMCID: PMC11208527 DOI: 10.1038/s41598-024-65855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024] Open
Abstract
Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.
Collapse
Affiliation(s)
- Sayedeh Fatemeh Moosavi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118, Budapest, Hungary.
| |
Collapse
|
5
|
Tidy A, Abu Bakar N, Carrier D, Kerr ID, Hodgman C, Bennett MJ, Swarup R. Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2. PLANT PHYSIOLOGY 2023; 194:422-433. [PMID: 37776522 PMCID: PMC10756756 DOI: 10.1093/plphys/kiad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 10/02/2023]
Abstract
AUXIN RESISTANCE4 (AXR4) regulates the trafficking of auxin influx carrier AUXIN1 (AUX1), a plasma-membrane protein that predominantly localizes to the endoplasmic reticulum (ER) in the absence of AXR4. In Arabidopsis (Arabidopsis thaliana), AUX1 is a member of a small multigene family comprising 4 highly conserved genes-AUX1, LIKE-AUX1 (LAX1), LAX2, and LAX3. We report here that LAX2 also requires AXR4 for correct localization to the plasma membrane. AXR4 is a plant-specific protein and contains a weakly conserved α/β hydrolase fold domain that is found in several classes of lipid hydrolases and transferases. We have previously proposed that AXR4 may either act as (i) a post-translational modifying enzyme through its α/β hydrolase fold domain or (ii) an ER accessory protein, which is a special class of ER protein that regulates targeting of their cognate partner proteins. Here, we show that AXR4 is unlikely to act as a post-translational modifying enzyme as mutations in several highly conserved amino acids in the α/β hydrolase fold domain can be tolerated and active site residues are missing. We also show that AUX1 and AXR4 physically interact with each other and that AXR4 reduces aggregation of AUX1 in a dose-dependent fashion. Our results suggest that AXR4 acts as an ER accessory protein. A better understanding of AXR4-mediated trafficking of auxin transporters in crop plants will be crucial for improving root traits (designer roots) for better acquisition of water and nutrients for sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Alison Tidy
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Norliza Abu Bakar
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - David Carrier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Charlie Hodgman
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Ranjan Swarup
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
6
|
James ME, Allsopp RN, Groh JS, Kaur A, Wilkinson MJ, Ortiz-Barrientos D. Uncovering the genetic architecture of parallel evolution. Mol Ecol 2023; 32:5575-5589. [PMID: 37740681 DOI: 10.1111/mec.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/25/2023]
Abstract
Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.e. the ability of a plant to bend in response to gravity) in multiple populations of the Senecio lautus species complex in Australia. We use a powerful approach which combines parallel population genomics with association mapping in a Multiparent Advanced Generation Inter-Cross (MAGIC) population to break down genetic and trait correlations to reveal how adaptive traits evolve during replicated evolution. We sequenced auxin and shoot gravitropism-related gene regions in 80 individuals from six natural populations (three parallel divergence events) and 133 individuals from a MAGIC population derived from two of the recently diverged natural populations. We show that artificial tail selection on gravitropism in the MAGIC population recreates patterns of parallel divergence in the auxin pathway in the natural populations. We reveal a set of 55 auxin gene regions that have evolved repeatedly during the evolution of the species, of which 50 are directly associated with gravitropism divergence in the MAGIC population. Our work creates a strong link between patterns of genomic divergence and trait variation contributing to replicated evolution by natural selection, paving the way to understand the origin and maintenance of adaptations in natural populations.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Robin N Allsopp
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Avneet Kaur
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
7
|
Liao R, Wei X, Zhao Y, Xie Z, Nath UK, Yang S, Su H, Wang Z, Li L, Tian B, Wei F, Yuan Y, Zhang X. bra-miR167a Targets ARF8 and Negatively Regulates Arabidopsis thaliana Immunity against Plasmodiophora brassicae. Int J Mol Sci 2023; 24:11850. [PMID: 37511608 PMCID: PMC10380745 DOI: 10.3390/ijms241411850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.
Collapse
Affiliation(s)
- Rujiao Liao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| |
Collapse
|
8
|
Cao D, Chabikwa T, Barbier F, Dun EA, Fichtner F, Dong L, Kerr SC, Beveridge CA. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. PLANT PHYSIOLOGY 2023; 192:1420-1434. [PMID: 36690819 PMCID: PMC10231355 DOI: 10.1093/plphys/kiad034] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance, was originally thought to be mediated by auxin. Recently, the importance of the shoot tip sink strength during apical dominance has re-emerged with recent studies highlighting roles for sugars in promoting branching. This raises many unanswered questions on the relative roles of auxin and sugars in apical dominance. Here we show that auxin depletion after decapitation is not always the initial trigger of rapid cytokinin (CK) increases in buds that are instead correlated with enhanced sugars. Auxin may also act through strigolactones (SLs) which have been shown to suppress branching after decapitation, but here we show that SLs do not have a significant effect on initial bud outgrowth after decapitation. We report here that when sucrose or CK is abundant, SLs are less inhibitory during the bud release stage compared to during later stages and that SL treatment rapidly inhibits CK accumulation in pea (Pisum sativum) axillary buds of intact plants. After initial bud release, we find an important role of gibberellin (GA) in promoting sustained bud growth downstream of auxin. We are, therefore, able to suggest a model of apical dominance that integrates auxin, sucrose, SLs, CKs, and GAs and describes differences in signalling across stages of bud release to sustained growth.
Collapse
Affiliation(s)
- Da Cao
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tinashe Chabikwa
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Franziska Fichtner
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lili Dong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Yang Q, Yuan C, Cong T, Zhang Q. The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091879. [PMID: 37176937 PMCID: PMC10181267 DOI: 10.3390/plants12091879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
Collapse
Affiliation(s)
- Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tianci Cong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Si C, Zeng D, da Silva JAT, Qiu S, Duan J, Bai S, He C. Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC Genomics 2023; 24:199. [PMID: 37055721 PMCID: PMC10099678 DOI: 10.1186/s12864-023-09263-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND The auxin indole-3-acetic acid (IAA) is a vital phytohormone that influences plant growth and development. Our previous work showed that IAA content decreased during flower development in the medicinally important orchid Dendrobium officinale, while Aux/IAA genes were downregulated. However, little information about auxin-responsive genes and their roles in D. officinale flower development exists. RESULTS This study validated 14 DoIAA and 26 DoARF early auxin-responsive genes in the D. officinale genome. A phylogenetic analysis classified the DoIAA genes into two subgroups. An analysis of cis-regulatory elements indicated that they were related by phytohormones and abiotic stresses. Gene expression profiles were tissue-specific. Most DoIAA genes (except for DoIAA7) were sensitive to IAA (10 μmol/L) and were downregulated during flower development. Four DoIAA proteins (DoIAA1, DoIAA6, DoIAA10 and DoIAA13) were mainly localized in the nucleus. A yeast two-hybrid assay showed that these four DoIAA proteins interacted with three DoARF proteins (DoARF2, DoARF17, DoARF23). CONCLUSIONS The structure and molecular functions of early auxin-responsive genes in D. officinale were investigated. The DoIAA-DoARF interaction may play an important role in flower development via the auxin signaling pathway.
Collapse
Affiliation(s)
- Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Shengxiang Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Song Bai
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
11
|
Mechanical Stimulation Decreases Auxin and Gibberellic Acid Synthesis but Does Not Affect Auxin Transport in Axillary Buds; It Also Stimulates Peroxidase Activity in Petunia × atkinsiana. Molecules 2023; 28:molecules28062714. [PMID: 36985685 PMCID: PMC10053601 DOI: 10.3390/molecules28062714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Thigmomorphogenesis (or mechanical stimulation-MS) is a term created by Jaffe and means plant response to natural stimuli such as the blow of the wind, strong rain, or touch, resulting in a decrease in length and an increase of branching as well as an increase in the activity of axillary buds. MS is very well known in plant morphology, but physiological processes controlling plant growth are not well discovered yet. In the current study, we tried to find an answer to the question if MS truly may affect auxin synthesis or transport in the early stage of plant growth, and which physiological factors may be responsible for growth arrest in petunia. According to the results of current research, we noticed that MS affects plant growth but does not block auxin transport from the apical bud. MS arrests IAA and GA3 synthesis in MS-treated plants over the longer term. The main factor responsible for the thickening of cell walls and the same strengthening of vascular tissues and growth arrestment, in this case, is peroxidase (POX) activity, but special attention should be also paid to AGPs as signaling molecules which also are directly involved in growth regulation as well as in cell wall modifications.
Collapse
|
12
|
Seedlessness Trait and Genome Editing—A Review. Int J Mol Sci 2023; 24:ijms24065660. [PMID: 36982733 PMCID: PMC10057249 DOI: 10.3390/ijms24065660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.
Collapse
|
13
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
14
|
Xu H, Yang X, Zhang Y, Wang H, Wu S, Zhang Z, Ahammed GJ, Zhao C, Liu H. CRISPR/Cas9-mediated mutation in auxin efflux carrier OsPIN9 confers chilling tolerance by modulating reactive oxygen species homeostasis in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:967031. [PMID: 35979077 PMCID: PMC9376474 DOI: 10.3389/fpls.2022.967031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phytohormone auxin plays a vital role in plant development and responses to environmental stresses. The spatial and temporal distribution of auxin mainly relies on the polar distribution of the PIN-FORMED (PIN) auxin efflux carriers. In this study, we dissected the functions of OsPIN9, a monocot-specific auxin efflux carrier gene, in modulating chilling tolerance in rice. The results showed that OsPIN9 expression was dramatically and rapidly suppressed by chilling stress (4°C) in rice seedlings. The homozygous ospin9 mutants were generated by CRISPR/Cas9 technology and employed for further research. ospin9 mutant roots and shoots were less sensitive to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA), indicating the disturbance of auxin homeostasis in the ospin9 mutants. The chilling tolerance assay showed that ospin9 mutants were more tolerant to chilling stress than wild-type (WT) plants, as evidenced by increased survival rate, decreased membrane permeability, and reduced lipid peroxidation. However, the expression of well-known C-REPEAT BINDING FACTOR (CBF)/DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 1 (DREB)-dependent transcriptional regulatory pathway and Ca2+ signaling genes was significantly induced only under normal conditions, implying that defense responses in ospin9 mutants have probably been triggered in advance under normal conditions. Histochemical staining of reactive oxygen species (ROS) by 3'3-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) showed that ospin9 mutants accumulated more ROS than WT at the early stage of chilling stress, while less ROS was observed at the later stage of chilling treatment in ospin9 mutants. Consistently, antioxidant enzyme activity, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), improved significantly during the early chilling treatments, while was kept similar to WT at the later stage of chilling treatment, implying that the enhanced chilling tolerance of ospin9 mutants is mainly attributed to the earlier induction of ROS and the improved ROS scavenging ability at the subsequent stages of chilling treatment. In summary, our results strongly suggest that the OsPIN9 gene regulates chilling tolerance by modulating ROS homeostasis in rice.
Collapse
Affiliation(s)
- Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Xiaoyi Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yanwen Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Shiyang Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Zhuoyan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
15
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
16
|
Schroeder MM, Gomez MY, McLain N, Gachomo EW. Bradyrhizobium japonicum IRAT FA3 Alters Arabidopsis thaliana Root Architecture via Regulation of Auxin Efflux Transporters PIN2, PIN3, PIN7, and ABCB19. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:215-229. [PMID: 34941379 DOI: 10.1094/mpmi-05-21-0118-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Beneficial rhizobacteria can stimulate changes in plant root development. Although root system growth is mediated by multiple factors, the regulated distribution of the phytohormone auxin within root tissues plays a principal role. Auxin transport facilitators help to generate the auxin gradients and maxima that determine root structure. Here, we show that the plant-growth-promoting rhizobacterial strain Bradyrhizobium japonicum IRAT FA3 influences specific auxin efflux transporters to alter Arabidopsis thaliana root morphology. Gene expression profiling of host transcripts in control and B. japonicum-inoculated roots of the wild-type A. thaliana accession Col-0 confirmed upregulation of PIN2, PIN3, PIN7, and ABCB19 with B. japonicum and identified genes potentially contributing to a diverse array of auxin-related responses. Cocultivation of the bacterium with loss-of-function auxin efflux transport mutants revealed that B. japonicum requires PIN3, PIN7, and ABCB19 to increase lateral root development and utilizes PIN2 to reduce primary root length. Accelerated lateral root primordia production due to B. japonicum was not observed in single pin3, pin7, or abcb19 mutants, suggesting independent roles for PIN3, PIN7, and ABCB19 during the plant-microbe interaction. Our work demonstrates B. japonicum's influence over host transcriptional reprogramming during plant interaction with this beneficial microbe and the subsequent alterations to root system architecture.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mercedes M Schroeder
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Melissa Y Gomez
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Nathan McLain
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| |
Collapse
|
17
|
Lo SF, Chatterjee J, Biswal AK, Liu IL, Chang YP, Chen PJ, Wanchana S, Elmido-Mabilangan A, Nepomuceno RA, Bandyopadhyay A, Hsing YI, Quick WP. Closer vein spacing by ectopic expression of nucleotide-binding and leucine-rich repeat proteins in rice leaves. PLANT CELL REPORTS 2022; 41:319-335. [PMID: 34837515 PMCID: PMC8850240 DOI: 10.1007/s00299-021-02810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a "Kranz-like" anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.
Collapse
Affiliation(s)
- Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| | - Jolly Chatterjee
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Akshaya K Biswal
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz km. 45, El Batán, Texcoco, CP 56237, México
| | - I-Lun Liu
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Yu-Pei Chang
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Pei-Jing Chen
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Samart Wanchana
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines
| | | | - Robert A Nepomuceno
- National Institute of Molecular Biology and Biotechnology, University of the Philippines (BIOTECH-UPLB), Los Baños, 4031, Philippines
| | | | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - William Paul Quick
- C4 Rice Centre, International Rice Research Institute (IRRI), Los Baños, Philippines.
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
18
|
Li L, Zhang H, Chai X, Lv J, Hu L, Wang J, Li Z, Yu J, Liu Z. Genome-wide identification and expression analysis of the MYC transcription factor family and its response to sulfur stress in cabbage (Brassica oleracea L.). Gene 2021; 814:146116. [PMID: 34942321 DOI: 10.1016/j.gene.2021.146116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth, biological and abiotic stress. Recent studies have revealed that some MYCs are involved in the synthesis of sulfur-containing secondary metabolites. Cabbage, as a typical sulfur-loving crop and rich in sulfur-containing secondary metabolites, the regulatory relationship between sulfur stress and MYC gene family, related reports are relatively rare. In this study, we conducted the first genome-wide analysis of the MYC transcription factor family of cabbage and identified 17 BoMYC genes. Homology of the 17 BoMYC genes, 12 Arabidopsis, 12 Chinese cabbage, 8 wheat and 21 maize MYC were analyzed using the phylogenetic analysis. Meanwhile, chromosome locations, physical and chemical characteristics, gene structures, conserved motif, cis-element, specific expression in different tissues were studied. Finally, we analyzed the expression of the BoMYC gene under sulfur stress and its GO annotation and KEGG enrichment analysis, determined the expression of the BoMYC gene under hormone treatment and the growth index, photosynthetic capacity and hormone content in the leaves. This study is of great significance for functional identification and revealed the effect of S on BoMYC transcription factors.
Collapse
Affiliation(s)
- Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Hui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Chai
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaixi, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhuang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
19
|
Zhao J, Bi W, Zhao S, Su J, Li M, Ma L, Yu X, Wang X. Wheat Apoplast-Localized Lipid Transfer Protein TaLTP3 Enhances Defense Responses Against Puccinia triticina. FRONTIERS IN PLANT SCIENCE 2021; 12:771806. [PMID: 34899796 PMCID: PMC8657149 DOI: 10.3389/fpls.2021.771806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Plant apoplast serves as the frontier battlefield of plant defense in response to different types of pathogens. Many pathogenesis-related (PR) proteins are accumulated in apoplastic space during the onset of plant-pathogen interaction, where they act to suppress pathogen infection. In this study, we found the expression of Triticum aestivum lipid transfer protein 3 (TaLTP3) gene was unregulated during incompatible interaction mediated by leaf rust resistance genes Lr39/41 at the early infection stage. Stable transgenic wheat lines overexpressing TaLTP3 exhibited enhanced resistance to leaf rust pathogen Puccinia triticina. Transcriptome analysis revealed that overexpression of TaLTP3 specifically activated the transcription of pathogenesis-related protein 1a (TaPR1a) and multiple plant hormone pathways, including salicylic acid (SA), jasmonic acid (JA), and auxin, in response to the infection of the model bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Further investigation indicated that TaLTP3 physically associated with wheat TaPR1a protein in the apoplast. Transgenic wheat lines overexpressing TaLTP3 and TaPR1a showed higher accumulations of reactive oxygen species (ROS) during plant defense responses. All these findings suggested that TaLTP3 is involved in wheat resistance against leaf rust pathogen infection and forming a TaLTP3-TaPR1a complex in apoplast against this pathogen, which provides new insights into the functional roles of PR proteins.
Collapse
Affiliation(s)
- Jiaojie Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Weishuai Bi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jun Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Srivastava M, Verma V, Srivastava AK. The converging path of protein SUMOylation in phytohormone signalling: highlights and new frontiers. PLANT CELL REPORTS 2021; 40:2047-2061. [PMID: 34129078 DOI: 10.1007/s00299-021-02732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The intersection of phytohormone signalling pathways with SUMOylation, a key post-translational modification, offers an additional layer of control to the phytohormone signalling for sophisticated regulation of plant development. Plants live in a constantly changing environment that are often challenging for the growth and development of plants. Phytohormones play a critical role in modulating molecular-level changes for enabling plants to resist climatic aberrations. The orchestration of such effective molecular responses entails rapid regulation of phytohormone signalling at transcriptional, translational and post-translational levels. Post-translational modifications have emerged as a key player in modulating hormonal pathways. The current review lays emphasis on the role of SUMOylation, a key post-translational modification, in manipulating individual hormone signalling pathways for better plant adaptability. Here, we discuss the recent advancement in the field and highlights how SUMO targets key signalling intermediates including transcription factors to provide a quick response to different biotic or abiotic stresses, sometimes even prior to changes in hormone levels. The understanding of the convergence of SUMOylation and hormonal pathways will offer an additional layer of control to the phytohormone signalling for an intricate and sophisticated regulation of plant development and can be utilised as a tool to generate climate-resilient crops.
Collapse
Affiliation(s)
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| | - Anjil Kumar Srivastava
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
21
|
Wei X, Yang J, Lei D, Feng H, Yang Z, Wen G, He Z, Zeng W, Zou J. The SlTCP26 promoting lateral branches development in tomato. PLANT CELL REPORTS 2021; 40:1115-1126. [PMID: 33758995 DOI: 10.1007/s00299-021-02680-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The SlTCP26 negatively regulated auxin signal to relieve the apical dominance and suppressed abscisic acid signal to remove the lateral bud dormancy, promoting lateral branches development. Lateral branches formation from lateral buds is a complex regulatory process in higher plants, and the interaction between transcription factors and hormones is indispensable during this process. TCP transcription factors have been reported to regulate lateral branches development, while the detailed function, especially interacting with auxin and ABA during this process, was still ambiguous in tomato. In this study, a branch regulatory gene, SlTCP26, was identified in tomato, and its role along with its interaction to hormones during branch development, as investigated. The results indicated that overexpression of SlTCP26 would promote lateral branches development, and could suppress the expressing of the genes associated with IAA signaling, presenting similar effects in decapitated plants. Conversely, the exogenous IAA application could inhibit the expression of SlTCP26. Furthermore, the expressing of the ABA signaling-related genes was inhibited in SlTCP26 overexpressed tomato, similar to that in decapitated tomato. Our findings suggested that SlTCP26 may be a crucial adjuster for synergistic action between ABA and IAA signals during the development of lateral branches, and it could promote the lateral buds grow into lateral shoots, via inhibiting IAA signal to relieve the apical dominance and suppressing ABA signal to remove the lateral bud dormancy. Our study provided some insights for the development of tomato lateral branches to understand the apical dominance regulatory network.
Collapse
Affiliation(s)
- Xiaoying Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Dou Lei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Hao Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Zhenan Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Guoqin Wen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Zhuoyuan He
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Wenjing Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Jian Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China.
| |
Collapse
|
22
|
Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nat Commun 2021; 12:1657. [PMID: 33712581 PMCID: PMC7954861 DOI: 10.1038/s41467-021-21802-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.
Collapse
|
23
|
Chang S, Chen Y, Jia S, Li Y, Liu K, Lin Z, Wang H, Chu Z, Liu J, Xi C, Zhao H, Han S, Wang Y. Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches. PLoS Genet 2020; 16:e1009157. [PMID: 33108367 PMCID: PMC7647119 DOI: 10.1371/journal.pgen.1009157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/06/2020] [Accepted: 09/26/2020] [Indexed: 01/25/2023] Open
Abstract
In rice (Oryza sativa), caryopses located on proximal secondary branches (CSBs) have smaller grain size and poorer grain filling than those located on apical primary branches (CPBs), greatly limiting grain yield. However, the molecular mechanism responsible for developmental differences between CPBs and CSBs remains elusive. In this transcriptome-wide expression study, we identified the gene Aspartic Protease 1 (OsAsp1), which reaches an earlier and higher transcriptional peak in CPBs than in CSBs after pollination. Disruption of OsAsp1 expression in the heterozygous T-DNA line asp1-1+/–eliminated developmental differences between CPBs and CSBs. OsAsp1 negatively regulated the transcriptional inhibitor of auxin biosynthesis, OsTAA1 transcriptional inhibition factor 1 (OsTIF1), to preserve indole-3-acetic acid (IAA) apical dominance in CPBs and CSBs. IAA also facilitated OsTIF1 translocation from the endoplasmic reticulum (ER) to the nucleus by releasing the interaction of OsTIF1 with OsAsp1 to regulate caryopses IAA levels via a feedback loop. IAA promoted transcription of OsAsp1 through MADS29 to maintain an OsAsp1 differential between CPBs and CSBs during pollination. Together, these findings provide a mechanistic explanation for the distributed auxin differential between CPBs and CSBs to regulate distinct caryopses development in different rice branches and potential targets for engineering yield improvement in crops. Rice is a major food crop and an important model plant. Compared with caryopses on apical primary branches (CPBs) of rice, those located on proximal secondary branches (CSBs) display smaller grains and poor grain filling, which greatly limit rice yield potential fulfilment, especially among ‘super’ rice cultivars. In this study, we demonstrated that high indole-3-acetic (IAA) levels upregulated Aspartic Protease 1 (OsAsp1) transcription via MADS29 post-pollination to produce higher OsAsp1 levels in CPBs than in CSBs. OsAsp1 then interacted with OsTAA1 transcriptional inhibition factor 1 (OsTIF1) in the endoplasmic reticulum (ER) to dispel OsTIF1 transcriptional inhibition of OsTAA1, causing IAA content to peak in CPBs at 5 days after fertilisation (DAF). IAA facilitated OsTIF1 translocation from the ER to the nucleus by reducing its interaction with OsAsp1 as feedback regulation of IAA levels in caryopses. Thus, differential auxin levels between CPBs and CSBs are determined by the OsAsp1-OsTIF1 complex, and are essential for the distinct development of CPBs and CSBs, providing potential targets for engineering yield improvement in crops.
Collapse
Affiliation(s)
- Shu Chang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Yixing Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Yihao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Kun Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Zhouhua Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Hanmeng Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Zhilin Chu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
- Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Qinghai, China
- * E-mail: (SH); (YW)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
- Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Qinghai, China
- * E-mail: (SH); (YW)
| |
Collapse
|
24
|
Guo W, Han L, Li X, Wang H, Mu P, Lin Q, Liu Q, Zhang Y. Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci Rep 2020; 10:13454. [PMID: 32778714 PMCID: PMC7418024 DOI: 10.1038/s41598-020-70230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Seed germination is the first stage in wheat growth and development, directly affecting grain yield and quality. As an important post-translation modification, lysine acetylation participates in diverse biological functions. However, little is known regarding the quantitative acetylproteome characterization during wheat seed germination. In this study, we generated the first comparative proteomes and lysine acetylomes during wheat seed germination. In total, 5,639 proteins and 1,301 acetylated sites on 722 proteins were identified at 0, 12 and 24 h after imbibitions. Several particularly preferred amino acids were found near acetylation sites, including KacS, KacT, KacK, KacR, KacH, KacF, KacN, Kac*E, FKac and Kac*D, in the embryos during seed germination. Among them, KacH, KacF, FKac and KacK were conserved in wheat. Biosynthetic process, transcriptional regulation, ribosome and proteasome pathway related proteins were significantly enriched in both differentially expressed proteins and differentially acetylated proteins through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We also revealed that histone acetylation was differentially involved in epigenetic regulation during seed germination. Meanwhile, abscisic acid and stress related proteins were found with acetylation changes. In addition, we focused on 8 enzymes involved in carbohydrate metabolism, and found they were differentially acetylated during seed germination. Finally, a putative metabolic pathway was proposed to dissect the roles of protein acetylation during wheat seed germination. These results not only demonstrate that lysine acetylation may play key roles in seed germination of wheat but also reveal insights into the molecular mechanism of seed germination in this crop.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Liping Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ping Mu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qi Lin
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qingchang Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.,Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
25
|
Abstract
The root meristem-one of the plant's centers of continuous growth-is a conveyer belt in which cells of different identities are pushed through gradients along the root's longitudinal axis. An auxin gradient has long been implicated in controlling the progression of cell states in the root meristem. Recent work has shown that a PLETHORA (PLT) protein transcription factor gradient, which is under a delayed auxin response, has a dose-dependent effect on the differentiation state of cells. The direct effect of auxin concentration on differential transcriptional outputs remains unclear. Genomic and other analyses of regulatory sequences show that auxin responses are likely controlled by combinatorial inputs from transcription factors outside the core auxin signaling pathway. The passage through the meristem exposes cells to varying positional signals that could help them interpret auxin inputs independent of gradient effects. One open question is whether cells process information from the changes in the gradient over time as they move through the auxin gradient.
Collapse
Affiliation(s)
- Bruno Guillotin
- New York University, The Department of Biology, The Center for Genomics and Systems Biology, New York, NY, United States
| | - Kenneth D Birnbaum
- New York University, The Department of Biology, The Center for Genomics and Systems Biology, New York, NY, United States.
| |
Collapse
|
26
|
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20246120. [PMID: 31817249 PMCID: PMC6941128 DOI: 10.3390/ijms20246120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/26/2022] Open
Abstract
The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.
Collapse
|
27
|
Li Z, Li P, Zhang J. Expression analysis of PIN-formed auxin efflux transporter genes in maize. PLANT SIGNALING & BEHAVIOR 2019; 14:1632689. [PMID: 31208285 PMCID: PMC6768264 DOI: 10.1080/15592324.2019.1632689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The local auxin gradient has a decisive role in auxin signaling, auxin-mediated development and abiotic stress response. PINFORMED (PIN)-formed auxin efflux transporters are very important for determining the direction of auxin transport and maintaining a local auxin concentration gradient. In this study, all candidate PIN genes from the current maize genome sequence database were identified and categorized based on amino acid similarity. The expression pattern of these PINs was analyzed in maize inbred line DH4866, which was selected from the progeny of 7922 and 478, and served as the female parent line of many hybrids in Shandong Denghai Seeds Co Ltd (China). Tissue-specific expression patterns indicated that they may have different roles in different stages of development, especially in the root system. Promoter motif analysis of four maize PIN1 genes and their expression levels in response to NAA, low phosphate levels and PEG treatment indicated that ZmPIN1a and ZmPIN1b may contribute more than ZmPIN1c and ZmPIN1d to root growth regulation and abiotic stress response. Analysis of the ZmPIN1a and ZmPIN1b transgenic lines (in DH4866) indicated that they have different effects on root development and growth, with ZmPIN1a increasing the number of lateral roots and inhibiting their elongation to form a developed root system, while ZmPIN1b increases root biomass by promoting the growth of both lateral and seminal roots. These results indicated that maize PIN1 genes function in coordination during maize development and in response to abiotic stress.
Collapse
Affiliation(s)
- Zhaoxia Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Peng Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Juren Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
28
|
Fu X, Shi Z, Jiang Y, Jiang L, Qi M, Xu T, Li T. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC PLANT BIOLOGY 2019; 19:233. [PMID: 31159738 PMCID: PMC6547480 DOI: 10.1186/s12870-019-1840-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/20/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Auxin conjugates are hydrolyzed to release free auxin to ensure defined cellular auxin levels or gradients within tissues for proper development or response to environmental signals. The auxin concentration in the abscission zone (AZ) is thought to play an important role in mediating the abscission lag phase. RESULTS In this study, the full cDNA sequences of seven tomato ILR1-like SlILL genes were identified and characterized, All SlILLs were found to have auxin conjugate hydrolysis activity. The effects of different auxin conjugates on abscission identified IAA-Ile as a candidate to determine the auxin conjugate and auxin conjugate hydrolysis functions in abscission. Treatment of pedicel explants with IAA-Ile for different times showed that application before 6 h could effectively delay abscission. IAA-Ile pre-incubation for 2 h was sufficient to inhibit abscission. These results showed that there is not sufficient auxin conjugates in the AZ to inhibit abscission, and the optimal time to inhibit abscission by the application of exogenous auxin conjugates is before 6 h. Treatment with cycloheximide (CHX, a protein biosynthesis inhibitor) indicated that de novo synthesis of auxin conjugate hydrolases is also required to delay abscission. During abscission, SlILL1, 5, and 6 showed abscission-related gene expression patterns, and SlILL1, 3, 5, 6, and 7 showed increasing expression trends, which collectively might contribute to delay abscission. Silencing the expression of SlILL1, 3, 5, 6, and 7 using virus-induced gene silencing showed that SlILL1, 5, and 6 are major mediators of abscission in tomato. CONCLUSIONS In the process of abscission, auxin inhibition is concentration dependent, and the concentration of auxin in the AZ was regulated by hydrolyzed auxin conjugates. SlILR1, 5, and 6 play a key role in flower pedicel abscission.
Collapse
Affiliation(s)
- Xin Fu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Zihang Shi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Yun Jiang
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Lingling Jiang
- Shenyang Entry-exit Inspection and Quarantine Bureau, No.433 Danan street, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Mingfang Qi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Tao Xu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
29
|
Pu Y, Walley JW, Shen Z, Lang MG, Briggs SP, Estelle M, Kelley DR. Quantitative Early Auxin Root Proteomics Identifies GAUT10, a Galacturonosyltransferase, as a Novel Regulator of Root Meristem Maintenance. Mol Cell Proteomics 2019; 18:1157-1170. [PMID: 30918009 PMCID: PMC6553934 DOI: 10.1074/mcp.ra119.001378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 11/25/2022] Open
Abstract
Auxin induces rapid gene expression changes throughout root development. How auxin-induced transcriptional responses relate to changes in protein abundance is not well characterized. This report identifies early auxin responsive proteins in roots at 30 min and 2 h after hormone treatment using a quantitative proteomics approach in which 3,514 proteins were reliably quantified. A comparison of the >100 differentially expressed proteins at each the time point showed limited overlap, suggesting a dynamic and transient response to exogenous auxin. Several proteins with established roles in auxin-mediated root development exhibited altered abundance, providing support for this approach. While novel targeted proteomics assays demonstrate that all six auxin receptors remain stable in response to hormone. Additionally, 15 of the top responsive proteins display root and/or auxin response phenotypes, demonstrating the validity of these differentially expressed proteins. Auxin signaling in roots dictates proteome reprogramming of proteins enriched for several gene ontology terms, including transcription, translation, protein localization, thigmatropism, and cell wall modification. In addition, we identified auxin-regulated proteins that had not previously been implicated in auxin response. For example, genetic studies of the auxin responsive protein galacturonosyltransferase 10 demonstrate that this enzyme plays a key role in root development. Altogether these data complement and extend our understanding of auxin response beyond that provided by transcriptome studies and can be used to uncover novel proteins that may mediate root developmental programs.
Collapse
Affiliation(s)
- Yunting Pu
- From the Departments of ‡Genetics, Development and Cell Biology
| | - Justin W Walley
- ¶Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Zhouxin Shen
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Michelle G Lang
- From the Departments of ‡Genetics, Development and Cell Biology
| | - Steven P Briggs
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Mark Estelle
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Dior R Kelley
- From the Departments of ‡Genetics, Development and Cell Biology,
| |
Collapse
|
30
|
Salazar R, Pollmann S, Morales-Quintana L, Herrera R, Caparrós-Ruiz D, Ramos P. In seedlings of Pinus radiata, jasmonic acid and auxin are differentially distributed on opposite sides of tilted stems affecting lignin monomer biosynthesis and composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:215-223. [PMID: 30576980 DOI: 10.1016/j.plaphy.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
Plants respond to the loss of vertical growth re-orientating their affected organs. In trees, this phenomenon has received the scientific attention due to its importance for the forestry industry. Nowadays it is accepted that auxin distribution is involved in the modulation of the tilting response, but how this distribution is controlled is not fully clear. Auxin transporters that determine the spatio-temporal auxin distribution in radiate pine seedlings exposed to 45° of tilting were identified. Additionally, based on indications for an intimate plant hormone crosstalk in this process, IAA and JA contents were evaluated. The experiments revealed that expression of the auxin transporters was down-regulated in the upper half of the tilted stem, while being induced in the lower half. Moreover, transporter-coding genes were first induced at the apical zone of the stem. IAA was consistently redistributed toward the lower half, which is in accordance with the expression profile of the auxin transporters. In contrast, JA was mainly accumulated in the upper half of tilted stems. Finally, lignin content and monomeric composition were analyzed in both sides of stem and along the time course of tilting. As expected, lignin accumulation was higher at the lower half of stem at longer times of tilting. However, the most marked difference was the accumulation of the H-lignin monomer in the lower half, while the G-lignin unit was more dominant in the upper half. Here, we provide detailed insight in the distribution of IAA and JA, affecting the lignin composition during the tilting response in Pinus radiata seedlings.
Collapse
Affiliation(s)
- Romina Salazar
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Chile
| | - Raul Herrera
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile
| | - David Caparrós-Ruiz
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193, Cerdanyola del Valles, Barcelona, Spain
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile.
| |
Collapse
|
31
|
Swarup R, Bhosale R. Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1306. [PMID: 31719828 PMCID: PMC6827439 DOI: 10.3389/fpls.2019.01306] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/19/2019] [Indexed: 05/06/2023]
Abstract
Plant hormone auxin regulates several aspects of plant growth and development. Auxin is predominantly synthesized in the shoot apex and developing leaf primordia and from there it is transported to the target tissues e.g. roots. Auxin transport is polar in nature and is carrier-mediated. AUXIN1/LIKE-AUX1 (AUX1/LAX) family members are the major auxin influx carriers whereas PIN-FORMED (PIN) family and some members of the P-GLYCOPROTEIN/ATP-BINDING CASSETTE B4 (PGP/ABCB) family are major auxin efflux carriers. AUX1/LAX auxin influx carriers are multi-membrane spanning transmembrane proteins sharing similarity to amino acid permeases. Mutations in AUX1/LAX genes result in auxin related developmental defects and have been implicated in regulating key plant processes including root and lateral root development, root gravitropism, root hair development, vascular patterning, seed germination, apical hook formation, leaf morphogenesis, phyllotactic patterning, female gametophyte development and embryo development. Recently AUX1 has also been implicated in regulating plant responses to abiotic stresses. This review summarizes our current understanding of the developmental roles of AUX1/LAX gene family and will also briefly discuss the modelling approaches that are providing new insight into the role of auxin transport in plant development.
Collapse
Affiliation(s)
- Ranjan Swarup
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Center for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Ranjan Swarup,
| | - Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Center for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
32
|
Yuan H, Zhao L, Chen J, Yang Y, Xu D, Tao S, Zheng S, Shen Y, He Y, Shen C, Yan D, Zheng B. Identification and expression profiling of the Aux/IAA gene family in Chinese hickory (Carya cathayensis Sarg.) during the grafting process. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:55-63. [PMID: 29549758 DOI: 10.1016/j.plaphy.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Auxin is an essential regulator in various aspects of organism growth and development. Members of the Aux/IAA family of genes encode short-lived nuclear proteins and mediate the responses of auxin-regulated gene expression. Here, the first identification and characterization of 22 cDNAs encoding the open reading frame of the Aux/IAA family in Chinese hickory (named as CcIAA) has been performed. The proteins encoded by these genes contain four whole or partially conserved domains of the Aux/IAA family. Phylogenetic analysis indicated that CcIAAs were unevenly distributed among eight different subgroups. The spatio-specific expression profiles showed that most of the CcIAAs preferentially expressed in specific tissues. Three CcIAA genes, including CcIAA11, CcIAA27a2 and CcIAAx, were predominantly expressed in stem. The predominant expression of CcIAA genes in stems might play important roles in vascular reconnection during the graft process. Furthermore, expression profiles of Aux/IAA genes during the grafting process of Chinese hickory have been analysed. Our data suggested that 19 CcIAAs were down-regulated and 3 CcIAAs (including CcIAA28, CcIAA8a and CcIAA27b) were induced, indicating their specializations during the grafting process. The involvement of CcIAA genes at the early stage after grafting gives us an opportunity to understand the role of auxin signalling in the grafting process.
Collapse
Affiliation(s)
- Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Shenchen Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Yirui Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China.
| |
Collapse
|
33
|
Root system growth biomimicry for global optimization models and emergent behaviors. Soft comput 2017. [DOI: 10.1007/s00500-016-2297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
O'Connor DL, Elton S, Ticchiarelli F, Hsia MM, Vogel JP, Leyser O. Cross-species functional diversity within the PIN auxin efflux protein family. eLife 2017; 6. [PMID: 29064367 PMCID: PMC5655145 DOI: 10.7554/elife.31804] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023] Open
Abstract
In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. We previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 and PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.
Collapse
Affiliation(s)
- Devin Lee O'Connor
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Elton
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Mon Mandy Hsia
- Western Regional Research Center, USDA-ARS, Albany, United States
| | - John P Vogel
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
O'Connor DL, Elton S, Ticchiarelli F, Hsia MM, Vogel JP, Leyser O. Cross-species functional diversity within the PIN auxin efflux protein family. eLife 2017; 6:e31804. [PMID: 29064367 DOI: 10.7554/elife.31804.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/12/2017] [Indexed: 05/27/2023] Open
Abstract
In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. We previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 and PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.
Collapse
Affiliation(s)
- Devin Lee O'Connor
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Elton
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Mon Mandy Hsia
- Western Regional Research Center, USDA-ARS, Albany, United States
| | - John P Vogel
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Ma L, Wang X, Huang M, Zhang H, Chen H. A novel evolutionary root system growth algorithm for solving multi-objective optimization problems. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2017.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
38
|
Staswick P, Rowe M, Spalding EP, Splitt BL. Jasmonoyl-L-Tryptophan Disrupts IAA Activity through the AUX1 Auxin Permease. FRONTIERS IN PLANT SCIENCE 2017; 8:736. [PMID: 28533791 PMCID: PMC5420569 DOI: 10.3389/fpls.2017.00736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/20/2017] [Indexed: 05/29/2023]
Abstract
Amide-linked conjugates between tryptophan (Trp) and jasmonic (JA) or indole-3-acetic (IAA) acids interfered with gravitropism and other auxin-dependent activities in Arabidopsis, but the mechanism was unclear. To identify structural features necessary for activity several additional Trp conjugates were synthesized. The phenylacetic acid (PAA) conjugate was active, while several others were not. Common features of active conjugates is that they have ring structures that are linked to Trp through an acetic acid side chain, while longer or shorter linkages are inactive or less active. A dominant mutant, called tryptophan conjugate response1-D that is insensitive to JA-Trp, but still sensitive to other active conjugates, was identified and the defect was found to be a substitution of Asn for Asp456 in the C-terminal domain of the IAA cellular permease AUX1. Mutant seedling primary root growth in the absence of added conjugate was 15% less than WT, but otherwise plant phenotype appeared normal. These results suggest that JA-Trp disrupts AUX1 activity, but that endogenous JA-Trp has only a minor role in regulating plant growth. In contrast with IAA- and JA-Trp, which are present at <2 pmole g-1 FW, PAA-Trp was found at about 30 pmole g-1 FW. The latter, or other undiscovered Trp conjugates, may still have important endogenous roles, possibly helping to coordinate other pathways with auxin response.
Collapse
Affiliation(s)
- Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Martha Rowe
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin–Madison, MadisonWI, USA
| | - Bessie L. Splitt
- Department of Botany, University of Wisconsin–Madison, MadisonWI, USA
| |
Collapse
|
39
|
Guillotin B, Etemadi M, Audran C, Bouzayen M, Bécard G, Combier JP. Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom). THE NEW PHYTOLOGIST 2017; 213:1124-1132. [PMID: 27748948 DOI: 10.1111/nph.14246] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/07/2016] [Indexed: 05/06/2023]
Abstract
Root colonization by arbuscular mycorrhizal (AM) fungi is a complex and finely tuned process. Previous studies have shown that, among other plant hormones, auxin plays a role in this process but the specific involvement of Aux/IAAs, the key regulators of auxin responses, is still unknown. In this study, we addressed the role of the tomato Sl-IAA27 during AM symbiosis by using Sl-IAA27-RNAi and pSL-IAA27::GUS stable tomato lines. The data show that Sl-IAA27 expression is up-regulated by the AM fungus and that silencing of Sl-IAA27 has a negative impact on AM colonization. Sl-IAA27-silencing resulted in down-regulation of three genes involved in strigolactone synthesis, NSP1, D27 and MAX1, and treatment of Sl-IAA27-silenced plants with the strigolactone analog GR24 complemented their mycorrhizal defect phenotype. Overall, the study identified an Aux/IAA gene as a new component of the signaling pathway controlling AM fungal colonization in tomato. This gene is proposed to control strigolactone biosynthesis via the regulation of NSP1.
Collapse
Affiliation(s)
- Bruno Guillotin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UMR5546, CNRS, UPS, F-31326, Castanet-Tolosan, France
| | - Mohammad Etemadi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UMR5546, CNRS, UPS, F-31326, Castanet-Tolosan, France
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, INP-ENSA Toulouse, Avenue de l'Agrobiopole BP 32607, F-31326, Castanet-Tolosan, France
| | - Corinne Audran
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, INP-ENSA Toulouse, Avenue de l'Agrobiopole BP 32607, F-31326, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France
| | - Mondher Bouzayen
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, INP-ENSA Toulouse, Avenue de l'Agrobiopole BP 32607, F-31326, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UMR5546, CNRS, UPS, F-31326, Castanet-Tolosan, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UMR5546, CNRS, UPS, F-31326, Castanet-Tolosan, France
| |
Collapse
|
40
|
Ni M, Zhang L, Shi YF, Wang C, Lu Y, Pan J, Liu JZ. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2. FRONTIERS IN PLANT SCIENCE 2017; 8:1988. [PMID: 29218054 PMCID: PMC5704370 DOI: 10.3389/fpls.2017.01988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
S-nitrosoglutathione reductase (GSNOR1) is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM)-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN) proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA) bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.
Collapse
Affiliation(s)
- Min Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Lei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yiran Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jian-Zhong Liu
| |
Collapse
|
41
|
Biomimicry of plant root growth using bioinspired foraging model for data clustering. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2480-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Yu X, Armstrong CM, Zhou M, Duan Y. Bismerthiazol Inhibits Xanthomonas citri subsp. citri Growth and Induces Differential Expression of Citrus Defense-Related Genes. PHYTOPATHOLOGY 2016; 106:693-701. [PMID: 26882850 DOI: 10.1094/phyto-12-15-0328-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Citrus canker, caused by Xanthomonas citri ssp. citri, is a serious disease that causes substantial economic losses to the citrus industry worldwide. The bactericide bismerthiazol has been used to control rice bacterial blight (X. oryzae pv. oryzae). In this paper, we demonstrate that bismerthiazol can effectively control citrus canker by both inhibiting the growth of X. citri ssp. citri and triggering the plant's host defense response through the expression of several pathogenesis-related genes (PR1, PR2, CHI, and RpRd1) and the nonexpresser of PR genes (NPR1, NPR2, and NPR3) in 'Duncan' grapefruit, especially at early treatment times. In addition, we found that bismerthiazol induced the expression of the marker genes CitCHS and CitCHI in the flavonoid pathway and the PAL1 (phenylalanine ammonia lyase 1) gene in the salicylic acid (SA) biosynthesis pathway at different time points. Moreover, bismerthiazol also induced the expression of the priming defense-associated gene AZI1. Taken together, these results indicate that the induction of the defense response in 'Duncan' grapefruit by bismerthiazol may involve the SA signaling pathway and the priming defense and that bismerthiazol may serve as an alternative to copper bactericides for the control of citrus canker.
Collapse
Affiliation(s)
- Xiaoyue Yu
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Cheryl M Armstrong
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Mingguo Zhou
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Yongping Duan
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| |
Collapse
|
43
|
Modelling the influence of dimerisation sequence dissimilarities on the auxin signalling network. BMC SYSTEMS BIOLOGY 2016; 10:22. [PMID: 26932351 PMCID: PMC4774195 DOI: 10.1186/s12918-016-0254-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Auxin is a major phytohormone involved in many developmental processes by controlling gene expression through a network of transcriptional regulators. In Arabidopsis thaliana, the auxin signalling network is made of 52 potentially interacting transcriptional regulators, activating or repressing gene expression. All the possible interactions were tested in two-way yeast-2-hybrid experiments. Our objective was to characterise this auxin signalling network and to quantify the influence of the dimerisation sequence dissimilarities on the interaction between transcriptional regulators. RESULTS We applied model-based graph clustering methods relying on connectivity profiles between transcriptional regulators. Incorporating dimerisation sequence dissimilarities as explanatory variables, we modelled their influence on the auxin network topology using mixture of linear models for random graphs. Our results provide evidence that the network can be simplified into four groups, three of them being closely related to biological groups. We found that these groups behave differently, depending on their dimerisation sequence dissimilarities, and that the two dimerisation sub-domains might play different roles. CONCLUSIONS We propose here the first pipeline of statistical methods combining yeast-2-hybrid data and protein sequence dissimilarities for analysing protein-protein interactions. We unveil using this pipeline of analysis the transcriptional regulator interaction modes.
Collapse
|
44
|
El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC PLANT BIOLOGY 2016; 16:56. [PMID: 26927309 PMCID: PMC4772300 DOI: 10.1186/s12870-016-0746-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/26/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND TIR1-like proteins are F-box auxin receptors. Auxin binding to the F-box receptor proteins promotes the formation of SCF(TIR1) ubiquitin ligase complex that targets the auxin repressors, Aux/IAAs, for degradation via the ubiquitin/26S proteasome pathway. The release of auxin response factors (ARFs) from their Aux/IAA partners allows ARFs to mediate auxin-responsive changes in downstream gene transcription. In an attempt to understand the potential role of auxin during fruit development, a plum auxin receptor, PslTIR1, has previously been characterized at the cellular, biochemical and molecular levels, but the biological significance of this protein is still lacking. In the present study, tomato (Solanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of PslTIR1. RESULTS The findings of the present study highlighted the critical role of PslTIR1 as positive regulator of auxin-signalling in coordinating the development of leaves and fruits. This was manifested by the entire leaf morphology of transgenic tomato plants compared to the wild-type compound leaf patterning. Moreover, transgenic plants produced parthenocarpic fruits, a characteristic property of auxin hypersensitivity. The autocatalytic ethylene production associated with the ripening of climacteric fruits was not significantly altered in transgenic tomato fruits. Nevertheless, the fruit shelf-life characteristics were affected by transgene presence, mainly through enhancing fruit softening rate. The short shelf-life of transgenic tomatoes was associated with dramatic upregulation of several genes encoding proteins involved in cell-wall degradation, which determine fruit softening and subsequent fruit shelf-life. CONCLUSIONS The present study sheds light into the involvement of PslTIR1 in regulating leaf morphology, fruit development and fruit softening-associated ripening, but not autocatalytic ethylene production. The results demonstrate that auxin accelerates fruit softening independently of ethylene action and this is probably mediated through the upregulation of many cell-wall metabolism genes.
Collapse
Affiliation(s)
- I El-Sharkawy
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
- Damanhour University, Faculty of Agriculture, Damanhour, Egypt.
| | - S Sherif
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
- Damanhour University, Faculty of Agriculture, Damanhour, Egypt.
| | - W El Kayal
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
| | - B Jones
- The University of Sydney, Faculty of Agriculture, Sydney, Australia.
| | - Z Li
- Chongqing University, Genetic Engineering Research Center, Bioengineering College, Chongqing, China.
| | - A J Sullivan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada.
| | | |
Collapse
|
45
|
Wang Q, Hasson A, Rossmann S, Theres K. Divide et impera: boundaries shape the plant body and initiate new meristems. THE NEW PHYTOLOGIST 2016; 209:485-98. [PMID: 26391543 DOI: 10.1111/nph.13641] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/11/2015] [Indexed: 05/08/2023]
Abstract
485 I. 485 II. 486 III. 491 IV. 491 V. 495 495 References 495 SUMMARY: Boundaries, established and maintained in different regions of the plant body, have diverse functions in development. One role is to separate different cell groups, for example the differentiating cells of a leaf primordium from the pluripotent cells of the apical meristem. Boundary zones are also established during compound leaf development, to separate young leaflets from each other, and in many other positions of the plant body. Recent studies have demonstrated that different boundary zones share similar properties. They are characterized by a low rate of cell divisions and specific patterns of gene expression. In addition, the levels of the plant hormones auxin and brassinosteroids are down-regulated in boundary zones, resulting in a low differentiation level of boundary cells. This feature seems to be crucial for a second important role of boundary zones, the formation of new meristems. The primary shoot meristem, as well as secondary and ectopic shoot meristems, initiate from boundary cells that exhibit competence for meristem formation.
Collapse
Affiliation(s)
- Quan Wang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Cologne, Germany
| | - Alice Hasson
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Cologne, Germany
| | - Susanne Rossmann
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Cologne, Germany
| | - Klaus Theres
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Cologne, Germany
| |
Collapse
|
46
|
Liu Y, Müller K, El-Kassaby YA, Kermode AR. Changes in hormone flux and signaling in white spruce (Picea glauca) seeds during the transition from dormancy to germination in response to temperature cues. BMC PLANT BIOLOGY 2015; 15:292. [PMID: 26680643 PMCID: PMC4683703 DOI: 10.1186/s12870-015-0638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Seeds use environmental cues such as temperature to coordinate the timing of their germination, allowing plants to synchronize their life history with the seasons. Winter chilling is of central importance to alleviate seed dormancy, but very little is known of how chilling responses are regulated in conifer seeds. White spruce (Picea glauca) is an important conifer species of boreal forests in the North American taiga. The recent sequencing and assembly of the white spruce genome allows for comparative gene expression studies toward elucidating the molecular mechanisms governing dormancy alleviation by moist chilling. Here we focused on hormone metabolite profiling and analyses of genes encoding components of hormone signal transduction pathways, to elucidate changes during dormancy alleviation and to help address how germination cues such as temperature and light trigger radicle emergence. RESULTS ABA, GA, and auxin underwent considerable changes as seeds underwent moist chilling and during subsequent germination; likewise, transcripts encoding hormone-signaling components (e.g. ABI3, ARF4 and Aux/IAA) were differentially regulated during these critical stages. During moist chilling, active IAA was maintained at constant levels, but IAA conjugates (IAA-Asp and IAA-Glu) were substantially accumulated. ABA concentrations decreased during germination of previously moist-chilled seeds, while the precursor of bioactive GA1 (GA53) accumulated. We contend that seed dormancy and germination may be partly mediated through the changing hormone concentrations and a modulation of interactions between central auxin-signaling pathway components (TIR1/AFB, Aux/IAA and ARF4). In response to germination cues, namely exposure to light and to increased temperature: the transfer of seeds from moist-chilling to 30 °C, significant changes in gene transcripts and protein expression occurred during the first six hours, substantiating a very swift reaction to germination-promoting conditions after seeds had received sufficient exposure to the chilling stimulus. CONCLUSIONS The dormancy to germination transition in white spruce seeds was correlated with changes in auxin conjugation, auxin signaling components, and potential interactions between auxin-ABA signaling cascades (e.g. the transcription factor ARF4 and ABI3). Auxin flux adds a new dimension to the ABA:GA balance mechanism that underlies both dormancy alleviation by chilling, and subsequent radicle emergence to complete germination by warm temperature and light stimuli.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Kerstin Müller
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
47
|
Ma L, Zhu Y, Liu Y, Tian L, Chen H. A novel bionic algorithm inspired by plant root foraging behaviors. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Mitchison G. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism. PLoS Comput Biol 2015; 11:e1004487. [PMID: 26484661 PMCID: PMC4618354 DOI: 10.1371/journal.pcbi.1004487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Auxin underlies many processes in plant development and physiology, and this makes it of prime importance to understand its movements through plant tissues. In stems and coleoptiles, classic experiments showed that the peak region of a pulse of radio-labelled auxin moves at a roughly constant velocity down a stem or coleoptile segment. As the pulse moves it becomes broader, at a roughly constant rate. It is shown here that this ‘spreading rate’ is larger than can be accounted for by a single channel model, but can be explained by coupling of channels with differing polar transport rates. An extreme case is where strongly polar channels are coupled to completely apolar channels, in which case auxin in the apolar part is ‘dragged along’ by the polar part in a somewhat diffuse distribution. The behaviour of this model is explored, together with others that can account for the experimentally observed spreading rates. It is also shown that saturation of carriers involved in lateral transport can explain the characteristic shape of pulses that result from uptake of large amounts of auxin. Auxin is one of the most important signalling molecules in plants. It is a key player in the development of veins and plant organs, and in responses that the plant makes to light and gravity. Yet we have a rather limited understanding of how auxin moves around plant tissues. I show here that a classic experiment, first carried out almost 50 years ago, has more information hidden in it than one might suppose. In this experiment, one studies how a pulse of radioactive auxin moves down a stem. The first lesson is that the peak of the pulse moves with a well-defined velocity, usually around 1 cm per hour. It has also been observed that the pulse spreads out as it moves, which is perhaps unsurprising, since any source of noise would be expected to have this effect. I show, though, that it is not easy to account for the degree of spreading in terms of noise. Instead, I propose that auxin travels down stems via several, probably many, coupled channels with differing transport rates. This gives one some insight into how plants manage their auxin signalling and puts some constraints on the underlying parameters.
Collapse
Affiliation(s)
- Graeme Mitchison
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Shi YF, Wang DL, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu JZ. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. MOLECULAR PLANT 2015; 8:1350-65. [PMID: 25917173 DOI: 10.1016/j.molp.2015.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/30/2015] [Accepted: 04/16/2015] [Indexed: 05/21/2023]
Abstract
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.
Collapse
Affiliation(s)
- Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Da-Li Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Angela Hendrickson Culler
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Molly A Kreiser
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jayanti Suresh
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
50
|
Jiang W, Wu J, Zhang Y, Yin L, Lu J. Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses. PROTOPLASMA 2015; 252:1361-74. [PMID: 25643917 DOI: 10.1007/s00709-015-0769-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 05/25/2023]
Abstract
WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.
Collapse
Affiliation(s)
- Wenming Jiang
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | | | | | | | | |
Collapse
|