1
|
Santos E, Flores-Junior LAP, Lima CHS, Dias LRS. Molecular Dynamics Studies on Trypanosoma cruzi Dihydroorotate Dehydrogenase Complexes: An Analysis of the Inhibitor Influence. ACS OMEGA 2025; 10:18116-18124. [PMID: 40352521 PMCID: PMC12060061 DOI: 10.1021/acsomega.5c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Chagas disease remains a significant global health problem. Current etiological treatment is limited due to its low efficacy in the advanced stage of the disease and adverse effects. Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) is a promising target for developing new drugs. This study explored the structural and dynamic factors influencing its inhibition. The results from the 100 ns molecular dynamics simulations of 11 ligand-TcDHODH complexes revealed that ligand size and conformation play crucial roles in enzyme inhibition, with flexibility in the active site being essential for enzyme function. Small ligands tend to maintain a closed conformation, while larger ligands induce open conformations. The results further demonstrate ligand-induced conformational changes and the role of key hydrogen bonds in stabilizing the ligand-enzyme complex. Electrostatic and hydrophobic interactions between ligands and the enzyme's S1, S2, and S3 subsites contribute to inhibition. Understanding these factors facilitates the development of potent and selective TcDHODH inhibitors for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Eldio
G. Santos
- Laboratório
de Química Medicinal, Departamento de Tecnologia Farmacêutica,
Faculdade de Farmácia, Universidade
Federal Fluminense, Niterói, RJ 24241-000, Brazil
| | - Luiz A. P. Flores-Junior
- Laboratório
de Química Medicinal, Departamento de Tecnologia Farmacêutica,
Faculdade de Farmácia, Universidade
Federal Fluminense, Niterói, RJ 24241-000, Brazil
| | - Camilo H. S. Lima
- Laboratório
de Modelagem Molecular, Departamento de Química Orgânica,
Instituto de Química, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Luiza R. S. Dias
- Laboratório
de Química Medicinal, Departamento de Tecnologia Farmacêutica,
Faculdade de Farmácia, Universidade
Federal Fluminense, Niterói, RJ 24241-000, Brazil
| |
Collapse
|
2
|
de Oliveira Rios É, Albino SL, Olimpio de Moura R, Nascimento IJDS. Targeting cysteine protease B to discover antileishmanial drugs: Directions and advances. Eur J Med Chem 2025; 289:117500. [PMID: 40085977 DOI: 10.1016/j.ejmech.2025.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Leishmaniasis is a severe disease and results in high mortality rates. Despite this, there are few drugs to treat and with various limitations such as toxicity and resistance, which justifies the search for new drugs. Thus, cysteine protease B (CPB) is a promising target against leishmania due to its immunomodulatory function related to the parasite's virulence and its interaction with the host. Thus, this perspective showed the potential of CPB in drug design and the main insights that can be used in subsequent drug design works. In fact, the aziridine analogs are the most explored against CPB due to the promising results and provide several insights into drug design. Also, it is noteworthy that one of the biggest challenges is target selectivity. Knowledge about substrate binding and other factors, such as the reversibility of inhibitors, is also needed. In addition, exploring target selectivity patterns is critical to developing CP inhibitors for clinical use to combat this threatening agent.
Collapse
Affiliation(s)
| | - Sonaly Lima Albino
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil
| | - Igor José Dos Santos Nascimento
- Cesmac University Center, Pharmacy Department, Maceió, Brazil; Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
3
|
Ramírez-Macías I, García-Huertas P, Marín C. What are the translational challenges associated with Chagas disease drug discovery? Expert Opin Drug Discov 2024; 19:1293-1296. [PMID: 39269147 DOI: 10.1080/17460441.2024.2402409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Inmaculada Ramírez-Macías
- Department of Parasitology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Paola García-Huertas
- Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Sabaneta, Colombia
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Espinoza-Chávez RM, de Oliveira Rezende Júnior C, Laureano de Souza M, Consolin Chelucci R, Michelan-Duarte S, Krogh R, Gomes Ferreira LL, Valli M, Sena de Oliveira A, Andricopulo AD, Carlos Dias L. Structure-Metabolism Relationships of Benzimidazole Derivatives with anti-Trypanosoma cruzi Activity for Chagas Disease. ChemMedChem 2024; 19:e202400293. [PMID: 38924252 DOI: 10.1002/cmdc.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
This study introduces further insights from the hit-to-lead optimization process involving a series of benzimidazole derivatives acting as inhibitors of the cruzain enzyme, which targets Trypanosoma cruzi, the causative parasite of Chagas disease. Here, we present the design, synthesis and biological evaluation of 30 new compounds as a third generation of benzimidazole analogues with trypanocidal activity, aiming to enhance our understanding of their pharmacokinetic profiles and establish a structure-metabolism relationships within the series. The design of these new analogues was guided by the analysis of previous pharmacokinetic results, considering identified metabolic sites and biotransformation studies. This optimization resulted in the discovery of two compounds (42 e and 49 b) exhibiting enhanced metabolic stability, anti-Trypanosoma cruzi activity compared to benznidazole (the reference drug for Chagas disease), as well as being non-cruzain inhibitors, and demonstrating a satisfactory in vitro pharmacokinetic profile. These findings unveil a new subclass of aminobenzimidazole and rigid compounds, which offer potential for further exploration in the quest for discovering novel classes of antichagasic compounds.
Collapse
Affiliation(s)
- Rocío Marisol Espinoza-Chávez
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia-MG, 38400-902, Brazil
| | - Mariana Laureano de Souza
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
- Department of Exact Sciences and Education, Federal University of Santa Catarina (UFSC), Blumenau-SC, 89036-004, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Luiz Carlos Dias
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
| |
Collapse
|
5
|
Pertino MW, F. de la Torre A, Schmeda-Hirschmann G, Vega Gómez C, Rolón M, Coronel C, Rojas de Arias A, Molina-Torres CA, Vera-Cabrera L, Viveros-Valdez E. Exploring Benzo[h]chromene Derivatives as Agents against Protozoal and Mycobacterial Infections. Pharmaceuticals (Basel) 2024; 17:1375. [PMID: 39459014 PMCID: PMC11510191 DOI: 10.3390/ph17101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: In this study, the efficacy of benzo[h]chromene derivatives as antiprotozoal and antimycobacterial agents was explored. Methods: A total of twenty compounds, including benzo[h]chromene alkyl diesters and benzo[h]chromene-triazole derivatives, were synthesized and tested against Trypanosoma cruzi, Leishmania braziliensis, L. infantum, and strains of Mycobacterium abscessus and Mycobacterium intracellulare LIID-01. Notably, compounds 1a, 1b, 2a, and 3f exhibited superior activity against Trypanosoma cruzi, with IC50 values of 19.2, 37.3, 68.7, and 24.7 µM, respectively, outperforming the reference drug benznidazole (IC50: 54.7 µM). Results: Compounds 1b and 3f showed excellent selectivity indices against Leishmania braziliensis, with SI values of 19 and 18, respectively, suggesting they could be potential alternatives to the commonly used, but more selective, miltefosine (IC50: 64.0 µM, SI: 43.0). Additionally, compounds 1a, 1b, and 3f were most effective against Leishmania infantum, with IC50 values of 24.9, 30.5, and 46.6 µM, respectively. Compounds 3f and 3h were particularly potent against various Mycobacterium abscessus strains, highlighting their significance given the inherent resistance of these bacteria to standard antimicrobials. Conclusions: The sensitivity of Mycobacterium intracellulare LIID-01 to these compounds also underscored their potential in managing infections by the Mycobacterium avium-intracellulare complex.
Collapse
Affiliation(s)
- Mariano Walter Pertino
- Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca 3480094, Chile;
| | - Alexander F. de la Torre
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | | | - Celeste Vega Gómez
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635, Asunción CP 1255, Paraguay; (C.V.G.); (M.R.); (C.C.); (A.R.d.A.)
| | - Miriam Rolón
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635, Asunción CP 1255, Paraguay; (C.V.G.); (M.R.); (C.C.); (A.R.d.A.)
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635, Asunción CP 1255, Paraguay; (C.V.G.); (M.R.); (C.C.); (A.R.d.A.)
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635, Asunción CP 1255, Paraguay; (C.V.G.); (M.R.); (C.C.); (A.R.d.A.)
| | - Carmen A. Molina-Torres
- Servicios de Dermatología, Hospital Universitario “José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico; (C.A.M.-T.); (L.V.-C.)
| | - Lucio Vera-Cabrera
- Servicios de Dermatología, Hospital Universitario “José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico; (C.A.M.-T.); (L.V.-C.)
| | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico;
| |
Collapse
|
6
|
Pozo-Martínez J, Arán VJ, Zúñiga-Bustos M, Parra-Magna S, Rocha-Valderrama E, Liempi A, Castillo C, Olea-Azar C, Moncada-Basualto M. In Vitro Evaluation of New 5-Nitroindazolin-3-one Derivatives as Promising Agents against Trypanosoma cruzi. Int J Mol Sci 2024; 25:11107. [PMID: 39456891 PMCID: PMC11508334 DOI: 10.3390/ijms252011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Chagas disease is a prevalent health problem in Latin America which has received insufficient attention worldwide. Current treatments for this disease, benznidazole and nifurtimox, have limited efficacy and may cause side effects. A recent study proposed investigating a wide range of nitroindazole and indazolone derivatives as feasible treatments. Therefore, it is proposed that adding a nitro group at the 5-position of the indazole and indazolone structure could enhance trypanocidal activity by inducing oxidative stress through activation of the nitro group by NTRs (nitroreductases). The study results indicate that the nitro group advances free radical production, as confirmed by several analyses. Compound 5a (5-nitro-2-picolyl-indazolin-3-one) shows the most favorable trypanocidal activity (1.1 ± 0.3 µM in epimastigotes and 5.4 ± 1.0 µM in trypomastigotes), with a selectivity index superior to nifurtimox. Analysis of the mechanism of action indicated that the nitro group at the 5-position of the indazole ring induces the generation of reactive oxygen species (ROS), which causes apoptosis in the parasites. Computational docking studies reveal how the compounds interact with critical residues of the NTR and FMNH2 (flavin mononucleotide reduced) in the binding site, which is also present in active ligands. The lipophilicity of the studied series was shown to influence their activity, and the nitro group was found to play a crucial role in generating free radicals. Further investigations are needed of derivatives with comparable lipophilic characteristics and the location of the nitro group in different positions of the base structure.
Collapse
Affiliation(s)
- Josué Pozo-Martínez
- Department of Molecular Pharmacology and Clinical, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
- Laboratorio de Química-Médica, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 777, Cuenca 010204, Ecuador
| | - Vicente J. Arán
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Matías Zúñiga-Bustos
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile; (M.Z.-B.)
| | - Sebastián Parra-Magna
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile; (M.Z.-B.)
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Esteban Rocha-Valderrama
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile; (M.Z.-B.)
- Free Radical and Antioxidants Laboratory, Inorganic and Analytical Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile (C.C.)
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile (C.C.)
| | - Claudio Olea-Azar
- Department of Molecular Pharmacology and Clinical, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Mauricio Moncada-Basualto
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile; (M.Z.-B.)
| |
Collapse
|
7
|
Pérez-Soto M, Ramos-Soriano J, Peñalver P, Belmonte-Reche E, O'Hagan MP, Cucchiarini A, Mergny JL, Galán MC, López López MC, Thomas MDC, Morales JC. DNA G-quadruplexes in the genome of Trypanosoma cruzi as potential therapeutic targets for Chagas disease: Dithienylethene ligands as effective antiparasitic agents. Eur J Med Chem 2024; 276:116641. [PMID: 38971047 DOI: 10.1016/j.ejmech.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 μM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.
Collapse
Affiliation(s)
- Manuel Pérez-Soto
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | | | - Pablo Peñalver
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | - Efres Belmonte-Reche
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada / Andalusian Regional Government, PTS Granada, Av. de La Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Michael P O'Hagan
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Anne Cucchiarini
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
| | - Manuel Carlos López López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - María Del Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - Juan Carlos Morales
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| |
Collapse
|
8
|
Rodríguez DF, Lipez KJ, Stashenko E, Díaz I, Cobo J, Palma A. Alternative and efficient one-pot three-component synthesis of substituted 2-aryl-4-styrylquinazolines/4-styrylquinazolines from synthetically available 1-(2-aminophenyl)-3-arylprop-2-en-1-ones: characterization and evaluation of their antiproliferative activities. RSC Adv 2024; 14:20951-20965. [PMID: 38957579 PMCID: PMC11218040 DOI: 10.1039/d4ra03702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
In this study, an alternative and efficient one-pot three-component synthesis approach to develop a new series of (E)-2-aryl-4-styrylquinazolines and (E)-4-styrylquinazolines is described. According to this approach, the target compounds were synthesized straightforward in high yields and in short reaction times from substituted 1-(2-aminophenyl)-3-arylprop-2-en-1-ones via its well-Cu(OAc)2-mediated cyclocondensation reactions with aromatic aldehydes or its well-catalyst-free cyclocondensation reactions with trimethoxy methane (trimethyl orthoformate), and ammonium acetate under aerobic conditions. This is an operationally simple, valuable, and direct method to synthesize 2-aryl- and non-C2-substituted quinazolines containing a styryl framework at C4 position from cheap and synthetically available starting materials. All the synthesized compounds were submitted to the US National Cancer Institute for in vitro screening. The bromo- and chloro-substituted quinazolines 5c and 5d displayed a potent antitumor activity against all the tested subpanel tumor cell lines with IC50 (MG-MID) values of 5.25 and 5.50 μM, and a low cytotoxic effect with LC50 (MG-MID) values of 91.20 and 84.67 μM, respectively, indicating a low toxicity of these compounds to normal human cell lines, as required for potential antitumor agents.
Collapse
Affiliation(s)
- Diego Fernando Rodríguez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| | - Kelly Johanna Lipez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander Colombia
| | - Iván Díaz
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén Spain
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén Spain
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander AA 678 Bucaramanga Colombia
| |
Collapse
|
9
|
Cristovão-Silva AC, Brelaz-de-Castro MCA, Dionisio da Silva E, Leite ACL, Santiago LBAA, Conceição JMD, da Silva Tiburcio R, de Santana DP, Bedor DCG, de Carvalho BÍV, Ferreira LFGR, de Freitas E Silva R, Alves Pereira VR, Hernandes MZ. Trypanosoma cruzi killing and immune response boosting by novel phenoxyhydrazine-thiazole against Chagas disease. Exp Parasitol 2024; 261:108749. [PMID: 38593864 DOI: 10.1016/j.exppara.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 μM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 μM) for trypomastigotes, and LIZ331 (IC50 1.9 μM) for amastigotes. We observed that LIZ311 (IC50 2.5 μM), LIZ431 (IC50 4.1 μM) and LIZ531 (IC50 5 μM) induced 200 μg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.
Collapse
Affiliation(s)
- Ana Catarina Cristovão-Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Maria Carolina Accioly Brelaz-de-Castro
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil; Laboratory of Parasitology, Vitória Academic Center, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil
| | - Elis Dionisio da Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Lizandra Beatriz Amorim Alves Santiago
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Juliana Maria da Conceição
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Robert da Silva Tiburcio
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Davi Pereira de Santana
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Danilo Cesar Galindo Bedor
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Breno Ítalo Valença de Carvalho
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luiz Felipe Gomes Rebello Ferreira
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Rafael de Freitas E Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Valéria Rêgo Alves Pereira
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Marcelo Zaldini Hernandes
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| |
Collapse
|
10
|
Sadineni K, Reddy Basireddy S, Rao Allaka T, Yatam S, Bhoomandla S, Muvvala V, Babu Haridasyam S. Design, Synthesis and In vitro Antitubercular Effect of New Chalcone Derivatives Coupled with 1,2,3-Triazoles: A Computational Docking Techniques. Chem Biodivers 2024; 21:e202400389. [PMID: 38457745 DOI: 10.1002/cbdv.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 μg/mL, compared to Streptomycin [MIC=5.01 μg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| | - Sravanthi Reddy Basireddy
- Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad, Telangana-500043, India
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana-500085, India
| | - Satyanarayana Yatam
- A1Biochem Labs (India) Pvt LTD, Pragathi Nagar, Kukatpally, Hyderabad-500072, Telangana, India
| | - Srinu Bhoomandla
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
- Department of Chemistry, Geethanjali College of Engineering and Technology (Autonomous), Cheeryal, Medchal-501301, Telangana, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| |
Collapse
|
11
|
Kann S, Concha G, Frickmann H, Hagen RM, Warnke P, Molitor E, Hoerauf A, Backhaus J. Chagas Disease: Comparison of Therapy with Nifurtimox and Benznidazole in Indigenous Communities in Colombia. J Clin Med 2024; 13:2565. [PMID: 38731093 PMCID: PMC11084551 DOI: 10.3390/jcm13092565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: For indigenous people in Colombia, high infection rates with Chagas disease (CD) are known. Methods: In 2018 and 2020, nine villages were screened for CD. CD-positive patients could enter a drug observed treatment. While, in 2018, Benznidazole (BNZ) was provided as the first-line drug by the government, nifurtimox (NFX) was administered in 2020. Results: Of 121 individuals treated with BNZ, 79 (65%) suffered from at least one adverse event (AE). Of 115 treated with NFX, at least one AE occurred in 96 (84%) patients. In 69% of BNZ cases, the side effects did not last longer than one day; this applied to 31% of NFX cases. Excluding extreme outlier values, average duration of AEs differed highly significantly: BNZ (M = 0.7, SD = 1.4) and NFX (M = 1.7, SD = 1.5, p < 0.001). Using an intensity scale, AEs were highly significantly more severe for NFX (M = 2.1, SD = 0.58) compared to BZN (M = 1.1, SD = 0.38), p < 0.001. When analyzing the duration in relation to the intensity, the burden of AEs caused by NFX was significantly more pronounced. Dropouts (n = 2) due to AEs were in the NFX-group only. Conclusions: Side effects caused by BNZ were significantly fewer, as well as milder, shorter in duration, and more easily treatable, compared to NFX.
Collapse
Affiliation(s)
- Simone Kann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Gustavo Concha
- Organization Wiwa Yugumaiun Bunkauanarrua Tayrona (OWYBT), Department Health Advocacy, Valledupar 2000001, Colombia;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Ernst Molitor
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Joy Backhaus
- Statistical Consulting, 97074 Wuerzburg, Germany;
| |
Collapse
|
12
|
Lin Y, Scalese G, Bulman CA, Vinck R, Blacque O, Paulino M, Ballesteros-Casallas A, Díaz LP, Salinas G, Mitreva M, Weil T, Cariou K, Sakanari JA, Gambino D, Gasser G. Antifungal and Antiparasitic Activities of Metallocene-Containing Fluconazole Derivatives. ACS Infect Dis 2024; 10:938-950. [PMID: 38329933 PMCID: PMC11808820 DOI: 10.1021/acsinfecdis.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France. WWW: www.gassergroup.com
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Christina A Bulman
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France. WWW: www.gassergroup.com
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Margot Paulino
- Área Bioinformática, Departamento DETEMA, Facultad de Química, Universidad de la República, 11600 Montevideo, Uruguay
| | - Andres Ballesteros-Casallas
- Área Bioinformática, Departamento DETEMA, Facultad de Química, Universidad de la República, 11600 Montevideo, Uruguay
| | - Leticia Pérez Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Biociencias, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Tobias Weil
- Research and Innovation Centre, Fondazione Edmund Mach Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France. WWW: www.gassergroup.com
| | - Judy A. Sakanari
- University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France. WWW: www.gassergroup.com
| |
Collapse
|
13
|
Haroon M, Akhtar T, Mehmood H, da Silva Santos AC, da Conceição JM, Brondani GL, Silva Tibúrcio RD, Galindo Bedor DC, Viturino da Silva JW, Sales Junior PA, Alves Pereira VR, Lima Leite AC. Synthesis of hydrazinyl-thiazole ester derivatives, in vitro trypanocidal and leishmanicidal activities. Future Med Chem 2024; 16:221-238. [PMID: 38269432 DOI: 10.4155/fmc-2023-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Aim: To synthesize novel more potent trypanocidal and leishmanicidal agents. Methods: Hantzsch's synthetic strategy was used to synthesize 1,3-thiazole-4-carboxylates and their N-benzylated derivatives. Results: 28 new thiazole-carboxylates and their N-benzylated derivatives were established to test their trypanocidal and leishmanicidal activities. From both series, compounds 3b, 4f, 4g, 4j and 4n exhibited a better or comparable trypanocidal profile to benznidazole. Among all tested compounds, 4n was found to be the most potent and was better than benznidazole. Conclusion: Further variation of substituents around 1,3-thiazole-4-carboxylates and or hydrazinyl moiety may assist in establishing better and more potent trypanocidal and leishmanicidal agents.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry & Biochemistry, Miami University, 651 E High Street, Oxford, OH 45056, USA
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), 10250-Mirpur (AJK), Pakistan
| | | | - Juliana M da Conceição
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Graziella Leite Brondani
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Robert da Silva Tibúrcio
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Danilo C Galindo Bedor
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José W Viturino da Silva
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | | | | | - Ana C Lima Leite
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
14
|
Prates JLB, Lopes JR, Chin CM, Ferreira EI, Dos Santos JL, Scarim CB. Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi. Curr Med Chem 2024; 31:2285-2308. [PMID: 37888814 DOI: 10.2174/0109298673254864230921090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 10/28/2023]
Abstract
Chagas disease (CD) is a parasitic disease endemic in several developing countries. According to the World Health Organization, approximately 6-8 million people worldwide are inflicted by CD. The scarcity of new drugs, mainly for the chronic phase, is the main reason for treatment limitation in CD. Therefore, there is an urgent need to discover new targets for which new therapeutical agents could be developed. Cruzain cysteine protease (CCP) is a promising alternative because this enzyme exhibits pleiotropic effects by acting as a virulence factor, modulating host immune cells, and interacting with host cells. This systematic review was conducted to discover new compounds that act as cruzain inhibitors, and their effects in vitro were studied through enzymatic assays and molecular docking. Additionally, the advances and perspectives of these inhibitors are discussed. These findings are expected to contribute to medicinal chemistry in view of the design of new, safe, and efficacious inhibitors against Trypanosoma cruzi CCP detected in the last decade (2013-2022) to provide scaffolds for further optimization, aiming toward the discovery of new drugs.
Collapse
Affiliation(s)
- João Lucas Bruno Prates
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Chemistry Institute Araraquara, São Paulo State University (UNESP), SP, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Chung Man Chin
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, Advanced Research Center in Medicine, São José do Rio Preto, SP, Brazil
| | - Elizabeth Igne Ferreira
- LAPEN-Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Chemistry Institute Araraquara, São Paulo State University (UNESP), SP, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
15
|
Gonzaga BMDS, Ferreira RR, Coelho LL, Carvalho ACC, Garzoni LR, Araujo-Jorge TC. Clinical trials for Chagas disease: etiological and pathophysiological treatment. Front Microbiol 2023; 14:1295017. [PMID: 38188583 PMCID: PMC10768561 DOI: 10.3389/fmicb.2023.1295017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Chagas disease (CD) is caused by the flagellate protozoan Trypanosoma cruzi. It is endemic in Latin America. Nowadays around 6 million people are affected worldwide, and 75 million are still at risk. CD has two evolutive phases, acute and chronic. The acute phase is mostly asymptomatic, or presenting unspecific symptoms which makes it hard to diagnose. At the chronic phase, patients can stay in the indeterminate form or develop cardiac and/or digestive manifestations. The two trypanocide drugs available for the treatment of CD are benznidazole (BZ) and nifurtimox (NFX), introduced in the clinic more than five decades ago. WHO recommends treatment for patients at the acute phase, at risk of congenital infection, for immunosuppressed patients and children with chronic infection. A high cure rate is seen at the CD acute phase but better treatment schemes still need to be investigated for the chronic phase. There are some limitations within the use of the trypanocide drugs, with side effects occurring in about 40% of the patients, that can lead patients to interrupt treatment. In addition, patients with advanced heart problems should not be treated with BZ. This is a neglected disease, discovered 114 years ago that still has no drug effective for their chronic phase. Multiple social economic and cultural barriers influence CD research. The high cost of the development of new drugs, in addition to the low economical return, results in the lack of investment. More economic support is required from governments and pharmaceutical companies on the development of more research for CD treatment. Two approaches stand out: repositioning and combination of drugs, witch drastically decrease the cost of this process, when compared to the development of a new drug. Here we discuss the progress of the clinical trials for the etiological and pathophysiological treatment for CD. In summary, more studies are needed to propose a new drug for CD. Therefore, BZ is still the best option for CD. The trials in course should clarify more about new treatment regimens, but it is already possible to indicate that dosage and time of treatment need to be adjusted.
Collapse
Affiliation(s)
| | | | | | | | | | - Tania C. Araujo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Tang KJ, Zhao Y, Tao X, Li J, Chen Y, Holland DC, Jin TY, Wang AY, Xiang L. Catecholamine Derivatives: Natural Occurrence, Structural Diversity, and Biological Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2592-2619. [PMID: 37856864 DOI: 10.1021/acs.jnatprod.3c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Catecholamines (CAs) are aromatic amines containing a 3,4-dihydroxyphenyl nucleus and an amine side chain. Representative CAs included the endogenous neurotransmitters epinephrine, norepinephrine, and dopamine. CAs and their derivatives are good resources for the development of sympathomimetic or central nervous system drugs, while they also provide ligands important for G-protein coupled receptor (GPCR) research. CAs are of broad interest in the fields of chemical, biological, medical, and material sciences due to their high adhesive capacities, chemical reactivities, metal-chelating abilities, redox activities, excellent biocompatibilities, and ease of degradability. Herein, we summarize CAs derivatives isolated and identified from microorganisms, plants, insects, and marine invertebrates in recent decades, alongside their wide range of reported biological activities. The aim of this review is to provide an overview of the structural and biological diversities of CAs, the regularity of their natural occurrences, and insights toward future research and development pertinent to this important class of naturally occurring compounds.
Collapse
Affiliation(s)
- Kai-Jun Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xu Tao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jing Li
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Darren C Holland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States of America
| | - Tian-Yun Jin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States of America
| | - Ao-Yun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lan Xiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
17
|
de Almeida GC, de Oliveira GB, da Silva Monte Z, Costa ÉCS, da Silva Falcão EP, Scotti L, Scotti MT, Oliveira Silva R, Pereira VRA, da Silva ED, Junior PAS, de Andrade Cavalcante MK, de Melo SJ. Structure-based design, optimization of lead, synthesis, and biological evaluation of compounds active against Trypanosoma cruzi. Chem Biol Drug Des 2023; 102:843-856. [PMID: 37455325 DOI: 10.1111/cbdd.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/18/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Chagas' disease affects approximately eight million people throughout the world, especially the poorest individuals. The protozoan that causes this disease-Trypanosoma cruzi-has the enzyme cruzipain, which is the main therapeutic target. As no available medications have satisfactory effectiveness and safety, it is of fundamental importance to design and synthesize novel analogues that are more active and selective. In the present study, molecular docking and the in silico prediction of ADMET properties were used as strategies to optimize the trypanocidal activity of the pyrimidine compound ZN3F based on interactions with the target site in cruzipain. From the computational results, eight 4-amino-5-carbonitrile-pyrimidine analogues were proposed, synthesized (5a-f and 7g-h) and, tested in vitro on the trypomastigote form of the Tulahuen strain of T. cruzi. The in silico study showed that the designed analogues bond favorably to important amino acid residues of the active site in cruzipain. An in vitro evaluation of cytotoxicity was performed on L929 mammal cell lines. All derivatives inhibited the Tulahuen strain of T. cruzi and also exhibited lower toxicity to L929 cells. The 5e product, in particular, proved to be a potent, selective (IC50 = 2.79 ± 0.00 μM, selectivity index = 31.3) inhibitor of T. cruzi. The present results indicated the effectiveness of drugs based on the structure of the receptor, revealing the potential trypanocidal of pyrimidines. This study also provides information on molecular aspects for the inhibition of cruzipain.
Collapse
Affiliation(s)
- Gleybson Correia de Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Gerliny Bezerra de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Zenaide da Silva Monte
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Érick Caique Santos Costa
- Postgraduate Program in Biological Sciences, Department of Biosciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | | | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Oliveira Silva
- Department of Fundamental Chemistry, Center for Exact and Natural Sciences, Federal University of Pernambuco, Av. Journalist Anibal Fernandes, Recife, Brazil
| | - Valéria Rêgo Alves Pereira
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Elis Dionisio da Silva
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Policarpo Ademar Sales Junior
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Marton Kaique de Andrade Cavalcante
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Sebastião José de Melo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
- Postgraduate Program in Biological Sciences, Department of Biosciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| |
Collapse
|
18
|
Daga MA, Nicolau ST, Jurumenha-Barreto J, Lima LBS, Cabral IL, Pivotto AP, Stefanello A, Amorim JPA, Hoscheid J, Silva EA, Ayala TS, Menolli RA. Ursolic acid-rich extract presents trypanocidal action in vitro but worsens mice under experimental acute Chagas disease. Parasite Immunol 2023; 45:e13005. [PMID: 37467029 DOI: 10.1111/pim.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Chagas disease is a neglected tropical disease with only two drugs available for treatment and the plant Cecropia pachystachya has several compounds with antimicrobial and anti-inflammatory activities. This study aimed to evaluate a supercritical extract from C. pachystachya leaves in vitro and in vivo against Trypanosoma cruzi. A supercritical CO2 extraction was used to obtain the extract (CPE). Cytotoxicity and immunostimulation ability were evaluated in macrophages, and the in vitro trypanocidal activity was evaluated against epimastigotes and trypomastigotes forms. In vivo tests were done by infecting BALB/c mice with blood trypomastigotes forms and treating animals orally with CPE for 10 days. The parasitemia, survival rate, weight, cytokines and nitric oxide dosage were evaluated. CPE demonstrated an effect on the epi and trypomastigotes forms of the parasite (IC50 17.90 ± 1.2 μg/mL; LC50 26.73 ± 1.2 μg/mL) and no changes in macrophages viability, resulting in a selectivity index similar to the reference drug. CPE-treated animals had a worsening compared to non-treated, demonstrated by higher parasitemia and lower survival rate. This result was attributed to the anti-inflammatory effect of CPE, demonstrated by the higher IL-10 and IL-4 values observed in the treated mice compared to the control ones. CPE demonstrated a trypanocidal effect in vitro and a worsening in the in vivo infection due to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Maiara A Daga
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Scheila T Nicolau
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Juliana Jurumenha-Barreto
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Lucas B S Lima
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Isaac L Cabral
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Ana Paula Pivotto
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Amanda Stefanello
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - João P A Amorim
- Center of Biological and Health Sciences, Western Parana State University, Cascavel, Brazil
| | - Jaqueline Hoscheid
- Professional Master's Program in Medicinal Plants and Herbal Medicine in Primary Care, Universidade Paranaense, Umuarama, Brazil
| | - Edson A Silva
- Laboratory of Biotechnological Processes and Separation, Center of Exact and Technological Sciences, Western Parana State University, Toledo, Brazil
| | - Thaís S Ayala
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Rafael A Menolli
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| |
Collapse
|
19
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
20
|
Reis RCFM, Dos Santos EG, Benedetti MD, Reis ACC, Brandão GC, Silva GND, Diniz LA, Ferreira RS, Caldas IS, Braga SFP, Souza TBD. Design and synthesis of new 1,2,3-triazoles derived from eugenol and analogues with in vitro and in vivo activity against Trypanosoma cruzi. Eur J Med Chem 2023; 258:115622. [PMID: 37441850 DOI: 10.1016/j.ejmech.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Chagas disease (CD) is a neglected tropical disease endemic in 21 countries and affects about 8 million people around the world. The pharmacotherapy for this disease is limited to two drugs (Benznidazole and Nifurtimox) and both are associated with important limitations, as low cure rate in the chronic phase of the disease, high toxicity and increasing resistance by Trypanosoma cruzi. Recently, we reported a bioactive 1,2,3-triazole (compound 35) active in vitro (IC50 42.8 μM) and in vivo (100 mg/kg) against T. cruzi Y strains and preliminary in silico studies suggested the cysteine protease cruzain as a possible target. Considering these initial findings, we describe here the design and synthesis of new 1,2,3-triazoles derivatives of our hit compound (35). The triazoles were initially evaluated against healthy cells derived from neonatal rat cardiomyoblasts (H9c2 cells) to determine their cytotoxicity and against epimastigotes forms of T. cruzi Y strain. The most active triazoles were compounds 26 (IC50 19.7 μM) and 27 (IC50 7.3 μM), while benznidazole was active at 21.6 μM. Derivative 27 showed an interesting selectivity index considering healthy H9c2 cells (>77). Promising activities against trypomastigotes forms of the parasite were also observed for triazoles 26 (IC50 20.74 μM) and 27 (IC50 8.41 μM), mainly 27 which showed activity once again higher than that observed for benznidazole (IC50 12.72 μM). While docking results suggested cruzain as a potential target for these compounds, no significant enzyme inhibition was observed in vitro, indicating that their trypanocidal activity is related to another mode of action. Considering the promising in vitro results of triazoles 26 and 27, the in vivo toxicity was initially verified based on the evaluation of behavioral and physiological parameters, mortality, effect in body weight gain, and through the measurement of AST/ALT enzymes, which are markers of liver toxicity. All these evaluations pointed to a good tolerability of the animals, especially considering triazole 27. A reduction in parasitemia was observed among animals treated with triazole 27, but not among those treated with derivative 26. Regarding the dosage, derivative 27 (100 mg/kg) was the most active sample against T. cruzi infection, showing a 99.4% reduction in parasitemia peak. Triazole 27 at a dosage of 100 mg/kg influenced the humoral immune response and reduced myocarditis in the animals, bringing antibody levels closer to those observed among healthy mice. Altogether, our results indicate compound 27 as a new lead for the development of drug candidates to treat Chagas disease.
Collapse
Affiliation(s)
| | - Elda Gonçalves Dos Santos
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Monique Dias Benedetti
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | | | - Geraldo Célio Brandão
- School of Pharmacy - Federal University of Ouro Preto, 35400-000, Ouro Preto, MG, Brazil
| | | | - Lucas Abreu Diniz
- Biochemistry and Immunology Department - Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Rafaela Salgado Ferreira
- Biochemistry and Immunology Department - Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Ivo Santana Caldas
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | | | | |
Collapse
|
21
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
22
|
da Conceição JM, da Silva Santos AC, Brayner FA, Alves LC, Pinto AF, Brondani GL, de Oliveira Filho GB, Bedor DCG, da Silva JWV, Sales Junior PA, de Andrade Cavalcante MK, da Silva ED, Pereira VRA, Leite ACL. Structural design, synthesis, and anti-Trypanosomatidae profile of new Pyridyl-thiazolidinones. Eur J Med Chem 2023; 254:115310. [PMID: 37062170 DOI: 10.1016/j.ejmech.2023.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
The present work reports the synthesis of a novel series of pyridine-thiazolidinones with anti-Trypanosoma cruzi and leishmanicidal activities (compounds 10-27), derived from 2 or 4-pyridine thiosemicarbazones (1-9). The in vitro assays were performed with Trypanosoma cruzi trypomastigotes and amastigotes, as well as with Leishmania amazonensis promastigotes and amastigotes. The cytotoxicity profile was evaluated using the cell line RAW 264.7. From the 18 pyridine-thiazolidinones, 5 were able to inhibit trypomastigotes. Overall, all compounds inhibited amastigotes, highlighting compounds 15 (0.60 μM), 18 (0.64 μM), 17 (0.81 μM), and 27 (0.89 μM). Compounds 15 and 18 were able to induce parasite cell death through necrosis induction. Analysis by scanning electron microscopy showed that T. cruzi trypomastigotes treated with compounds 15 and 18 induced morphological changes such as shortening, retraction and curvature of the parasite body and leakage of internal content. Regarding the antiparasitic evaluation against Leishmania amazonensis, only compound 27 had a higher selectivity compared to Miltefosine against the amastigote form (IC50 = 5.70 μM). Our results showed that compound 27 presented an antiparasitic activity for both Trypanosoma cruzi and Leishmania amazonensis. After in silico evaluation, it was suggested that the new pyridine-thiazolidinones had an appropriate drug-likeness profile. Our results pointed out a new chemical frame with an anti-Trypanosomatidae profile. The pyridine-thiazolidinones presented here for the first time could be used as a starting point for the development of new antiparasitic agents.
Collapse
|
23
|
Soba M, Scalese G, Casuriaga F, Pérez N, Veiga N, Echeverría GA, Piro OE, Faccio R, Pérez-Díaz L, Gasser G, Machado I, Gambino D. Multifunctional organometallic compounds for the treatment of Chagas disease: Re(I) tricarbonyl compounds with two different bioactive ligands. Dalton Trans 2023; 52:1623-1641. [PMID: 36648116 DOI: 10.1039/d2dt03869b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chagas' disease (American Trypanosomiasis) is an ancient and endemic illness in Latin America caused by the protozoan parasite Trypanosoma cruzi. Although there is an urgent need for more efficient and less toxic chemotherapeutics, no new drugs to treat this disease have entered the clinic in the last decades. Searching for metal-based prospective antichagasic drugs, in this work, multifunctional Re(I) tricarbonyl compounds bearing two different bioactive ligands were designed: a polypyridyl NN derivative of 1,10-phenanthroline and a monodentate azole (Clotrimazole CTZ or Ketoconazol KTZ). Five fac-[Re(CO)3(NN)(CTZ)](PF6) compounds and a fac-[Re(CO)3(NN)(KTZ)](PF6) were synthesized and fully characterized. They showed activity against epimastigotes (IC50 3.48-9.42 μM) and trypomastigotes of T. cruzi (IC50 0.61-2.79 μM) and moderate to good selectivity towards the parasite compared to the VERO mammalian cell model. In order to unravel the mechanism of action of our compounds, two potential targets were experimentally and theoretically studied, namely DNA and one of the enzymes involved in the parasite ergosterol biosynthetic pathway, CYP51 (lanosterol 14-α-demethylase). As hypothesized, the multifunctional compounds shared in vitro a similar mode of action as that disclosed for the single bioactive moieties included in the new chemical entities. Additionally, two relevant physicochemical properties of biological interest in prospective drug development, namely lipophilicity and stability in solution in different media, were determined. The whole set of results demonstrates the potentiality of these Re(I) tricarbonyls as promising candidates for further antitrypanosomal drug development.
Collapse
Affiliation(s)
- Mariano Soba
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay. .,Programa de Posgrado en Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Federico Casuriaga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Nicolás Pérez
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Nicolás Veiga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), La Plata, Argentina
| | - Ricardo Faccio
- Área Física, DETEMA, Facultad de Química, Universidad de la República, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, France
| | - Ignacio Machado
- Área Química Analítica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| |
Collapse
|
24
|
Tawaraishi T, Ochida A, Akao Y, Itono S, Kamaura M, Akther T, Shimada M, Canan S, Chowdhury S, Cao Y, Condroski K, Engkvist O, Francisco A, Ghosh S, Kaki R, Kelly JM, Kimura C, Kogej T, Nagaoka K, Naito A, Pairaudeau G, Radu C, Roberts I, Shum D, Watanabe NA, Xie H, Yonezawa S, Yoshida O, Yoshida R, Mowbray C, Perry B. Collaborative Virtual Screening Identifies a 2-Aryl-4-aminoquinazoline Series with Efficacy in an In Vivo Model of Trypanosoma cruzi Infection. J Med Chem 2023; 66:1221-1238. [PMID: 36607408 PMCID: PMC9884087 DOI: 10.1021/acs.jmedchem.2c00775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments.
Collapse
Affiliation(s)
- Taisuke Tawaraishi
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichiro Akao
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Thamina Akther
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuyuki Shimada
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Stacie Canan
- Celgene
Corporation, Celgene Global Health, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Sanjoy Chowdhury
- TCG
Lifesciences, Plot No-7,
Salt Lake Electronics Complex, BN Block, Sector V, Kolkata 700091, India
| | - Yafeng Cao
- WuXi
AppTec Company Ltd., 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People’s Republic of China
| | - Kevin Condroski
- Celgene
Corporation, Celgene Global Health, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Ola Engkvist
- AstraZeneca
Discovery Sciences, R&D, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Amanda Francisco
- London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Sunil Ghosh
- TCG
Lifesciences, Plot No-7,
Salt Lake Electronics Complex, BN Block, Sector V, Kolkata 700091, India
| | - Rina Kaki
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - John M. Kelly
- London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Chiaki Kimura
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Thierry Kogej
- AstraZeneca
Discovery Sciences, R&D, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Kazuya Nagaoka
- Eisai
Co., Ltd, 1-3, Tokodai
5-chome, Tsukuba, Ibaraki 300-2635, Japan
| | - Akira Naito
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Garry Pairaudeau
- AstraZeneca,
Discovery Sciences, R&D, The Darwin Building, 310 Milton Road, Milton, Cambridge CB4 0WG, U.K.
| | - Constantin Radu
- Institut
Pasteur Korea, 16, Daewangpangyo-ro
712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ieuan Roberts
- AstraZeneca,
Discovery Sciences, R&D, The Darwin Building, 310 Milton Road, Milton, Cambridge CB4 0WG, U.K.
| | - David Shum
- Institut
Pasteur Korea, 16, Daewangpangyo-ro
712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Nao-aki Watanabe
- Eisai
Co., Ltd, 1-3, Tokodai
5-chome, Tsukuba, Ibaraki 300-2635, Japan
| | - Huanxu Xie
- WuXi
AppTec Company Ltd., 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People’s Republic of China
| | - Shuji Yonezawa
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Osamu Yoshida
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Ryu Yoshida
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Charles Mowbray
- Drugs for Neglected
Diseases Initiative, 15 Chemin Camille Vidart, Geneva 1202, Switzerland
| | - Benjamin Perry
- Drugs for Neglected
Diseases Initiative, 15 Chemin Camille Vidart, Geneva 1202, Switzerland,
| |
Collapse
|
25
|
Mohamed Abdelahi MM, El Bakri Y, Lai CH, Subramani K, Anouar EH, Ahmad S, Benchidmi M, Mague JT, Popović-Djordjević J, Goumri-Said S. Novel 3-chloro-6-nitro-1 H-indazole derivatives as promising antileishmanial candidates: synthesis, biological activity, and molecular modelling studies. J Enzyme Inhib Med Chem 2022; 37:151-167. [PMID: 34894940 PMCID: PMC8667887 DOI: 10.1080/14756366.2021.1995380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022] Open
Abstract
An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reductase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity stability in a biological environment. The studied complex remained in good equilibrium with a structure deviation of ∼1-3 Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.
Collapse
Affiliation(s)
- Mohamed Mokhtar Mohamed Abdelahi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Youness El Bakri
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russia
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Mohammed Benchidmi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Jelena Popović-Djordjević
- Department for Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Martín-Escolano R, Rosales MJ, Marín C. Biological characteristics of the Trypanosoma cruzi Arequipa strain make it a good model for Chagas disease drug discovery. Acta Trop 2022; 236:106679. [PMID: 36096184 DOI: 10.1016/j.actatropica.2022.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), is a genuine parasite with tremendous genetic diversity and a complex life cycle. Scientists have studied this disease for more than 100 years, and CD drug discovery has been a mainstay due to the absence of an effective treatment. Technical advances in several areas have contributed to a better understanding of the complex biology and life cycle of this parasite, with the aim of designing the ideal profile of both drug and therapeutic options to treat CD. Here, we present the T. cruzi Arequipa strain (MHOM/Pe/2011/Arequipa) as an interesting model for CD drug discovery. We characterized acute-phase parasitaemia and chronic-phase tropism in BALB/c mice and determined the in vitro and in vivo benznidazole susceptibility profile of the different morphological forms of this strain. The tropism of this strain makes it an interesting model for the screening of new compounds with a potential anti-Chagas profile for the treatment of this disease.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | - María José Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, Granada 18071, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, Granada 18071, Spain.
| |
Collapse
|
27
|
Di Bello E, Noce B, Fioravanti R, Zwergel C, Valente S, Rotili D, Fianco G, Trisciuoglio D, Mourão MM, Sales P, Lamotte S, Prina E, Späth GF, Häberli C, Keiser J, Mai A. Effects of Structurally Different HDAC Inhibitors against Trypanosoma cruzi, Leishmania, and Schistosoma mansoni. ACS Infect Dis 2022; 8:1356-1366. [PMID: 35732073 PMCID: PMC9274761 DOI: 10.1021/acsinfecdis.2c00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Neglected tropical
diseases (NTDs), including trypanosomiasis,
leishmaniasis, and schistosomiasis, result in a significant burden
in terms of morbidity and mortality worldwide every year. Current
antiparasitic drugs suffer from several limitations such as toxicity,
no efficacy toward all of the forms of the parasites’ life
cycle, and/or induction of resistance. Histone-modifying enzymes play
a crucial role in parasite growth and survival; thus, the use of epigenetic
drugs has been suggested as a strategy for the treatment of NTDs.
We tested structurally different HDACi 1–9, chosen from our in-house library or newly synthesized,
against Trypanosoma cruzi,
Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all
of the tested parasites, but it was too toxic against host cells,
hampering further studies. The retinoic 2′-aminoanilide 8 was less potent than 4 in all parasitic assays,
but as its toxicity is considerably lower, it could be the starting
structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite
growth combined with moderate toxicity. In S. mansoni, 4’s close analogs 17–20 were tested in new transformed schistosomula (NTS) and
adult worms displaying high death induction against both parasite
forms. Among them, 17 and 19 exhibited very
low toxicity in human retinal pigment epithelial (RPE) cells, thus
being promising compounds for further optimization.
Collapse
Affiliation(s)
- Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Giulia Fianco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, 00185 Rome, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, 00185 Rome, Italy
| | - Marina M Mourão
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Policarpo Sales
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Suzanne Lamotte
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, 4002 Allschwil, Switzerland.,University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, 4002 Allschwil, Switzerland.,University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
28
|
Mora-Criollo P, Basu R, Qian Y, Costales JA, Guevara-Aguirre J, Grijalva MJ, Kopchick JJ. Growth hormone modulates Trypanosoma cruzi infection in vitro. Growth Horm IGF Res 2022; 64:101460. [PMID: 35490602 DOI: 10.1016/j.ghir.2022.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Chagas disease (CD) is caused by the protozoan parasite, Trypanosoma cruzi. It affects 7 to 8 million people worldwide and leads to approximately 50,000 deaths per year. In vitro and in vivo studies had demonstrated that Trypanosoma cruziinfection causes an imbalance in the hypothalamic-pituitary-adrenal (HPA) axis that is accompanied by a progressive decrease in growth hormone (GH) and prolactin (PRL) production. In humans, inactivating mutations in the GH receptor gene cause Laron Syndrome (LS), an autosomal recessive disorder. Affected subjects are short, have increased adiposity, decreased insulin-like growth factor-I (IGFI), increased serum GH levels, are highly resistant to diabetes and cancer, and display slow cognitive decline. In addition, CD incidence in these individuals is diminished despite living in highly endemic areas. Consequently, we decided to investigate the in vitro effect of GH/IGF-I on T. cruzi infection. DESIGN We first treated the parasite and/or host cells with different peptide hormones including GH, IGFI, and PRL. Then, we treated cells using different combinations of GH/IGF-I attempting to mimic the GH/IGF-I serum levels observed in LS subjects. RESULTS We found that exogenous GH confers protection against T. cruzi infection. Moreover, this effect is mediated by GH and not IGFI. The combination of relatively high GH (50 ng/ml) and low IGF-I (20 ng/ml), mimicking the hormonal pattern seen in LS individuals, consistently decreased T. cruzi infection in vitro. CONCLUSIONS The combination of relatively high GH and low IGF-I serum levels in LS individuals may be an underlying condition providing partial protection against T. cruzi infection.
Collapse
Affiliation(s)
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime Guevara-Aguirre
- Colegio de ciencias de la salud, Universidad San Francisco de Quito, Cumbaya, Quito, Ecuador
| | - Mario J Grijalva
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, USA; Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
29
|
Leite GR, Batista DDGJ, Mazzeti AL, Silva RA, Lugão AB, Soeiro MDNC. The Impact of the CTHRSSVVC Peptide Upon Experimental Models of Trypanosoma cruzi Infection. Front Cell Infect Microbiol 2022; 12:882555. [PMID: 35601101 PMCID: PMC9121062 DOI: 10.3389/fcimb.2022.882555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD), caused by the hemoflagellate protozoan Trypanosoma cruzi, affects more than six million people worldwide and presents an unsatisfactory therapy, based on two nitroderivatives, introduced in clinical medicine for decades. The synthetic peptide, with CTHRSSVVC sequence (PepA), mimics the CD163 and TNF-α tripeptide "RSS" motif and binds to atheromatous plaques in carotid biopsies of human patients, spleen tissues, and a low-density lipoprotein receptor knockout (LDLr-/-) mouse model of atherosclerosis. CD163 receptor is present on monocytes, macrophages, and neutrophils, acting as a regulator of acute-phase processes and modulating aspects of the inflammatory response and the establishment of infections. Due to the potential theranostic role of PepA, our aim was to investigate its effect upon T. cruzi infection in vitro and in vivo. PepA and two other peptides with shuffled sequences were assayed upon different binomials of host cell/parasite, including professional [as peritoneal mouse macrophages (PMM)] and non-professional phagocytes [primary cultures of cardiac cells (CM)], under different protocols. Also, their impact was further addressed in vivo using a mouse model of acute experimental Chagas disease. Our in-vitro findings demonstrate that PepA and PepB (the peptide with random sequence retaining the "RS" sequence) reduced the intracellular parasitism of the PMM but were inactive during the infection of cardiac cells. Another set of in-vitro and in-vivo studies showed that they do not display a trypanocidal effect on bloodstream trypomastigotes nor exhibit in-vivo efficacy when administered after the parasite inoculation. Our data report the in-vitro activity of PepA and PepB upon the infection of PMM by T. cruzi, possibly triggering the microbicidal arsenal of the host professional phagocytes, capable of controlling parasitic invasion and proliferation.
Collapse
Affiliation(s)
- Gabriela Rodrigues Leite
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lia Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade do Estado de Minas Gerais (UEMG), Laboratório de Parasitologia Aplicada, Unidade Passos, Belo Horizonte, Brazil
| | - Rosemeire Aparecida Silva
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | | | | |
Collapse
|
30
|
Lascano F, García Bournissen F, Altcheh J. Review of pharmacological options for the treatment of Chagas disease. Br J Clin Pharmacol 2022; 88:383-402. [PMID: 33314266 DOI: 10.1111/bcp.14700] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) is a worldwide problem, with over 8 million people infected in both rural and urban areas. CD was first described over a century ago, but only two drugs are currently available for CD treatment: benznidazole (BZN) and nifurtimox (NF). Treating CD-infected patients, especially children and women of reproductive age, is vital in order to prevent long-term sequelae, such as heart and gastrointestinal dysfunction, but this aim is still far from being accomplished. Currently, the strongest data to support benefit-risk considerations come from trials in children. Treatment response biomarkers need further development as serology is being questioned as the best method to assess treatment response. This article is a narrative review on the pharmacology of drugs for CD, particularly BZN and NF. Data on drug biopharmaceutical characteristics, safety and efficacy of both drugs are summarized from a clinical perspective. Current data on alternative compounds under evaluation for CD treatment, and new possible treatment response biomarkers are also discussed. Early diagnosis and treatment of CD, especially in paediatric patients, is vital for an effective and safe use of the available drugs (i.e. BZN and NF). New biomarkers for CD are urgently needed for the diagnosis and evaluation of treatment efficacy, and to guide efforts from academia and pharmaceutical companies to accelerate the process of new drug development.
Collapse
Affiliation(s)
- Fernanda Lascano
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Ciudad de la Nación Argentina, Buenos Aires, Argentina.,Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Facundo García Bournissen
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Jaime Altcheh
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Ciudad de la Nación Argentina, Buenos Aires, Argentina.,Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
31
|
Gambino D, Otero L. Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Front Chem 2022; 9:816266. [PMID: 35071192 PMCID: PMC8777014 DOI: 10.3389/fchem.2021.816266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Human African Trypanosomiasis (HAT), Chagas disease or American Trypanosomiasis (CD), and leishmaniases are protozoan infections produced by trypanosomatid parasites belonging to the kinetoplastid order and they constitute an urgent global health problem. In fact, there is an urgent need of more efficient and less toxic chemotherapy for these diseases. Medicinal inorganic chemistry currently offers an attractive option for the rational design of new drugs and, in particular, antiparasitic ones. In this sense, one of the main strategies for the design of metal-based antiparasitic compounds has been the coordination of an organic ligand with known or potential biological activity, to a metal centre or an organometallic core. Classical metal coordination complexes or organometallic compounds could be designed as multifunctional agents joining, in a single molecule, different chemical species that could affect different parasitic targets. This review is focused on the rational design of palladium(II) and platinum(II) compounds with bioactive ligands as prospective drugs against trypanosomatid parasites that has been conducted by our group during the last 20 years.
Collapse
Affiliation(s)
- Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
32
|
Scarim CB, Andrade CRD, Falcone R, Ambrozini LM, Senhorelli VI, Rosa JAD, Chin CM. Hydroxymethylnitrofurazone (NFOH) decreases parasitaemia, parasitism and tissue lesion caused by infection with the Bolivia Trypanosoma cruzi type I strain in Swiss and C57BL/6 mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Rossana Falcone
- Sao Paulo State University “Júlio de Mesquita Filho”, UNESP, Brazil
| | | | | | | | - Chung Man Chin
- Sao Paulo State University “Júlio de Mesquita Filho”, UNESP, Brazil
| |
Collapse
|
33
|
Marek M, Ramos-Morales E, Picchi-Constante GFA, Bayer T, Norström C, Herp D, Sales-Junior PA, Guerra-Slompo EP, Hausmann K, Chakrabarti A, Shaik TB, Merz A, Troesch E, Schmidtkunz K, Goldenberg S, Pierce RJ, Mourão MM, Jung M, Schultz J, Sippl W, Zanchin NIT, Romier C. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep 2021; 37:110129. [PMID: 34936867 DOI: 10.1016/j.celrep.2021.110129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.
Collapse
Affiliation(s)
- Martin Marek
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Elizabeth Ramos-Morales
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | - Theresa Bayer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | | | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Policarpo A Sales-Junior
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | | | - Kristin Hausmann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Tajith B Shaik
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Annika Merz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Edouard Troesch
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil
| | - Raymond J Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL -Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Marina M Mourão
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, SE-17165 Solna, Sweden
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle/Saale, Germany
| | - Nilson I T Zanchin
- Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná 81350-010, Brazil.
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, U 1258, 67404 Illkirch, France; IGBMC, Department of Integrated Structural Biology, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
34
|
Scarim CB, de Farias RL, Chiba DE, Chin CM. Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds. Curr Med Chem 2021; 29:2334-2381. [PMID: 34533436 DOI: 10.2174/0929867328666210917114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10µM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Renan Lira de Farias
- Sao Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara-SP, Brazil
| | - Diego Eidy Chiba
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Chung Man Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
35
|
Scalese G, Machado I, Salinas G, Pérez-Díaz L, Gambino D. Heteroleptic Oxidovanadium(V) Complexes with Activity against Infective and Non-Infective Stages of Trypanosoma cruzi. Molecules 2021; 26:5375. [PMID: 34500808 PMCID: PMC8433833 DOI: 10.3390/molecules26175375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Five heteroleptic compounds, [VVO(IN-2H)(L-H)], where L are 8-hydroxyquinoline derivatives and IN is a Schiff base ligand, were synthesized and characterized in both the solid and solution state. The compounds were evaluated on epimastigotes and trypomastigotes of Trypanosoma cruzi as well as on VERO cells, as a mammalian cell model. Compounds showed activity against trypomastigotes with IC50 values of 0.29-3.02 μM. IN ligand and the new [VVO2(IN-H)] complex showed negligible activity. The most active compound [VVO(IN-2H)(L2-H)], with L2 = 5-chloro-7-iodo-8-hydroxyquinoline, showed good selectivity towards the parasite and was selected to carry out further biological studies. Stability studies suggested a partial decomposition in solution. [VVO(IN-2H)(L2-H)] affects the infection potential of cell-derived trypomastigotes. Low total vanadium uptake by parasites and preferential accumulation in the soluble proteins fraction were determined. A trypanocide effect was observed when incubating epimastigotes with 10 × IC50 values of [VVO(IN-2H)(L2-H)] and the generation of ROS after treatments was suggested. Fluorescence competition measurements with DNA:ethidium bromide adduct showed a moderate DNA interaction of the complexes. In vivo toxicity study on C. elegans model showed no toxicity up to a 100 μM concentration of [VVO(IN-2H)(L2-H)]. This compound could be considered a prospective anti-T. cruzi agent that deserves further research.
Collapse
Affiliation(s)
- Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
- Programa de Posgrados de la Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Biociencias, Facultad de Química, Montevideo 11800, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| |
Collapse
|
36
|
Scarim CB, Olmo F, Ferreira EI, Chin CM, Kelly JM, Fortes Francisco A. Image-Based In Vitro Screening Reveals the Trypanostatic Activity of Hydroxymethylnitrofurazone against Trypanosoma cruzi. Int J Mol Sci 2021; 22:ijms22136930. [PMID: 34203228 PMCID: PMC8268475 DOI: 10.3390/ijms22136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxymethylnitrofurazone (NFOH) is a therapeutic candidate for Chagas disease (CD). It has negligible hepatotoxicity in a murine model compared to the front-line drug benznidazole (BZN). Here, using Trypanosoma cruzi strains that express bioluminescent and/or fluorescent reporter proteins, we further investigated the in vitro and in vivo activity of NFOH to define whether the compound is trypanocidal or trypanostatic. The in vitro activity was assessed by exploiting the fluorescent reporter strain using wash-out assays and real-time microscopy. For animal experimentation, BALB/c mice were inoculated with the bioluminescent reporter strain and assessed by highly sensitive in vivo and ex vivo imaging. Cyclophosphamide treatment was used to promote parasite relapse in the chronic stage of infection. Our data show that NFOH acts by a trypanostatic mechanism, and that it is more active than BZN in vitro against the infectious trypomastigote form of Trypanosoma cruzi. We also found that it is more effective at curing experimental infections in the chronic stage, compared with the acute stage, a feature that it shares with BZN. Therefore, given its reduced toxicity, enhanced anti-trypomastigote activity, and curative properties, NFOH can be considered as a potential therapeutic option for Chagas disease, perhaps in combination with other trypanocidal agents.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil; (C.B.S.); (C.M.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (F.O.); (J.M.K.)
| | - Francisco Olmo
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (F.O.); (J.M.K.)
| | - Elizabeth Igne Ferreira
- LAPEN—Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Sao Paulo 05508-9000, Brazil;
| | - Chung Man Chin
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil; (C.B.S.); (C.M.C.)
- Advanced Research Center in Medicine, School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, Sao Paulo 15030-070, Brazil
| | - John M. Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (F.O.); (J.M.K.)
| | - Amanda Fortes Francisco
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (F.O.); (J.M.K.)
- Correspondence: ; Tel.: +44-207-612-7864
| |
Collapse
|
37
|
Martín-Escolano R, Etxebeste-Mitxeltorena M, Martín-Escolano J, Plano D, Rosales MJ, Espuelas S, Moreno E, Sánchez-Moreno M, Sanmartín C, Marín C. Selenium Derivatives as Promising Therapy for Chagas Disease: In Vitro and In Vivo Studies. ACS Infect Dis 2021; 7:1727-1738. [PMID: 33871252 PMCID: PMC8480776 DOI: 10.1021/acsinfecdis.1c00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chagas disease is a tropical infection caused by the protozoan parasite Trypanosoma cruzi and a global public health concern. It is a paradigmatic example of a chronic disease without an effective treatment. Current treatments targeting T. cruzi are limited to two obsolete nitroheterocyclic drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Hence, new, more effective, safer, and affordable drugs are urgently needed. Selenium and their derivatives have emerged as an interesting strategy for the treatment of different prozotoan diseases, such as African trypanosomiasis, leishmaniasis, and malaria. In the case of Chagas disease, diverse selenium scaffolds have been reported with antichagasic activity in vitro and in vivo. On the basis of these premises, we describe the in vitro and in vivo trypanocidal activity of 41 selenocompounds against the three morphological forms of different T. cruzi strains. For the most active selenocompounds, their effect on the metabolic and mitochondrial levels and superoxide dismutase enzyme inhibition capacity were measured in order to determine the possible mechanism of action. Derivative 26, with a selenocyanate motif, fulfills the most stringent in vitro requirements for potential antichagasic agents and exhibits a better profile than benznidazole in vivo. This finding provides a step forward for the development of a new antichagasic agent.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Mikel Etxebeste-Mitxeltorena
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra (ISTUN), Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Irunlarrea, 1, E-31008 Pamplona, Spain
| | - Javier Martín-Escolano
- Servicio de Microbiologia Clinica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación, Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Daniel Plano
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra (ISTUN), Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Irunlarrea, 1, E-31008 Pamplona, Spain
| | - María J. Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Socorro Espuelas
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra (ISTUN), Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Irunlarrea, 1, E-31008 Pamplona, Spain
| | - Esther Moreno
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra (ISTUN), Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Irunlarrea, 1, E-31008 Pamplona, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Carmen Sanmartín
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra (ISTUN), Irunlarrea, 1, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Irunlarrea, 1, E-31008 Pamplona, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
38
|
Intrinsic and Chemotherapeutic Stressors Modulate ABCC-Like Transport in Trypanosoma cruzi. Molecules 2021; 26:molecules26123510. [PMID: 34207619 PMCID: PMC8227891 DOI: 10.3390/molecules26123510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent for Chagas disease, which affects 6-7 million people worldwide. The biological diversity of the parasite reflects on inefficiency of benznidazole, which is a first choice chemotherapy, on chronic patients. ABC transporters that extrude xenobiotics, metabolites, and mediators are overexpressed in resistant cells and contribute to chemotherapy failure. An ABCC-like transport was identified in the Y strain and extrudes thiol-conjugated compounds. As thiols represent a line of defense towards reactive species, we aimed to verify whether ABCC-like transport could participate in the regulation of responses to stressor stimuli. In order to achieve this, ABCC-like activity was measured by flow cytometry using fluorescent substrates. The present study reveals the participation of glutathione and ceramides on ABCC-like transport, which are both implicated in stress. Hemin modulated the ABCC-like efflux which suggests that this protein might be involved in cellular detoxification. Additionally, all strains evaluated exhibited ABCC-like activity, while no ABCB1-like activity was detected. Results suggest that ABCC-like efflux is not associated with natural resistance to benznidazole, since sensitive strains showed higher activity than the resistant ones. Although benznidazole is not a direct substrate, ABCC-like efflux increased after prolonged drug exposure and this indicates that the ABCC-like efflux mediated protection against cell stress depends on the glutathione biosynthesis pathway.
Collapse
|
39
|
Bezerra de Oliveira Filho G, Veríssimo de Oliveira Cardoso M, Caroline da Silva Santos A, Ramos Dos Santos TA, Cristovão-Silva AC, Rubio LG, da Silva Maia Neto L, Leite PG, Machado FS, Alves LC, Brayner FA, Alves Pereira VR, Lima Leite AC. Structural design, synthesis and anti-Trypanosoma cruzi profile of the second generation of 4-thiazolidinones chlorine derivatives. Chem Biol Interact 2021; 345:109514. [PMID: 34023282 DOI: 10.1016/j.cbi.2021.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Chagas disease causes more deaths in the Americas than any other parasitic disease. Initially confined to the American continent, it is increasingly becoming a global health problem. In fact, it is considered to be an "exotic" disease in Europe, being virtually undiagnosed. Benznidazole, the only drug approved for treatment, effectively treats acute-stage Chagas disease, but its effectiveness for treating indeterminate and chronic stages remains uncertain. Previously, our research group demonstrated that 4-thiazolidinones presented anti-T. cruzi activity including in the in vivo assays in mice, making this fragment appealing for drug development. The present work reports the synthesis and anti-T. cruzi activities of a novel series of 4-thiazolidinones derivatives that resulted in an increased anti-T. cruzi activity in comparison to thiosemicarbazones intermediates. Compounds 2c, 2e, and 3a showed potent inhibition of the trypomastigote form of the parasite at low cytotoxicity concentrations in mouse splenocytes. Besides, all the 2c, 2e, and 3a tested concentrations showed no cytotoxic activity on macrophages cell viability. When macrophages were submitted to T. cruzi infection and treated with 2c and 3a, compounds reduced the release of trypomastigote forms. Results also showed that the increased trypanocidal activity induced by 2c and 3a is independent of nitric oxide release. Flow cytometry assay showed that compound 2e was able to induce necrosis and apoptosis in trypomastigotes. Parasites treated with the compounds 2e, 3a, and 3c presented flagellum shortening, retraction and curvature of the parasite body, and extravasation of the internal content. Together, these data revealed a novel series of 4-thiazolidinones fragment-based compounds with potential effects against T. cruzi and lead-like characteristics.
Collapse
Affiliation(s)
| | | | - Aline Caroline da Silva Santos
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Thiago André Ramos Dos Santos
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Ana Catarina Cristovão-Silva
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Laura González Rubio
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Luiz da Silva Maia Neto
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Paulo Gaio Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Luiz Carlos Alves
- Laboratory of Immunopathology Keizo Asami-LIKA / UFPE, 50670-420, Recife, PE, Brazil; Department of Parasitology, Cellular and Molecular Biology Laboratories, Leishmaniasis, and Mutagenesis, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Fabio André Brayner
- Laboratory of Immunopathology Keizo Asami-LIKA / UFPE, 50670-420, Recife, PE, Brazil; Department of Parasitology, Cellular and Molecular Biology Laboratories, Leishmaniasis, and Mutagenesis, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Laboratory of Immunopathology and Molecular Biology, IAM / FIOCRUZ, 50740-465, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
40
|
Espinosa R, Robledo S, Guzmán C, Arbeláez N, Yepes L, Santafé G, Sáez A. Synthesis and evaluation of the in vitro and in vivo antitrypanosomal activity of 2-styrylquinolines. Heliyon 2021; 7:e07024. [PMID: 34036197 PMCID: PMC8134988 DOI: 10.1016/j.heliyon.2021.e07024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
In this study, we report the synthesis and evaluation of in vitro and in vivo antitrypanosomal activity of styrylquinoline-like compounds (SQ) 3a-h. Synthesis was carried out by using quinaldine and 8- hydroxyquinaldine with a variety of aromatic aldehydes. The structure of SQs was corroborated by one and two-dimension NMR spectroscopy. In vitro antitrypanosomal activity on T. cruzi Talahuen strain was evaluated using β-galactosidase enzymatic method; cytotoxicity on U-937 cells was assessed by using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method. On the other hand, in vivo therapeutical response to 3a-f compounds was evaluated in BALB/c mice (Mus musculus) experimentally infected with T. cruzi blood trypomastigotes and then orally administered with 100 mg/kg weight day for 20 days. All of the compounds showed in vitro activity with EC50 values ranging between 4.6 ± 0.1 μg/mL (14.4 μM) and 36.6 ± 6.1 μg/mL (91 μM). Furthermore, treatment with 3a-f compounds for 20 days resulted in improvement in all of the mice, with a 83–96% decrease in parasitic load at day 90 post-treatment. Treatment with benznidazol (BZ) managed to cure 100% of the mice at the end of treatment. None of the treatments affected the weight of the animals or alanine aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine levels in serum. These results suggest a therapeutic potential of 3a-f compounds as treatment for the infection.
Collapse
Affiliation(s)
- Roger Espinosa
- IDEFARMA - Department of Regency and Pharmacy, University of Córdoba, Montería, Colombia
| | - Sara Robledo
- PECET - Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Camilo Guzmán
- IDEFARMA - Department of Regency and Pharmacy, University of Córdoba, Montería, Colombia
| | - Natalia Arbeláez
- PECET - Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Lina Yepes
- PECET - Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Gílmar Santafé
- Department of Chemistry, University of Córdoba, Montería, Colombia
| | - Alex Sáez
- Department of Biological Sciences, EAFIT University, Medellin, Colombia
| |
Collapse
|
41
|
Silva LR, Guimarães AS, do Nascimento J, do Santos Nascimento IJ, da Silva EB, McKerrow JH, Cardoso SH, da Silva-Júnior EF. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 2021; 41:116213. [PMID: 33992862 DOI: 10.1016/j.bmc.2021.116213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022]
Abstract
Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Ari Souza Guimarães
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Jadiely do Nascimento
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Igor José do Santos Nascimento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
42
|
Castillo-Garit JA, Barigye SJ, Pham-The H, Pérez-Doñate V, Torrens F, Pérez-Giménez F. Computational identification of chemical compounds with potential anti-Chagas activity using a classification tree. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:71-83. [PMID: 33455460 DOI: 10.1080/1062936x.2020.1863857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Chagas disease is endemic to 21 Latin American countries and is a great public health problem in that region. Current chemotherapy remains unsatisfactory; consequently the need to search for new drugs persists. Here we present a new approach to identify novel compounds with potential anti-chagasic action. A large dataset of 584 compounds, obtained from the Drugs for Neglected Diseases initiative, was selected to develop the computational model. Dragon software was used to calculate the molecular descriptors and WEKA software to obtain the classification tree. The best model shows accuracy greater than 93.4% for the training set; the tree was also validated using a 10-fold cross-validation procedure and through a test set, achieving accuracy values over 90.5% and 92.2%, correspondingly. The values of sensitivity and specificity were around 90% in all series; also the false alarm rate values were under 10.5% for all sets. In addition, a simulated ligand-based virtual screening for several compounds recently reported as promising anti-chagasic agents was carried out, yielding good agreement between predictions and experimental results. Finally, the present work constitutes an example of how this rational computer-based method can help reduce the cost and increase the rate in which novel compounds are developed against Chagas disease.
Collapse
Affiliation(s)
- J A Castillo-Garit
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara , Villa Clara, Cuba
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València , Valencia, Spain
| | - S J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM) , Madrid, Spain
| | - H Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy , Hanoi, Viet-nam
| | - V Pérez-Doñate
- Departamento de Microbiología, Hospital Universitario de la Ribera , Valencia, Spain
| | - F Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna , València, Spain
| | - F Pérez-Giménez
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València , Valencia, Spain
| |
Collapse
|
43
|
Martín-Escolano R, Guardia JJ, Martín-Escolano J, Cirauqui N, Fernández A, Rosales MJ, Chahboun R, Sánchez-Moreno M, Alvarez-Manzaneda E, Marín C. In Vivo Biological Evaluation of a Synthetic Royleanone Derivative as a Promising Fast-Acting Trypanocidal Agent by Inducing Mitochondrial-Dependent Necrosis. JOURNAL OF NATURAL PRODUCTS 2020; 83:3571-3583. [PMID: 33253573 DOI: 10.1021/acs.jnatprod.0c00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The life-long and life-threatening Chagas disease is one of the most neglected tropical diseases caused by the protozoan parasite Trypanosoma cruzi. It is a major public health problem in Latin America, as six to seven million people are infected, being the principal cause of mortality in many endemic regions. Moreover, Chagas disease has become widespread due to migrant populations. Additionally, there are no vaccines nor effective treatments to fight the disease because of its long-term nature and complex pathology. Therefore, these facts emphasize how crucial the international effort for the development of new treatments against Chagas disease is. Here, we present the in vitro and in vivo trypanocidal activity of some oxygenated abietane diterpenoids and related compounds. The 1,4-benzoquinone 15, not yet reported, was identified as a fast-acting trypanocidal drug with efficacy against different strains in vitro and higher activity and lower toxicity than benznidazole in both phases of murine Chagas disease. The mode of action was also evaluated, suggesting that quinone 15 kills T. cruzi by inducing mitochondrion-dependent necrosis through a bioenergetics collapse caused by a mitochondrial membrane depolarization and iron-containing superoxide dismutase inhibition. Therefore, the abietane 1,4-benzoquinone 15 can be considered as a new candidate molecule for the development of an appropriate and commercially accessible anti-Chagas drug.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Juan J Guardia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Nuria Cirauqui
- Molecular Microbiology and Structural Biochemistry, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, 69367 Lyon Cedex 07, France
| | - Antonio Fernández
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Maria J Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Rachid Chahboun
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Enrique Alvarez-Manzaneda
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
44
|
Nossa González DL, Gómez Castaño JA, Rozo Núñez WE, Duchowicz PR. Antiprotozoal QSAR modelling for trypanosomiasis (Chagas disease) based on thiosemicarbazone and thiazole derivatives. J Mol Graph Model 2020; 103:107821. [PMID: 33333422 DOI: 10.1016/j.jmgm.2020.107821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a neglected endemic infection that affects around 8 million people worldwide and causes 12,000 premature deaths per year. Traditional chemotherapy is limited to the nitro-antiparasitic drugs Benznidazole and Nifurtimox, which present serious side effects and low long-term efficacy. Several research efforts have been made over the last decade to find new chemical structures with better effectiveness and tolerance than standard anti-Chagas drugs. Among these, new sets of thiosemicarbazone and thiazole derivatives have exhibited potent in vitro activity against T. cruzi, especially for its extracellular forms (epimastigote and trypomastigote). In this work, we have developed three antiprotozoal quantitative structure-relationship (QSAR) models for Chagas disease based on the in vitro activity data reported as IC50 (μM) and CC50 (μM) over the last decade, particularly by Lima-Leite's group in Brazil. The models were developed using the replacement method (RM), a technique based on Multivariable Linear Regression (MLR), and external and internal validation methodologies, like the use of a test set, Leave-one-Out (LOO) cross-validation and Y-Randomization. Two of these QSAR models were developed for trypomastigotes form of the parasite Trypanosoma cruzi, one based on IC50 and the other on CC50 data; while the third QSAR model was developed for its epimastigotes form based on CC50 activity. Our models presented sound statistical parameters that endorses their prediction capability. Such capability was tested for a set of 13 hitherto-unknown structurally related aromatic cyclohexanone derivatives.
Collapse
Affiliation(s)
- Diana L Nossa González
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia.
| | - Jovanny A Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia.
| | - Wilson E Rozo Núñez
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central Del Norte, Tunja, Boyacá, Colombia
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (CONICET- Universidad Nacional de La Plata), Diagonal 113 y calle 64, C.C. 16, Sucursal 4, 1900, La Plata, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
45
|
Teixeira de Moraes Gomes PA, Veríssimo de Oliveira Cardoso M, Dos Santos IR, Amaro de Sousa F, da Conceição JM, Gouveia de Melo Silva V, Duarte D, Pereira R, Oliveira R, Nogueira F, Alves LC, Brayner FA, da Silva Santos AC, Rêgo Alves Pereira V, Lima Leite AC. Dual Parasiticidal Activities of Phthalimides: Synthesis and Biological Profile against Trypanosoma cruzi and Plasmodium falciparum. ChemMedChem 2020; 15:2164-2175. [PMID: 32813331 DOI: 10.1002/cmdc.202000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Indexed: 12/31/2022]
Abstract
Chagas disease and malaria are two neglected tropical diseases (NTDs) that prevail in tropical and subtropical regions in 149 countries. Chagas is also present in Europe, the US and Australia due to immigration of asymptomatic infected individuals. In the absence of an effective vaccine, the control of both diseases relies on chemotherapy. However, the emergence of parasite drug resistance is rendering currently available drugs obsolete. Hence, it is crucial to develop new molecules. Phthalimides, thiosemicarbazones, and 1,3-thiazoles have been used as scaffolds to obtain antiplasmodial and anti-Trypanosoma cruzi agents. Herein we present the synthesis of 24 phthalimido-thiosemicarbazones (3 a-x) and 14 phthalimido-thiazoles (4 a-n) and the corresponding biological activity against T. cruzi, Plasmodium falciparum, and cytotoxicity against mammalian cell lines. Some of these compounds showed potent inhibition of T. cruzi at low cytotoxic concentrations in RAW 264.7 cells. The most active compounds, 3 t (IC50 =3.60 μM), 3 h (IC50 =3.75 μM), and 4 j (IC50 =4.48 μM), were more active than the control drug benznidazole (IC50 =14.6 μM). Overall, the phthalimido-thiosemicarbazone derivatives were more potent than phthalimido-thiazole derivatives against T. cruzi. Flow cytometry assay data showed that compound 4 j was able to induce necrosis and apoptosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with compounds 3 h, 3 t, and 4 j at IC50 concentrations promoted changes in the shape, flagella, and surface of the parasite body similar to those observed in benznidazole-treated cells. The compounds with the highest antimalarial activity were the phthalimido-thiazoles 4 l (IC50 =1.2 μM), 4 m (IC50 =1.7 μM), and 4 n (IC50 =2.4 μM). Together, these data revealed that phthalimido derivatives possess a dual antiparasitic profile with potential effects against T. cruzi and lead-like characteristics.
Collapse
Affiliation(s)
| | - Marcos Veríssimo de Oliveira Cardoso
- Laboratório de Prospecção de Moléculas Bioativas Programa de Pós-Graduação em Ciência e Tecnologia Ambiental para o Semiárido, Universidade de Pernambuco, 56328-903, Petrolina, PE, Brazil
| | - Ignes Regina Dos Santos
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Fabiano Amaro de Sousa
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Juliana Maria da Conceição
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Vanessa Gouveia de Melo Silva
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| | - Denise Duarte
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Raquel Pereira
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Rafael Oliveira
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Fátima Nogueira
- Unidade de Ensino e Investigação de Parasitologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira no 100, 1349-008, Lisboa, Portugal
| | - Luiz Carlos Alves
- Laboratório de imunopatologia Keizo Asami (LIKA), Campus UFPE, 50670-901, Recife PE, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Fabio André Brayner
- Laboratório de imunopatologia Keizo Asami (LIKA), Campus UFPE, 50670-901, Recife PE, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-535, Recife, PE, Brazil
| |
Collapse
|
46
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
47
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
48
|
Martínez-Peinado N, Cortes-Serra N, Losada-Galvan I, Alonso-Vega C, Urbina JA, Rodríguez A, VandeBerg JL, Pinazo MJ, Gascon J, Alonso-Padilla J. Emerging agents for the treatment of Chagas disease: what is in the preclinical and clinical development pipeline? Expert Opin Investig Drugs 2020; 29:947-959. [PMID: 32635780 DOI: 10.1080/13543784.2020.1793955] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Chagas disease treatment relies on the lengthy administration of benznidazole and/or nifurtimox, which have frequent toxicity associated. The disease, caused by the parasite Trypanosoma cruzi, is mostly diagnosed at its chronic phase when life-threatening symptomatology manifest in approximately 30% of those infected. Considering that both available drugs have variable efficacy by then, and there are over 6 million people infected, there is a pressing need to find safer, more efficacious drugs. AREAS COVERED We provide an updated view of the path to achieve the aforementioned goal. From state-of-the-art in vitro and in vivo assays based on genetically engineered parasites that have allowed high throughput screenings of large chemical collections, to the unfulfilled requirement of having treatment-response biomarkers for the clinical evaluation of drugs. In between, we describe the most promising pre-clinical hits and the landscape of clinical trials with new drugs or new regimens of existing ones. Moreover, the use of monkey models to reduce the pre-clinical to clinical attrition rate is discussed. EXPERT OPINION In addition to the necessary research on new drugs and much awaited biomarkers of treatment efficacy, a key step will be to generalize access to diagnosis and treatment and maximize efforts to impede transmission.
Collapse
Affiliation(s)
- Nieves Martínez-Peinado
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Nuria Cortes-Serra
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Irene Losada-Galvan
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Cristina Alonso-Vega
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Julio A Urbina
- Venezuelan Institute for Scientific Research , Caracas, Venezuela
| | - Ana Rodríguez
- Department of Microbiology, New York University School of Medicine , New York, NY, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, and Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley , Brownsville/Harlingen/Edinburg, TX, USA
| | - Maria-Jesus Pinazo
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Joaquim Gascon
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| | - Julio Alonso-Padilla
- Hospital Clínic - University of Barcelona, Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
| |
Collapse
|
49
|
Silva RCMC, Fox EGP, Gomes FM, Feijó DF, Ramos I, Koeller CM, Costa TFR, Rodrigues NS, Lima AP, Atella GC, Miranda K, Schoijet AC, Alonso GD, de Alcântara Machado E, Heise N. Venom alkaloids against Chagas disease parasite: search for effective therapies. Sci Rep 2020; 10:10642. [PMID: 32606423 PMCID: PMC7327076 DOI: 10.1038/s41598-020-67324-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Chagas disease is an important disease affecting millions of patients in the New World and is caused by a protozoan transmitted by haematophagous kissing bugs. It can be treated with drugs during the early acute phase; however, effective therapy against the chronic form of Chagas disease has yet to be discovered and developed. We herein tested the activity of solenopsin alkaloids extracted from two species of fire ants against the protozoan parasite Trypanosoma cruzi, the aetiologic agent of Chagas disease. Although IC50 determinations showed that solenopsins are more toxic to the parasite than benznidazole, the drug of choice for Chagas disease treatment, the ant alkaloids presented a lower selectivity index. As a result of exposure to the alkaloids, the parasites became swollen and rounded in shape, with hypertrophied contractile vacuoles and intense cytoplasmic vacuolization, possibly resulting in osmotic stress; no accumulation of multiple kinetoplasts and/or nuclei was detected. Overexpressing phosphatidylinositol 3-kinase-an enzyme essential for osmoregulation that is a known target of solenopsins in mammalian cells-did not prevent swelling and vacuolization, nor did it counteract the toxic effects of alkaloids on the parasites. Additional experimental results suggested that solenopsins induced a type of autophagic and programmed cell death in T. cruzi. Solenopsins also reduced the intracellular proliferation of T. cruzi amastigotes in infected macrophages in a concentration-dependent manner and demonstrated activity against Trypanosoma brucei rhodesiense bloodstream forms, which is another important aetiological kinetoplastid parasite. The results suggest the potential of solenopsins as novel natural drugs against neglected parasitic diseases caused by kinetoplastids.
Collapse
Affiliation(s)
- Rafael C M Costa Silva
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Eduardo G P Fox
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Fabio M Gomes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Daniel F Feijó
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Microbiology and Immunology, School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Tatiana F R Costa
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nathalia S Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana P Lima
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Alejandra C Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Guillermo D Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina.
| | - Ednildo de Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
50
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|