1
|
Yang C, Xiong W, Dong J, Zhao X, Liang G, Zheng W. Artemisinin protected human bronchial epithelial cells from amiodarone-induced oxidative damage via 5'-AMP-activated protein kinase (AMPK) activation. Redox Rep 2025; 30:2447721. [PMID: 39803706 PMCID: PMC11731350 DOI: 10.1080/13510002.2024.2447721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models. RESULTS In vitro experiments revealed that amiodarone decreased cell viability, increased LDH release, ROS generation, caspase 3 activation, and apoptosis in BEAS-2B cells. Artemisinin counteracted these effects by upregulating p-AMPK, CaMKK2, Nrf2, and SOD1 protein levels, thereby protecting the cells from oxidative damage. The protective effect of artemisinin was diminished by the AMPK inhibitor Compound C or AMPKα knockdown. In vivo experiments demonstrated that artemisinin increased p-AMPK and Nrf2 protein levels in lung tissues, protecting against amiodarone-induced apoptosis and bronchial epithelial cell shedding in mice. CONCLUSION These findings suggest that artemisinin protects airway epithelial cells and lung tissue from amiodarone-induced oxidative stress and apoptosis through AMPK activation, offering potential new strategies for preventing and treating amiodarone-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Chao Yang
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| | - Wenjun Xiong
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| | - Jiayi Dong
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| | - Xia Zhao
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Wenhua Zheng
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, People’s Republic of China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, People’s Republic of China
| |
Collapse
|
2
|
Milanović Ž. Urolithin D: A promising metabolite of ellagitannin in combatting oxidative stress. Chem Biol Interact 2025; 411:111444. [PMID: 39987983 DOI: 10.1016/j.cbi.2025.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The objective of this research is to examine the function of urolithin D (UroD, 3,4,8,9-tetrahydroxy-6H-benzo[c]chromen-6-one), a metabolite obtained from ellagitannins, in the mitigation of oxidative stress. The research is based on estimating the mechanisms through which UroD acts as an antioxidant under physiological conditions, emphasizing standard antioxidant mechanisms such as formal Hydrogen Aatom Transfer (f-HAT), Radical Adduct Formation (RAF)/Radical Coupling Formation (RCF), and Single Electron Transfer followed by Proton Transfer (SET-PT). This study utilised advanced quantum mechanical techniques, specifically density functional theory (DFT) and the Quantum Mechanics-based test for Overall free Radical Scavenging activity (QM-ORSA) methodology, to assess the thermodynamic and kinetic parameters of UroD in the presence of reactive radical species HOO•, CH3OO• and CCl3OO•. The estimated overall rate constants (koverall) indicate a reactivity order of CCl3OO• (koverall = 2.06 × 1010 M-1s-1) > HOO• (koverall = 2.59 × 109 M-1s-1) > CH3OO• (koverall = 1.89 × 109 M-1s-1). The examination of the relative proportions of products (%) indicates that UroD exhibits antiradical action primarily through all examined mechanisms, with the predominant involvement of mononion and dianion acid-base species. In addition to its capacity to directly counteract ROS, UroD can restore oxidative DNA damage, specifically targeting oxidative byproducts commonly associated with 2-deoxyguanosine (2 dG), which are susceptible to oxidative stress. The UroD regenerates G-centered radical cations (2 dG•+) through the SET mechanism, C-centered radicals (2 dG•) in the sugar moiety through f-HAT, and repairs i-OH-2dG lesions through sequential hydrogen atom transfer dehydration (SHATD). Additionally, the radical products formed during antioxidant action can be regenerated in the presence of O2•- into anionic species, which are subsequently protonated into neutral species that can re-engage in antioxidant activity. These findings underscore the efficiency of UroD in scavenging free radicals and suggest its potential role in preserving cellular integrity and protecting against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Žiko Milanović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| |
Collapse
|
3
|
Wu N, Jiang X, Liu Y, Zhang M, Yue M, Chen F, Wu W, Li N, Wang Q, Zhang L. Glycodeoxycholic acid alleviates central precocious puberty by modulating gut microbiota and metabolites in high-fat diet-fed female rats. Cell Mol Life Sci 2025; 82:163. [PMID: 40244411 PMCID: PMC12006580 DOI: 10.1007/s00018-025-05680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Central precocious puberty (CPP) is a common pediatric endocrine disorder and a significant global public health concern. Emerging evidence suggests an association between bile acids (BAs) and CPP, although their regulatory roles and underlying mechanisms remain poorly understood. METHODS We conducted untargeted metabolomics and targeted BA analysis on serum samples from female rats with high-fat diet-induced CPP to identify metabolites potentially involved in regulating puberty through modulation of Sirt1 and Kiss1 expression in the hypothalamus. Identified BAs were then administered via gavage to female rats with CPP to assess their effects. To explore the mechanisms by which these BAs affect the development of CPP, gut microbiota and their metabolites were analyzed using 16S rRNA sequencing and untargeted metabolomics. RESULTS Our findings revealed significant reductions in glycodeoxycholic acid (GDCA) and glycoursodeoxycholic acid (GUDCA) levels in female rats with CPP. GDCA treatment delayed the onset of puberty, accompanied by alterations in the gut microbiota functions and metabolic pathways related to oxidative stress (OS) and fatty acid metabolism. Mediation analysis suggested that OS-related metabolites, including gamma-glutamylcysteine and malonic acid, which increased with the abundance of Lachnospiraceae UCG-001, facilitated the reduction of Sirt1 expression. Additionally, pregnenolone appeared to suppress the beneficial effect of Parasutterella in enhancing Sirt1 expression. CONCLUSION This study demonstrates that GDCA exhibits a potential therapeutic effect on CPP through a unique mechanism that involves gut microbiota modulation, alterations in serum metabolites, and changes in the expression of key regulatory factors Sirt1.
Collapse
Affiliation(s)
- Nan Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Jiang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanan Liu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Meilu Zhang
- Department of Psychology, University of California, Santa Cruz, USA
| | - Min Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Chen
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Wei Wu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Ning Li
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
4
|
Liu Q, Bai R, Zhang X, Wang S, Lin Z, Bi Y, Ding Q, Zhang W, Wu X, Zhang S, Ma Z, Wang H, Wu X, Liu Y. BPS causes abnormal blastocyst development by inhibiting cell proliferation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118115. [PMID: 40179801 DOI: 10.1016/j.ecoenv.2025.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
In recent years, the escalating global utilization of bisphenol S (BPS) has raised growing concerns regarding its potential adverse effects on human health. However, the effects of BPS exposure on mammalian embryonic development and the associated molecular mechanisms remain inadequately characterized. In this study, we systematically investigated BPS toxicity in mouse embryogenesis by exposing embryos to graded concentrations (0-25 μg/mL). Our results demonstrated a dose-dependent impairment in early embryonic quality following BPS exposure. Specifically, treatment with 10 μg/mL and 15 μg/mL BPS significantly reduced blastocyst formation rates, diminished implantation potential, decreased total cell number of blastocysts, and caused cell fate determination imbalance. Mechanistic studies revealed that under BPS exposure, the massive accumulation of reactive oxygen species (ROS) in embryos induced cell cycle arrest and enhanced autophagy. It is worth noting that the reduction in the total cell number within blastocysts under BPS exposure manifested independently of the apoptotic pathway, as evidenced by the absence of upregulation in caspase 3/7 activity levels and TUNEL-positive signals. Our data collectively reveal that BPS disrupts early embryogenesis through ROS-driven cell cycle dysregulation and erroneous cell fate determination, culminating in compromised blastocyst developmental competence. This research unveils previously unrecognized mechanisms underlying BPS embryotoxicity, emphasizing essential parameters for evaluating chemical reproductive hazards in safety assessments.
Collapse
Affiliation(s)
- Qing Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Ruisong Bai
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Xiaoyu Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Siyu Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Zhipeng Lin
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Yuheng Bi
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Qing Ding
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Wenya Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Xiaoyun Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Shangrong Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Zijian Ma
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China.
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang City, Anhui Province 236037, China.
| |
Collapse
|
5
|
Lu Y, Wang K, Hu L. Advancements in delivery systems for dietary polyphenols in enhancing radioprotection effects: challenges and opportunities. NPJ Sci Food 2025; 9:51. [PMID: 40229284 PMCID: PMC11997175 DOI: 10.1038/s41538-025-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Radiotherapy, a widely employed cancer treatment, often triggers diverse inflammatory responses such as radiation enteritis, pulmonary injury, pelvic inflammation, dermatitis, and osteitis. Dietary polyphenols have recently emerged as promising agents for mitigating radiation-induced inflammation. However, their clinical application faced challenges related to variable bioavailability, individual pharmacokinetics, optimal dosing, and limited clinical evidence. Current researches revealed the efficacy of bioactive small molecule polyphenols in addressing radiation-induced inflammation. In this review, along with a comprehensive examination of the etiology and categories of radiation-induced inflammatory conditions, the diversity of polyphenols and elucidating their anti-inflammatory mechanisms are explored. This study emphasizes the recent progresses in delivery systems for dietary polyphenols, aiming to enhance radioprotection effects. The optimized utilization of polyphenols, with a theoretical framework and reference guide, is of paramount relevance. Through diverse delivery mechanisms, the more effective and safer radioprotective strategies become achievable. This endeavor aspires to contribute to breakthroughs in the dietary polyphenols' application, significantly enhancing human health protection during radiotherapy. These comprehensive insights presented here also support (pre)-clinical practices in navigating the complexities of utilizing dietary polyphenols for radioprotection, fostering advancements in the field and improving patient outcomes.
Collapse
Affiliation(s)
- Yuxuan Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Chuang YT, Liu W, Chien TM, Cheng YB, Jeng JH, Chen CY, Tang JY, Chang HW. Antiproliferative and apoptotic effects of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (CI-A) in oral cancer cells are mediated by oxidative stress and ERK activation. Int Immunopharmacol 2025; 155:114615. [PMID: 40199136 DOI: 10.1016/j.intimp.2025.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The anticancer effects and mechanisms of the main component (CI-A) of methanol extracts of Clavularia inflat have not been reported. This study explores the anti-oral cancer effect and mechanism of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (CI-A) and compared with normal cells. CI-A shows oxidative-stress-dependent preferential antiproliferation of oral cancer cells without normal cell toxicity. CI-A triggers cell cycle dysregulation, apoptosis/caspase activation, cellular/mitochondrial ROS induction, glutathione depletion, and oxidative DNA damage in oral cancer but not normal cells. After testing with three MAPK (p38, JNK, and ERK) inhibitors, only the ERK inhibitor (PD98059) protects against CI-A-induced antiproliferation in oral cancer cells. CI-A upregulates phosphorylated ERK in oral cancer cells compared to normal cells. Notably, a ROS inhibitor, N-acetylcysteine (NAC), attenuates all CI-A-modulated changes. Moreover, the CI-A-triggered annexin V-detected apoptosis and caspase 3/8/9 activations of oral cancer cells were downregulated by PD98059. In conclusion, CI-A induces the oxidative-stress- and ERK-dependent antiproliferative and apoptotic mechanism in oral cancer cells and shows the benefit of non-cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan.
| | - Ching-Yeu Chen
- Department of Physical Therapy, Tzu-Hui Institute of Technology, Pingtung 92641, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research and Research Center for Molecular Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
7
|
Kozyra P, Humeniuk E, Karczmarzyk Z, Borzęcki A, Adamczuk G, Korga-Plewko A, Wysocki W, Pitucha M. Anticancer Activity and Safety Profile of Novel 1-(4-Fluorophenoxyacetyl)-4-substituted Thio/Semicarbazide Derivatives. Molecules 2025; 30:1576. [PMID: 40286161 PMCID: PMC11990103 DOI: 10.3390/molecules30071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Compounds with thiosemicarbazide and semicarbazide scaffolds are among the most promising structures in medicinal chemistry due to the possibility of forming multiple hydrogen bonds. Therefore, six new derivatives of 4-fluorophenoxyacetylthiosemicarbazide and 4-fluorophenoxyacetylthiosemicarbazide were designed to compare their physicochemical properties, biological activity, and in silico pharmacokinetic parameters. All compounds were characterized by 1H, 13C NMR, 19F, IR spectra. For selected derivatives (AB2 and AB5), X-ray studies were performed to confirm their synthetic route and identify the tautomeric forms and intra- and intermolecular interactions occurring in the crystalline state. In the in silico pharmacokinetic study, a clear difference in lipophilicity was observed between thiosemicarbazide and semicarbazide derivatives. In vitro biological studies have shown the promising activity of thiosemicarbazides against prostate cancer cell line LNCaP, with a higher safety profile than semicarbazides. The most active compound AB2 showed IC50 = 108.14 μM against LNCaP. Based on biological studies, topoisomerase IIα was proposed as a potential molecular target, which was confirmed by molecular docking studies.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland (A.B.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (G.A.); (A.K.-P.)
| | - Zbigniew Karczmarzyk
- Institute of Chemistry, University of Siedlce, 3 Maja 54, 08-110 Siedlce, Poland; (Z.K.); (W.W.)
| | - Adrian Borzęcki
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland (A.B.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (G.A.); (A.K.-P.)
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (G.A.); (A.K.-P.)
| | - Waldemar Wysocki
- Institute of Chemistry, University of Siedlce, 3 Maja 54, 08-110 Siedlce, Poland; (Z.K.); (W.W.)
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland (A.B.)
| |
Collapse
|
8
|
Iwashita H, Tokunaga R, Shioji K. Visualization of Ferroptosis-Induced Lipid Peroxidation Using Plasma Membrane-Specific Fluorescent Probe LipoxPM. Chemistry 2025; 31:e202404323. [PMID: 39961779 DOI: 10.1002/chem.202404323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 02/22/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in cellular processes, but aberrant generation of ROS can damage lipids, proteins, and DNA leading to pathological events such as aging and neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) are especially susceptible to such oxidative stress. This ROS-induced lipid peroxidation is a key process of ferroptosis, an iron-dependent, non-apoptotic form of cell death. Although lipid peroxidation is an essential event in ferroptosis, current study tools for detecting the oxidation process lack specificity toward a particular membrane type such as plasma membrane. In this study, we present LipoxPM, a novel fluorescent probe that targets lipid peroxidation specifically in plasma membrane over other cellular membranes. LipoxPM features a BODIPY-based fluorophore and an anionic sulfonate group, enhancing selective accumulation in the plasma membrane. LipoxPM was able to detect ferroptosis-related lipid peroxidation in live cells, visualizing the spatial distribution of lipid peroxidation in the cell death processes. This probe would enable study of unknown mechanisms of ferroptosis and could potentially facilitate development of therapeutic strategies targeting oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hidefumi Iwashita
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Rina Tokunaga
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Kosei Shioji
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-Ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
9
|
Koyama S, Mizutani Y, Goto Y, Yoda K. Species-specific physiological status in seabirds: insights from integrating oxidative stress measurements and biologging. Front Physiol 2025; 16:1509511. [PMID: 40177361 PMCID: PMC11962040 DOI: 10.3389/fphys.2025.1509511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Understanding the relationship between behavior and physiological state, as well as species differences in physiological responses, is key to identifying the behavioral and physiological adaptations necessary for wild animals to avoid physiological deterioration, thereby enhancing their survival and fitness. A commonly used measure of physiological condition is oxidative stress, which results from an imbalance between oxidative damage-often exacerbated by respiration during exercise and indicative of physical harm-and antioxidant capacity, which reflects the organism's ability to recover from such damage. Despite its importance, oxidative stress has rarely been linked to behavior, such as foraging, leaving this relationship underexplored. In this study, we focused on two seabird species, black-tailed gulls (Larus crassirostris) and streaked shearwaters (Calonectris leucomelas), which are similar in body size and primarily forage on the same prey species but differ in traits such as habitat, flight style, and physiological function. We recorded the trajectories of these birds for approximately 1 week using biologging and measured their plasma oxidative stress. We found that oxidative stress in black-tailed gulls was higher than that in streaked shearwaters, suggesting that species differences in life histories, habitats, and physiological function may be related to long-term oxidative stress. However, over a 1-week timescale, there were no significant species differences in changes in oxidative stress, suggesting that behavioral differences between the two species might not necessarily lead to species-specific oxidative stress responses in the short term. Additionally, no consistent relationship was found between changes in oxidative stress of the two species and their behavioral metrics in most years, suggesting that this relationship may vary depending on yearly environmental fluctuations. Based on our findings, we encourage future studies that would explore and integrate the interactions between marine environments, behavior, and oxidative stress of different bird species to clarify the contribution of specific foraging behaviors to either the deterioration or recovery of physiological conditions, and the varying effect of environmental conditions on these relationships.
Collapse
|
10
|
Cheng L, Li F, Luo Y, Shi C, Cao R, Huang C, Zhang Y, Gao Y, Zhang H, Geng N, Chen J. Medium-Chain Chlorinated Paraffins Induced Reproductive Toxicity in Female Rats by Interfering with Oocyte Meiosis and Triggering DNA Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40080447 DOI: 10.1021/acs.est.4c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Medium-chain chlorinated paraffins (MCCPs) are among the most prevalent chemicals detected in human serum. As an emerging persistent organic pollutant, their toxicity mechanisms, particularly concerning the female reproductive system, remain poorly understood. In this study, we present both in vivo and in vitro evidence of ovarian toxicity induced by MCCPs and insights into their underlying molecular mechanisms. MCCP exposure induced chromatin condensation in the nucleus and mitochondria vacuolization of ovarian granulosa cells in rats and significantly increased the levels of serum gonadotropins and sex hormones, while reducing gonadotropin-releasing hormone levels. Transcriptomics analysis of ovaries revealed a predominant effect of MCCPs on the cell cycle, oocyte meiosis, and DNA damage repair pathways. Moreover, dual-omics integrative analysis indicated significant disturbance of steroid hormone biosynthesis caused by MCCPs, as well as amino acid metabolism related to TCA cycle. Furthermore, in vitro assays demonstrated that MCCP exposure disrupts intracellular Ca2+ homeostasis and generates reactive oxygen species, ultimately leading to DNA damage. In conclusion, this study revealed potential mechanisms by which MCCPs affect ovary function. These findings can provide valuable insights for the mechanism-based risk assessment of MCCPs on female reproduction.
Collapse
Affiliation(s)
- Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Luo
- College of Medicine, Linyi University, Linyi, Shandong 276005, China
| | - Chengcheng Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Chenhao Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
11
|
Li R, Yan C, Tian Y, Wu Y, Zhou R, Meng Q, Fang L, Yue Y, Yang Y, Chen H, Yang L, Jiang W. Insights into relationship of oxidative potential of particles in the atmosphere and entering the human respiratory system with particle size, composition and source: A case study in a coastal area in Northern China. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136842. [PMID: 39673951 DOI: 10.1016/j.jhazmat.2024.136842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Oxidative potential (OP) of particulate matter (PM) is an important indicator of its health effects. However, the relationship between OP and its key influencing factors remains unclear. In this study, size-segregated PM samples were collected in Qingdao, China, with major components and OP of PM thoroughly examined. The PM composition and sources contributing to OP were determined by hierarchical cluster analysis and positive matrix factorization model, and deposition of size-segregated and source-specific PM in respiratory tract and its resulting OP were assessed by multiple path particle dosimetry model. Dithiothreitol (DTT) activity decreased with increase of particle size in winter, while larger particles (4.2-10.2 μm) also contributed significantly to OP in summer. WSOC strongly correlated with OP in different particle sizes, while water-soluble iron, zinc, lead, and manganese had strong correlations with DTT activity for fine particles, reflecting the co-effects of particle composition and size on OP. Coarse and fine particles were more likely to be deposited in head and pulmonary region, respectively, with traffic and industrial sources contributing significantly to the deposited OP, especially in deeper regions of respiratory tract. This study highlights that the combined effects of different factors on PM OP need to be considered in health-oriented pollution abatement.
Collapse
Affiliation(s)
- Ruiyu Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Caiqing Yan
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ruizhi Zhou
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingpeng Meng
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Li Fang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yang Yue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanjun Yang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haibiao Chen
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Abiri E, Mirzaii M, Moghbeli M, Atashi A, Harati AA. Investigating DNA damage caused by COVID-19 and influenza in post COVID-19. Mamm Genome 2025; 36:200-212. [PMID: 39537997 DOI: 10.1007/s00335-024-10082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The SARS-CoV-2 virus (termed COVID-19) was responsible for over 34 million global deaths. Although the COVID-19 pandemic has subsided, infection by emerging mutant variants of SARS-CoV-2 poses a continuing threat to public health. COVID-19 infection has been associated with the development of cytokine storm syndrome, hypercoagulability, immunological dysregulation and direct viral invasion of organs, and the long-term consequences for the health of COVID-19 survivors are currently unknown. Our research focuses on the possible mutagenic aspects of infection by COVID-19 and measures their harmful effects on DNA composition. DNA damage was investigated, using the comet assay method, during two periods: in the epidemic peak of COVID-19 and during the post-COVID-19 period, both in patients infected with COVID-19 and in those with influenza. During the epidemic peak, the levels of DNA damage ranged from the highest to the lowest levels in the following groups, respectively: intubated-ICU, non-intubated-ICU, non-ICU, and influenza, with a discernible increase in DNA damage in ICU-treated patients. The levels of DNA damage in the post-COVID-19 period were significantly lower compared to those in the epidemic peak period but there was still a discernible increase in DNA damage in the ICU group. Our results indicate that levels of DNA damage may be an effective indicator in prognostic decision-making and may therefore help to reduce mortality. Given that DNA damage and impaired repair processes can contribute to chronic diseases like diabetes, cancer, and neurodegenerative conditions, it will be crucial to investigate potential similar effects in patients with COVID-19.
Collapse
Affiliation(s)
- Elaheh Abiri
- Department of Biology, Islamic Azad University Damghan, Damghan Branch, Damghan, Iran
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Majid Moghbeli
- Department of Biology, Islamic Azad University Damghan, Damghan Branch, Damghan, Iran
| | - Amir Atashi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahad Ali Harati
- Department of Biology, Islamic Azad University Damghan, Damghan Branch, Damghan, Iran
| |
Collapse
|
13
|
Tyagi K, Dixit T, Venkatesh V. Visible light-induced photoisomerization of indole-oxindole constructs: molecular disassembly and ROS-mediated apoptosis. Chem Commun (Camb) 2025; 61:3892-3895. [PMID: 39935402 DOI: 10.1039/d4cc06624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Indole-oxindole constructs (IOCs) have been formulated, showcasing their potential of light mediated photoisomerization. The unusual intramolecular hydrogen bonding interaction present in IOCs facilitates the exclusive synthesis of Z-isomers. IOC-4-Z stands out with its excellent photophysical characteristics due to its aggregation-induced emission (AIE) features. Upon blue light irradiation, it undergoes molecular disassembly and produces ROS to exhibit a chemo-phototherapeutic effect.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - Tejal Dixit
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| |
Collapse
|
14
|
Novaes RD, Souza-E-Leite EG, Silva TD, Caetano-da-Silva JE, Caldas IS, Souza RLM, Marques MJ, Gonçalves RV. Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis. Microb Pathog 2025; 199:107264. [PMID: 39732412 DOI: 10.1016/j.micpath.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment. Swiss mice were randomized into 5 groups: uninfected (followed by 60- and 180-days post-infection), acutely (60 days) and chronically (180 days) infected untreated, and infected treated with Pz followed until 180 days. Our results indicated that infection chronification was accompanied by the worsening of hepatic granulomatous inflammation, increased number of granulomas, IL-4, TGF-β, reactive oxygen species (ROS) levels, fibrosis, hepatocytes DNA damage, upregulation in SA-β-gal activity, p16 and p21 gene expression, and hepatocytes proliferation down-regulation in the absence of telomeric shortening. These abnormalities were blocked by Pz treatment, which prevented infection chronification and the decline in hepatocytes proliferative potential, stimulating granulomatous inflammation resolution. Taken together, our findings provide the evidence that progressive fibrosis, sustained production of high ROS levels, marked DNA damage and decline in p16 and p21 expression are associated with hepatocytes replication attenuation in the chronic phase of S. mansoni infection. Thus, pharmacological blockade of infection and granulomatous inflammation is essential to prevent these premature senescence markers associated with hepatocytes replicative disorders, stimulating liver regeneration in schistosomiasis mansoni.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil.
| | - Elda G Souza-E-Leite
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Thiago D Silva
- Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde (PPGB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - José Edson Caetano-da-Silva
- Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Raquel L M Souza
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Marcos J Marques
- Instituto de Ciências Biomédicas (ICB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
15
|
Xie D, Zhang C, Pei DS. Adverse multigeneration combined effects of nano-sized plastics and mercury on growth and reproduction in a planktonic copepod Pseudodiaptomus annandalei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107256. [PMID: 39870024 DOI: 10.1016/j.aquatox.2025.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Nano-plastics (NPs) and heavy metals have attracted growing scientific attention because of both pollutants' wide distribution and ecotoxicity. However, the long-term combined toxicity of NPs and mercury (Hg) on planktonic copepods, a crucial presence in marine environments, is unknown. Here, our study aimed to investigate the multigenerational phenotypic responses of the planktonic copepod Pseudodiaptomus annandalei to polystyrene NPs (about 50 nm) and Hg (alone or combined) at environmentally realistic concentrations (23 μg/L for NPs and 1 μg/L for Hg), and the underlying molecular mechanisms were explored. Despite the insignificant effect on survival, NPs could threaten the development and reproduction of P. annandalei, being ascribed to down-regulated genes in ingestive and reproductive functions. Hg exposure revealed inhibition of reproduction probably as an energy trade-off strategy. Importantly, in combined NPs and Hg, development and reproduction were further negatively impacted, even relative to NPs or Hg alone. Correspondingly, combined NPs and Hg presented the most pronounced transcriptomic response with a series of changes in cell functions and down-regulation of key genes in the DNA replication pathway and reproductive function as compared to NPs or Hg alone. The findings indicated adverse combined effects of NPs and Hg on P. annandalei under multigenerational scenarios, being a greater ecological risk for planktonic copepod than NPs or Hg alone. This study provides molecular insights into the long-term toxicity of combined NPs and Hg to planktonic copepods, underlining the increased risk in the population sustainability of marine zooplankton facing co-existing plastics and Hg pollution.
Collapse
Affiliation(s)
- Dongmei Xie
- School of Public Health, Chongqing Medical University, Chongqing, 401331, China
| | - Chen Zhang
- Institute of Analytical Technology and Smart Instruments, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, China.
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
16
|
Nosalova N, Majirska M, Keselakova A, Martinkova M, Fabianova D, Mirossay A, Pilatova MB, Kello M. Pyrrolidine SS13 induces oxidative stress and autophagy-mediated cell death in colorectal cancer cells. Eur J Pharm Sci 2025; 205:106982. [PMID: 39644983 DOI: 10.1016/j.ejps.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Pyrrolidines, nitrogenous organic compounds, are among the most intensively studied agents because of their antibacterial, antiviral, neurological, and promising antitumor effects. Moreover, many medicinal drugs contain pyrrolidine moiety such as sunitinib (anticancer drug), telaprevir and ombitasvir (antiviral drugs) or ramipril (antihypertensive drug). RATIONALE OF THE STUDY Based on the pro-apoptotic effect of pyrrolidine SS13, this study focuses on the pro-oxidative properties of the tested pyrrolidine SS13 on colorectal cancer cells to deepen the understanding of its mechanisms of action. RESEARCH HYPOTHESIS We hypothesize that SS13 induces oxidative stress and autophagy activation in HCT116 and Caco-2 cell lines, thus contributing to antiproliferative effects. METHODS Flow cytometry, western blot, fluorescence microscopy and qRT-PCR were used to evaluate the effect of pyrrolidine SS13. CONCLUSION AND FUTURE DIRECTIONS Pyrrolidine SS13 induced oxidative stress through the accumulation of reactive oxygen and nitrogen species in both cell lines and the modulation of both superoxide dismutase isoenzymes (SOD1, SOD2). Oxidative stress was also associated with the activation of DNA damage response system and modulation of stress/survival pathways. We demonstrated for the first time that pyrrolidine SS13 is involved in the induction of autophagy accompanied by increased levels of autophagic markers (p-AMPK, p-ULK, LC3I/II and ATG7) and a significant decrease in p62 protein levels in both cell lines. Finally, chloroquine, an inhibitor of autophagy, enhanced cell survival and suppressed the cytotoxic effect of SS13 in HCT116 and Caco-2 cells, indicating that SS13 contributes to autophagy-mediated cell death. Taken together, our results suggest that oxidative stress and autophagy participate in the antiproliferative effect of pyrrolidine SS13 on colorectal cancer cells. Further research using primary cell cultures obtained from different animal tissues as well as performing in vivo experiments is needed to understand these processes in detail and to investigate the potential therapeutic application of new pyrrolidine derivatives.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Monika Majirska
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Miroslava Martinkova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Dominika Fabianova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Andrej Mirossay
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
17
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
18
|
Shah V, Lam HY, Leong CHM, Sakaizawa R, Shah JS, Kumar AP. Epigenetic Control of Redox Pathways in Cancer Progression. Antioxid Redox Signal 2025. [PMID: 39815993 DOI: 10.1089/ars.2023.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Significance: Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. Recent Advances: We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA. Critical Issues: In cancerous cells, alterations of the gene-expression regulatory elements could be generated by the virtue of imbalance in tumor microenvironment. Various oxidizing agents and mitochondrial electron transport chain are the major pathways that generate ROS. ROS plays a key role in carcinogenesis by activating pro-inflammatory signaling pathways and DNA damage. This loss of ROS-mediated epigenetic regulation of the signaling pathways may promote tumorigenesis. We address all such aspects in this review. Future Directions: Developments in this growing field of epigenetics are expected to contribute to further our understanding of human health and diseases such as cancer and to test the clinical applications of redox-based therapy. Recent studies of the cancer-epigenetic landscape have revealed pervasive deregulation of the epigenetic factors in cancer. Thus, the study of interaction between ROS and epigenetic factors in cancer holds a great promise in the development of effective and targeted treatment modalities. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charlene Hoi-Mun Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reo Sakaizawa
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigna S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Ransdell-Green EC, Baranowska-Kortylewicz J, Wang D. Advances in Fluorescence Techniques for the Detection of Hydroxyl Radicals near DNA and Within Organelles and Membranes. Antioxidants (Basel) 2025; 14:79. [PMID: 39857413 PMCID: PMC11762621 DOI: 10.3390/antiox14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyl radicals (•OH), the most potent oxidants among reactive oxygen species (ROS), are a major contributor to oxidative damage of biomacromolecules, including DNA, lipids, and proteins. The overproduction of •OH is implicated in the pathogenesis of numerous diseases such as cancer, neurodegenerative disorders, and some cardiovascular pathologies. Given the localized nature of •OH-induced damage, detecting •OH, specifically near DNA and within organelles, is crucial for understanding their pathological roles. The major challenge of •OH detection results from their short half-life, high reactivity, and low concentrations within biological systems. As a result, there is a growing need for the development of highly sensitive and selective probes that can detect •OH in specific cellular regions. This review focuses on the advances in fluorescence probes designed to detect •OH near DNA and within cellular organelles and membranes. The key designs of the probes are highlighted, with emphasis on their strengths, applications, and limitations. Recommendations for future research directions are given to further enhance probe development and characterization.
Collapse
Affiliation(s)
| | - Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
20
|
Gai S, Meng L, Qin Y, Jiang M. Synthesis and Anticancer Studies of Pt(II) Complex Derived From 4-Phenylthiosemicarbazone. Chem Biodivers 2025:e202402972. [PMID: 39745361 DOI: 10.1002/cbdv.202402972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Although cisplatin is widely used as a first-line chemotherapy agent, it has significant side effects. Herein, we synthesized a Pt(II) complex (Pt1) derived from o-vanillin-4-phenylthiosemicarbazone ligand and confirmed its crystal structure by x-ray crystallography. Complex Pt1 exhibited potent anticancer activity against various tested cancer cell lines, with particular efficacy against HepG-2 cells. Further investigations revealed that Pt1 inhibited the growth of HepG-2 cells through multiple mechanisms, including the generation of excessive reactive oxygen species (ROS), induction of DNA damage, enhancement of mitochondrial membrane permeability, promotion of apoptosis, and activation of autophagic cell death.
Collapse
Affiliation(s)
- Shuangshuang Gai
- Institute for History and Culture of Science & Technology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Lili Meng
- School of Biological and Food engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi, China
| | - Yiming Qin
- School of Biological and Food engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi, China
| | - Ming Jiang
- School of Biological and Food engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi, China
| |
Collapse
|
21
|
Velásquez ZD, Rojas-Baron L, Conejeros I, Hermosilla C, Taubert A. Toxoplasma gondii infection induces early host cell cycle arrest and DNA damage in primary human host cells by a MYR1-dependent mechanism. Commun Biol 2024; 7:1637. [PMID: 39681694 DOI: 10.1038/s42003-024-07374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite, control its host cell cycle through mechanisms that are not fully understood. Key effector molecules, including MYR1 and HCE1, play roles in translocating parasite proteins and inducing host cellular cyclin E1 overexpression, respectively. We investigated the early role of MYR1- and HCE1-driven host cell cycle arrest and DNA damage (up to 3 h p.i.). Our findings showed that T. gondii-infected cells experienced S-phase arrest and displayed double-strand DNA breaks as soon as 15 min p.i. This condition persisted until 3 h p.i., at which point we also observed increased host cell binucleation and micronuclei formation, both hallmarks of genomic instability. Furthermore, host cells responded to DNA damage by activating the ATM branch of the homologous recombination repair pathway. MYR1 was shown to be crucial, as TgΔmyr1 tachyzoites failed to induce S-phase arrest and DNA damage foci. In contrast, the absence of HCE1 did not produce these effects, suggesting that cyclin E1 expression was not involved. Also, DNA damage was demonstrated to be ROS-independent, suggesting that ROS did not trigger DNA damage. Our results suggest that T. gondii compromises host cellular DNA integrity depending on MYR1 shortly after infection, maintaining it over time.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Lisbeth Rojas-Baron
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Raza SHA, Zhong R, Li X, Pant SD, Shen X, BinMowyna MN, Luo L, Lei H. Ganoderma lucidum triterpenoids investigating their role in medicinal applications and genomic protection. J Pharm Pharmacol 2024; 76:1535-1551. [PMID: 39450753 DOI: 10.1093/jpp/rgae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Ganoderma lucidum (GL) is a white rot fungus widely used for its pharmacological properties and health benefits. GL consists of several biological components, including polysaccharides, sterols, and triterpenoids. Triterpenoids are often found in GL in the form of lanostane-type triterpenoids with quadrilateral carbon structures. KEY FINDINGS The study revealed that triterpenoids have diverse biological properties and can be categorized based on their functional groups. Triterpenoids derived from GL have shown potential medicinal applications. They can disrupt the cell cycle by inhibiting β-catenin or protein kinase C activity, leading to anti-cancer, anti-inflammatory, and anti-diabetic effects. They can also reduce the production of inflammatory cytokines, thus mitigating inflammation. Additionally, triterpenoids have been found to enhance the immune system's defenses against various health conditions. They possess antioxidant, antiparasitic, anti-hyperlipidemic, and antimicrobial activities, making them suitable for pharmaceutical applications. Furthermore, triterpenoids are believed to afford radioprotection to DNA, protecting it from radiation damage. SUMMARY This review focuses on the types of triterpenoids isolated from GL, their synthesis pathways, and their chemical structures. Additionally, it highlights the pharmacological characteristics of triterpenoids derived from GL, emphasizing their significant role in various therapeutic applications and health benefits for both humans and animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Mona N BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
23
|
Rodrigues JA, Pires BRB, de Amorim ISS, Siqueira PB, de Sousa Rodrigues MM, de Souza da Fonseca A, Panis C, Mencalha AL. STAT3 Regulates the Redox Profile in MDA-MB-231 Breast Cancer Cells. Cell Biochem Biophys 2024; 82:3507-3516. [PMID: 39033092 DOI: 10.1007/s12013-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Unbalanced redox status and constitutive STAT3 activation are related to several aspects of tumor biology and poor prognosis, including metastasis and drug resistance. The triple-negative breast cancer (TNBC) is listed as the most aggressive and exhibits the worst prognosis among the breast cancer subtypes. Although the mechanism of reactive oxygen species (ROS) generation led to STAT3 activation is described, there is no data concerning the STAT3 influence on redox homeostasis in TNBC. To address the role of STAT3 signaling in redox balance, we inhibited STAT3 in TNBC cells and investigated its impact on total ROS levels, contents of hydroperoxides, nitric oxide (NO), and total glutathione (GSH), as well as the expression levels of 3-nitrotyrosine (3NT), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa B (NF-κB)/p65. Our results indicate that ROS levels depend on the STAT3 activation, while the hydroperoxide level remained unchanged, and NO and 3NT expression increased. Furthermore, GSH levels, Nrf2, and NF-κB/p65 protein levels are decreased in the STAT3-inhibited cells. Accordingly, TNBC patients' data from TCGA demonstrated that both STAT3 mRNA levels and STAT3 signature are correlated to NF-κB/p65 and Nrf2 signatures. Our findings implicate STAT3 in controlling redox balance and regulating redox-related genes' expression in triple-negative breast cancer.
Collapse
Affiliation(s)
- Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Isis Salviano Soares de Amorim
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, UNIOESTE, Francisco Beltrão, Paraná, 85605-010, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
24
|
Yan Y, Zhai J, Wang L, Wang X. Response and defense mechanisms of the earthworms Eisenia foetida to natural saline soil stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175480. [PMID: 39182779 DOI: 10.1016/j.scitotenv.2024.175480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Salinization of soil is a serious global environmental issue, particularly in agricultural lands. Saline farmland not only endangers grain production but also affects the survival of soil fauna. Earthworms, as soil ecosystem engineers, play a crucial role in maintaining soil health and enhancing global agricultural production. However, the response of earthworms to natural saline soil stress remains poorly understood. To explore this, we investigated the effects of natural saline soil from Dongying City, Shandong Province, China, on the growth, survival, reproduction, antioxidation, and defense-related gene expression of the earthworm Eisenia foetida. Our findings demonstrate that the growth rate, survival rate, and cocoon production of E. foetida decrease under exposure to natural saline soil in a dose-dependent manner. Elevated levels of DNA damage in coelomocytes and increased reactive oxygen species (ROS) were observed. Additionally, antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), increased under stress. The mRNA levels of Cyp450 and Hsp70 also rose in response to saline soil exposure. Furthermore, the activity of Na+/K+-ATPase and the expression of the osmotic sensor gene wnk-1 were elevated. In conclusion, our findings indicate that natural saline soil induces antioxidant and osmotic stress in earthworms E. foetida, highlighting the detrimental effects and defense mechanisms of soil fauna under such conditions.
Collapse
Affiliation(s)
- Yunxiu Yan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China.
| |
Collapse
|
25
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Li Q, Zhu M, Liu X, Tian C, Li D, Wang H, Liu H. Abnormally low serum albumin levels are associated with abnormal bone mineral density and osteoporotic fractures: a retrospective studies. BMC Musculoskelet Disord 2024; 25:888. [PMID: 39511536 PMCID: PMC11542386 DOI: 10.1186/s12891-024-08021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Many studies have indicated that abnormal bone mineral density (BMD) is related to abnormal liver and kidney function, but the effect of serum albumin level on abnormal BMD and osteoporotic fracture is still controversial. The aim of this retrospective study was to investigate the effects of serum albumin levels on abnormal BMD and osteoporotic fractures. METHODS The study included 538 patients through the electronic medical records of inpatients and outpatients stored at Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. A multivariate logistic regression model was employed to test the relationship between serum albumin levels and abnormal BMD, and the effect of serum albumin levels on osteoporotic fractures was verified through the U test. Correlation between age, sex, kidney stones, coronary heart disease, hypertension, diabetes, fatty liver disease, haemoglobin (HB), mean corpuscular haemoglobin concentration (MCHC), platelets (PLT), platelet distribution width (PDW), lymphocytes (LYMP), alanine aminotransferase (ALT), total protein (TP), albumin (ALB), uric acid (UA), total bilirubin (TBIL), total cholesterol (TC), high-density lipoprotein (HDL) and abnormal BMD were analysed by logistic regression modelling after excluding confounding factors. RESULTS The ALB level in osteoporotic patients was 41.70 (36.40-45.00) g/L, which was significantly lower than those in the normal BMD and reduced BMD groups. The odds ratio (OR) (95% confidence interval [CI]) between the osteoporosis and normal BMD groups was 0.445 (0.394-0.502); the OR (95% CI) between the osteoporosis and reduced BMD groups was 0.395 (0.341-0.459). In the subgroup analysis by whether or not a fracture was present, the OR (95% CI) was 0.073 (0.045-0.119). CONCLUSIONS ALB is a protective factor against osteoporosis and osteoporotic fractures, suggesting that it may have the potential to predict osteoporosis onset and fractures.
Collapse
Affiliation(s)
- Qian Li
- Author affiliations Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengpei Zhu
- Author affiliations Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Author affiliations Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ciqiu Tian
- Author affiliations Department of Acupuncture, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Dinglin Li
- Author affiliations Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Author affiliations Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Author affiliations Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Cai H, Gao M, Xu T, Li K, Zhou Y, Lyu C, Xu S. Silicon dioxide particles induce DNA oxidative damage activating the AIM2-mediated PANoptosis in mice cerebellum. Chem Biol Interact 2024; 403:111258. [PMID: 39362619 DOI: 10.1016/j.cbi.2024.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Silicon dioxide (SiO2) particles are novel materials with wide-ranging applications across various fields, posing potential neurotoxic effects. This study investigates the toxicological mechanisms of SiO2 particles of different sizes on murine cerebellar tissue and cells. Six-week-old C57BL/6 mice were orally administered SiO2 particles of three sizes (1 μm, 300 nm, 50 nm) for 21 days to establish an in vivo model, and mice cerebellar astrocytes (C8-D1A cells) were cultured in vitro. Indicators of oxidative stress, DNA damage, and the PANoptosis pathway were detected using methods such as immunofluorescence staining, comet assay, western blotting, and qRT-PCR. The results show that SiO2 particles induce oxidative stress leading to DNA oxidative damage. The aberrant DNA is recognized by AIM2 (absent in melanoma 2), which activates the assembly of the PANoptosome complex, subsequently triggering PANoptosis. Furthermore, the extent of damage is inversely correlated with the size of SiO2 particles. This study elucidates the toxicological mechanism of SiO2 particles causing cerebellar damage via PANoptosis, extending research on PANoptosis in neurotoxicology, and aiding in the formulation of stricter safety standards and protective measures to reduce the potential toxic risk of SiO2 particles to humans.
Collapse
Affiliation(s)
- Hao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuanxin Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chencong Lyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
28
|
Huang H, Yang H, Feng S, Zhang X, Chen C, Yan H, Li R, Liu M, Lin J, Wen Y, She F. High salt condition alters LPS synthesis and induces the emergence of drug resistance mutations in Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0058724. [PMID: 39240098 PMCID: PMC11459920 DOI: 10.1128/aac.00587-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The burgeoning emergence of drug-resistant Helicobacter pylori strains poses a significant challenge to the clinical success of eradication therapies and is primarily attributed to mutations within drug-targeting genes that lead to antibiotic resistance. This study investigated the effect of high salt conditions on the occurrence of drug-resistance mutations in H. pylori. We found that high salt condition significantly amplifies the frequency of drug resistance mutations in H. pylori. This can be chiefly attributed to our discovery indicating that high salt concentration results in elevated reactive oxygen species (ROS) levels, initiating DNA damage within H. pylori. Mechanistically, high salt condition suppresses lipopolysaccharide (LPS) synthesis gene expression, inducing alterations in the LPS structure and escalating outer membrane permeability. This disruption of LPS synthesis attenuates the expression and activity of SodB, facilitates increased ROS levels, and consequently increases the drug resistance mutation frequency. Impairing LPS synthesis engenders a reduction in intracellular iron levels, leading to diminished holo-Fur activity and increased apo-Fur activity, which represses the expression of SodB directly. Our findings suggest a correlation between high salt intake and the emergence of drug resistance in the human pathogen H. pylori, implying that dietary choices affect the risk of emergence of antimicrobial resistance.IMPORTANCEDrug resistance mutations mainly contribute to the emergence of clinical antibiotic-resistant Helicobacter pylori, a bacterium linked to stomach ulcers and cancer. In this study, we explored how elevated salt conditions influence the emergence of drug resistance in H. pylori. We demonstrate that H. pylori exhibits an increased antibiotic resistance mutation frequency when exposed to a high salt environment. We observed an increase in reactive oxygen species (ROS) under high salt conditions, which can cause DNA damage and potentially lead to mutations. Moreover, our results showed that high salt condition alters the bacterium's lipopolysaccharide (LPS) synthesis, leading to a reduced expression of SodB in a Fur-dependent manner. This reduction, in turn, elevates ROS levels, culminating in a higher frequency of drug-resistance mutations. Our research underscores the critical need to consider environmental influences, such as diet and lifestyle, in managing bacterial infections and combating the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Hongming Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Huang Yang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Chu Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hongyu Yan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Rui Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mengxin Liu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Juan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Wu D, Hao L, Liu X, Li X, Zhao G. Comparative transcriptomics reveals the mechanism of antibacterial activity of fruit-derived dihydrochalcone flavonoids against Porphyromonas gingivalis. Food Funct 2024; 15:9734-9749. [PMID: 39219474 DOI: 10.1039/d4fo02854f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porphyromonas gingivalis causes various health issues through oral infections. This study investigates the antibacterial activities of food-derived dihydrochalcone flavonoids against Porphyromonas gingivalis and their mechanisms of antibacterial action through comparative transcriptome profiling. Susceptibility tests showed that two typical dihydrochalcone flavonoids (phloretin and phlorizin) had much lower minimum inhibitory concentrations (12.5 μg mL-1 and 50 μg mL-1, respectively) than the common flavanone naringenin (100 μg mL-1). SEM observations and the LDH activity assay indicated obvious anomalies in cell morphology and increased cell membrane permeability, indicating the destructive effect of those compounds on the cell structure. These compounds might also induce apoptosis in P. gingivalis, as shown by the CLSM fluorescence images. Transcriptomic analysis revealed that the flavonoid treatment impacted DNA function and oxidative damage. These flavonoids may activate antioxidant-related pathways that are lethal to anaerobic bacteria like P. gingivalis. Additionally, the compounds resulted in the silencing of transposition-related genes, potentially inhibiting resistance-gene acquisition and expression. Phloretin regulated fatty acid metabolism pathways, which are related to the construction and maintenance of the cell membrane. This suggests a relationship between the structure and antibacterial activities of the tested compounds that share a flavonoid skeleton but differ in the C-ring and glucose moiety. This is the first report of the antibacterial activities and mechanisms of action of food-derived dihydrochalcone flavonoids at the transcriptome level, offering a promising approach for the development of new antibacterial agents from natural products and enhancing their applicability in treating diseases associated with oral pathogens as a substitute for antibiotics.
Collapse
Affiliation(s)
- Desheng Wu
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Lisha Hao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Xiaohan Liu
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| |
Collapse
|
30
|
Endesfelder S. Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review. Antioxidants (Basel) 2024; 13:1076. [PMID: 39334735 PMCID: PMC11429035 DOI: 10.3390/antiox13091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
31
|
Gao X, Campasino K, Yourick MR, Cao Y, Yourick JJ, Sprando RL. Oxidative DNA damage contributes to usnic acid-induced toxicity in human induced pluripotent stem cell-derived hepatocytes. J Appl Toxicol 2024; 44:1329-1346. [PMID: 38724177 DOI: 10.1002/jat.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 08/16/2024]
Abstract
Dietary supplements containing usnic acid have been increasingly marketed for weight loss over the past decades, even though incidences of severe hepatotoxicity and acute liver failure due to their overuse have been reported. To date, the toxic mechanism of usnic acid-induced liver injury at the molecular level still remains to be fully elucidated. Here, we conducted a transcriptomic study on usnic acid using a novel in vitro hepatotoxicity model employing human induced pluripotent stem cell (iPSC)-derived hepatocytes. Treatment with 20 μM usnic acid for 24 h caused 4272 differentially expressed genes (DEGs) in the cells. Ingenuity Pathway Analysis (IPA) based on the DEGs and gene set enrichment analysis (GSEA) using the whole transcriptome expression data concordantly revealed several signaling pathways and biological processes that, when taken together, suggest that usnic acid caused oxidative stress and DNA damage in the cells, which further led to cell cycle arrest and eventually resulted in cell death through apoptosis. These transcriptomic findings were subsequently corroborated by a variety of cellular assays, including reactive oxygen species (ROS) generation and glutathione (GSH) depletion, DNA damage (pH2AX detection and 8-hydroxy-2'-deoxyguanosine [8-OH-dg] assay), cell cycle analysis, and caspase 3/7 activity. Collectively, the results of the current study accord with previous in vivo and in vitro findings, provide further evidence that oxidative stress-caused DNA damage contributes to usnic acid-induced hepatotoxicity, shed new light on molecular mechanisms of usnic acid-induced hepatotoxicity, and demonstrate the usefulness of iPSC-derived hepatocytes as an in vitro model for hepatotoxicity testing and prediction.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Kayla Campasino
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Miranda R Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Yu Cao
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
32
|
Mahran YF, Badr AM, Al-Kharashi LA, Alajami HN, Aldamry NT, Bayoumy NM, Elmongy EI, Soliman S. Thymol Protects against 5-Fluorouracil-Induced Hepatotoxicity via the Regulation of the Akt/GSK-3β Pathway in In Vivo and In Silico Experimental Models. Pharmaceuticals (Basel) 2024; 17:1094. [PMID: 39204199 PMCID: PMC11357534 DOI: 10.3390/ph17081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is a widely used, highly effective chemotherapeutic agent. However, its therapeutic efficacy is often limited by associated adverse effects, with hepatotoxicity being frequently reported with 5-FU therapy. Thymol is a monoterpene found in thyme (Thymus vulgaris L., Lamiaceae) and is known for its antioxidant, anti-apoptotic, and anticancer activities. This study aimed to explore the hepatoprotective activity of thymol against 5-FU-induced liver injury. METHODS Rats received two intraperitoneal doses of 5-FU (150 mg/kg) either alone or in combination with thymol at doses of 60 mg/kg or 120 mg/kg. Liver enzymes, oxidative stress, and apoptotic markers, in addition to histopathological changes, were assessed. RESULTS 5-FU induced marked liver injuries as evidenced by elevated liver enzymes and histopathological changes, in addition to abnormalities of oxidative and apoptotic markers. The administration of thymol ameliorated the 5-FU-induced oxidative damage through increasing hepatic antioxidants and lowering lipid peroxidation. Apoptotic response markers such as Bax, Bcl-2, Bax/Bcl-2 ratio, and PARP were also improved. Furthermore, Western blotting analysis showed that thymol modulated the 5-FU-induced changes in the expression of Akt/GSK-3β and p44/42 MAPK (ERK1/2) signaling pathways. CONCLUSIONS Our research is the first to shed light on thymol's potential protective effect against 5-FU- induced hepatotoxicity by inhibiting oxidative and apoptotic pathways and modulating the Akt/ GSK-3β as well as p44/42 MAPK (ERK1/2) signaling pathways.
Collapse
Affiliation(s)
- Yasmen F. Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Amira M. Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; (L.A.A.-K.); (N.T.A.)
| | - Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; (L.A.A.-K.); (N.T.A.)
| | - Hanaa N. Alajami
- College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Nouf T. Aldamry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia; (L.A.A.-K.); (N.T.A.)
| | - Nervana Moustafa Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt;
| | - Sahar Soliman
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| |
Collapse
|
33
|
Hoch D, Majali-Martinez A, Bandres-Meriz J, Bachbauer M, Pöchlauer C, Kaudela T, Bankoglu EE, Stopper H, Glasner A, Hauguel-De Mouzon S, Gauster M, Tokic S, Desoye G. Obesity-associated non-oxidative genotoxic stress alters trophoblast turnover in human first-trimester placentas. Mol Hum Reprod 2024; 30:gaae027. [PMID: 39092995 PMCID: PMC11347397 DOI: 10.1093/molehr/gaae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Placental growth is most rapid during the first trimester (FT) of pregnancy, making it vulnerable to metabolic and endocrine influences. Obesity, with its inflammatory and oxidative stress, can cause cellular damage. We hypothesized that maternal obesity increases DNA damage in the FT placenta, affecting DNA damage response and trophoblast turnover. Examining placental tissue from lean and obese non-smoking women (4-12 gestational weeks), we observed higher overall DNA damage in obesity (COMET assay). Specifically, DNA double-strand breaks were found in villous cytotrophoblasts (vCTB; semi-quantitative γH2AX immunostaining), while oxidative DNA modifications (8-hydroxydeoxyguanosine; FPG-COMET assay) were absent. Increased DNA damage in obese FT placentas did not correlate with enhanced DNA damage sensing and repair. Indeed, obesity led to reduced expression of multiple DNA repair genes (mRNA array), which were further shown to be influenced by inflammation through in vitro experiments using tumor necrosis factor-α treatment on FT chorionic villous explants. Tissue changes included elevated vCTB apoptosis (TUNEL assay; caspase-cleaved cytokeratin 18), but unchanged senescence (p16) and reduced proliferation (Ki67) of vCTB, the main driver of FT placental growth. Overall, obesity is linked to heightened non-oxidative DNA damage in FT placentas, negatively affecting trophoblast growth and potentially leading to temporary reduction in early fetal growth.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martina Bachbauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Caroline Pöchlauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Theresa Kaudela
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Silvija Tokic
- Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
34
|
Robert M, Kennedy BK, Crasta KC. Therapy-induced senescence through the redox lens. Redox Biol 2024; 74:103228. [PMID: 38865902 PMCID: PMC11215421 DOI: 10.1016/j.redox.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Therapy-induced senescent tumor cells have emerged as significant drivers of tumor recurrence and disease relapse. Interestingly, reactive oxygen species (ROS) production and its associated redox signaling networks are intertwined with initiation and establishment of therapy-induced senescence. Therapy-induced senescent cells influence neighboring cells and the tumor microenvironment via their bioactive secretome known as the senescence-associated secretory phenotype (SASP). The intracellular effects of ROS are dose and context-dependent. Under normal physiological conditions, ROS is involved in various signalling pathways and cellular processes important for maintenance of cellular homeostasis, such as redox balance, stress response, inflammatory signalling, cell proliferation and cell death among others. However excess ROS accompanied by a pro-oxidant microenvironment can engender oxidative DNA damage, triggering cellular senescence. In this review, we discuss the role of ROS and the redox state dynamics in fine-tuning homeostatic processes that drive therapy-induced cell fate towards senescence establishment, as well as their influence in stimulating inflammatory signalling and SASP production. We also offer insights into interventional strategies, specifically senotherapeutics, that could potentially leverage on modulation of redox and antioxidant pathways. Lastly, we evaluate possible implications of redox rewiring during escape from therapy-induced senescence, an emerging area of research. We envision that examining therapy-induced senescence through the redox lens, integrated with time-resolved single-cell RNA sequencing combined with spatiotemporal multi-omics, could further enhance our understanding of its functional heterogeneity. This could aid identification of targetable signalling nodes to reduce disease relapse, as well as inform strategies for development of broad-spectrum senotherapeutics. Overall, our review aims to delineate redox-driven mechanisms which contribute to the biology of therapy-induced senescence and beyond, while highlighting implications for tumor initiation and recurrence.
Collapse
Affiliation(s)
- Matius Robert
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
35
|
Wydorski PJ, Zmijewska A, Franczak A. The Extremely-Low-Frequency Electromagnetic Field Affects Apoptosis and Oxidative-Stress-Related Genes and Proteins in the Porcine Endometrium-An In Vitro Study. Int J Mol Sci 2024; 25:6931. [PMID: 39000040 PMCID: PMC11241303 DOI: 10.3390/ijms25136931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Nowadays, the extremely-low-frequency electromagnetic field (ELF-EMF) is recognized as environmental pollution. The data indicate that the ELF-EMF may affect factors related to epigenetic regulation and alter important biological processes in the uterus. The impact of the ELF-EMF on apoptosis and oxidative-stress-related genes has not been documented in porcine endometrium. This raises the question of whether the exposure to the ELF-EMF can induce apoptosis and/or oxidative stress in the endometrium of pigs during the peri-implantation period. Porcine endometrial slices (100 ± 5 mg) collected (n = 5) during the peri-implantation period were treated in vitro with ELF-EMF at a frequency of 50 Hz and flux density of 8 × 104 mG for 2 h. To determine the effect of ELF-EMF on apoptosis and oxidative stress in the endometrium, CASP3, CASP7, CIDEB, GADD45G, NOS1, NOS2, NOS3, and TP53I3 mRNA transcript were analyzed using real-time PCR, and protein abundance of CASP3, CASP7 using Western blot, and eNOS using ELISA were determined. Moreover, CASP3/7 and NOS activity was analyzed using flow cytometry and colorimetry, respectively. The decreased CASP7 and increased NOS3 mRNA transcript and protein abundance in ELF-EMF-treated endometrium were observed. Moreover, CIDEB, GADD45G, and TP53I3 mRNA transcript abundance was increased. Only p ≤ 0.05 was considered a statistically significant difference. The documented alterations indicate the potential of the ELF-EMF to affect apoptosis and generate oxidative stress in the endometrium. The insight into observed consequences documents for the first time the fact that the ELF-EMF may influence endometrial cell proliferation, angiogenesis, and/or tissue receptivity during peri-implantation.
Collapse
Affiliation(s)
| | | | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (P.J.W.); (A.Z.)
| |
Collapse
|
36
|
Xu Z, Chen L, Luo Y, Wei YM, Wu NY, Luo LF, Wei YB, Huang J. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine. NANOTECHNOLOGY 2024; 35:362006. [PMID: 38865988 DOI: 10.1088/1361-6528/ad572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.
Collapse
Affiliation(s)
- Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liang Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ning-Yuan Wu
- Guangxi Medical University Life Sciences Institute, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lan-Fang Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yong-Biao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
37
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
38
|
Wang X, Liu X, Guo Y, Gong T, Lu W, Han M, Guo Y, Wang X. The Remarkable Anti-Breast Cancer Efficacy and Anti-Metastasis by Multifunctional Nanoparticles Co-Loading Squamocin, R848 and IR 780. Int J Nanomedicine 2024; 19:4679-4699. [PMID: 38803997 PMCID: PMC11129788 DOI: 10.2147/ijn.s448860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Background Breast cancer is a heterogeneous disease globally accounting for approximately 1 million new cases annually. Chemotherapy remains the main therapeutic option, but the antitumor efficacy needs to be improved. Methods Two multifunctional nanoparticles were developed in this paper using oleic acid and mPEG2k-PCL2k as the drug carriers. Squamocin (Squ) was employed as a chemotherapeutic agent. Resiquimod (R848) or ginsenoside Rh2 was co-encapsulated in the nanoparticles to remold the immunosuppressive tumor microenvironment, and IR780 was coloaded as a photosensitizer to realize photothermal therapy. Results The obtained Squ-R848-IR780 nanoparticles and Squ-Rh2-IR780 nanoparticles were uniformly spherical and approximately (162.200 ± 2.800) nm and (157.300 ± 1.1590) nm, respectively, in average diameter, with good encapsulation efficiency (above 85% for each drug), excellent stability in various physiological media and high photothermal conversion efficiency (24.10% and 22.58%, respectively). After intravenous administration, both nanoparticles quickly accumulated in the tumor and effectively enhanced the local temperature of the tumor to over 45 °C when irradiated by an 808 nm laser. At a low dose of 0.1 mg/kg, Squ nanoparticles treatment alone displayed a tumor inhibition rate of 55.28%, pulmonary metastasis inhibition rate of 59.47% and a mean survival time of 38 days, which were all higher than those of PTX injection (8 mg/kg) (43.64%, 25 days and 37.25%), indicating that Squ was a potent and effective antitumor agent. Both multifunctional nanoparticles, Squ-Rh2-IR780 nanoparticles and Squ-R848-IR780 nanoparticles, demonstrated even better therapeutic efficacy, with tumor inhibition rates of 90.02% and 97.28%, pulmonary metastasis inhibition rates of 95.42% and 98.09, and mean survival times of 46 days and 52 days, respectively. Conclusion The multifunctional nanoparticles coloaded with squamocin, R848 and IR 780 achieved extraordinary therapeutic efficacy and excellent antimetastasis activity and are thus promising in the future treatment of breast tumors and probably other tumors.
Collapse
Affiliation(s)
- Xi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaoyao Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Tingting Gong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenmin Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, People’s Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
39
|
Chien TM, Yang CW, Yen CH, Yeh BW, Wu WJ, Sheu JH, Chang HW. Excavatolide C/cisplatin combination induces antiproliferation and drives apoptosis and DNA damage in bladder cancer cells. Arch Toxicol 2024; 98:1543-1560. [PMID: 38424264 DOI: 10.1007/s00204-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 μg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.
Collapse
Affiliation(s)
- Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
40
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. iScience 2024; 27:109579. [PMID: 38617560 PMCID: PMC11015494 DOI: 10.1016/j.isci.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Seli DA, Prendergast A, Ergun Y, Tyagi A, Taylor HS. High NaCl Concentrations in Water Are Associated with Developmental Abnormalities and Altered Gene Expression in Zebrafish. Int J Mol Sci 2024; 25:4104. [PMID: 38612913 PMCID: PMC11012806 DOI: 10.3390/ijms25074104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.
Collapse
Affiliation(s)
- Denis A. Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Prendergast
- Yale Zebrafish Phenotyping Core, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yagmur Ergun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Marlton, NJ 08053, USA
| | - Antariksh Tyagi
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Arkenberg P, Dittmar M. The 24-h profile of the DNA repair enzyme 8-oxoguanine glycosylase 1 (OGG1) is associated with age, TNF-α, and waist circumference in healthy adults. GeroScience 2024; 46:2489-2502. [PMID: 37991642 PMCID: PMC10828295 DOI: 10.1007/s11357-023-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
It is unknown how the DNA repair enzyme OGG1 relates to healthy aging in humans, in particular to inflammaging, that is associated with increased levels of TNF-α. This study aimed (1) to investigate how 24-h profiles for OGG1 change during healthy aging and (2) to analyze the relationship of OGG1 with TNF-α, central body fat, cortisol and oxidative DNA/RNA damage. In a cross-sectional study in 20 healthy older and 20 young women, salivary levels of OGG1, TNF-α, cortisol and oxidative DNA/RNA damage were quantified by ELISAs every 4 h for a 24-h period. Trunk circumferences were taken as measures of central body fat. Older women, compared to young women, exhibited significantly lower protein levels of OGG1 throughout the whole 24-h period, a 2.5 times lower 24-h mean level for OGG1 (P < 0.00001) and loss of 24-h variation of OGG1. Both age groups demonstrated significant 24-h variation for TNF-alpha, cortisol and oxidative damage. The 24-h mean level for TNF-α was more than twice as high in older compared to young women (P = 0.011). Regression analysis detected that age, TNF-α and waist circumference were negative significant predictors of OGG1, explaining 56% of variance of OGG1 (P < 0.00001), while levels of cortisol and oxidative damage were no predictors of OGG1. Results indicate a strong decrease of protein levels of OGG1 and a loss of 24-h variation during natural cellular aging. The negative relationship, found between OGG1 and TNF-α and between OGG1 and waist circumference, suggests involvement of proinflammatory processes in DNA repair.
Collapse
Affiliation(s)
- Per Arkenberg
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Manuela Dittmar
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Am Botanischen Garten 9, 24118 Kiel, Germany.
| |
Collapse
|
43
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Chauhan P, Singh M, Sharma A, Singh M, Chadha P, Kaur A. Halotolerant and plant growth-promoting endophytic fungus Aspergillus terreus CR7 alleviates salt stress and exhibits genoprotective effect in Vigna radiata. Front Microbiol 2024; 15:1336533. [PMID: 38404598 PMCID: PMC10884769 DOI: 10.3389/fmicb.2024.1336533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Soil salinity is one of the major environmental stresses that results in reduction of cultivable land and decreased productivity. In the present study, halotolerant and plant growth-promoting endophytic fungi were isolated from Catharanthus roseus, and their effect in mitigating salt stress in Vigna radiata was evaluated. An isolate CR7, identified to be Aspergillus terreus, showing plant growth promotion activities, viz. IAA production (23.43 ± 0.79 μg/ml), phosphate solubilization (133.63 ± 6.40 μg/ml), ACC deaminase activity (86.36 ± 2.70 μmol α-ketobutyrate/h/mg protein) etc. and ability to grow at 15% NaCl was selected for further in vivo studies. Colonization of CR7 was carried out in V. radiata which was subjected to different concentrations of salt (150, 200, and 250 mM NaCl). Under salt stress, A. terreus CR7 inoculated plants showed substantially improved root and shoot length, biomass, chlorophyll content, relative water content, phenolics, protein content, and DPPH scavenging activity. Endogenous IAA level was enhanced by 5.28-fold in treated plants at maximum salt stress. Inoculation of A. terreus CR7 affected oxidative stress parameters, exhibiting an increase in catalase and superoxide dismutase and reduction in proline, electrolyte leakage, and malondialdehyde content. Fluorescent microscopic analysis of roots revealed improved cell viability and decreased levels of glutathione and hydrogen peroxide under salt stress in treated plants. The isolate A. terreus CR7 also protected against DNA damage induced by salt stress which was evaluated using comet assay. A decrease in DNA tail length, tail moment, and olive tail moment to the extent of 19.87%, 19.76%, and 24.81%, respectively, was observed in A. terreus CR7-colonized plants under salt stress. It can be concluded that A. terreus CR7 can be exploited for alleviating the impact of salt stress in crop plants.
Collapse
Affiliation(s)
- Pooja Chauhan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Avinash Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
45
|
Cheng L, Liu J, Wang Q, Hu H, Zhou L. The Protective Effect of a Human Umbilical Cord Mesenchymal Stem Cell Supernatant on UVB-Induced Skin Photodamage. Cells 2024; 13:156. [PMID: 38247847 PMCID: PMC10814745 DOI: 10.3390/cells13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The skin is constantly exposed to a range of environmental stressors, including ultraviolet (UV) radiation, which can cause damage to the skin. Repairing UV-damaged skin has been a major focus of research in recent years. The therapeutic potential of human umbilical cord mesenchymal stem cells (HUCMSCs) exhibits anti-photoaging properties. In this study, we developed a strategy for concentrating an HUCMSC supernatant, and examined the protective effects of CHS on UVB exposure in vitro and in vivo. Our results demonstrate that CHS repairs UVB exposure by promoting cell viability and migration and reducing senescent and apoptosis cells. We further found that the photoprotective effect of CHS is due to autophagy activation. Moreover, CHS reduces wrinkles and senescent cells, increases collagen expression, and improves immune function in UVB exposure-induced skin damage. In summary, our study provides a new approach for repairing cell damage, and suggests that CHS might be a potential candidate for preventing UVB-induced skin photodamage.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541001, China;
| | - Qi Wang
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| | - Huozhen Hu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| |
Collapse
|
46
|
Güngör İH, Türk G, Dayan Cinkara S, Acisu TC, Tektemur A, Yeni D, Avdatek F, Arkali G, Koca RH, Özer Kaya Ş, Sagiroglu M, Etem Önalan E, Sönmez M, Gür S, Yüce A. Reduction of cryopreservation-induced structural, functional and molecular damages in ram sperm by hydrated C 60 fullerene. Reprod Domest Anim 2024; 59:e14513. [PMID: 38038214 DOI: 10.1111/rda.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to investigate the morphological, functional and molecular changes in frozen-thawed ram sperm using an extender containing different concentrations of hydrated carbon 60 fullerene (C60 HyFn), a nanotechnological product. Semen taken from each of the seven Akkaraman rams were pooled. Semen collection was done twice a week and it continued for 3 weeks. Each pooled semen sample was divided into six equal groups and diluted with tris + egg yolk extender including 0 (control), 200, 400, 800 nM, 1 and 5 μM concentrations of C60 HyFn at 37°C. They were then frozen in liquid nitrogen vapour at -140°C, stored in liquid nitrogen container (-196°C) and thawed at 37°C for 25 s before analysis. In comparison with control, C60 HyFn addition prior to freezing procedure provided significant increases in total and progressive motility rates, glutathione peroxidase, catalase activities and percentage of highly active mitochondria, and significant decreases in dead and abnormal sperm rates, lipid peroxidation, caspase-3 and DNA fragmentation levels in frozen-thawed ram semen. When compared to control, C60 HyFn supplementation significantly down-regulated the expression levels of miR-200a and KCNJ11, and significantly up-regulated the expression levels of miR-3958-3p (at the concentrations of 200, 400, 800 nM and 1 μM), CatSper1 (at the concentrations of 200, 400 nM and 5 μM), CatSper2 (at the concentrations of 1 and 5 μM), CatSper3 (at the concentrations of 200, 400 nM, 1 and 5 μM), CatSper4 (at all concentrations), ANO1 (at the concentrations of 800 nM, 1 and 5 μM) and TRPV5 (at the concentrations of 200, 400 and 800 nM). The addition of C60 HyFn had no effect on global DNA methylation rates. As a result, C60 HyFn supplementation to ram semen extenders may be beneficial in reducing some of the functional, structural and molecular damages in sperm induced by the freeze-thawing procedure.
Collapse
Affiliation(s)
- İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Serap Dayan Cinkara
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Tutku Can Acisu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Deniz Yeni
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Fatih Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Gözde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Recep Hakkı Koca
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Türkiye
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Meltem Sagiroglu
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Mustafa Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Seyfettin Gür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Abdurrauf Yüce
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| |
Collapse
|
47
|
Paravani EV, Bianchi M, Querubín Pereyra PL, Acosta MG, Odetti L, Simoniello MF, Poletta G. DNA damage, alterations in the expression of antioxidant enzyme genes and in the histoarchitecture of gill cells of zebrafish exposed to 17-α-ethinylestradiol. Drug Chem Toxicol 2024; 47:60-66. [PMID: 36912201 DOI: 10.1080/01480545.2023.2188441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Endocrine disruptors, such as estrogen, are chemical substances with the potential to alter the hormonal balance of organisms. Their origin can be natural or artificial, and they can act at very low doses. The estrogen 17α-ethinylestradiol (EE2) is used worldwide as an oral contraceptive and is a potential contaminant in aquatic ecosystems. It is well documented that these environmental pollutants can act directly or indirectly on the reproductive system, impairing development and fertility. However, little is known about the alteration of the cell oxidative status induced by EE2. The main objective of this study was to evaluate the effect on the gill cells of adult zebrafish exposed in vivo to EE2, analyzing cell histology, DNA damage and the expression levels of genes encoding the main enzymes involved in oxidative stress pathways. The histological study showed that EE2 produces moderate to high damage to the gill tissue, an increase in gill cell DNA damage and the mRNA levels of the genes corresponding to the manganese superoxide dismutase (Mn-sod) and catalase (cat) after exposure to 5 ng/L EE2. The results indicate that EE2 causes tissue alterations, DNA damage and oxidative stress. EE2 produced important alterations in the gills, a fundamental organ for the survival of fish. There is a clear need for further research on the ecological consequences of EDCs on non-target organisms.
Collapse
Affiliation(s)
- E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
- Cátedra de Biología Celular y Molecular, Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - M Bianchi
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - P L Querubín Pereyra
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - M G Acosta
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - L Odetti
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - G Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
48
|
Kafeel S, Bizenjo N, Shivji SS, Keran A, Hashim Z, Nawab SN. DNA Repair Enzyme XRCC4 30 bp Indel Intron 3 Locus Significant Association with Predisposition of Cataract in Senility. Appl Biochem Biotechnol 2024; 196:99-112. [PMID: 37099126 DOI: 10.1007/s12010-023-04533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Impaired DNA damage repair cascade can disrupt the lens transparency due to aging-associated oxidative stress. The aim of study was to assess the association of 30 bp indel mutation (rs28360071) in XRCC4 gene with susceptibility of cataract in senility. The study followed case-control design with a total of n = 200 participants and divided equally into senile cataract patients and control groups. Conventional polymerase chain reaction (PCR) was performed for the genotyping of XRCC4 (rs28360071) mutation. In statistical measures, SPSS ® 20.0 software, MedCal©, and SNPStats© tools were used for data analysis. Distribution of homozygous D/D and mutant D allele was higher in senile cataract patients in comparison to controls. XRCC4 (rs28360071) mutation was significantly associated with predisposition senile cataract (χ2 = 13.96, adjusted OR = 2.29, 95% CI: 1.5-3.4, p < 0.001). Codominant model was suggested to be a best fit model. Mutant D/D genotype described significant association with LDL (adjusted OR = 1.67, 95% CI: 0.14-1.45, p = 0.03),and HDL (adjusted OR = 1.66, 95% CI: 0.92-2.31, p = 0.05) cholesterol with higher risk of senile cataract. XRCC4 (rs28360071) mutation may serve as a potential biomarker for the prognosis of cataract in senility. It can used to measure interruption in NHEJ repair pathway to indicate DNA damage in lens epithelial cells which could accelerate cataractogenesis with aging.
Collapse
Affiliation(s)
- Sanober Kafeel
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan.
| | - Neelam Bizenjo
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan
| | - Shams Salman Shivji
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan
| | - Asifa Keran
- Faculty of Engineering, Science, Technology and Management, Department of Biomedical Engineering, Ziauddin University (ZUFESTM), F-103, Block B, North Nazimabad, Karachi, 74600, Pakistan
| | - Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics (ZCP), University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Nuzhat Nawab
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Main University Rd, Karachi, 75270, Pakistan
| |
Collapse
|
49
|
Koner S, Mukherjee A, Chandrasekaran N. Elucidating the effects of naturally weathered aged-polypropylene microplastics and newly procured polypropylene microplastics on raw 264.7 macrophages. ENVIRONMENTAL SCIENCE: NANO 2024; 11:983-999. [DOI: 10.1039/d3en00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this work, we investigated weathered aged-PPMPs and naturally obtained polypropylene microplastics (NP-PPMPs) with raw 264.7 macrophages, which causes cytotoxicity and an imbalance in the intracellular system.
Collapse
Affiliation(s)
- Shramana Koner
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
50
|
Rosety I, Zagare A, Saraiva C, Nickels S, Antony P, Almeida C, Glaab E, Halder R, Velychko S, Rauen T, Schöler HR, Bolognin S, Sauter T, Jarazo J, Krüger R, Schwamborn JC. Impaired neuron differentiation in GBA-associated Parkinson's disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis 2023; 9:166. [PMID: 38110400 PMCID: PMC10728202 DOI: 10.1038/s41531-023-00616-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.
Collapse
Affiliation(s)
- Isabel Rosety
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Nickels
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Thomas Rauen
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversial Translational Medicine, Luxembourg Institute of Health (LIH), 1 A-B rue Thomas Ediison, L-1445, Strassen, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|