1
|
Tao H, Wang C, Zou C, Zhu H, Zhang W. Unraveling the potential of neuroinflammation and autophagy in schizophrenia. Eur J Pharmacol 2025; 997:177469. [PMID: 40054715 DOI: 10.1016/j.ejphar.2025.177469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Schizophrenia (SCZ) is a complex and chronic psychiatric disorder that affects a significant proportion of the global population. Although the precise etiology of SCZ remains uncertain, recent studies have underscored the involvement of neuroinflammation and autophagy in its pathogenesis. Neuroinflammation, characterized by hyperactivated microglia and markedly elevated pro-inflammatory cytokines, has been observed in postmortem brain tissues of SCZ patients and is closely associated with disease severity. Autophagy, a cellular process responsible for eliminating damaged components and maintaining cellular homeostasis, is believed to play a pivotal role in neuronal health and the onset of SCZ. This review explores the roles and underlying mechanisms of neuroinflammation and autophagy in SCZ, with a particular focus on their intricate interplay. Additionally, we provide an overview of potential therapeutic strategies aimed at modulating neuroinflammation and autophagy, including nutritional interventions, anti-inflammatory drugs, antipsychotics, and plant-derived natural compounds. The review also addresses the dual effects of antipsychotics on autophagy. Our objective is to translate these insights into clinical practice, expanding the therapeutic options available to improve the overall health and well-being of individuals with SCZ.
Collapse
Affiliation(s)
- Hongxia Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Congyin Wang
- Department of Emergency Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Chuan Zou
- Department of General Practice, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hongru Zhu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Yan Z, Han J, Mi Z, Wang Z, Fu Y, Wang C, Dang N, Liu H, Zhang F. GPNMB disrupts SNARE complex assembly to maintain bacterial proliferation within macrophages. Cell Mol Immunol 2025; 22:512-526. [PMID: 40038549 PMCID: PMC12041529 DOI: 10.1038/s41423-025-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Xenophagy plays a crucial role in restraining the growth of intracellular bacteria in macrophages. However, the machinery governing autophagosome‒lysosome fusion during bacterial infection remains incompletely understood. Here, we utilize leprosy, an ideal model for exploring the interactions between host defense mechanisms and bacterial infection. We highlight the glycoprotein nonmetastatic melanoma protein B (GPNMB), which is highly expressed in macrophages from lepromatous leprosy (L-Lep) patients and interferes with xenophagy during bacterial infection. Upon infection, GPNMB interacts with autophagosomal-localized STX17, leading to a reduced N-glycosylation level at N296 of GPNMB. This modification promotes the degradation of SNAP29, thus preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. Consequently, the fusion of autophagosomes with lysosomes is disrupted, resulting in inhibited cellular autophagic flux. In addition to Mycobacterium leprae, GPNMB deficiency impairs the proliferation of various intracellular bacteria in human macrophages, suggesting a universal role of GPNMB in intracellular bacterial infection. Furthermore, compared with their counterparts, Gpnmbfl/fl Lyz2-Cre mice presented decreased Mycobacterium marinum amplification. Overall, our study reveals a previously unrecognized role of GPNMB in host antibacterial defense and provides insights into its regulatory mechanism in SNARE complex assembly.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Jinghong Han
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yixuan Fu
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
3
|
Gupta J, Mohammed MH, Alghazali T, Uthirapathy S, R R, Thakur V, Kaur M, Naidu KS, Kubaev A, Al-Mukhtar MM. Inflammasomes and autophagy in cancer: unlocking targeted therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04184-x. [PMID: 40310530 DOI: 10.1007/s00210-025-04184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
This study clarifies the interaction between autophagy and inflammasome within the cancer framework. The inflammasome generates pro-inflammatory cytokines to direct the immune response to pathogens and cellular stressors. Autophagy maintains cellular homeostasis and can either promote or inhibit cancer. These pathways interact to affect tumorigenesis, immune responses, and therapy. Autophagy controls inflammasome activity by affecting cancer pathogenesis and tumor microenvironment inflammation, highlighting novel cancer therapeutic approaches. Recent studies indicate that modulating autophagy and inflammasome pathways can boost anti-cancer immunity, reduce drug-resistance, and improve therapeutic efficacy. Recent studies indicate modulating inflammasome and autophagy pathways can augment anti-cancer immunity, mitigate therapy resistance, and improve treatment efficacy. Cancer research relies on understanding the inflammasome-autophagy relationship to develop targeted therapies that enhance anti-tumor efficacy and reduce inflammatory symptoms. Customized therapies may improve outcomes based on autophagy gene variations and inflammasome polymorphisms. This study investigates autophagy pathways and the inflammasome in tumor immunopathogenesis, cytokine function, and cancer therapeutic strategies, highlighting their significance in cancer biology and treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Manpreet Kaur
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh- 531162, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Mahmoud Mussleh Al-Mukhtar
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
4
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
5
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yang J, Du L, Guo J, Zhang L, Wang S, Wang X. Injectable carboxymethyl chitosan/konjac glucomannan/catechin hydrogel with free radical-scavenging, antimicrobial, and pro-healing abilities for infected wound repair. Int J Biol Macromol 2025; 308:142572. [PMID: 40147641 DOI: 10.1016/j.ijbiomac.2025.142572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/02/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Wound management presents a significant clinical challenge, requiring advanced materials to support effective healing. This study reports the development of a multifunctional injectable hydrogel wound dressing (U-COC) composed of methacrylated carboxymethyl chitosan (CMCSMA), oxidized konjac glucomannan (OKGM), and (+)-catechin hydrate (CH). The formation of the U-COC hydrogel was driven by photo-initiated polymerization, dynamic reversible Schiff base bonds, and non-covalent forces (hydrogen bond interactions, π-π stacking, and hydrophobic interactions). The in vitro antioxidant and antimicrobial test results indicated that the U-COC hydrogel could effectively scavenge oxygen central free radical PTIO· (69.8 ± 0.3%) and nitrogen central free radical DPPH· (92.8 ± 0.7%), and exhibited excellent antimicrobial effects against E. coli (89.7 ± 3.9%) and S. aureus (91.4 ± 3.4%) due to the introduction of CH. Moreover, the as-designed hydrogel wound dressing was biosafe and biodegradable, demonstrating good adhesion, wound closure, self-healing properties, and shape adaptability. This hydrogel provided an advantageous microenvironment for cell proliferation, re-epithelialization, angiogenesis, collagen deposition, and tissue repair during infected wound healing. Therefore, the combination of CMCSMA, OKGM, and CH, along with the formation mechanism of the U-COC hydrogel, represents a novel advancement in wound management technology.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Lei Du
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, P. R. China
| | - Jiaxuan Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Liang Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, P. R. China.
| |
Collapse
|
7
|
Bo C, Liu X, Liu Y, Xu L, Huang Q. Resolvin D1 accelerates resolution of neuroinflammation by inhibiting microglia activation through the BDNF/TrkB signaling pathway. Eur J Med Res 2025; 30:189. [PMID: 40114280 PMCID: PMC11924792 DOI: 10.1186/s40001-025-02424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Neuropathic pain is characterized by hyperalgesia, allodynia, and inflammation and it is often resistant to treatment. The formyl peptide receptor 2 (ALX/FPR2), a G-protein-coupled receptor, has been implicated in resolving inflammation, making its agonist, Resolvin D1 (RvD1), a potential therapeutic agent. Previous studies suggest that RvD1 alleviates neuropathic pain via anti-inflammatory effects, but its mechanisms remain unclear, particularly in relation to microglial activation and the brain-derived neurotrophic factor (BDNF)/TrkB signaling pathway. OBJECTIVE To investigate the analgesic effects of RvD1 in a spared nerve injury (SNI) model of neuropathic pain and explore its mechanisms through the regulation of neuroinflammation and the BDNF/TrkB signaling pathway. METHODS SNI mice received intrathecal RvD1 at varying doses (10-40 ng) to determine its efficacy in reducing mechanical allodynia and thermal sensitivity. The anti-inflammatory effects of RvD1 were assessed using ELISA, immunofluorescence, and western blotting to measure the expression of pro-inflammatory cytokines and BDNF. The involvement of ALX/FPR2 and TrkB receptors was further examined using antagonists Boc2 and K252a. RESULTS RvD1 significantly reduced mechanical and thermal allodynia in SNI mice in a dose-dependent manner. RvD1 also decreased microglial activation and expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and BDNF in both in vivo and in vitro models. These effects were reversed by Boc2 and K252a, confirming that the analgesic actions of RvD1 are mediated via the ALX/FPR2 receptor and inhibition of BDNF/TrkB signaling. CONCLUSION RvD1 alleviates neuropathic pain by reducing neuroinflammation through the ALX/FPR2 receptor and suppressing BDNF/TrkB signaling. These findings suggest RvD1 as a promising therapeutic agent for neuropathic pain management.
Collapse
Affiliation(s)
- Cunju Bo
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Xiaoming Liu
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Yongjian Liu
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Lingjun Xu
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Qiaodong Huang
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China.
| |
Collapse
|
8
|
Kapur RP, Vo AE, Li A, Li M, Munson J, Huang H, Del Rosario B, Cervantes O, Zhao H, Vong A, Manuel G, Li E, Devaraju M, Deng X, Baldessari A, Durning WM, Wangari S, Menz B, Germond A, English C, Coleman M, Orvis A, Sun S, Parker E, Juul S, Fountaine B, Rajagopal L, Adams Waldorf KM. Granular cytoplasmic inclusions in astrocytes and microglial activation in the fetal brain of pigtail macaques in response to maternal viral infection. Acta Neuropathol Commun 2025; 13:55. [PMID: 40069869 PMCID: PMC11895267 DOI: 10.1186/s40478-025-01970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The fetal origins of neuropsychiatric disorders are poorly understood but have been linked to viral or inflammatory injury of the developing brain. The fetal white matter is particularly susceptible to injury as myelination, axonal growth, and deep white matter tracts become established. We have used the pigtail macaque (Macaca nemestrina) to study the maternal and fetal effects of influenza A virus (FLUAV) and Zika virus (ZIKV) infection during pregnancy, in cohorts with different time intervals between inoculation and delivery. We observed a striking histopathological alteration in a subset of astrocytes which contained granular cytoplasmic inclusions ("inclusion cells", ICs) within a specific region of the deep cerebral white matter in the fetal brains from specific FLUAV and ZIKV cohorts. Immunohistochemical and ultrastructural characteristics of ICs indicated that they are astrocytes (GFAP+) undergoing autophagocytosis (p62+) with activated lysosomes (LAMP1+, LAMP2+) and reactive changes in neighboring microglia. There was also a positive correlation between the number of ICs and LAMP1 or LAMP2 immunoreactivity in the fetal brain (LAMP1: rho 0.66; LAMP2: rho 0.54, p < 0.001 for both). Interestingly, ICs were significantly more prevalent in the 5-day FLUAV cohort and the 21-day intermediate ZIKV cohort than in controls (p < 0.005 and p = 0.04, respectively), but this relationship was not apparent in the ZIKV cohort with a shorter (2-3 days) or longer (months) time course. Virologic and immunologic assays indicated that the appearance of these cells was not linked with fetal brain infection. ICs were not observed in a macaque model of perinatal hypoxic ischemic encephalopathy. These alterations in fetal white matter are pathologically abnormal and may represent a transient neuropathologic finding that signifies a subtle brain injury in the fetus after maternal viral infection.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Andrew E Vo
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Miranda Li
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Munson
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Hazel Huang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Briana Del Rosario
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Orlando Cervantes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Hong Zhao
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ashley Vong
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Gygeria Manuel
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Edmunda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Monica Devaraju
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Xuemei Deng
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | - Solomon Wangari
- Washington National Primate Research Center, Seattle, WA, USA
| | - Brenna Menz
- Washington National Primate Research Center, Seattle, WA, USA
| | - Audrey Germond
- Washington National Primate Research Center, Seattle, WA, USA
| | - Chris English
- Washington National Primate Research Center, Seattle, WA, USA
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sidney Sun
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ed Parker
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brendy Fountaine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| |
Collapse
|
9
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Mehrbod P, Brun P, Rosani U, Leonardi A, Ghavami S. Evaluation of Autophagy in Conjunctival Fibroblasts. Methods Mol Biol 2025; 2879:123-138. [PMID: 38499918 DOI: 10.1007/7651_2024_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Vernal keratoconjunctivitis (VKC) is a serious eye allergy characterized by poorly understood pathogenic mechanisms and a lack of effective treatments. Autophagy, a process involved in both triggering and suppressing immune and inflammatory responses, plays a role in VKC's pathophysiology. Understanding autophagy's involvement in VKC could lead to new treatment possibilities, such as utilizing specific topical substances to induce or inhibit autophagy and prevent severe complications of this eye condition. In our current protocol, we present a robust methodology established in our laboratory for studying autophagy in primary conjunctival fibroblasts. We assess autophagy through techniques like immunocytochemistry, immunoblotting, and qPCR.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padua, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padua, Italy
| | - Saeid Ghavami
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
- University of Manitoba, Winnipeg, MB, Canada.
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.
- Academy of Silesia, Faculty of Medicine, Katowice, Poland.
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
Wu W, Lv X, Sun J, Wang Z, Dong M, Wang L, Song L. CgANT2 regulates mitophagy of oyster haemocyte response against bacterial stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105295. [PMID: 39613199 DOI: 10.1016/j.dci.2024.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Adenine nucleotide translocator (ANT) is a major molecule in the inner membrane of mitochondria that plays an important role in regulating mitophagy. In the present study, a conserved ANT2 homologue (designated as CgANT2) was identified and functionally characterized in oyster Crassostrea gigas. There were three typical Mito_carr tandem repeats in CgANT2. The mRNA expression levels of CgANT2 in haemocytes increased significantly at 24 and 72 h after Vibrio splendidus stimulation. Its protein was abundantly expressed in granulocytes and was observed to be colocalized with mitochondria. When CgANT2 expression was suppressed by injection with its dsRNA, there was an increased mitochondrial reactive oxygen species (mtROS) production and mitochondrial permeability transition pore (mPTP) opening, while the mRNA expression levels of mitophagy-related genes (CgPINK1 and CgParkin) and the percentage of mitophagy in haemocytes all decreased significantly. These results indicated that CgANT2 regulated mtROS production and mPTP opening, thereby inducing mitophagy in the oyster haemocyte response against V. splendidus stimulation.
Collapse
Affiliation(s)
- Wei Wu
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
12
|
Huang M, Yang B, Yang X, Hou J, Li X. Guanylate-binding protein 5-mediated autophagy can promote the clearance of intracellular F. nucleatum in dental pulp cells during pulpitis. BMC Oral Health 2024; 24:1510. [PMID: 39702141 DOI: 10.1186/s12903-024-05295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND IFN-γ is crucial in induction of inducible cell-autonomous immunity, and IFN-γ signaling pathway is activated in pulpitis. Guanylate-binding proteins (GBPs) are a family of IFN-inducible GTPases and could utilize autophagy or pyroptosis to mitigate infection. GBP5 is abundantly expressed in inflamed pulp and human dental pulp cells (HDPCs). Therefore, we hypothesize that GBP5 in HDPCs exerts an immune-regulatory role in defending against bacterium infection. METHODS Fusobacterium nucleatum (F. nucleatum) was used to infect HDPCs, and immunoblotting and qRT-PCR were used to detect pyroptosis and autophagy. Pharmacological or genetic approaches were used to enhance or knock down GBP5 expression in HDPCs. Blood agar plate counting and immunoblotting were used to observe bacteria clearance effect and activation of autophagy. Student's t-test and one-way ANOVA were individually used for comparisons between two and multiple groups. Statistical significance was set at P < 0.05. RESULTS Following F. nucleatum infection in HDPCs, the autophagy marker LC3B was significantly upregulated while the mRNA and protein expression levels of p62 were increased. IFN-γ priming significantly inhibited the intracellular survival of F. nucleatum and enhanced the autophagic activity of HDPCs. GBP5 overexpression significantly increased the efficiency of HDPCs in clearing intracellular F. nucleatum and activated autophagic flux in HDPCs, while downregulating GBP5 in HDPCs suppressed autophagic flux. CONCLUSION IFN-γ-mediated GBP5 overexpression in HDPCs during F. nucleatum infection exerts an anti-microbial function through autophagy activation.
Collapse
Affiliation(s)
- Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
14
|
Luo S, Huang X, Li S, Chen Y, Zhang X, Zeng X. Homogeneous Polyporus polysaccharide exerts anti-bladder cancer effects via autophagy induction. PHARMACEUTICAL BIOLOGY 2024; 62:214-221. [PMID: 38353262 PMCID: PMC10868468 DOI: 10.1080/13880209.2024.2316195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Polyporus polysaccharide (PPS), the leading bioactive ingredient extracted from Polyporus umbellatus (Pers.) Fr. (Polyporaceae), has been demonstrated to exert anti-bladder cancer and immunomodulatory functions in macrophages. OBJECTIVE To explore the effects of homogeneous Polyporus polysaccharide (HPP) on the proliferation and autophagy of bladder cancer cells co-cultured with macrophages. MATERIALS AND METHODS MB49 bladder cancer cells and RAW264.7 macrophages were co-cultured with or without HPP intervention (50, 100, or 200 μg/mL) for 24 h. The cell counting kit-8 (CCK-8) assay and 5-ethynyl-2″-deoxyuridine (EdU) staining evaluated MB49 cell proliferation. Monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM) observed autophagosomes. Western blotting detected the expression levels of autophagy-related proteins and PI3K/Akt/mTOR pathway proteins. RESULTS HPP inhibited the proliferation of MB49 cells co-cultured with RAW264.7 cells but not MB49 cells alone. HPP altered the expression of autophagy-related proteins and promoted the formation of autophagosomes in MB49 cells in the co-culture system. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) not only antagonized HPP-induced autophagy but also attenuated the inhibitory effects of HPP on MB49 cell proliferation in the co-culture system. HPP or RAW264.7 alone was not sufficient to induce autophagy in MB49 cells. In addition, HPP suppressed the protein expression of the PI3K/Akt/mTOR pathway in MB49 cells in the co-culture system. DISCUSSION AND CONCLUSIONS HPP induced bladder cancer cell autophagy by regulating macrophages in the co-culture system, resulting in the inhibition of cancer cell proliferation. The PI3K/Akt/mTOR pathway was involved in HPP-induced autophagy in the co-culture system.
Collapse
Affiliation(s)
- Siwan Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaopeng Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiqi Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuwen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Zeng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Silva RCMC, Ribeiro JS, Farias TSDMD, Travassos LH. The role of host autophagy in intracellular protozoan parasites diseases. Arch Biochem Biophys 2024; 761:110186. [PMID: 39455040 DOI: 10.1016/j.abb.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Intracellular protozoan parasites are the etiologic agents of important human diseases, like malaria, Chagas disease, toxoplasmosis, and leishmaniasis. Inside host cells, these parasites manipulate the host metabolism and intracellular trafficking for their own benefits and, inevitably, induce several stress response mechanisms. In this review, we discuss autophagy as a stress response mechanism that can be both (i) explored by these intracellular parasites to acquire nutrients and (ii) to restrict parasite proliferation and survival within host cells. We also discuss the immunomodulatory role of autophagy as a strategy to reduce inflammatory-mediated damage, an essential player in the pathophysiology of these parasitic diseases. At last, we propose and discuss several known autophagy modulators as possible pharmaceuticals for adjunctive therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; State University of Rio de Janeiro, Faculty of Medical Sciences, Campus Cabo Frio, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thalita Santos de Moraes de Farias
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Wang C, Luo H. Crosstalk Between Innate Immunity and Autophagy in Viral Myocarditis Leading to Dilated Cardiomyopathy. Rev Med Virol 2024; 34:e2586. [PMID: 39349889 DOI: 10.1002/rmv.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Viral myocarditis, characterised by inflammation of the heart muscle, presents a significant challenge to global public health, particularly affecting younger individuals and often progressing to dilated cardiomyopathy (DCM), a leading cause of heart failure. Despite ongoing research efforts, viable treatments for this condition remain elusive. Recent studies have shed light on the complex interplay between the innate immune response and autophagy mechanisms, revealing their pivotal roles in the pathogenesis of viral myocarditis and subsequent DCM development. This review aims to delve into the recent advancements in understanding the molecular mechanisms and pathways that intersect innate immunity and autophagy in the context of viral myocarditis. Furthermore, it explores the potential therapeutic implications of these findings, offering insights into promising avenues for the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Seo JW, Lee YS, Jeon IS, Yu JE, Yoo JS, Koo JK, Son DJ, Yoon JS, Han SB, Yoon DY, Roh YS, Hong JT, Shim JH. IL-32γ Induced Autophagy Through Suppression of MET and mTOR Pathways in Liver Tumor Growth Inhibition. Int J Mol Sci 2024; 25:11678. [PMID: 39519229 PMCID: PMC11547131 DOI: 10.3390/ijms252111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Interleukin-32γ (IL-32γ) has diverse functions in various malignancies. In this study, we investigated the role of IL-32γ in autophagy induction in liver cancer cells and delineated the underlying mechanisms. We found that the increased IL-32γ expression inhibited the growth, cell cycle progression, and migration of HepG2 and Hep3B cell lines; it also decreased the expression of related proteins. Furthermore, the IL-32γ overexpression induced autophagy, as indicated by the number of puncta, the expression of LC3, and the expression of autophagy-related markers. The expression levels of LAMP1, a protein essential for autophagosome formation, and colocalization with LC3 also increased. Big data analysis revealed that the expression of MET, a well-known target of autophagy, and the expression of mTOR and mTOR-related proteins were decreased by the IL-32γ overexpression. The combination treatment of MET inhibitor, cabozantinib (2 µM), and IL-32γ overexpression further increased the number of puncta, the colocalization of LC3 and LAMP1, and the expression of autophagy-related proteins. In vivo, liver tumor growth was suppressed in the IL-32γ-overexpressing mouse model, and autophagy induction was confirmed by the increased expression of LC3 and LAMP1 and the decreased expression of autophagy pathway markers (MET and mTOR). Autophagy was also decreased in the liver tumor sample of human patients. ROC curve and spearman analysis revealed that the expression levels of LC3 and IL-32γ were significantly correlated in human tumor serum and tissues. Therefore, IL-32γ overexpression induced autophagy in liver tumors through the suppression of MET and mTOR pathways critical for tumor growth inhibition.
Collapse
Affiliation(s)
- Ji-Won Seo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Yong-Sun Lee
- Ministry of Food and Drug Safety, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Chungbuk, Republic of Korea;
| | - In-Sook Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Ji-Eun Yu
- College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Jun-Sang Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Ja-Keun Koo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Dong-Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Jae-Suk Yoon
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea;
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Jin-Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Chungbuk, Republic of Korea; (J.-W.S.); (I.-S.J.); (J.-S.Y.); (J.-K.K.); (D.-J.S.); (J.-S.Y.); (S.-B.H.); (Y.-S.R.)
| | - Jung-Hyun Shim
- College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| |
Collapse
|
19
|
Iba T, Helms J, Maier CL, Ferrer R, Levy JH. Autophagy and autophagic cell death in sepsis: friend or foe? J Intensive Care 2024; 12:41. [PMID: 39449054 PMCID: PMC11520123 DOI: 10.1186/s40560-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
In sepsis, inflammation, and nutrient deficiencies endanger cellular homeostasis and survival. Autophagy is primarily a mechanism of cellular survival under fasting conditions. However, autophagy-dependent cell death, known as autophagic cell death, is proinflammatory and can exacerbate sepsis. Autophagy also regulates various types of non-inflammatory and inflammatory cell deaths. Non-inflammatory apoptosis tends to suppress inflammation, however, inflammatory necroptosis, pyroptosis, ferroptosis, and autophagic cell death lead to the release of inflammatory cytokines and damage-associated molecular patterns (DAMPs) and amplify inflammation. The selection of cell death mechanisms is complex and often involves a mixture of various styles. Similarly, protective autophagy and lethal autophagy may be triggered simultaneously in cells. How cells balance the regulatory mechanisms of these processes is an area of interest that is still under investigation. Therapies aimed at modulating autophagy are considered promising. Enhancing autophagy helps clear and recycle damaged organelles and reduce the burden of inflammatory processes while inhibiting excessive autophagy, which could prevent autophagic cell death. In this review, we introduce recent advances in research and the complex regulatory system of autophagy in sepsis.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Julie Helms
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit, NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Vitaliti A, Reggio A, Palma A. Macrophages and autophagy: partners in crime. FEBS J 2024. [PMID: 39439196 DOI: 10.1111/febs.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Macrophages and autophagy are intricately linked, both playing vital roles in maintaining homeostasis and responding to disease. Macrophages, known for their 'eating' function, rely on a sophisticated digestion system to process a variety of targets, from apoptotic cells to pathogens. The connection between macrophages and autophagy is established early in their development, influencing both differentiation and mature functions. Autophagy regulates essential immune functions, such as inflammation control, pathogen clearance, and antigen presentation, linking innate and adaptive immunity. Moreover, it modulates cytokine production, ensuring a balanced inflammatory response that prevents excessive tissue damage. Autophagy also plays a critical role in macrophage polarization, influencing their shift between pro-inflammatory and anti-inflammatory states. This review explores the role of autophagy in macrophages, emphasizing its impact across various tissues and pathological conditions, and detailing the cellular and molecular mechanisms by which autophagy shapes macrophage function.
Collapse
Affiliation(s)
- Alessandra Vitaliti
- Department of Chemical Science and Technologies, "Tor Vergata" University of Rome, Italy
| | - Alessio Reggio
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandro Palma
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Italy
| |
Collapse
|
21
|
Wang S, Cheng T, Chen X, Zeng C, Qin W, Xu Y. IFN-γ induces acute graft-versus-host disease by promoting HMGB1-mediated nuclear-to-cytoplasm translocation and autophagic degradation of p53. Clin Sci (Lond) 2024; 138:1287-1304. [PMID: 39312196 PMCID: PMC11479981 DOI: 10.1042/cs20241144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Acute graft-versus-host disease (aGVHD) poses a significant impediment to achieving a more favourable therapeutic outcome in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our prior investigations disclosed a correlation between p53 down-regulation in CD4+ T cells and the occurrence of aGVHD. Notably, the insufficiency of the CCCTC-binding factor (CTCF) emerged as a pivotal factor in repressing p53 expression. However, the existence of additional mechanisms contributing to the reduction in p53 expression remains unclear. Interferon (IFN)-γ, a pivotal proinflammatory cytokine, assumes a crucial role in regulating alloreactive T-cell responses and plays a complex part in aGVHD development. IFN-γ has the capacity to induce autophagy, a vital catabolic process facilitating protein degradation, in various cell types. Presently, whether IFN-γ participates in the development of aGVHD by instigating the autophagic degradation of p53 in CD4+ T cells remains an unresolved question. In the present study, we demonstrated that heightened levels of IFN-γ in the plasma during aGVHD promoted the activation, proliferation, and autophagic activity of CD4+ T cells. Furthermore, IFN-γ induced the nuclear-to-cytoplasm translocation and autophagy-dependent degradation of p53 in CD4+ T cells. The translocation and autophagic degradation of p53 were contingent upon HMGB1, which underwent up-regulation and translocation from the nucleus to the cytoplasm following IFN-γ stimulation. In conclusion, our data unveil a novel mechanism underlying p53 deficiency in CD4+ T cells among aGVHD patients. This deficiency is induced by IFN-γ and relies on autophagy, establishing a link between IFN-γ, HMGB1-mediated translocation, and the autophagic degradation of p53.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Tingting Cheng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Cong Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Wei Qin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| |
Collapse
|
22
|
Ortiz Flores RM, Cáceres CS, Cortiñas TI, Gomez Mejiba SE, Sasso CV, Ramirez DC, Mattar Domínguez MA. Exotoxins secreted by Clostridium septicum induce macrophage death: Implications for bacterial immune evasion mechanisms at infection sites. Toxicon 2024; 249:108070. [PMID: 39127083 DOI: 10.1016/j.toxicon.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The induction of macrophage death is considered a potential mechanism by which components secreted by Clostridium septicum are used to evade the innate immune response and cause tissue damage. This study aimed to determine the effects of partially purified fractions of extracellular proteins secreted by C. septicum on the death of mouse peritoneal macrophages. Elicited mouse peritoneal macrophages were incubated with partially purified fractions of proteins secreted by C. septicum into the culture medium. After incubation, the protein fraction with a molecular weight ≥100 kDa caused significant cell death in macrophages, altered cell morphology, increased the expression of markers of apoptosis and autophagy, and increased the expression (protein and mRNA) of IL-10 and TNFα. Our data suggest that the proteins secreted by C. septicum (MW, ≥100 kDa) induce cell death in macrophages by promoting autophagy-triggered apoptosis. This study may contribute to our understanding of the molecular mechanism of immune evasion by C. septicum at the infection site.
Collapse
Affiliation(s)
- R M Ortiz Flores
- Department of Human Physiology, School of Medicine, CAMPUS TEATINOS C/Boulevard Luis Pasteur, University of Malaga, 29010, Malaga, Malaga, Spain.
| | - C S Cáceres
- Laboratory of Microbiology, School of Chemistry Biochemistry and Pharmacy, National University of San Luis, 5700, San Luis, San Luis, Argentina.
| | - T I Cortiñas
- Laboratory of Microbiology, School of Chemistry Biochemistry and Pharmacy, National University of San Luis, 5700, San Luis, San Luis, Argentina.
| | - S E Gomez Mejiba
- Laboratory of Experimental Therapeutics and Nutrition, IMIBIO-SL, CCT-San Luis, CONICET-National University of San Luis, 5700, San Luis, San Luis, Argentina.
| | - C V Sasso
- Department of Medicine and Dermatology, School of Medicine, CAMPUS TEATINOS, C/Boulevard Luis Pasteur, University of Malaga, 29010, Malaga, Malaga, Spain.
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CCT-San Luis, CONICET-National University of San Luis, 5700, San Luis, San Luis, Argentina.
| | - M A Mattar Domínguez
- Laboratory of Microbiology, School of Chemistry Biochemistry and Pharmacy, National University of San Luis, 5700, San Luis, San Luis, Argentina.
| |
Collapse
|
23
|
Freisem D, Rodriguez-Alfonso AA, Lawrenz J, Zhou Z, Monecke T, Preising N, Endres S, Wiese S, Ständker L, Kuan SL, Thal DR, Weil T, Niessing D, Barth H, Kirchhoff F, Harms M, Münch J, Sparrer KMJ. A naturally occurring 22-amino acid fragment of human hemoglobin A inhibits autophagy and HIV-1. Cell Mol Life Sci 2024; 81:409. [PMID: 39289189 PMCID: PMC11408460 DOI: 10.1007/s00018-024-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Armando A Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Sascha Endres
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Seah-Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dietmar R Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany.
| |
Collapse
|
24
|
Di T, Chen Y, Zhou Z, Liu J, Du Y, Feng C, Zhu B, Wang L. Effect of α7 nAChR-autophagy axis of deciduous tooth pulp stem cells in regulating IL-1β in the process of physiological root resorption of deciduous teeth. J Mol Med (Berl) 2024; 102:1135-1149. [PMID: 39002004 DOI: 10.1007/s00109-024-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Physiological root resorption of deciduous teeth is a normal phenomenon occurring during the developmental stages of children. Previous research has indicated the pivotal role of the inflammatory microenvironment in this process, although the specific mechanisms remain unclear. This study is aimed at elucidating the involvement of the alpha7 nicotinic acetylcholine receptors (α7 nAChR)-autophagy axis in the regulation of the inflammatory microenvironment during physiological root resorption in deciduous teeth. Samples were collected from deciduous teeth at various stages of physiological root resorption, and deciduous dental pulp stem cells (DDPSCs) were isolated and cultured during the mid-phase of root resorption. The findings revealed a substantial infiltration of the pulp of deciduous teeth at the mid-phase of root resorption, characterized by elevated expression levels of α7 nAChR and IL-1β. Significantly increased IL-1β and α7 nAChR expressions were observed in DDPSCs during the mid-phase of root resorption, with α7 nAChR demonstrating a regulatory effect on IL-1β. Moreover, evidence suggested that mechanical stress may act as a trigger, regulating autophagy and IL-1 expression via α7 nAChR. In conclusion, mechanical stress was identified as a regulator of autophagy in DDPSCs through α7 nAChR, influencing the expression of IL-1β and contributing to the formation of the inflammatory microenvironment. This mechanism plays a crucial role in the physiological root resorption of deciduous teeth. KEY MESSAGES: The pulp of deciduous teeth at mid-phase of root resorption was heavily infiltrated with high expression of α7nAChR and IL-1β. α7 nAChR acts as an initiating factor to regulate IL-1β through autophagy in DDPSCs. Mechanical stress can regulate autophagy of DDPSCs through α7 nAChR and thus affect IL-1β expression and inflammatory microenvironment formation in physiological root resorption in deciduous teeth.
Collapse
Affiliation(s)
- Tiankai Di
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
| | - Yujiang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, People's Republic of China
| | - Jiajia Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yang Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Chao Feng
- Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
- Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Bin Zhu
- Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, People's Republic of China.
| | - Lulu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
25
|
Chou YL, Hsu YA, Lin CF, Chen CS, Tien PT, Wang YC, Chang CY, Lin ES, Chen JJY, Wu MY, Chuang CY, Lin HJ, Wan L. Complement decay-accelerating factor inhibits inflammation-induced myopia development. Mol Immunol 2024; 171:47-55. [PMID: 38795684 DOI: 10.1016/j.molimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Myopia is regarded as a worldwide epidemic ocular disease, has been proved related to inflammation. CD55, also known as decay-accelerating factor (DAF) can modulate the activation of complement through inhibiting the formation of complement 3 convertase and its dysregulation is involved in various inflammatory diseases. To investigate the association between CD55 and myopia, and to test whether CD55 can inhibit myopia development by suppressing inflammation in the eye, we use three different animal models including monocular form-deprivation myopia, myopia induced by TNF-α administration and allergic conjunctivitis animal model to reveal the CD55 in myopia development. The tears of thirty-eight participants with different spherical equivalents were collected and CD55 in the tears were also analyzed. Complement 3 and complement 5 levels increased while CD55 levels decreased in allergic conjunctivitis and myopic eyes. After anti-inflammatory drugs administration, CD55 expression was increased in monocular form-deprivation myopia model. We also found inflammatory cytokines TGF-β, IL-6, TNF-α, and IL-1β may enhance complement 3 and complement 5 activation while CD55 level was suppressed contrary. Moreover, lower CD55 levels were found in the tears of patients with myopia with decreased diopter values. Finally, CD55-Fc administration on the eyelids can inhibit the elongation of axial length and change of refractive error. CD55-Fc application also suppress myopia development subsequent to complement 3 and complement 5 reduction and can lower myopia-specific (MMP-2 and TGF-β) cytokine expression in TNF-α induced myopia animal model. This suggests that CD55 can inhibit myopia development by suppression of complement activation and eventual down-regulation of inflammation.
Collapse
Affiliation(s)
- Yung-Lan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-An Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Chi-Fong Lin
- Ph.D. Program for Health Science and industry, China Medical University, Taichung, Taiwan
| | - Chih-Sheng Chen
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan; Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Peng-Tai Tien
- School of Medicine, China Medical University, Taichung, Taiwan; Eye center, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Ching-Yao Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung, Taiwan
| | | | - Ming-Yen Wu
- Eye center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Eye center, China Medical University Hospital, Taichung, Taiwan.
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
26
|
Vassileff N, Spiers JG, Juliani J, Lowe RGT, Datta KK, Hill AF. Acute neuroinflammation promotes a metabolic shift that alters extracellular vesicle cargo in the mouse brain cortex. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e165. [PMID: 38947878 PMCID: PMC11212288 DOI: 10.1002/jex2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Neuroinflammation is initiated through microglial activation and cytokine release which can be induced through lipopolysaccharide treatment (LPS) leading to a transcriptional cascade culminating in the differential expression of target proteins. These differentially expressed proteins can then be packaged into extracellular vesicles (EVs), a form of cellular communication, further propagating the neuroinflammatory response over long distances. Despite this, the EV proteome in the brain, following LPS treatment, has not been investigated. Brain tissue and brain derived EVs (BDEVs) isolated from the cortex of LPS-treated mice underwent thorough characterisation to meet the minimal information for studies of extracellular vesicles guidelines before undergoing mass spectrometry analysis to identify the differentially expressed proteins. Fourteen differentially expressed proteins were identified in the LPS brain tissue samples compared to the controls and 57 were identified in the BDEVs isolated from the LPS treated mice compared to the controls. This included proteins associated with the initiation of the inflammatory response, epigenetic regulation, and metabolism. These results allude to a potential link between small EV cargo and early inflammatory signalling.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Juliani Juliani
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityFootscrayVictoriaAustralia
| |
Collapse
|
27
|
Yang X, Li J, Shan C, Song X, Yang J, Xu H, Ou D. Baicalin reduced injury of and autophagy-related gene expression in RAW264.7 cells infected with H6N6 avian influenza virus. Heliyon 2024; 10:e32645. [PMID: 38988579 PMCID: PMC11233939 DOI: 10.1016/j.heliyon.2024.e32645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
In the present study, we investigated whether baicalin could reduce the damage caused to RAW264.7 cells following infection with H6N6 avian influenza virus. In addition, we studied the expression of autophagy-related genes. The morphological changes in cells were observed by hematoxylin and eosin (H&E) staining, and the inflammatory factors in the cell supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to detect the levels of RAW264.7 autophagosomes, and western blotting and immunofluorescence were used to detect the protein expression of autophagy marker LC3. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the mRNA transcription levels of autophagy key factors. The results showed that different doses of baicalin significantly reduced the H6N6 virus-induced damage of RAW264.7 cells. The contents of interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the cell supernatant significantly decreased. In addition, the protein expression of LC3 and Beclin-1, ATG12, ATG5 the mRNA levels were significantly decreased. This study showed that baicalin can reduce cell damage and affect the H6N6-induced autophagy level of RAW264.7 cells.
Collapse
Affiliation(s)
- Xin Yang
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Tongren Center for Prevention and Control of Animal Disease, Tongren, 554300, Guizhou Province, China
| | - Junxian Li
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xuqin Song
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Jian Yang
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hao Xu
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Deyuan Ou
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
28
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
29
|
Mima Y, Tsutsumi E, Ohtsuka T, Ebato I, Nakata Y, Kubota T, Norimatsu Y. A Case of Refractory Vernal Keratoconjunctivitis Showing Improvement after the Administration of Upadacitinib for the Treatment of Atopic Dermatitis. Diagnostics (Basel) 2024; 14:1272. [PMID: 38928687 PMCID: PMC11203004 DOI: 10.3390/diagnostics14121272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Vernal keratoconjunctivitis is a persistent allergic ocular disease predominantly mediated by the T-helper 2 lymphocyte-associated immune response. The standard therapeutic approaches for vernal keratoconjunctivitis include topical corticosteroids and immunosuppressive eye drops. However, managing vernal keratoconjunctivitis with only topical treatments becomes challenging during seasonally exacerbated periods. Systemic treatments such as oral corticosteroids or cyclosporine may be alternative options. Recently, dupilumab's efficacy in refractory vernal keratoconjunctivitis treatment has been documented. Here, we report a case of refractory vernal keratoconjunctivitis coexisting with atopic dermatitis that rapidly improved after upadacitinib administration. An 18-year-old Japanese woman presented with atopic dermatitis, vernal keratoconjunctivitis, and hay fever. In winter, the patient experienced widespread erythema and escalated itching, leading to significant discomfort and insomnia. Owing to the difficulty in maintaining her current regimen, upadacitinib (15 mg), a Janus kinase inhibitor was initiated. After upadacitinib administration, the treatment-resistant vernal keratoconjunctivitis and erythema improved. Upadacitinib is beneficial in severe cases of atopic dermatitis. Consequently, in our case, upadacitinib may offer therapeutic benefits for refractory vernal conjunctivitis by improving the T-helper 1/2 type immune response, autoimmunity, and oxidative stress. To our knowledge, this is the first report suggesting the potential utility of upadacitinib in managing severe vernal conjunctivitis.
Collapse
Affiliation(s)
- Yoshihito Mima
- Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo 164-8541, Japan
| | - Eri Tsutsumi
- Department of Ophthalmology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Tsutomu Ohtsuka
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Ippei Ebato
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Yukihiro Nakata
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Taro Kubota
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Yuta Norimatsu
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-0124, Japan;
| |
Collapse
|
30
|
Xu C, Fang X, Lu B, Song Y, Shu W, Lu Z, Su R, Xiang Z, Xu X, Wei X. Human umbilical cord mesenchymal stem cells alleviate fatty liver ischemia-reperfusion injury by activating autophagy through upregulation of IFNγ. Cell Biochem Funct 2024; 42:e4040. [PMID: 38850132 DOI: 10.1002/cbf.4040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Liver ischemia-reperfusion injury (IRI) is an important factor affecting the prognosis of liver transplantation, and extended criteria donors (e.g., steatosis donor livers) are considered to be more sensitive to ischemia-reperfusion injury in liver transplantation. Currently, the application of human umbilical cord mesenchymal stem cells (hMSCs) has great promise in the treatment of various injuries in the liver. This study aimed to investigate the therapeutic role and mechanism of hMSCs in fatty liver IRI. After more than 8 weeks of high-fat chow feeding, we constructed a fatty liver mouse model and established ischemic injury of about 70% of the liver. Six hours after IRI, liver injury was significantly alleviated in hMSCs-treated mice, and the expression levels of liver enzyme, inflammatory factor TNF-α, and apoptotic proteins were significantly lower than those of the control group, which were also significant in pathological sections. Transcriptomics analysis showed that IFNγ was significantly upregulated in the hMSCs group. Mechanistically, IFNγ, which activates the MAPK pathway, is a potent agonist that promotes the occurrence of autophagy in hepatocytes to exert a protective function, which was confirmed by in vitro experiments. In summary, hMSCs treatment could slow down IRI in fatty liver by activating autophagy through upregulation of IFNγ, and this effect was partly direct.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, China
| | - Bei Lu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Zhengyang Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Zhou Z, An Q, Zhang W, Li Y, Zhang Q, Yan H. Histamine and receptors in neuroinflammation: Their roles on neurodegenerative diseases. Behav Brain Res 2024; 465:114964. [PMID: 38522596 DOI: 10.1016/j.bbr.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Histamine, an auto-reactive substance and mediator of inflammation, is synthesized from histidine through the action of histidine decarboxylase (HDC). It primarily acts on histamine receptors in the central nervous system (CNS). Increasing evidence suggests that histamine and its receptors play a crucial role in neuroinflammation, thereby modulating the pathology of neurodegenerative diseases. Recent studies have demonstrated that histamine regulates the phenotypic switching of microglia and astrocytes, inhibits the production of pro-inflammatory cytokines, and alleviates inflammatory responses. In the CNS, our research group has also found that histamine and its receptors are involved in regulating inflammatory responses and play a central role in ameliorating chronic neuroinflammation in neurodegenerative diseases. In this review, we will discuss the role of histamine and its receptors in neuroinflammation associated with neurodegenerative diseases, potentially providing a novel therapeutic target for the treatment of chronic neuroinflammation-related neurodegenerative diseases in clinical settings.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qi An
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Wanying Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qihang Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
32
|
Kang P, Wang Y, Chen J, Chang Y, Zhang W, Cui T, Yi X, Li S, Li C. TRPM2-dependent autophagy inhibition exacerbates oxidative stress-induced CXCL16 secretion by keratinocytes in vitiligo. J Pathol 2024; 262:441-453. [PMID: 38186269 DOI: 10.1002/path.6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Vitiligo is a depigmented skin disease due to the destruction of melanocytes. Under oxidative stress, keratinocyte-derived chemokine C-X-C motif ligand 16 (CXCL16) plays a critical role in recruiting CD8+ T cells, which kill melanocytes. Autophagy serves as a protective cell survival mechanism and impairment of autophagy has been linked to increased secretion of the proinflammatory cytokines. However, the role of autophagy in the secretion of CXCL16 under oxidative stress has not been investigated. Herein, we initially found that autophagy was suppressed in both keratinocytes of vitiligo lesions and keratinocytes exposed to oxidative stress in vitro. Autophagy inhibition also promoted CXCL16 secretion. Furthermore, upregulated transient receptor potential cation channel subfamily M member 2 (TRPM2) functioned as an upstream oxidative stress sensor to inhibit autophagy. Moreover, TRPM2-mediated Ca2+ influx activated calpain to shear autophagy related 5 (Atg5) and Atg12-Atg5 conjugate formation was blocked to inhibit autophagy under oxidative stress. More importantly, Atg5 downregulation enhanced the binding of interferon regulatory factor 3 (IRF3) to the CXCL16 promoter region by activating Tank-binding kinase 1 (TBK1), thus promoting CXCL16 secretion. These findings suggested that TRPM2-restrained autophagy promotes CXCL16 secretion via the Atg5-TBK1-IRF3 signaling pathway under oxidative stress. Inhibition of TRPM2 may serve as a potential target for the treatment of vitiligo. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
33
|
Sayedahmed EE, Elshafie NO, dos Santos AP, Jagannath C, Sambhara S, Mittal SK. Development of NP-Based Universal Vaccine for Influenza A Viruses. Vaccines (Basel) 2024; 12:157. [PMID: 38400140 PMCID: PMC10892571 DOI: 10.3390/vaccines12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The nucleoprotein (NP) is a vital target for the heterosubtypic immunity of CD8+ cytotoxic T lymphocytes (CTLs) due to its conservation among influenza virus subtypes. To further enhance the T cell immunity of NP, autophagy-inducing peptide C5 (AIP-C5) from the CFP10 protein of Mycobacterium tuberculosis was used. Mice were immunized intranasally (i.n.) with human adenoviral vectors, HAd-C5-NP(H7N9) or HAd-NP(H7N9), expressing NP of an H7N9 influenza virus with or without the AIP-C5, respectively. Both vaccines developed similar levels of NP-specific systemic and mucosal antibody titers; however, there was a significantly higher number of NP-specific CD8 T cells secreting interferon-gamma (IFN-γ) in the HAd-C5-NP(H7N9) group than in the HAd-NP(H7N9) group. The HAd-C5-NP(H7N9) vaccine provided better protection following the challenge with A/Puerto Rico/8/1934(H1N1), A/Hong Kong/1/68(H3N2), A/chukkar/MN/14951-7/1998(H5N2), A/goose/Nebraska/17097/2011(H7N9), or A/Hong Kong/1073/1999(H9N2) influenza viruses compared to the HAd-NP(H7N9) group. The autophagy transcriptomic gene analysis of the HAd-C5-NP(H7N9) group revealed the upregulation of some genes involved in the positive regulation of the autophagy process. The results support further exploring the use of NP and AIP-C5 for developing a universal influenza vaccine for pandemic preparedness.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX 77030, USA;
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| |
Collapse
|
34
|
Deng X, Yang Z, Li T, Wang Y, Yang Q, An R, Xu J. Identification of 4 autophagy-related genes in heart failure by bioinformatics analysis and machine learning. Front Cardiovasc Med 2024; 11:1247079. [PMID: 38347953 PMCID: PMC10859477 DOI: 10.3389/fcvm.2024.1247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Autophagy refers to the process of breaking down and recycling damaged or unnecessary components within a cell to maintain cellular homeostasis. Heart failure (HF) is a severe medical condition that poses a serious threat to the patient's life. Autophagy is known to play a pivotal role in the pathogenesis of HF. However, our understanding of the specific mechanisms involved remains incomplete. Here, we identify autophagy-related genes (ARGs) associated with HF, which we believe will contribute to further comprehending the pathogenesis of HF. Methods By searching the GEO (Gene Expression Omnibus) database, we found the GSE57338 dataset, which was related to HF. ARGs were obtained from the HADb and HAMdb databases. Annotation of GO and enrichment analysis of KEGG pathway were carried out on the differentially expressed ARGs (AR-DEGs). We employed machine learning algorithms to conduct a thorough screening of significant genes and validated these genes by analyzing external dataset GSE76701 and conducting mouse models experimentation. At last, immune infiltration analysis was conducted, target drugs were screened and a TF regulatory network was constructed. Results Through processing the dataset with R language, we obtained a total of 442 DEGs. Additionally, we retrieved 803 ARGs from the database. The intersection of these two sets resulted in 15 AR-DEGs. Upon performing functional enrichment analysis, it was discovered that these genes exhibited significant enrichment in domains related to "regulation of cell growth", "icosatetraenoic acid binding", and "IL-17 signaling pathway". After screening and verification, we ultimately identified 4 key genes. Finally, an analysis of immune infiltration illustrated significant discrepancies in 16 distinct types of immune cells between the HF and control group and up to 194 potential drugs and 16 TFs were identified based on the key genes. Discussion In this study, TPCN1, MAP2K1, S100A9, and CD38 were considered as key autophagy-related genes in HF. With these relevant data, further exploration of the molecular mechanisms of autophagy in HF can be carried out.
Collapse
Affiliation(s)
- Xiwei Deng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Ziqi Yang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tongzheng Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Wang
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Qinchuan Yang
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
35
|
Kuczyńska M, Moskot M, Gabig-Cimińska M. Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0005. [PMID: 38409665 DOI: 10.2478/aite-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
Collapse
Affiliation(s)
- Martyna Kuczyńska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
36
|
Giansanti M, Theinert T, Boeing SK, Haas D, Schlegel PG, Vacca P, Nazio F, Caruana I. Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies. Mol Cancer 2023; 22:201. [PMID: 38071322 PMCID: PMC10709869 DOI: 10.1186/s12943-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.
Collapse
Affiliation(s)
- Manuela Giansanti
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Tobias Theinert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Sarah Katharina Boeing
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Francesca Nazio
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
37
|
Zhao J, Liang Q, Fu C, Cong D, Wang L, Xu X. Autophagy in sepsis-induced acute lung injury: Friend or foe? Cell Signal 2023; 111:110867. [PMID: 37633477 DOI: 10.1016/j.cellsig.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening syndrome with high mortality and morbidity, resulting in a heavy burden on family and society. As a key factor that maintains cellular homeostasis, autophagy is regarded as a self-digesting process by which damaged organelles and useless proteins are recycled for cell metabolism, and it thus plays a crucial role during physiological and pathological processes. Recent studies have indicated that autophagy is involved in the pathophysiological process of sepsis-induced ALI, including cell apoptosis, inflammation, and mitochondrial dysfunction, which indicates that regulating autophagy may be beneficial for this disease. However, the role of autophagy in the etiology and treatment of sepsis-induced ALI is not well characterized. This review summarizes the autophagy-related signaling pathways in sepsis-induced ALI, as well as focuses on the dual role of autophagy and its regulation by non-coding RNAs during disease progression, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Jiayao Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chenfei Fu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Didi Cong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Long Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoxin Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
38
|
Yao D, Wang Y, Chen Y, Chen G. The Analgesia Effect of Aucubin on CFA-Induced Inflammatory Pain by Inhibiting Glial Cells Activation-Mediated Inflammatory Response via Activating Mitophagy. Pharmaceuticals (Basel) 2023; 16:1545. [PMID: 38004411 PMCID: PMC10674556 DOI: 10.3390/ph16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Inflammatory pain, characterized by sustained nociceptive hypersensitivity, represents one of the most prevalent conditions in both daily life and clinical settings. Aucubin, a natural plant iridoid glycoside, possesses potent biological effects, encompassing anti-inflammatory, antioxidant, and neuroprotective properties. However, its impact on inflammatory pain remains unclear. The aim of this study is to investigate the therapeutic effects and underlying mechanism of aucubin in addressing inflammatory pain induced by complete Freund's adjuvant (CFA). METHODS The CFA-induced inflammatory pain model was employed to assess whether aucubin exerts analgesic effects and its potential mechanisms. Behavioral tests evaluated mechanical and thermal hyperalgesia as well as anxiety-like behaviors in mice. The activation of spinal glial cells and the expression of pro-inflammatory cytokines were examined to evaluate neuroinflammation. Additionally, RNA sequencing was utilized for the identification of differentially expressed genes (DEGs). Molecular biology experiments were conducted to determine the levels of the PINK1 gene and autophagy-related genes, along with PINK1 distribution in neural cells. Furthermore, mitophagy induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) was employed to examine the roles of PINK1 and mitophagy in pain processing. RESULTS Aucubin significantly ameliorated pain and anxiety-like behaviors induced by CFA in mice and reduced spinal inflammation. RNA sequencing indicated PINK1 as a pivotal gene, and aucubin treatment led to a significant downregulation of PINK1 expression. Further GO and KEGG analyses suggested the involvement of mitochondrial function in the therapeutic regulation of aucubin. Western blotting revealed that aucubin markedly decreased PINK1, Parkin, and p62 levels while increasing LC3B expression. Immunofluorescence showed the predominant co-localization of PINK1 with neuronal cells. Moreover, CCCP-induced mitophagy alleviated mechanical and thermal hyperalgesia caused by CFA and reversed CFA-induced mitochondrial dysfunction. CONCLUSIONS In summary, our data suggest that aucubin effectively alleviates CFA-induced inflammatory pain, potentially through triggering the PINK1 pathway, promoting mitophagy, and suppressing inflammation. These results provide a novel theoretical foundation for addressing the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Yongjie Wang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Sasaki T, Yamada E, Uehara R, Okada S, Chikuda H, Yamada M. Role of Fyn and the interleukin-6-STAT-3-autophagy axis in sarcopenia. iScience 2023; 26:107717. [PMID: 37744036 PMCID: PMC10515305 DOI: 10.1016/j.isci.2023.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Sarcopenia is the progressive loss of muscle mass wherein Fyn regulates STAT3 to decrease autophagy. To elucidate the role of inflammation in Fyn-STAT3-dependent autophagy and sarcopenia, here we aimed to investigate the underlying mechanisms using two mouse models of primary and secondary sarcopenia: (1) tail suspension and (2) sciatic denervation. In wild-type mice, the expression of Fyn and IL-6 increased significantly. The expression and phosphorylation levels of STAT3 were also significantly augmented, while autophagic activity was abolished. To investigate Fyn-dependency, we used tail suspension with Fyn-null mice. In tail-suspended wild-type mice, IL-6 expression was increased; however, it was abolished in Fyn-null mice, which maintained autophagy and the expression and ablation of STAT3 phosphorylation. In conclusion, Fyn was found to be associated with the IL-6-STAT3-autophagy axis in sarcopenia. This finding permits a better understanding of sarcopenia-associated metabolic diseases and the possible development of therapeutic interventions.
Collapse
Affiliation(s)
- Tsuyoshi Sasaki
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Eijiro Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryota Uehara
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
40
|
Xiao J, Zhang P, Cai FL, Luo CG, Pu T, Pan XL, Tian M. IL-17 in osteoarthritis: A narrative review. Open Life Sci 2023; 18:20220747. [PMID: 37854319 PMCID: PMC10579884 DOI: 10.1515/biol-2022-0747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
Osteoarthritis (OA) is a painful joint disease that is common among the middle-aged and elderly populations, with an increasing prevalence. Therapeutic options for OA are limited, and the pathogenic mechanism of OA remains unclear. The roles of cytokines and signaling pathways in the development of OA is a current research hot spot. Interleukin (IL)-17 is a pleiotropic inflammatory cytokine produced mainly by T helper 17 cells that has established roles in host defense, tissue repair, lymphoid tissue metabolism, tumor progression, and pathological processes of immune diseases, and studies in recent years have identified an important role for IL-17 in the progression of OA. This narrative review focuses on the mechanisms by which IL-17 contributes to articular cartilage degeneration and synovial inflammation in OA and discusses how IL-17 and the IL-17 signaling pathway affect the pathological process of OA. Additionally, therapeutic targets that have been proposed in recent years based on IL-17 and its pathway in OA are summarized as well as recent advances in the study of IL-17 pathway inhibitors and the potential challenges of their use for OA treatment.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| | - Ping Zhang
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi563000, China
| | - Fang-Lan Cai
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi563000, China
| | - Cheng-Gen Luo
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi563000, China
| | - Tao Pu
- Department of Nephrology and Rheumatology, Moutai Hospital, Renhuai 564500Guizhou, China
| | - Xiao-Li Pan
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| | - Mei Tian
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| |
Collapse
|
41
|
Jia Z, Guo M, Ge X, Chen F, Lei P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023; 13:1494. [PMID: 37892176 PMCID: PMC10605306 DOI: 10.3390/biom13101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes. While most other cytokines are actively produced in cells, IL-33 is passively produced in response to tissue damage or cell necrosis, thereby suggesting its role as an alarm following cell infection, stress, or trauma. IL-33 plays a crucial role in congenital and acquired immunity, which assists in the response to environmental stress and maintains tissue homeostasis. IL-33/ST2 interaction further produces many pro-inflammatory cytokines. Moreover, IL-33 is crucial for central nervous system (CNS) homeostasis and the pathogenic mechanisms underlying CNS degenerative disorders. The present work summarizes the structure of IL-33, its fundamental activities, and its role in immunoregulation and neurodegenerative diseases. Therefore, this work proposes that IL-33 may play a role in the pathogenic mechanism of diseases and can be used in the development of treatment strategies.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China;
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
42
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
43
|
Khan S, Yang J, Cobo ER, Wang Y, Xu M, Wang T, Shi Y, Liu G, Han B. Streptococcus uberis induced expressions of pro-inflammatory IL-6, TNF-α, and IFN-γ in bovine mammary epithelial cells associated with inhibited autophagy and autophagy flux formation. Microb Pathog 2023; 183:106270. [PMID: 37499842 DOI: 10.1016/j.micpath.2023.106270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Autophagy is a highly conserved cellular defensive mechanism that can eliminate bacterial pathogens such as Streptococcus uberis, that causes mastitis in cows. However, S. uberis induced autophagy is still unclear. In this study, we tested if certain inflammatory cytokines such as IL-6, TNF-α, and IFN-γ, critical in mastitis due to S. uberis infection, regulate autophagy activation in bovine mammary epithelial cells (bMECs). Using Western blot and laser scanning confocal microscope in bMECs challenged by S. uberis, showed that the expression of IL-6, TNF-α, IFN-γ oscillated with the expressions of autophagic Atg5, ULK1, PTEN, P62, and LC3ӀӀ/LC3Ӏ. S. uberis infection induced autophagosomes and LC3 puncta in bMECs with upregulation of Atg5, ULK1, PTEN, LC3ӀӀ/LC3Ӏ, and downregulation of P62. The levels of IL-6, TNF-α, and IFN-γ increased during autophagy flux formation to decrease during autophagy induction. Autophagy inhibition increased the expression of IL-6, TNF-α, and IFN-γ and increased S. uberis burden. This study indicates autophagy is induced during S. uberis infection and IL-6, TNF-α, and IFN-γ contribute to autophagy and autophagy flux formation.
Collapse
Affiliation(s)
- Sohrab Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Maolin Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Tian Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
44
|
Prasetyo EP, Sampoerno G, Juniarti DE, Cahyani F, Saraswati W, Kuntjoro M, Tjendronegoro E. Effect of Lipopolysaccharide-Induced Apical Periodontitis in Diabetes Mellitus Rats on Periapical Inflammation. Eur J Dent 2023; 17:1146-1152. [PMID: 36599453 PMCID: PMC10756800 DOI: 10.1055/s-0042-1758790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To evaluate periapical inflammation through immunohistochemical analysis of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-a) expression resulting from lipopolysaccharide (LPS)-induced apical periodontitis in diabetes mellitus rats, observed at 14, 28, and 42 days. MATERIALS AND METHODS Diabetes model on rats was induced by streptozotocin (STZ). Fifteen rats were injected with low-dose STZ for 5 days and waited for 5 days until the blood glucose level was stable and measured above 300 mg/dL confirmed by a digital glucometer. LPS was used to induce apical periodontitis. After performing access cavity, pulpal and root canal extirpation was done on the right mandibular first molar's root canal space of rats, under anesthesia. LPS of 1 mg/mL dose was induced in the pulpal and root canal space. Apical periodontitis was expected 14 days afterward and then, the rats were randomly allocated to three groups. The first group was terminated 14 days after induction and used as control. The second group was observed 28 days after induction, and the third group was observed 42 days after induction. IL-6 and TNF-a expression was analyzed by immunohistochemistry on macrophages in the periapical area. STATISTICAL ANALYSIS Data were analyzed using one-way ANOVA and continued with the post hoc Tukey HSD test. Significance was considered if p < 0.05. RESULTS LPS induced apical periodontitis in diabetes mellitus rats at control (14 days), 28 and 42 days observation showed a significant increase in the expression of IL-6 and TNF-a. There were significant differences between the control and observed groups (p < 0.05). The expression of IL-6 in the apical area was not significant at 14 and 28 days (p > 0.05) but increased significantly at 42 days (p < 0.05). The expression of TNF-a in the apical area was significantly increased after 14 days (p < 0.05) and remained stable at 28 and 42 days (p > 0.05). CONCLUSIONS The periapical inflammation of LPS-induced apical periodontitis in diabetes mellitus rats increased macrophages' expression of IL-6 at 42 days and TNF-a at 28 days.
Collapse
Affiliation(s)
- Eric Priyo Prasetyo
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Galih Sampoerno
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Devi Eka Juniarti
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Febriastuti Cahyani
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Widya Saraswati
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mefina Kuntjoro
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Evelyn Tjendronegoro
- Healthcare and Research, Irvine Medical Center, University of California, Irvine, California, United States
| |
Collapse
|
45
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
46
|
Chen Y, Zhang M, Li W, Wang X, Chen X, Wu Y, Zhang H, Yang L, Han B, Tang J. Drug repurposing based on the similarity gene expression signatures to explore for potential indications of quercetin: a case study of multiple sclerosis. Front Chem 2023; 11:1250043. [PMID: 37744058 PMCID: PMC10514366 DOI: 10.3389/fchem.2023.1250043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Quercetin (QR) is a natural flavonol compound widely distributed in the plant kingdom with extensive pharmacological effects. To find the potential clinical indications of QR, 156 differentially expressed genes (DEGs) regulated by QR were obtained from the Gene Expression Omnibus database, and new potential pharmacological effects and clinical indications of QR were repurposed by integrating compounds with similar gene perturbation signatures and associated-disease signatures to QR based on the Connectivity Map and Coexpedia platforms. The results suggested QR has mainly potential therapeutic effects on multiple sclerosis (MS), osteoarthritis, type 2 diabetes mellitus, and acute leukemia. Then, MS was selected for subsequent animal experiments as a representative potential indication, and it found that QR significantly delays the onset time of classical MS model animal mice and ameliorates the inflammatory infiltration and demyelination in the central nervous system. Combined with network pharmacology technology, the therapeutic mechanism of QR on MS was further demonstrated to be related to the inhibition of the expression of inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17A, and IL-2) related to TNF-α/TNFR1 signaling pathway. In conclusion, this study expanded the clinical indications of QR and preliminarily confirmed the therapeutic effect and potential mechanism of QR on MS.
Collapse
Affiliation(s)
- Yulong Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liuqing Yang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinfa Tang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
47
|
Han H, He N, Pan E, Tan X, Yang Z, Li X, Shi D, Dong J. Disruption of the intestinal barrier by avermectin in carp involves oxidative stress and apoptosis and leads to intestinal inflammation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105531. [PMID: 37666586 DOI: 10.1016/j.pestbp.2023.105531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
Avermectin (AVM) is a widely used insecticide. Due to its sensitive toxicity to aquatic organisms, the toxicology of AVM on fish intestines remains unclear. Here, we established a 96 h AVM acute toxicity model to explore the effects of AVM on the intestinal tract of carp. The 96 h LC50 of carps exposed to AVM was 24.04 μg/L, 12.02 μg/L was selected as the high-dose group and 3.005 μg/L was selected as the low-dose group. After 96 h of exposure, intestinal tissues were collected and subsequently analyzed for histopathology, the activities of antioxidant oxidases (CAT, SOD, GSH-Px), and the expression of mRNA associated with oxidative stress, inflammation, and apoptosis. Our study showed that AVM exposure caused intestinal damage in carp, decreased the expression of the tight junction protein gene, activated oxidative stress, induced apoptosis, and induced intestinal inflammation in carp. Therefore, we demonstrated that AVM exposure compromised the integrity of the intestinal barrier in carp, activated oxidative stress, induced endogenous apoptosis, and induced intestinal inflammatory responses. These results indicate that AVM, as a drug-sensitive to aquatic organisms, has a much more complex toxic effect on the fish intestinal tract, which provides a new perspective for studying the toxicology of AVM on the fish intestinal tract.
Collapse
Affiliation(s)
- Hairui Han
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zuwang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dahua Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
48
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
49
|
Kitsugi K, Noritake H, Matsumoto M, Hanaoka T, Umemura M, Yamashita M, Takatori S, Ito J, Ohta K, Chida T, Suda T, Kawata K. Simvastatin inhibits hepatic stellate cells activation by regulating the ferroptosis signaling pathway. Biochim Biophys Acta Mol Basis Dis 2023:166750. [PMID: 37268254 DOI: 10.1016/j.bbadis.2023.166750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND & AIMS Ferroptosis is a form of regulated cell death and its promotion in hepatic stellate cells (HSCs) attenuates liver fibrosis. Statins, which are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, may induce ferroptosis via the downregulation of glutathione peroxidase 4 (GPX4) by inhibiting the mevalonate pathway. However, little evidence is available regarding the association between statins and ferroptosis. Therefore, we investigated the association between statins and ferroptosis in HSCs. METHODS Two human HSC cell lines, LX-2 and TWNT-1, were treated with simvastatin, an HMG-CoA reductase inhibitor. Mevalonic acid (MVA), farnesyl pyrophosphate (FPP), and geranylgeranyl pyrophosphate (GGPP) were used to determine the involvement of the mevalonate pathway. We performed a detailed analysis of the ferroptosis signaling pathway. We also investigated human liver tissue samples from patients with nonalcoholic steatohepatitis to clarify the effect of statins on GPX4 expression. RESULTS Simvastatin reduced cell mortality and inhibited HSCs activation, accompanied by iron accumulation, oxidative stress, lipid peroxidation, and reduced GPX4 protein expression. These results indicate that simvastatin inhibits HSCs activation by promoting ferroptosis. Furthermore, treatment with MVA, FPP, or GGPP attenuated simvastatin-induced ferroptosis. These results suggest that simvastatin promotes ferroptosis in HSCs by inhibiting the mevalonate pathway. In human liver tissue samples, statins downregulated the expression of GPX4 in HSCs without affecting hepatocytes. CONCLUSIONS Simvastatin inhibits the activation of HSCs by regulating the ferroptosis signaling pathway.
Collapse
Affiliation(s)
- Kensuke Kitsugi
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Hidenao Noritake
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moe Matsumoto
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohiko Hanaoka
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiro Umemura
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Maho Yamashita
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Takatori
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Jun Ito
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Division of Respiratory Medicine, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhito Kawata
- Division of Hepatology, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
50
|
Zhou M, Zhang H, Chen H, Qi B. Adiponectin protects skeletal muscle from ischaemia-reperfusion injury in mice through miR-21/PI3K/Akt signalling pathway. Int Wound J 2023; 20:1647-1661. [PMID: 36426910 PMCID: PMC10088838 DOI: 10.1111/iwj.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have confirmed that adiponectin (APN) plays a protective role in myocardial ischaemia-reperfusion (IR) injury, and the aim of this study was to investigate its effect on skeletal muscle. ELISA was used to detect the levels of Creatinine Kinase (CK), LDH, SOD and MDA in the plasma of the lower limbs of mice, and the levels of IL-6, IL-1β and TNF-α in the gastrocnemius. Quantitative PCR was used to detect the expression level of miR-21. TUNEL staining was used to detect the apoptosis of the gastrocnemius. The expression levels of apoptosis proteins, autophagy marker proteins and downstream target genes of miR-21 in gastrocnemius were detected by Western Blot. The results of this study revealed that APN levels were significantly reduced in gastrocnemius of IR mice. The oxidative stress, inflammatory response, apoptosis and autophagy induced by IR were significantly ameliorated by APN injection. The above effects of APN may be achieved through miR-21/PI3K signalling pathway, as found by interfering gene expression levels with miRNA antagomir and lentiviral injection. Taken together, our study revealed that APN protects skeletal muscle from IR injury through miR-21 /PI3K/Akt signalling pathway through inhibiting inflammatory response, apoptosis and autophagy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hao Zhang
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hairen Chen
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Baiwen Qi
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|