1
|
Strickland S, Fourroux L, Pappas D. Effect of precursors on carbon dot functionalization and applications: a review. Analyst 2025; 150:1448-1469. [PMID: 40105280 DOI: 10.1039/d4an01554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Carbon dots (CDs) are a type of carbon-based nanoparticle (NP) that have risen in popularity due to their unique tuneable physicochemical and optical properties. CDs have received a significant amount of attention in biological based applications due to their low cytotoxicity, stable photoluminescence, and small size. They have demonstrated the ability to retain certain properties from their carbon precursors, enabling NP design via precursor selection. Thus, direct functionalization of a CD can be achieved without the need for post synthesis modification. However, CDs derived from the same class of carbon precursor can also have profoundly variable applications. Indicating that, in conjunction with precursor properties, other functional attributes can be imposed on the CD during the synthesis process to enable cross-cutting applications from a single carbon precursor. Here, we will highlight various CD precursors and the resulting multifunctional CDs, as well as rational design of CDs for specific biological and materials science applications via precursor selection.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Luke Fourroux
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Wang X, Zhao H, Lin W, Fan W, Zhuang T, Wang X, Li Q, Wei X, Wang Z, Chen K, Yang L, Ding L. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156513. [PMID: 40010033 DOI: 10.1016/j.phymed.2025.156513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory condition characterized by dysregulated immune responses and high mortality rates, with limited effective therapeutic options currently available. Panax notoginseng saponins (PNS), bioactive compounds derived from Panax notoginseng, have shown promise in mitigating lipopolysaccharide (LPS)-induced ALI. However, the molecular mechanisms underlying their therapeutic effects remain poorly understood. Given the critical role of M2-like macrophage polarization in resolving inflammation and promoting tissue repair, we investigated whether PNS exerts its protective effects in ALI by modulating this process. Furthermore, we explored the specific involvement of the signal transducer and activator of transcription 6 (STAT6) pathway in mediating these effects. METHODS Chemical profiling of PNS was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), followed by quantitative analysis of its major bioactive components via high-performance liquid chromatography (HPLC). To evaluate the therapeutic efficacy of PNS and its principal constituents, we established an ALI mouse model through intratracheal administration of LPS. Comprehensive assessments included lung field shadowing, oxygen saturation levels, pulmonary function, and systematic histopathological examination. The regulatory effects of PNS on macrophage polarization were examined in THP-1 cells and bone marrow-derived macrophages (BMDMs), with cellular phenotypes analyzed by flow cytometry. To elucidate the mechanistic role of STAT6 in PNS-mediated protection, experiments were conducted using Stat6-deficient BMDMs and Stat6 knockout mice. RESULTS UPLC-Q-TOF-MS and HPLC identified and quantified the principal components of PNS: Notoginsenoside R1, Ginsenoside Rg1, Ginsenoside Re, and Ginsenoside Rb1. PNS treatment dose-dependently reduced inflammatory responses in LPS-induced ALI mice, as evidenced by decreased cytokine levels. Each of the four major PNS components independently alleviated ALI symptoms in mice. Pathway analysis revealed 56 potential ALI-related targets, with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggesting that PNS exerts its protective effects by modulating inflammatory signaling pathways. In vitro studies demonstrated that PNS promoted STAT6 phosphorylation and nuclear translocation, enhancing M2-like macrophage polarization and interleukin-10 (IL-10) secretion in a STAT6-dependent manner. Genetic ablation of Stat6 partially reversed the protective effects of PNS on ALI, macrophage polarization, and IL-10 production, confirming the pivotal role of STAT6 in mediating PNS activity. CONCLUSION This study demonstrates that PNS alleviates LPS-induced ALI by promoting STAT6-dependent M2-like macrophage polarization, highlighting its potential as a therapeutic agent for ALI. These findings provide mechanistic insights into the anti-inflammatory actions of PNS and underscore the importance of STAT6 signaling in its protective effects.
Collapse
Affiliation(s)
- Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Hanyang Zhao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wenyuan Lin
- Endocrinology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wenxiang Fan
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Qi Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xiaohui Wei
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Kaixian Chen
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| |
Collapse
|
3
|
Gad AG, Kelani KM, Mahmoud AM, Arafa RM. TLC- smartphone for ofloxacin and dexamethasone determination in pharmaceutical formulation and rabbit aqueous humor. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124485. [PMID: 39919408 DOI: 10.1016/j.jchromb.2025.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Preserving the environment and reducing the harmful effects of chemicals on it, is a primary goal of the research, nowadays. One of the major challenges for research is assessing the efficiency and quality of the proposed method in terms of environmental and human safety, as well as their overall cost. Thin layer chromatography (TLC)-Smartphone is a simple, cost-effective, and rapid method for the detection and quantification of analytes. This work describes the development of a green, white, sensitive and easy TLC method that employs a smartphone charge-coupled device (CCD) camera for image acquisition that provides data regarding the identity and quantity of ofloxacin (OFL) and dexamethasone (DEXA) in their mixture. A mixture of OFL and DEXA was separated on a silica gel 60 F254 plate using a mobile phase of n-butanol: acetic acid: water (6:2:2, by volume). Visualization of the separated spots was achieved using the "Universal Stain" iodine vapor (I2) and potassium permanganate (KMnO4), resulting in colored spots on the TLC plate. The Rf values of ofloxacin (0.25) and dexamethasone (0.8) were determined from the recorded images, enabling the identification of the drugs. It was possible to construct a linear calibration model and relate optical density with concentration per band. A linear calibration model was constructed to correlate optical density with concentration per band. A smartphone application was developed to calculate the spot intensity, which was then used to quantify ofloxacin and dexamethasone in their mixture. The TLC-Smartphone method produced linear calibration curves between the color intensity of each spot and the corresponding concentrations. For iodine vapor visualization, the linearity range was 10-50 μg/band for ofloxacin and 40-120 μg/band for dexamethasone. For KMnO4 visualization, the linearity was in the range of 10-50 μg/band for both drugs. The proposed method was validated following ICH guidelines, and was successfully applied for the estimation of ofloxacin and dexamethasone in their eye drop pharmaceutical form and rabbit aqueous humor.
Collapse
Affiliation(s)
- Asmaa G Gad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Khadiga M Kelani
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Amr M Mahmoud
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Reham M Arafa
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
4
|
Wu X, Guo H, Hu X, Li Y, Kowalke MA, Zhang W, Oh JH, Elmquist WF, Pang HB. PEGylation Improves the Therapeutic Index of Dexamethasone To Treat Acute Respiratory Distress Syndrome with Obesity Background in Mouse. Mol Pharm 2025; 22:808-816. [PMID: 39818839 DOI: 10.1021/acs.molpharmaceut.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
With increasing prevalence globally, obesity presents unique challenges to the clinical management of other diseases. In the case of acute respiratory distress syndrome (ARDS), glucocorticoid therapy (e.g., dexamethasone (DEX)) represents one of the few pharmacological treatment options, but it comes with severe adverse effects, especially when long-term usage (>1 week) is required. One important reason for the adverse effects of DEX is its nonspecific accumulation in healthy tissues upon systemic administration. Therefore, we hypothesize that refining its pharmacokinetics (PK) and in vivo biodistribution may improve its therapeutic index (higher efficacy, lower toxicity) and thus make it safer for obese populations. To achieve this goal, DEX was conjugated with polyethylene glycol (PEG) with three different molecular weights (Mw, 2K, 5K, and 10K) via a reactive oxygen species (ROS)-cleavable linker. Their anti-inflammatory efficacy and long-term adverse effects were evaluated in a murine obesity-ARDS model. Strikingly, DEX-PEG-2K (conjugates with 2K PEG Mw) provided the optimal therapeutic index compared to free DEX and to the other two conjugates with longer PEGs (Mw of 5K and 10K): While retaining the comparable therapeutic efficacy to DEX, DEX-PEG-2K significantly reduced the accumulation of free DEX in the liver and spleen, which led to a 51% reduction of fatty area in liver and a 32% reduction of blood triglycerides concentration. DEX-induced apoptosis of the thymus was also rescued by DEX-PEG-2K under normal conditions. The PK and biodistribution were also investigated to elicit the underlying mechanism. In summary, we provided here a chemical modification strategy to improve the therapeutic index of dexamethasone and possibly other glucocorticoid drugs for ARDS treatment with an obesity background.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiangxiang Hu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiqin Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mitchell A Kowalke
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wenjuan Zhang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ju-Hee Oh
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William F Elmquist
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Leboit PE, Patel DU, Cohen JN, Moss MI, Naik HB, Yates AE, Harris HW, Klufas DM, Kim EA, Neuhaus IM, Hansen SL, Kyle RL, Kelly M, Rosenblum MD, Lowe MM. The Inflammatory Landscape of a Whole-Tissue Explant Model of Hidradenitis Suppurativa. Exp Dermatol 2025; 34:e70057. [PMID: 39930604 PMCID: PMC11811487 DOI: 10.1111/exd.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Hidradenitis suppurativa (HS) is a relatively common and highly morbid inflammatory skin disease. Due to the relatively limited understanding of HS's pathogenesis, there are currently insufficient treatment options available, and many patients' medical needs are not being met. This is partly due to the historical scarcity of ex vivo assays and animal models that accurately recapitulate the disease. Thus, we have developed a standardised whole-tissue explant model of HS to examine its pathogenic mechanisms and the efficacy of potential treatments within intact human tissue. We measured cytokine protein and RNA within whole tissue maintained in an agar-media solution, finding that IL-6 and IL-8 concentrations trended upwards in both HS explants and healthy controls, while IL-17A, IL-1β, and TNF-α exhibited increases in HS tissue alone. We also show that the explants were responsive to treatment with both dexamethasone and IL-2. Not only do our results show that this model effectively delivers treatments throughout the explants, but they also elucidate which cytokines are related to the explant process regardless of tissue state and which are related to HS tissue specifically, laying the groundwork for future implementations of this model.
Collapse
Affiliation(s)
- Phoebe E. Leboit
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Dhara U. Patel
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Jarish N. Cohen
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | | | - Haley B. Naik
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Ashley E. Yates
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | | | - Daniel M. Klufas
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | | | - Isaac M. Neuhaus
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | | | | | | | - Michael D. Rosenblum
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Margaret M. Lowe
- Department of DermatologyUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
6
|
Costa MP, Abdu JOC, Machado Resende Guedes MC, Sarcinelli MA, Fabri RL, Pittella F, Macedo GC, Vilela FMP, Rocha HVA, Tavares GD. Dexamethasone-loaded chitosan-decorated PLGA nanoparticles: A step forward in attenuating the COVID-19 cytokine storm? Colloids Surf B Biointerfaces 2025; 246:114359. [PMID: 39522287 DOI: 10.1016/j.colsurfb.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study aims to develop and characterize poly (lactic-co-glycolic acid) (PLGA) nanoparticles decorated with chitosan (CS) for the encapsulation of dexamethasone (DEX) (NP-DEX-CS), targeting improved efficacy in the treatment of severe acute respiratory syndrome (SARS) associated with COVID-19. The nanoparticles were systematically characterized for size, zeta potential (ZP), morphology, encapsulation efficiency, and in vitro drug release. Incorporation of CS resulted in significant modifications in the nanoparticles' physical properties, notably an increase in size (from 207.3 ± 6.7 nm to 264.4 ± 4.4 nm) and a shift in ZP to positive values (from -11.8 ±1.4 mV to +30.0 ± 1,6 mV). The NP-DEX-CS formulation achieved a high encapsulation efficiency (∼79 %) and a drug loading capacity of 6.53 ± 0.02 %.In addition, the in vitro release rate of DEX from NP-DEX-CS was lower compared to undecorated nanoparticles, with a reduction from approximately 64-37 % within 24 h. Microscopy analyses revealed a smoother surface on the CS-decorated nanoparticles. FTIR and XRD analyses confirmed successful chitosan coating and DEX encapsulation. The CS coating enhanced the tolerability of J774.A1 cells to the nanoparticles, particularly evident at the highest concentration (400ug/mL), resulting in a cell viability ≥70 %. Importantly, the NP-DEX-CS significantly reduced levels of nitric oxide and inflammatory cytokines (IL-1, IL-6, IL-12, and TNF-α). These findings suggest that CS-decorated PLGA nanoparticles hold promise as an effective dexamethasone delivery system for treating SARS related to COVID-19.
Collapse
Affiliation(s)
- Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Maria Clara Machado Resende Guedes
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Gilson Costa Macedo
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Fernanda Maria Pinto Vilela
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Wu M, Wang S, Chen X, Shen L, Ding J, Jiang H. Single-cell transcriptome analysis reveals cellular reprogramming and changes of immune cell subsets following tetramethylpyrazine treatment in LPS-induced acute lung injury. PeerJ 2025; 13:e18772. [PMID: 39822976 PMCID: PMC11737342 DOI: 10.7717/peerj.18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Background Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative. Methods We established a mouse model of lipopolysaccharide (LPS)-induced ALI and performed single cell RNA sequencing (scRNA-seq). Bioinformatic analyses of the immune, epithelial and endothelial cells were then performed to explore the dynamic changes of the lung tissue microenvironment. We also analyzed the effects of TMP on the cell subtypes, differential gene expression and potential regulation of transcriptional factors involved. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to identify the effects of TMP on immune inflammatory response. Results We found that TMP efficiently protected against LPS-induced acute lung injury. Results of scRNA-seq showed that the cells were divided into seven major cell clusters, including immune cells, fibroblasts, endothelial cells and epithelial cells. Neither dexamethasone (Dex) nor TMP treatment showed any significant protective effects in these clusters. However, TMP treatment in the LPS-induced ALI model significantly increased follicular helper T cells and reduced CD8+ naive T cells, Vcan-positive monocytes and Siva-positive NK cells. In addition, TMP treatment increased the number of basal epithelial cells and lymphatic endothelial cells (LECs), indicating its protective effects on these cell types. Scenic analysis suggested that TMP likely mitigates LPS-induced injury in epithelial and endothelial cells by promoting FOSL1 in basal epithelial cells and JunB in LECs. Conclusions Our findings suggest that TMP appears to alleviate LPS-induced lung injury by regulating the immune response, promoting epithelial cell survival and boosting the antioxidant potential of endothelial cells. This study highlights the potential therapeutic use of TMP in the management of ALI.
Collapse
Affiliation(s)
- Mingyan Wu
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolan Chen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jurong Ding
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Jiang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
da Silva Santos I, Magalhaes LO, Marra RKF, da Silva Lima CH, Hamerski L, Albuquerque MG, da Silva BV. Natural and Synthetic Coumarins as Potential Drug Candidates against SARS-CoV-2/COVID-19. Curr Med Chem 2025; 32:539-562. [PMID: 38243979 DOI: 10.2174/0109298673285609231220111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
COVID-19, an airborne disease caused by a betacoronavirus named SARS-- CoV-2, was officially declared a pandemic in early 2020, resulting in more than 770 million confirmed cases and over 6.9 million deaths by September 2023. Although the introduction of vaccines in late 2020 helped reduce the number of deaths, the global effort to fight COVID-19 is far from over. While significant progress has been made in a short period, the fight against SARS-CoV-2/COVID-19 and other potential pandemic threats continues. Like AIDS and hepatitis C epidemics, controlling the spread of COVID-19 will require the development of multiple drugs to weaken the virus's resistance to different drug treatments. Therefore, it is essential to continue developing new drug candidates derived from natural or synthetic small molecules. Coumarins are a promising drug design and development scaffold due to their synthetic versatility and unique physicochemical properties. Numerous examples reported in scientific literature, mainly by in silico prospection, demonstrate their potential contribution to the rapid development of drugs against SARS-CoV-2/COVID-19 and other emergent and reemergent viruses.
Collapse
Affiliation(s)
- Iara da Silva Santos
- Department of Organic Chemistry, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Oliveira Magalhaes
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Roberta Katlen Fusco Marra
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Camilo Henrique da Silva Lima
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Lidilhone Hamerski
- Department of Organic Chemistry, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magaly Girao Albuquerque
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Barbara Vasconcellos da Silva
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Wei SL, Du JZ, Zhai KR, Yang JB, Zhang R, Wu XY, Li Y, Li B. Dexamethasone alleviates acute lung injury in a rat model with venovenous extracorporeal membrane oxygenation support. BMJ Open Respir Res 2024; 11:e002394. [PMID: 39632101 PMCID: PMC11624713 DOI: 10.1136/bmjresp-2024-002394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND In recent years, dexamethasone (Dex) has been used to treat acute respiratory distress syndrome (ARDS) in patients with COVID-19 and achieved promising outcomes. Venovenous extracorporeal membrane oxygenation (VV ECMO) support for patients with ARDS has increased significantly worldwide. However, it remains unknown whether Dex could improve the efficiency of VV ECMO to reduce lung injury. Here, we investigate the combined efficiency of VV ECMO and Dex in rats with acute lung injury (ALI). METHODS We established VV ECMO in oleic acid (OA)-treated ALI rats and administered Dex. We conducted HE staining and evaluated lung and bronchoalveolar lavage (BAL) fluid cytokines to assess lung injury and inflammation. Furthermore, we investigated the activation of Hippo/YAP signalling in alveolar epithelial type II cell (AT2)-mediated alveolar epithelial repair using quantitative PCR, Western blotting and immunofluorescence. In vitro, the human alveolar epithelial cell line A549 was used to investigate the key role of YAP in alveolar epithelial cell differentiation. RESULTS VV ECMO combined with Dex alleviated OA-induced lung injury and pulmonary inflammation. Pulmonary oedema and exudation were significantly alleviated, and the lung and BAL levels of IL-6, IL-8 and TNF-α were significantly reduced compared with those observed with ECMO alone. In addition, VV ECMO combined with Dex treatment protected alveolar epithelial cells by activating Hippo/YAP signalling. In vitro, Dex promoted YAP expression and alveolar epithelial cell differentiation, whereas YAP knockdown inhibited YAP-mediated differentiation. CONCLUSIONS Our findings suggest that adjuvant Dex treatment during VV ECMO could alleviate ALI and pulmonary inflammation by activating the Hippo/YAP signalling pathway, which promoted alveolar regeneration and AT2 differentiation.
Collapse
Affiliation(s)
- Shi-Lin Wei
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, People's Republic of China
| | - Jun-Zhe Du
- Department of Cardiothoracic Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ke-Rong Zhai
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Bao Yang
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Ran Zhang
- Department of Cardiovascular Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Yang Wu
- Department of Cardiac Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Yongnan Li
- Department of Cardiac Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Li
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, People's Republic of China
| |
Collapse
|
10
|
Baig MMFA, Wong LY, Wu H. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. J Drug Target 2024; 32:21-32. [PMID: 38010097 DOI: 10.1080/1061186x.2023.2288996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
This review has focused on the development of mRNA nano-vaccine and the biochemical interactions of anti-COVID-19 mRNA vaccines with various disease conditions and age groups. It studied five major groups of individuals with different disease conditions and ages, including allergic background, infarction background, adolescent, and adult (youngsters), pregnant women, and elderly. All five groups had been reported to have background-related adverse effects. Allergic background individuals were observed to have higher chances of experiencing allergic reactions and even anaphylaxis. Individuals with an infarction background had a higher risk of vaccine-induced diseases, e.g. pneumonitis and interstitial lung diseases. Pregnant women were seen to suffer from obstetric and gynecological adverse effects after receiving vaccinations. However, interestingly, the elderly individuals (> 65 years old) had experienced milder and less frequent adverse effects compared to the adolescent (<19 and >9 years old) and young adulthood (19-39 years old), or middle adulthood (40-59 years old) age groups, while middle to late adolescent (14-17 years old) was the riskiest age group to vaccine-induced cardiovascular manifestations.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lok Yin Wong
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongkai Wu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
11
|
Das S, Nath S, Shahjahan, Dey SK. Plausible mechanism of drug resistance and side-effects of COVID-19 therapeutics: a bottleneck for its eradication. Daru 2024; 32:801-823. [PMID: 39026019 PMCID: PMC11554973 DOI: 10.1007/s40199-024-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND COVID-19 pandemic has turned our world upside down by meddling with our normal lives. While there is no definitive drug against SARS-CoV-2, antiviral drugs that are already in the market, are being repurposed against it, could now complete long-term as well as all age-specific investigations, and they are successful in saving millions of lives. Nevertheless, side-effects are emergingly seen in the patients undergoing treatment, and ineffectiveness is increasingly found due to the emerging notorious variants of the virus. Many of them are also facing serious co-infections including black fungus, Zika, and H1N1 virus to name a few. OBJECTIVES Therefore, this review highlights both drug resistance, their side-effects, and the significance for proper and long-term clinical trials of all age groups including children. METHODS We have explored and proposed the mechanisms of drug resistance that may arise due to the misuse or overuse of drugs based on available experimental reports. RESULTS The review provides solutions to the aforesaid issues of drug-resistance and side-effects by providing combination therapies, ancillary treatments, and other preventive strategies that can be useful in preventing drawbacks thereby curbing COVID-19 or similar future infections to maintain our normal lives. CONCLUSION COVID-19 and its long-term effects, if any, can be eradicated with strategic and mindful use of related therapeutics in a controlled manner.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Sreyashi Nath
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Training Research and Education in Cancer, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
12
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Priya K, Thacker H, Chaubey M, Rai M, Singh S, Rawat S, Giri K, Mohanty S, Rai G. Dexamethasone and IFN-γ primed mesenchymal stem cells conditioned media immunomodulates aberrant NETosis in SLE via PGE2 and IDO. Front Immunol 2024; 15:1461841. [PMID: 39544931 PMCID: PMC11560778 DOI: 10.3389/fimmu.2024.1461841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE) is characterized by dysregulated immune responses, with neutrophil extracellular traps (NETs) playing a significant role. NETs are recognized by autoantibodies in SLE patients, exacerbating pathology. Both excessive NET formation and impaired degradation contribute to SLE pathophysiology. Objective To investigate the immunomodulatory effects of Dexamethasone-primed Wharton's jelly (WJ) derived MSCs CM (DW) and IFN-γ-primed WJ-MSCs-CM (IW) on NETosis and associated protein markers in SLE patients' LPS or ribonucleoprotein immune complexes (RNP ICs) induced neutrophils and in pristane induced lupus (PIL) model. And to elucidate the mechanism involved therein. Methods We investigated the immunomodulatory effects of DW and IW on NETosis in SLE. Utilizing ex vivo and in vivo models, we assessed the impact of preconditioned media on NET formation and associated protein markers neutrophil elastase (NE), citrullinated histone (citH3), myeloperoxidase (MPO), cytoplasmic and mitochondrial ROS production. We also examined the involvement of key immunomodulatory factors present in DW and IW, including prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO), and transforming growth factor-beta (TGF-β). Results Preconditioned media effectively suppressed NETosis and reduced ROS generation in SLE neutrophils, indicating their immunomodulatory potential. Inhibition studies implicated IDO and PGE2 in mediating this effect. Combined treatment with DW or IW together with hydroxychloroquine (HCQ) demonstrated superior efficacy over HCQ alone, a standard SLE medication. In PIL mouse model, DW and IW treatments reduced NETosis, ROS generation, as evidenced by decreased NET-associated protein expression in vital organs. Conclusion Our study highlights the multifaceted impact of IW and DW on NETosis, ROS dynamics, and lupus severity in SLE. These findings underscore the potential of preconditioned media for the development of targeted, personalized approaches for SLE treatment.
Collapse
Affiliation(s)
- Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Hiral Thacker
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manaswi Chaubey
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, AIIMS, New Delhi, India
| | - Kiran Giri
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, AIIMS, New Delhi, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Lee JO, Jang Y, Park AY, Lee JM, Jeong K, Jeon SH, Jin H, Im M, Kim JW, Kim BJ. Human Placenta Extract (HPH) Suppresses Inflammatory Responses in TNF-α/IFN-γ-Stimulated HaCaT Cells and a DNCB Atopic Dermatitis (AD)-Like Mouse Model. J Microbiol Biotechnol 2024; 34:1969-1980. [PMID: 39252632 PMCID: PMC11540608 DOI: 10.4014/jmb.2406.06045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Atopic dermatitis (AD), a chronic inflammatory disease, severely interferes with patient life. Human placenta extract (HPH; also known as human placenta hydrolysate) is a rich source of various bioactive substances and has widely been used to dampen inflammation, improve fatigue, exert anti-aging effects, and promote wound healing. However, information regarding HPH's incorporation in AD therapies is limited. Therefore, this study aimed to evaluate HPH's effective potential in treating AD using tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated human keratinocytes (HaCaT), immunized splenocytes, and a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. In TNF-α /IFN-γ-stimulated HaCaT cells, HPH markedly reduced the production of reactive oxygen species (ROS) and restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1(SOD1), catalase, and filaggrin (FLG). HPH reduced interleukin (IL)-6; thymus- and activation-regulated chemokine (TARC); thymic stromal lymphopoietin (TSLP); and regulated upon activation, normal T cell expressed and presumably secreted (RANTES) levels and inhibited nuclear factor kappa B phosphorylation. Additionally, HPH suppressed the T helper 2 (Th2) immune response in immunized splenocytes. In the AD-like mouse model, it significantly mitigated the DNCB-induced elevation in infiltrating mast cells and macrophages, epidermal thickness, and AD symptoms. HPH also reduced TSLP levels and prevented FLG downregulation. Furthermore, it decreased the expression levels of IL-4, IL-5, IL-13, TARC, RANTES, and immunoglobulin E (IgE) in serum and AD-like skin lesion. Overall, our findings demonstrate that HPH effectively inhibits AD development and is a potentially useful therapeutic agent for AD-like skin disease.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Youna Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - A Yeon Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Kyeongsoo Jeong
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - So-Hyun Jeon
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Hui Jin
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Minju Im
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Jae-Won Kim
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
15
|
Chavda V, Dodiya P, Apostolopoulos V. Adverse drug reactions associated with COVID-19 management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7353-7376. [PMID: 38743117 DOI: 10.1007/s00210-024-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, which causes COVID-19, had a devastating impact on both people's lives and the global economy. During the course of the pandemic, the lack of specific drugs or treatments tailored for COVID-19 led to extensive repurposing of existing drugs in the pursuit of effective treatments. Some drug molecules demonstrated efficacy, while others proved ineffective. In this context, the approach of drug repurposing emerged as a novel strategy for combating COVID-19. Repurposed drugs and biologics have shown effectiveness, leading to improved clinical outcomes among patients with COVID-19. Similarly, It is equally important to assess the risk-benefit ratio associated with drugs and biologics adapted for COVID-19 treatment. Herein, we primarily focus on evaluating adverse drug events linked to repurposed COVID-19 medications, repurposed biologics, and COVID-specific drug molecules.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Payal Dodiya
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
17
|
Li Y, Zhou Y, Liu L, Yang Y, Liu Y, Yan D, Chen J, Xiao Y. Osthole attenuates asthma-induced airway epithelial cell apoptosis and inflammation by suppressing TSLP/NF-κB-mediated inhibition of Th2 differentiation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:51. [PMID: 39334402 PMCID: PMC11438018 DOI: 10.1186/s13223-024-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the influence of osthole (OS) on asthma-induced airway epithelial cell apoptosis and inflammation by restraining Th2 differentiation through suppressing TSLP/NF-κB. METHODS An asthma mouse model and an inflammation cell model were constructed with ovalbumin (OVA) and lipopolysaccharide (LPS), respectively. CD4 + T cells were treated with IL-4 to induce Th2 differentiation. Model mice were treated with OS (15,40 mg/kg) for 7 days, and 10 µg/mL OS was added to cell treatment groups. The levels of relevant indices were detected by RT‒qPCR, HE and Masson staining, Western blotting, ELISA and flow cytometry. RESULTS In a mouse asthma model, TSLP expression was elevated, and the NF-κB pathway was activated. Therefore, OS could restrain the apoptosis and inflammation of airway epithelial cells. Downstream mechanistic studies revealed that OS can suppress Th2 differentiation by restraining the level of TSLP and NF-κB nuclear translocation, thus facilitating the proliferation of airway epithelial cells, restraining their apoptosis and inflammation, and alleviating airway inflammation in asthmatic mice. CONCLUSION OS can inhibit Th2 differentiation by inhibiting the TSLP and NF-κB pathways, which can reduce the apoptosis and inflammation of airway epithelial cells caused by asthma.
Collapse
Affiliation(s)
- Yanli Li
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yushan Zhou
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Liqiong Liu
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yunfeng Yang
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Dailing Yan
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Juyan Chen
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China
| | - Yi Xiao
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Kunming, 650051, China.
| |
Collapse
|
18
|
Ma L, Wu H, Cao J, Zhang N, Li Y, Zheng J, Jiang X, Gao J. Mesenchymal Stem Cell-Based Biomimetic Liposome for Targeted Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47206-47215. [PMID: 39190615 DOI: 10.1021/acsami.4c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder that severely compromises joint health. The primary therapeutic strategy for advanced RA aims to inhibit joint inflammation. However, the nonspecific distribution of pharmacological agents has limited therapeutic efficacy and heightens the risks associated with RA treatment. To address this issue, we developed mesenchymal stem cell (MSC)-based biomimetic liposomes, termed MSCsome, which were composed of a fusion between MSC membranes and liposomes. MSC some with relatively simple preparation method effectively enhanced the targeting efficiency of drug to diseased joints. Interaction between lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 enhanced the affinity of the MSCsome for polarized macrophages, thereby improving its targeting capability to affected joints. The effective targeted delivery facilitated drug accumulation in joints, resulting in the significant inhibition of the inflammation, as well as protection and repair of the cartilage. In conclusion, this study introduced MSCsome as a promising approach for the effective treatment of advanced RA, providing a novel perspective on targeted drug delivery therapy for inflammatory diseases.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Chilechuan Dairy Economic Development Zone, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Honghui Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
| | - Jian Cao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaosheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Devi TL, Devi MM, Okram M, Singh OM. Repurposed Drugs during the Outbreak of Pandemic COVID-19: A Mini-Review on Their Molecular Structures and Hit-and-Trial Results. ACS OMEGA 2024; 9:36858-36864. [PMID: 39246499 PMCID: PMC11375728 DOI: 10.1021/acsomega.4c05357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
One of the most significant threats to global public health in the 21st century is the novel coronavirus disease (COVID-19) caused by SARS-CoV-2. It rapidly turned into a global pandemic after it was identified in late 2019, and the World Health Organization announced the end of the pandemic on May 5, 2023. Current strategies for managing this disease include vaccination and repurposing antimalarial and antibiotic medications to alleviate symptoms like fever and throat pain, which are associated with acute respiratory distress syndrome (ARDS). Antiviral drugs such as chloroquine, hydroxychloroquine, azithromycin, remdesivir, and favipiravir have been repurposed for the treatment of COVID-19. They were previously recommended for treating SARS-CoV and MERS-CoV. However, the inefficacy and adverse side effects of these repurposed drugs led to a decrease in their widespread use in treating COVID-19 patients. The lack of approved drugs for combating this coronavirus and its unpredictable variants remains a significant challenge.
Collapse
Affiliation(s)
- Thangjam Linda Devi
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, India
| | | | - Monika Okram
- Department of Chemistry, Chandigarh University, Mohali, Punjab 160036, India
| | | |
Collapse
|
20
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Mukkawar RV, Reddy H, Rathod N, Kumar S, Acharya S. The Long-Term Cardiovascular Impact of COVID-19: Pathophysiology, Clinical Manifestations, and Management. Cureus 2024; 16:e66554. [PMID: 39258051 PMCID: PMC11384648 DOI: 10.7759/cureus.66554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has resulted in a substantial global health crisis, with effects extending far beyond the acute phase of infection. This review aims to provide a comprehensive overview of the long-term cardiovascular impact of COVID-19, focusing on the pathophysiology, clinical manifestations, diagnostic approaches, management strategies, and future research directions. SARS-CoV-2 induces cardiovascular complications through mechanisms such as inflammation, endothelial dysfunction, and direct myocardial injury, leading to conditions like myocarditis, heart failure, arrhythmias, and thromboembolic events. These long-term effects, collectively called "long COVID" or post-acute sequelae of SARS-CoV-2 infection (PASC), present significant challenges for healthcare systems and patient management. Diagnostic approaches include imaging techniques and laboratory tests to identify and monitor cardiovascular complications. Management strategies emphasize a holistic approach, incorporating pharmacological treatments and lifestyle modifications. Special attention is required for vulnerable populations, including those with pre-existing cardiovascular conditions. Ongoing research is essential to understand the full spectrum of long-term cardiovascular impacts and to develop effective treatments. This review highlights the critical need for continued vigilance, multidisciplinary care, and research to address the cardiovascular sequelae of COVID-19 and improve long-term health outcomes for survivors.
Collapse
Affiliation(s)
- Rushi V Mukkawar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshitha Reddy
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nishant Rathod
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
22
|
Naz S, Mazhar MU, Faiz S, Malik MN, Khan JZ, Haq IU, Zhu L, Tipu MK. In vivo evaluation of efficacy and safety of Coagulansin-A in treating arthritis. Toxicol Appl Pharmacol 2024; 489:117008. [PMID: 38908719 DOI: 10.1016/j.taap.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The current study aimed to determine the safety and efficacy of Coag-A through in vivo analysis in CFA induced mice model. Treatment of CFA induced arthritis in mice with Coagulansin-A (10 mg/kg i.p. daily for 28 days), a withanolide obtained from Withania coagulans, as well as standard drug treatment with Dexamethasone (5 mg/kg i.p) was provided. The effect of Coag-A on body weight, relative organ weight, hematology, serum biochemistry, survival rate, oxidative stress markers, and antioxidant enzymes was evaluated. The liver and kidney histopathology were also assessed to ascertain its safety profile. Treatment of arthritic mice with Coag-A considerably improved body weight, relative organ weight of liver, kidney, and spleen, ameliorated hematology and serum biochemistry, and increased survival and antioxidant potential. Coag-A was found to be safer with fewer adverse effects showing hepato-protective, nephroprotective, and anti-inflammatory effect. It also significantly (p < 0.001) improved histopathology of CFA-induced mice when compared with Dexa. In conclusion, compared to dexamethasone, Coag-A has demonstrated a greater therapeutic benefit and fewer side effects in the treatment of arthritis against the CFA-induced model.
Collapse
Affiliation(s)
- Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sidra Faiz
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan
| | - Maria Nawaz Malik
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
23
|
Štampar P, Blagus T, Goričar K, Bogovič P, Turel G, Strle F, Dolžan V. Genetic variability in the glucocorticoid pathway and treatment outcomes in hospitalized patients with COVID-19: a pilot study. Front Pharmacol 2024; 15:1418567. [PMID: 39135792 PMCID: PMC11317398 DOI: 10.3389/fphar.2024.1418567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: Corticosteroids are widely used for the treatment of coronavirus disease (COVID)-19. Genetic polymorphisms of the glucocorticoid receptor, metabolizing enzymes, or transporters may affect treatment response to dexamethasone. This study aimed to evaluate the association of the glucocorticoid pathway polymorphisms with the treatment response and short-term outcomes in patients with severe COVID-19. Methods: Our pilot study included 107 hospitalized patients with COVID-19 treated with dexamethasone and/or methylprednisolone, genotyped for 14 polymorphisms in the glucocorticoid pathway. Results: In total, 83% of patients had severe disease, 15.1% had critical disease and only 1.9% had moderate disease. CYP3A4 rs35599367 was the major genetic determinant of COVID-19 severity as carriers of this polymorphism had higher risk of critical disease (OR = 6.538; 95% confidence interval = 1.19-35.914: p = 0.031) and needed intensive care unit treatment more frequently (OR = 10; 95% CI = 1.754-57.021: p = 0.01). This polymorphism was also associated with worse disease outcomes, as those patients had to switch from dexamethasone to methylprednisolone more often (OR = 6.609; 95% CI = 1.137-38.424: p = 0.036), had longer hospitalization (p = 0.022) and needed longer oxygen supplementation (p = 0.040). Carriers of NR3C1 rs6198 polymorphic allele required shorter dexamethasone treatment (p = 0.043), but had higher odds for switching therapy with methylprednisolone (OR = 2.711; 95% CI = 1.018-7.22: p = 0.046). Furthermore, rs6198 was also associated with longer duration of hospitalization (p = 0.001) and longer oxygen supplementation (p = 0.001). NR3C1 rs33388 polymorphic allele was associated with shorter hospitalization (p = 0.025) and lower odds for ICU treatment (OR = 0.144; 95% CI = 0.027-0.769: p = 0.023). GSTP1 rs1695 was associated with duration of hospitalization (p = 0.015), oxygen supplementation and (p = 0.047) dexamethasone treatment (p = 0.022). Conclusion: Our pathway-based approach enabled us to identify novel candidate polymorphisms that can be used as predictive biomarkers associated with response to glucocorticoid treatment in COVID-19. This could contribute to the patient's stratification and personalized treatment approach.
Collapse
Affiliation(s)
- Patricija Štampar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriele Turel
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Leboit PE, Patel DU, Cohen JN, Moss MI, Naik HB, Yates AE, Harris HW, Klufas DM, Kim EA, Neuhaus IM, Hansen SL, Kyle RL, Kelly M, Rosenblum MD, Lowe MM. A Novel Whole Tissue Explant Model of Hidradenitis Suppurativa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.603617. [PMID: 39211108 PMCID: PMC11360975 DOI: 10.1101/2024.07.19.603617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hidradenitis Suppurativa (HS) is a relatively common and highly morbid inflammatory skin disease. Due to our relatively limited understanding of HS's pathogenesis, there are currently insufficient treatment options available, and many patients' medical needs are not being met. This is partly due to a scarcity of ex vivo human assays and animal models that accurately recapitulate the disease. To address this deficit, we have developed a whole-tissue explant model of HS to examine its pathogenic mechanisms and the efficacy of potential treatments within intact human tissue. We measured cytokine protein and RNA within whole tissue maintained in an agar-media solution, finding that IL-6 and IL-8 concentrations trended upwards in both HS explants and healthy controls, while IL-17A, IL-1β, and TNF-α exhibited increases in HS tissue alone. We also show that the explants were responsive to treatment with both dexamethasone and IL-2. Not only do our results show that this model effectively delivers treatments throughout the explants, but they also elucidate which cytokines are related to the explant process regardless of tissue state and which are related to HS tissue specifically, laying the groundwork for future implementations of this model.
Collapse
|
25
|
Virgo M, Mostowy S, Ho BT. Use of zebrafish to identify host responses specific to type VI secretion system mediated interbacterial antagonism. PLoS Pathog 2024; 20:e1012384. [PMID: 39024393 PMCID: PMC11288455 DOI: 10.1371/journal.ppat.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Interbacterial competition is known to shape the microbial communities found in the host, however the interplay between this competition and host defense are less clear. Here, we use the zebrafish hindbrain ventricle (HBV) as an in vivo platform to investigate host responses to defined bacterial communities with distinct forms of interbacterial competition. We found that antibacterial activity of the type VI secretion system (T6SS) from both Vibrio cholerae and Acinetobacter baylyi can induce host inflammation and sensitize the host to infection independent of any individual effector. Chemical suppression of inflammation could resolve T6SS-dependent differences in host survival, but the mechanism by which this occurred differed between the two bacterial species. By contrast, colicin-mediated antagonism elicited by an avirulent strain of Shigella sonnei induced a negligible host response despite being a more potent bacterial killer, resulting in no impact on A. baylyi or V. cholerae virulence. Altogether, these results provide insight into how different modes of interbacterial competition in vivo affect the host in distinct ways.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Brian T. Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
26
|
Gutierrez-Noya VM, Gómez-Oliván LM, Orozco-Hernández JM, Rosales-Pérez KE, Casas-Hinojosa I, Elizalde-Velázquez GA, Gracía-Medina S, Galar-Martínez M, Orozco-Hernández LA. Eco-endocrinological dynamics: Unraveling dexamethasone's influence on the interrenal axis in juvenile carp Cyprinus carpio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172947. [PMID: 38703837 DOI: 10.1016/j.scitotenv.2024.172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Veronica Margarita Gutierrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Idalia Casas-Hinojosa
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra Gracía-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Luis Alberto Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
27
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Chohan TA, Hamza M, Nazari K, Ahmad Z. Transcutaneous Delivery of Dexamethasone Sodium Phosphate Via Microneedle-Assisted Iontophoretic Enhancement - A Potential Therapeutic Option for Inflammatory Disorders. Pharm Res 2024; 41:1183-1199. [PMID: 38849712 DOI: 10.1007/s11095-024-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
AIM This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Hamza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
28
|
Tang Z, Mao Y, Ruan P, Li J, Qiu X, Meng Y, Wang M, Wu G, Wang L, Tan Y. Drugs targeting CMPK2 inhibit pyroptosis to alleviate severe pneumonia caused by multiple respiratory viruses. J Med Virol 2024; 96:e29643. [PMID: 38695269 DOI: 10.1002/jmv.29643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1β and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.
Collapse
Affiliation(s)
- Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Pinglang Ruan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiani Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
29
|
Song SS, Druschel LN, Conard JH, Wang JJ, Kasthuri NM, Ricky Chan E, Capadona JR. Depletion of complement factor 3 delays the neuroinflammatory response to intracortical microelectrodes. Brain Behav Immun 2024; 118:221-235. [PMID: 38458498 DOI: 10.1016/j.bbi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
30
|
Ghasemiyeh P, Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol J 2024; 21:98. [PMID: 38671455 PMCID: PMC11055380 DOI: 10.1186/s12985-024-02370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
About four years have passed since the detection of the first cases of COVID-19 in China. During this lethal pandemic, millions of people have lost their lives around the world. Since the first waves of COVID-19 infection, various pharmacotherapeutic agents have been examined in the management of COVID-19. Despite all these efforts in pharmacotherapy, drug repurposing, and design and development of new drugs, multiple organ involvement and various complications occurred during COVID-19. Some of these complications became chronic and long-lasting which led to the "long COVID" syndrome appearance. Therefore, the best way to eradicate this pandemic is prophylaxis through mass vaccination. In this regard, various vaccine platforms including inactivated vaccines, nucleic acid-based vaccines (mRNA and DNA vaccines), adenovirus-vectored vaccines, and protein-based subunit vaccines have been designed and developed to prevent or reduce COVID-19 infection, hospitalization, and mortality rates. In this focused review, at first, the most commonly reported clinical presentations of COVID-19 during these four years have been summarized. In addition, different therapeutic regimens and their latest status in COVID-19 management have been listed. Furthermore, the "long COVID" and related signs, symptoms, and complications have been mentioned. At the end, the effectiveness of available COVID-19 vaccines with different platforms against early SARS-CoV-2 variants and currently circulating variants of interest (VOI) and the necessity of booster vaccine shots have been summarized and discussed in more detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Jia X, Gu M, Dai J, Wang J, Zhang Y, Pang Z. Quercetin attenuates Pseudomonas aeruginosa-induced acute lung inflammation by inhibiting PI3K/AKT/NF-κB signaling pathway. Inflammopharmacology 2024; 32:1059-1076. [PMID: 38310155 DOI: 10.1007/s10787-023-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 02/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1β, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| |
Collapse
|
32
|
Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG, Ratangee BA, Sealy TT, Vallone KT, Clements TP. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J 2024; 291:1632-1662. [PMID: 36266238 PMCID: PMC9874604 DOI: 10.1111/febs.16662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antiviral therapies are integral in the fight against SARS-CoV-2 (i.e. severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Antiviral therapeutics can be divided into categories based on how they combat the virus, including viral entry into the host cell, viral replication, protein trafficking, post-translational processing, and immune response regulation. Drugs that target how the virus enters the cell include: Evusheld, REGEN-COV, bamlanivimab and etesevimab, bebtelovimab, sotrovimab, Arbidol, nitazoxanide, and chloroquine. Drugs that prevent the virus from replicating include: Paxlovid, remdesivir, molnupiravir, favipiravir, ribavirin, and Kaletra. Drugs that interfere with protein trafficking and post-translational processing include nitazoxanide and ivermectin. Lastly, drugs that target immune response regulation include interferons and the use of anti-inflammatory drugs such as dexamethasone. Antiviral therapies offer an alternative solution for those unable or unwilling to be vaccinated and are a vital weapon in the battle against the global pandemic. Learning more about these therapies helps raise awareness in the general population about the options available to them with respect to aiding in the reduction of the severity of COVID-19 infection. In this 'A Guide To' article, we provide an in-depth insight into the development of antiviral therapeutics against SARS-CoV-2 and their ability to help fight COVID-19.
Collapse
Affiliation(s)
- Drugan K. Brady
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Aashi R. Gurijala
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Liyu Huang
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ali A. Hussain
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Audrey L. Lingan
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | | - Brina A. Ratangee
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tristan T. Sealy
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Kyle T. Vallone
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | |
Collapse
|
33
|
Zhou R, Johnson KE, Rousseau JF, Rathouz PJ. Comparative effectiveness of dexamethasone in treatment of hospitalized COVID-19 patients in the United States during the first year of the pandemic: Findings from the National COVID Cohort Collaborative (N3C) data repository. PLoS One 2024; 19:e0294892. [PMID: 38512832 PMCID: PMC10956822 DOI: 10.1371/journal.pone.0294892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/11/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Dexamethasone was approved for use in hospitalized COVID-19 patients early in the pandemic based on the RECOVERY trial, but evidence is still needed to support its real-world effectiveness in heterogeneous populations of patients with a wide range of comorbidities. METHODS COVID-19 inpatients represented within the National COVID Cohort Collaborative (N3C) Data Enclave, prior to vaccine availability, were studied. Primary outcome was in-hospital death; secondary outcome was combined in-hospital death and severe outcome defined by use of ECMO or mechanical ventilation. Missing data were imputed with single imputation. Dexamethasone-treated patients were propensity score (PS) matched to non-dexamethasone-treated controls, stratified by remdesivir treatment and based on demographics, baseline laboratory values, comorbidities, and amount of missing data before imputation. Treatment benefit was quantified using logistic regression. Further sensitivity analyses were performed using clinical adjusters in matched groups and in strata defined by quartiles of PS. RESULTS Dexamethasone treatment was associated with reduced risk of in-hospital mortality for n = 1,263 treated, matched 1:3 to untreated, patients not receiving remdesivir (OR = 0.77, 95% CI: 0.62 to 0.95, p = 0.017), and for n = 804 treated, matched 1:1 to untreated, patients receiving remdesivir (OR = 0.74, 95% CI: 0.53 to 1.02, p = 0.054). Treatment showed secondary outcome benefit. In sensitivity analyses, treatment effect generally remained similar with some heterogeneity of benefit across quartiles of PS, possibly reflecting concentration of benefit among the more severely affected. CONCLUSIONS We add evidence that dexamethasone provides benefit with respect to mortality and severe outcomes in a diverse, national hospitalized sample, prior to vaccine availability.
Collapse
Affiliation(s)
- Richard Zhou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Kaitlyn E. Johnson
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Pandemic Prevention Institute, The Rockefeller Foundation, New York, New York, United States of America
| | - Justin F. Rousseau
- Dell Medical School at the University of Texas at Austin, Austin, Texas, United States of America
| | - Paul J. Rathouz
- Dell Medical School at the University of Texas at Austin, Austin, Texas, United States of America
| | | |
Collapse
|
34
|
Guito JC, Kirejczyk SGM, Schuh AJ, Amman BR, Sealy TK, Graziano J, Spengler JR, Harmon JR, Wozniak DM, Prescott JB, Towner JS. Coordinated inflammatory responses dictate Marburg virus control by reservoir bats. Nat Commun 2024; 15:1826. [PMID: 38418477 PMCID: PMC10902335 DOI: 10.1038/s41467-024-46226-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Bats are increasingly recognized as reservoirs of emerging zoonotic pathogens. Egyptian rousette bats (ERBs) are the known reservoir of Marburg virus (MARV), a filovirus that causes deadly Marburg virus disease (MVD) in humans. However, ERBs harbor MARV asymptomatically, likely due to a coadapted and specific host immunity-pathogen relationship. Recently, we measured transcriptional responses in MARV-infected ERB whole tissues, showing that these bats possess a disease tolerant strategy that limits pro-inflammatory gene induction, presumably averting MVD-linked immunopathology. However, the host resistant strategy by which ERBs actively limit MARV burden remains elusive, which we hypothesize requires localized inflammatory responses unresolvable at bulk-tissue scale. Here, we use dexamethasone to attenuate ERB pro-inflammatory responses and assess MARV replication, shedding and disease. We show that MARV-infected ERBs naturally mount coordinated pro-inflammatory responses at liver foci of infection, comprised of recruited mononuclear phagocytes and T cells, the latter of which proliferate with likely MARV-specificity. When pro-inflammatory responses are diminished, ERBs display heightened MARV replication, oral/rectal shedding and severe MVD-like liver pathology, demonstrating that ERBs balance immunoprotective tolerance with discreet MARV-resistant pro-inflammatory responses. These data further suggest that natural ERB immunomodulatory stressors like food scarcity and habitat disruption may potentiate viral shedding, transmission and therefore outbreak risk.
Collapse
Affiliation(s)
- Jonathan C Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Shannon G M Kirejczyk
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- StageBio, Mount Jackson, VA, 22842, USA
| | - Amy J Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Tara K Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - James Graziano
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - David M Wozniak
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
- Virology Department, Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Joseph B Prescott
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
35
|
Rubin S, Orieux A, Prezelin-Reydit M, Garric A, Picard Y, Mellati N, Le Gall L, Dewitte A, Prevel R, Gruson D, Louis G, Boyer A. Impact of dexamethasone in severe COVID-19-induced acute kidney injury: a multicenter cohort study. Ann Intensive Care 2024; 14:26. [PMID: 38349530 PMCID: PMC10864230 DOI: 10.1186/s13613-024-01258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) in intensive care unit (ICU) patients with severe COVID-19 is common (> 50%). A specific inflammatory process has been suggested in the pathogenesis of AKI, which could be improved by dexamethasone (DXM). In a small monocenter study (n = 100 patients), we reported a potential protective effect of DXM on the risk of AKI. This study aimed to investigate the preventive impact of DXM on AKI in a multicenter study of patients with severe COVID-19. METHODS We conducted a multicenter study in three French ICUs from March 2020 to August 2021. All patients admitted to ICU for severe COVID-19 were included. Individuals with preexistent AKI or DXM administration before admission to ICU were excluded. While never used during the first wave, DXM was used subsequently at ICU entry, providing two treatment groups. Multivariate Cause-specific Cox models taking into account changes in ICU practices over time, were utilized to determine the association between DXM and occurrence of AKI. RESULTS Seven hundred and ninety-eight patients were included. Mean age was 62.6 ± 12.1 years, 402/798 (50%) patients had hypertension, and 46/798 (6%) had previous chronic kidney disease. Median SOFA was 4 [3-6] and 420/798 (53%) required invasive mechanical ventilation. ICU mortality was 208/798 (26%). AKI was present in 598/798 (75%) patients: 266/598 (38%), 163/598 (27%), and 210/598 (35%) had, respectively, AKI KDIGO 1, 2, 3, and 61/598 (10%) patients required renal replacement therapy. Patients receiving DXM had a significantly decreased hazard of AKI occurrence compared to patients without DXM (HR 0.67; 95CI 0.55-0.81). These results were consistent in analyses that (1) excluded patients with DXM administration to AKI onset delay of less than 12 h, (2) incorporating the different 'waves' of the COVID-19 pandemic. CONCLUSIONS DXM was associated with a decrease in the risk of AKI in severe COVID-19 patients admitted to ICU. This supports the hypothesis that the inflammatory injury of AKI may be preventable.
Collapse
Affiliation(s)
- Sébastien Rubin
- Service de Néphrologie, Transplantation, Dialyse, Aphérèses, CHU de Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France.
- Univ. Bordeaux, INSERM, BMC, U1034, F-33600, Pessac, France.
| | - Arthur Orieux
- Service de Médecine Intensive Réanimation, Hôpital Pellegrin, CHU de Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
| | - Mathilde Prezelin-Reydit
- Maison du REIN-AURAD Aquitaine, Gradignan, France
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Antoine Garric
- Service de Néphrologie, Transplantation, Dialyse, Aphérèses, CHU de Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
| | - Yoann Picard
- Service de Réanimation Polyvalente, CHR Metz, Thionville, Hôpital de Mercy, Ars-Laquenexy, France
| | - Nouchan Mellati
- Service de Réanimation Polyvalente, CHR Metz, Thionville, Hôpital de Mercy, Ars-Laquenexy, France
| | - Lisa Le Gall
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Antoine Dewitte
- Service d'Anesthésie-Réanimation Sud, Centre Médico-Chirurgical Magellan, CHU de Bordeaux, Pessac, France
| | - Renaud Prevel
- Service de Médecine Intensive Réanimation, Hôpital Pellegrin, CHU de Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | - Didier Gruson
- Service de Médecine Intensive Réanimation, Hôpital Pellegrin, CHU de Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| | - Guillaume Louis
- Service de Réanimation Polyvalente, CHR Metz, Thionville, Hôpital de Mercy, Ars-Laquenexy, France
| | - Alexandre Boyer
- Service de Médecine Intensive Réanimation, Hôpital Pellegrin, CHU de Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
- Univ. Bordeaux, INSERM, CRCTB, U 1045, F-33000, Bordeaux, France
| |
Collapse
|
36
|
Gauvin J, Huynh DN, Dubuc I, Lê C, Tugores R, Flamand N, Flamand L, Lubell WD, Ong H, Marleau S. Pharmacological targeting of the hyper-inflammatory response to SARS-CoV-2-infected K18-hACE2 mice using a cluster of differentiation 36 receptor modulator. Front Pharmacol 2024; 15:1303342. [PMID: 38384295 PMCID: PMC10879382 DOI: 10.3389/fphar.2024.1303342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The scientific and medical community faced an unprecedented global health hazard that led to nearly 7 million deaths attributable to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In spite of the development of efficient vaccines against SARS-CoV-2, many people remain at risk of developing severe symptoms as the virus continues to spread without beneficial patient therapy. The hyper-inflammatory response to SARS-CoV-2 infection progressing to acute respiratory distress syndrome remains an unmet medical need for improving patient care. The viral infection stimulates alveolar macrophages to adopt an inflammatory phenotype regulated, at least in part, by the cluster of differentiation 36 receptor (CD36) to produce unrestrained inflammatory cytokine secretions. We suggest herein that the modulation of the macrophage response using the synthetic CD36 ligand hexarelin offers potential as therapy for halting respiratory failure in SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Jade Gauvin
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - David N. Huynh
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Dubuc
- Department of Microbiology, Infectious Diseases and and Immunology, Université Laval, Québec, QC, Canada
| | - Catherine Lê
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Rafaela Tugores
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and and Immunology, Université Laval, Québec, QC, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
He Q, Hu D, Zheng F, Chen W, Hu K, Liu J, Yao C, Li H, Wei Y. Investigating the Nexus of NLRP3 Inflammasomes and COVID-19 Pathogenesis: Unraveling Molecular Triggers and Therapeutic Strategies. Viruses 2024; 16:213. [PMID: 38399989 PMCID: PMC10892947 DOI: 10.3390/v16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has been marked by severe cases demonstrating a "cytokine storm", an upsurge of pro-inflammatory cytokines in the bloodstream. NLRP3 inflammasomes, integral to the innate immune system, are speculated to be activated by SARS-CoV-2 within host cells. This review investigates the potential correlation between NLRP3 inflammasomes and COVID-19, exploring the cellular and molecular mechanisms through which SARS-CoV-2 triggers their activation. Furthermore, promising strategies targeting NLRP3 inflammasomes are proposed to mitigate the excessive inflammatory response provoked by SARS-CoV-2 infection. By synthesizing existing studies, this paper offers insights into NLRP3 as a therapeutic target, elucidating the interplay between COVID-19 and its pathophysiology. It serves as a valuable reference for future clinical approaches in addressing COVID-19 by targeting NLRP3, thus providing potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Qun He
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Da Hu
- Sinopharm Animal Health Corporation Ltd., Wuhan 430075, China;
| | - Fuqiang Zheng
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Wenxuan Chen
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Kanghong Hu
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Jinbiao Liu
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Chenguang Yao
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Hanluo Li
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| |
Collapse
|
38
|
Shi Y, Ji S, Xu Y, Ji J, Yang X, Ye B, Lou J, Tao T. Global trends in research on endothelial cells and sepsis between 2002 and 2022: A systematic bibliometric analysis. Heliyon 2024; 10:e23599. [PMID: 38173483 PMCID: PMC10761786 DOI: 10.1016/j.heliyon.2023.e23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Sepsis is a systemic syndrome involving physiological, pathological, and biochemical abnormalities precipitated by infection and is a major global public health problem. Endothelial cells (ECs) dysfunction is a major contributor to sepsis-induced multiple organ failure. This bibliometric analysis aimed to identify and characterize the status, evolution of the field, and new research trends of ECs and sepsis over the past 20 years. For this analysis, the Web of Science Core Collection database was searched to identify relevant publications on ECs in sepsis published between January 1, 2002, and December 31, 2022. Microsoft Excel 2021, VOSviewer software, CiteSpace software, and the online analysis platform of literature metrology (http://bibliometric.com) were used to visualize the trends of publications' countries/regions, institutions, authors, journals, and keywords. In total, 4200 articles were identified and screened, primarily originating from 86 countries/regions and 3489 institutions. The USA was the leading contributor to this research field, providing 1501 articles (35.74 %). Harvard University's scientists were the most prolific, with 129 articles. Overall, 21,944 authors were identified, among whom Bae Jong Sup was the most prolific, contributing 129 publications. Additionally, Levi Marcel was the most frequently co-cited author, appearing 538 times. The journals that published the most articles were SHOCK, CRITICAL CARE MEDICINE, and PLOS ONE, accounting for 10.79 % of the total. The current emerging hotspots are concentrated on "endothelial glycocalyx," "NLRP3 inflammasome," "extracellular vesicle," "biomarkers," and "COVID-19," among others. In conclusion, this study provides a comprehensive overview of the scientific productivity and emerging research trends in the field of ECs in sepsis. The evidence supporting the significant role of ECs in both physiological and pathological responses to sepsis is continuously growing. More in-depth studies of the molecular mechanisms underlying sepsis-induced endothelial dysfunction and EC-targeted therapies are warranted in the future.
Collapse
Affiliation(s)
- Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Shunpan Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Jun Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Xiaoming Yang
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Jingsheng Lou
- Department of Anesthesiology, The General Hospital of the People's Liberation Army, Beijing, China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Bharadwaj A, Kaur R, Gupta S. Emerging Treatment Approaches for COVID-19 Infection: A Critical Review. Curr Mol Med 2024; 24:435-448. [PMID: 37070448 DOI: 10.2174/1566524023666230417112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 04/19/2023]
Abstract
In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV- 2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| |
Collapse
|
40
|
Joshi P, Rao GSNK, Chatterjee B. Scope and Application of Hot Melt Extrusion in the Development of Controlled and Sustained Release Drug Delivery Systems. Curr Pharm Des 2024; 30:2513-2523. [PMID: 39108005 DOI: 10.2174/0113816128299356240626114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 10/22/2024]
Abstract
Controlled-release drug delivery systems (CRDDS) are more beneficial than conventional immediate release (IRDDS) for reduced intake, prolonged duration of action, lesser adverse effects, higher bioavailability, etc. The preparation of CRDDS is more complex than IRDDS. The hot melt extrusion (HME) technique is used for developing amorphous solid dispersion of poorly water soluble drugs to improve their dissolution rate and oral bioavailability. HME can be employed to develop CRDDS. Sustained release delivery systems (SRDDS), usually given orally, can also be developed using HME. This technique has the advantages of using no organic solvent, converting crystalline drugs to amorphous, improving bioavailability, etc. However, the heat sensitivity of drugs, miscibility between drug-polymer, and the availability of a few polymers are some of the challenges HME faces in developing CRDDS and SRDDS. The selection of a suitable polymer and the optimization of the process with the help of the QbD principle are two important aspects of the successful application of HME. In this review, strategies to prepare SRDDS and CRDDS using HME are discussed with its applications in research.
Collapse
Affiliation(s)
- Parth Joshi
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle, Mumbai, Maharashtra 400056, India
| | - G S N Koteswara Rao
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Bappaditya Chatterjee
- School of Pharmacy, GITAM (Deemed to be University), Hyderabad, Telangana 502329, India
| |
Collapse
|
41
|
Kim Y, Choi CY, Sunwoo Y, Go C, Kim S, Eom SH, Shin S, Choi YJ. A Real-World Data Derived Pharmacovigilance Assessment on Drug-Induced Nephropathy: Implication on Gaps in Patient Care. Healthcare (Basel) 2023; 12:95. [PMID: 38201001 PMCID: PMC10778829 DOI: 10.3390/healthcare12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This retrospective cross-sectional study aims to investigate the prevalence and seriousness of drug-induced nephrotoxicity and to identify clinical predictors intensifying the seriousness of nephrotoxicity. Adverse drug events (ADEs) reported to the Korean Adverse Event Reporting System Database (KAERS DB) from January 2012 to December 2021 were investigated. The association between the seriousness and the etiologic drug was estimated in reporting odds ratio (ROR) based on disproportionality analysis. Logistic regression was utilized to recognize predictors associated with serious nephrotoxicity. The majority of ADEs were reported in ages 30 to 59, and immunosuppressants were the most etiologic medications. ADEs involving antibiotics, including vancomycin (ROR 0.268; 95% CI 0.129-0.557), were less likely to be serious. More than 93% of cyclosporine-related ADEs were serious nephrotoxicity, whereas tacrolimus was less likely to report serious nephrotoxicity (ROR 0.356; 95% CI 0.187-0.680). The risk of serious nephrotoxicity was decreased with aging (ROR 0.955; 95% CI 0.940-0.972) while increased in women (OR 2.700; 95% CI 1.450-5.008). Polypharmacy was associated with increased risk of interstitial nephritis (OR 1.019; 95% CI 1.001-1.038). However, further studies investigating the impact of clinical practice on ADE incidences as well as clinical prognosis related to nephrotoxicity are obligated.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Chang-Young Choi
- Department of Internal Medicine, Ajou University Medical Center, Suwon 16499, Republic of Korea;
| | - Yongjun Sunwoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (C.G.); (S.K.); (S.H.E.)
| | - Chaerin Go
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (C.G.); (S.K.); (S.H.E.)
| | - Semi Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (C.G.); (S.K.); (S.H.E.)
| | - Sae Hyun Eom
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (C.G.); (S.K.); (S.H.E.)
| | - Sooyoung Shin
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Yeo Jin Choi
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (C.G.); (S.K.); (S.H.E.)
- Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
42
|
Durán-Álvarez JC, Prado B, Zanella R, Rodríguez M, Díaz S. Wastewater surveillance of pharmaceuticals during the COVID-19 pandemic in Mexico City and the Mezquital Valley: A comprehensive environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165886. [PMID: 37524191 DOI: 10.1016/j.scitotenv.2023.165886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
This study tracked five pharmaceutically active compounds (PhACs) in Mexico City's sewage, namely, famotidine, indomethacin, dexamethasone, azithromycin, and ivermectin, which were used to treat COVID-19. The monitoring campaign was carried out over 30 months (May 2020 to November 2022), covering the five COVID-19 waves in Mexico. In the Central Emitter, the main sewage outflow, famotidine displayed levels of 132.57 ± 28.16 ng L-1 (range from < LOQ to 189.1 ng L-1), followed by indomethacin (average 672.46 ± 116.4 ng L-1, range from 516.7 to 945.2 ng L-1), dexamethasone (average 610.4 ± 225.7 ng L-1, range from 233.4 to 1044.5 ng L-1), azithromycin (average 4436.2 ± 903.6 ng L-1, range from 2873.7 to 5819.6 ng L-1), and ivermectin (average 3413.3 ± 1244.6 ng L-1, range from 1219.8 to 4622.4 ng L-1). The concentrations of dexamethasone, azithromycin and ivermectin were higher in sewage from a temporary COVID-19 care unit, by a factor of 3.48, 3.52 and 2.55, respectively, compared with those found in municipal wastewater. In the effluent of the Atotonilco Wastewater Treatment Plant (AWWTP), which treats near 60 % of the Mexico City's sewage, famotidine was absent, while concentrations of indomethacin, dexamethasone, azithromycin and ivermectin were 78.2 %, 76.7 %, 74.4 %, and 88.1 % lower than those in the influent, respectively. The occurrence of PhACs in treated and untreated wastewater resulted in medium to high environmental risk since Mexico City's wastewater is reused for irrigation in the Mezquital Valley. There, PhACs were found in irrigation canals at lower levels than those observed in Mexico City throughout the monitoring. On the other hand, famotidine, indomethacin, and dexamethasone were not found in surface water resulting from the infiltration of wastewater through soil in Mezquital Valley, while azithromycin and ivermectin sporadically appeared in surface water samples collected through 2021. Using an optimized risk assessment based on a semi-probabilistic approach, the PhACs were prioritized as ivermectin > azithromycin > dexamethasone > famotidine > indomethacin.
Collapse
Affiliation(s)
- Juan C Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, 04510 Ciudad de Mexico, Mexico.
| | - Blanca Prado
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510 Mexico, Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, 04510 Ciudad de Mexico, Mexico
| | - Mario Rodríguez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, 04510 Ciudad de Mexico, Mexico
| | - Suhaila Díaz
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510 Mexico, Mexico
| |
Collapse
|
43
|
Marggrander DT, Simon P, Schröder T, Gill-Schuster D, Mutlak H. Sonographic Aeration Scoring Indicates Disease Severity in Critically Ill Patients with COVID-19. Diagnostics (Basel) 2023; 13:3446. [PMID: 37998582 PMCID: PMC10670098 DOI: 10.3390/diagnostics13223446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
AIMS AND METHODS We evaluated an ultrasound score from 0 to 32 points in eight pulmonary regions to monitor critically ill COVID-19 patients. The score was correlated to surrogate parameters of disease severity, i.e., the oxygenation index, respiratory support, mortality, plasma interleukin-6, and WHO and ARDS classifications. RESULTS A total of 27 patients were repeatedly examined, and 71 examinations were evaluated. Patients with severe COVID-19 scored higher (median 17) than those with moderate disease (median 11, p < 0.01). The score did not differentiate between stages of ARDS as defined by the Berlin criteria (p = 0.1) but could discern ARDS according to the revised ESICM definition (p = 0.002). Non-survivors had higher ultrasound scores than survivors (median 18.5 vs. 14, p = 0.04). The score correlated to the oxygenation index (ρ = -0.56, p = 0.03), and changes in the score between examinations correlated to changes in oxygenation (ρ = -0.41, p = 0.16). The correlation between the score and interleukin-6 was ρ = 0.35 (p < 0.001). The interrater reliability for the score was ICC = 0.87 (p < 0.001). CONCLUSIONS The ultrasound score is a reliable tool that might help monitor disease severity and may help stratify the risk of mortality.
Collapse
Affiliation(s)
- Daniel T. Marggrander
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Sana Hospital Offenbach, 63069 Offenbach am Main, Germany
| | - Philippe Simon
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Sana Hospital Offenbach, 63069 Offenbach am Main, Germany
| | - Tobias Schröder
- Department of Interdisciplinary Emergency Medicine, Sana Hospital Offenbach, 63069 Offenbach am Main, Germany
| | - Daniel Gill-Schuster
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Sana Hospital Offenbach, 63069 Offenbach am Main, Germany
| | - Haitham Mutlak
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Sana Hospital Offenbach, 63069 Offenbach am Main, Germany
- Department of Anaesthesiology, Intensive Care and Pain Therapy, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| |
Collapse
|
44
|
Wolff K, Robinson K, Suh N, Michniak-Kohn B, Goedken M, Polunas M, Raskin I. Isothiocyanate-rich moringa seed extract reduces skin inflammation in mouse ear edema model. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100479. [PMID: 38037612 PMCID: PMC10688386 DOI: 10.1016/j.phyplu.2023.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Background Moringa (Moringa oleifera Lam.) seed extract (MSE) and its primary bioactive compound, moringa isothiocyanate-1(MIC-1), mitigate inflammation, oxidative stress, diabetes, and cancer in the in vivo rodent models following oral application. Purpose To investigate the topical anti-inflammatory activity of MSE and purified MIC-1 in a TPA-induced mouse ear edema model. Study Design The present study elucidates the topical anti-inflammatory effects and mechanisms of action of MSE, containing 38% of MIC-1 and purified MIC-1 using a mouse ear edema model utilizing 12-O-tetradecanoylphorbol-13-acetate (TPA), as the pro-inflammatory agent. Methods A time-dependent and dose-dependent response was determined by pretreating CD-1 mice with various doses of MSE and MIC-1, positive control, dexamethasone, or vehicle control, followed by TPA, and the subsequent difference in ear thickness was measured using digital Vernier calipers. The effective doses of MSE and MIC-1were then selected to evaluate the change in weight of the ears using 6 mm biopsy punches and the results were confirmed by microscopy. Inflammatory markers were quantified with Luminex multiplex immunoassay. Results MSE and MIC-1 were effective in a dose-dependent manner in a TPA-induced ear edema model, causing a reduction in ear thickness and a 48% and 49% decrease in ear punch weight, respectively. MSE and MIC-1 also caused a reduction in the levels of cytokine and chemokines, interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and keratinocyte chemoattractant (KC) in the ear tissue. MSE and MIC-1 reduced IL-6 expression by 84% and 78%, MCP1 by 74% and 73%, and KC by 56% and 43%, respectively. Additionally, the anti-inflammatory effect of MSE and MIC-1 was confirmed by hematoxylin and eosin (H&E) staining, used to assess the thickness of the ear swelling. MSE significantly reduced the thickness of the ears by 20% compared to TPA. Conclusion These results reveal the topical anti-inflammatory properties of MSE, and MIC-1 likely transmitted via the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways as mentioned in previous studies. This work also suggests therapeutic uses of MSE and/or MIC-1 for skin inflammation.
Collapse
Affiliation(s)
- Khea Wolff
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Keyaara Robinson
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Nanjoo Suh
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Michael Goedken
- Rutgers Office for Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Marianne Polunas
- Rutgers Office for Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ilya Raskin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
45
|
Jung SH, Chung KS, Na CS, Ahn HS, Shin YK, Lee KT. Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter. Nutrients 2023; 15:4599. [PMID: 37960252 PMCID: PMC10647664 DOI: 10.3390/nu15214599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Air pollution causes various airway diseases. However, many commonly used treatments can have high risks of side effects or are costly. To examine the anti-inflammatory properties of Inula japonica Thunb. and Potentilla chinensis Ser., a mouse model was generated via inhalation of both particulate matter 10 and diesel particulate matter, and 30% ethanol extracts of either I. japonica (IJ) or P. chinensis (PC) and a mixture of both ethanol extracts (IP) were orally administered to BALB/c mice for 12 days. IJ, PC, and IP inhibited immune cell numbers and their regulation in both the bronchoalveolar lavage fluid (BALF) and lungs. These agents suppressed the levels of interleukin (IL)-1α, IL-17, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand (CXCL)-1, and CXCL-2 in BALF, and also inhibited F4/80 and IL-1 receptor-associated kinase (IRAK)-1 in lungs. They reduced the gene expression of TNF-α, CXCL-1, inducible NOS, COX-2, Mucin 5AC, and transient receptor potential cation channel subfamily V member 1 in lungs. These extracts also reduced histopathological changes and inflammatory progression, manifested as decreased cell infiltration, collagen deposition, and respiratory epithelial cell thickness. I. japonica and P. chinensis show potential for development as pharmaceuticals that suppress inflammatory progression and alleviate airway inflammation diseases caused by air pollutants.
Collapse
Affiliation(s)
- Seang-Hwan Jung
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
| | - Chang-Seon Na
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (C.-S.N.); (H.-S.A.)
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (C.-S.N.); (H.-S.A.)
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (C.-S.N.); (H.-S.A.)
| | - Kyung-Tae Lee
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02247, Republic of Korea;
| |
Collapse
|
46
|
Kolloli A, Ramasamy S, Kumar R, Nisa A, Kaplan G, Subbian S. A phosphodiesterase-4 inhibitor reduces lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Front Immunol 2023; 14:1270414. [PMID: 37854602 PMCID: PMC10580809 DOI: 10.3389/fimmu.2023.1270414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Methods Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi. Results We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy. Discussion These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Annuurun Nisa
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
47
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
48
|
Basida BD, Gravenstein S, DeVone F, Abul Y, Singh M, Nepaul A, Tariq N, Leeder C, Bayer T. Previous Steroid Use and Severity of COVID-19. J Am Med Dir Assoc 2023; 24:1608-1609. [PMID: 37678416 DOI: 10.1016/j.jamda.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Brinda D Basida
- Department of Geriatrics, Brown University, Providence, RI, USA.
| | - Stefan Gravenstein
- Brown University, Providence, RI, USA; Providence VA Medical Center, Providence, RI, USA
| | - Frank DeVone
- Providence VA Medical Center, Providence, RI, USA
| | - Yasin Abul
- Brown University, Providence, RI, USA; Providence VA Medical Center, Providence, RI, USA
| | | | | | | | | | - Thomas Bayer
- Brown University, Providence, RI, USA; Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
49
|
Nam Y, Lucas A, Yun JS, Lee SM, Park JW, Chen Z, Lee B, Ning X, Shen L, Verma A, Kim D. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks. J Transl Med 2023; 21:415. [PMID: 37365631 DOI: 10.1186/s12967-023-04223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Computational drug repurposing is crucial for identifying candidate therapeutic medications to address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID-19 pandemic has taught us the importance of rapidly discovering candidate drugs and providing them to medical and pharmaceutical experts for further investigation. Network-based approaches can provide repurposable drugs quickly by leveraging comprehensive relationships among biological components. However, in a case of newly emerging disease, applying a repurposing methods with only pre-existing knowledge networks may prove inadequate due to the insufficiency of information flow caused by the novel nature of the disease. METHODS We proposed a network-based complementary linkage method for drug repurposing to solve the lack of incoming new disease-specific information in knowledge networks. We simulate our method under the controlled repurposing scenario that we faced in the early stage of the COVID-19 pandemic. First, the disease-gene-drug multi-layered network was constructed as the backbone network by fusing comprehensive knowledge database. Then, complementary information for COVID-19, containing data on 18 comorbid diseases and 17 relevant proteins, was collected from publications or preprint servers as of May 2020. We estimated connections between the novel COVID-19 node and the backbone network to construct a complemented network. Network-based drug scoring for COVID-19 was performed by applying graph-based semi-supervised learning, and the resulting scores were used to validate prioritized drugs for population-scale electronic health records-based medication analyses. RESULTS The backbone networks consisted of 591 diseases, 26,681 proteins, and 2,173 drug nodes based on pre-pandemic knowledge. After incorporating the 35 entities comprised of complemented information into the backbone network, drug scoring screened top 30 potential repurposable drugs for COVID-19. The prioritized drugs were subsequently analyzed in electronic health records obtained from patients in the Penn Medicine COVID-19 Registry as of October 2021 and 8 of these were found to be statistically associated with a COVID-19 phenotype. CONCLUSION We found that 8 of the 30 drugs identified by graph-based scoring on complemented networks as potential candidates for COVID-19 repurposing were additionally supported by real-world patient data in follow-up analyses. These results show that our network-based complementary linkage method and drug scoring algorithm are promising strategies for identifying candidate repurposable drugs when new emerging disease outbreaks.
Collapse
Affiliation(s)
- Yonghyun Nam
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Anastasia Lucas
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jae-Seung Yun
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Mi Lee
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Won Park
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ziqi Chen
- Computer Science and Engineering Department, College of Engineering, The Ohio State University, Columbus, USA
| | - Brian Lee
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Xia Ning
- Computer Science and Engineering Department, College of Engineering, The Ohio State University, Columbus, USA
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA.
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
50
|
Salomão R, Assis V, de Sousa Neto IV, Petriz B, Babault N, Durigan JLQ, de Cássia Marqueti R. Involvement of Matrix Metalloproteinases in COVID-19: Molecular Targets, Mechanisms, and Insights for Therapeutic Interventions. BIOLOGY 2023; 12:843. [PMID: 37372128 PMCID: PMC10295079 DOI: 10.3390/biology12060843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
MMPs are enzymes involved in SARS-CoV-2 pathogenesis. Notably, the proteolytic activation of MMPs can occur through angiotensin II, immune cells, cytokines, and pro-oxidant agents. However, comprehensive information regarding the impact of MMPs in the different physiological systems with disease progression is not fully understood. In the current study, we review the recent biological advances in understanding the function of MMPs and examine time-course changes in MMPs during COVID-19. In addition, we explore the interplay between pre-existing comorbidities, disease severity, and MMPs. The reviewed studies showed increases in different MMP classes in the cerebrospinal fluid, lung, myocardium, peripheral blood cells, serum, and plasma in patients with COVID-19 compared to non-infected individuals. Individuals with arthritis, obesity, diabetes, hypertension, autoimmune diseases, and cancer had higher MMP levels when infected. Furthermore, this up-regulation may be associated with disease severity and the hospitalization period. Clarifying the molecular pathways and specific mechanisms that mediate MMP activity is important in developing optimized interventions to improve health and clinical outcomes during COVID-19. Furthermore, better knowledge of MMPs will likely provide possible pharmacological and non-pharmacological interventions. This relevant topic might add new concepts and implications for public health in the near future.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
| | - Victoria Assis
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-907, SP, Brazil;
| | - Bernardo Petriz
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 71966-700, DF, Brazil;
- Laboratory of Exercise Molecular Physiology, University Center UDF, Brasília 71966-900, DF, Brazil
| | - Nicolas Babault
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
- Centre d’Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| |
Collapse
|