1
|
Fodor I, Schmidt J, Svigruha R, László Z, Molnár L, Gonda S, Elekes K, Pirger Z. Chronic tributyltin exposure induces metabolic disruption in an invertebrate model animal, Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107404. [PMID: 40354690 DOI: 10.1016/j.aquatox.2025.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Over the last 20 years, tributyltin (TBT) has been reported to cause metabolic disruption in both invertebrates and vertebrates, highlighting the need for further detailed analysis of its physiological effects. This study aimed to investigate the metabolic-disrupting effects of TBT from the behavioral to the molecular level. Adult specimens of the great pond snail (Lymnaea stagnalis) were exposed to an environmentally relevant concentration (100 ng L-1) of TBT for 21 days. After the chronic exposure, behavioral alterations as well as histological, cellular, and molecular changes were investigated in the central nervous system, kidney, and hepatopancreas. TBT exposure significantly decreased feeding activity, while locomotor activity remained unchanged. At the histological level, the cellular localization of tin was demonstrated in all tissues investigated and, in addition, characteristic morphological changes were observed in the kidney and hepatopancreas. Tissue-specific changes in lipid profiles confirmed TBT-induced disruption of lipid homeostasis in mollusks, characterized by a consistent reduction in the proportion of polyunsaturated fatty acids and a shift toward more saturated lipids. The expression of 17β-hydroxysteroid dehydrogenase type 12 (HSD17B12) enzyme, involved in lipid metabolism in vertebrates, was reduced in all three tissues after TBT exposure. Our results show that TBT induces significant multi-level metabolic changes in Lymnaea, including direct alterations in feeding activity and lipid composition. Our findings also suggest that HSD17B12 enzyme plays a key role in lipid metabolism in mollusks, as in mammals, and is likely involved in TBT-induced metabolic disruption. Overall, our study extends the findings of previous studies on mollusks by providing novel behavioral as well as tissue-specific histological and metabolic data and highlights the complexity and evolutionary conserved way of TBT-induced metabolic disruption.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zita László
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - László Molnár
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Sándor Gonda
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; Department of Pharmacognosy, University of Debrecen, 4002, Debrecen, Hungary; Department of Botany, University of Debrecen, 4032, Debrecen, Hungary; Institute of Environmental Science, University of Nyíregyháza, 4400, Nyíregyháza, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| |
Collapse
|
2
|
Jiang Y, Kwok MS, Lin H, Leung RWS, Xu S, Astudillo JC, Liu M, Leung KMY. Positive impact of the legislation on organotins contamination in the marine environment of Hong Kong. ENVIRONMENT INTERNATIONAL 2025; 199:109486. [PMID: 40288284 DOI: 10.1016/j.envint.2025.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Since September 2008, the use of organotin compounds (OTs) on antifouling systems on seagoing vessels has been globally banned by the International Maritime Organisation due to their toxic effects to non-target marine organisms. However, the regulation enforcement varies by government, hindering its effectiveness in controlling OTs contamination. For example, the Hong Kong Special Administrative Government enacted related legislation in January 2017. This study, conducted from 2022 to 2023, aimed to assess whether this law and its enforcement had significantly reduced OTs contamination in Hong Kong's marine environment. The results showed significant reductions in concentrations of butyltins (BTs) in seawater and total OTs in the rock shell Reishia clavigera from 2010 to 2023, though only dibutyltin (DBT) decreased in sediment. Triphenyltin (TPT) was identified as the predominant compound in all matrices, with levels correlating positively with shipping activities. Imposex levels in R. clavigera also significantly decreased, as indicated by the vas deferens sequence index and the proportion of sterile female compared to 2010 and 2015. A probabilistic risk assessment based on tissue burden of tributyltin (TBT) and TPT in R. clavigera suggested that current TBT levels no longer had significant adverse effects on the gastropod, while TPT could impact 68% of their populations. Over a five-year period since the legislation, substantial reductions in BTs in coastal waters, and overall OTs in rock shells were observed, but TPT persisted at concerning levels. Continued risk management measures and regular monitoring are crucial to further mitigate TPT contamination in Hong Kong waters.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Man Sze Kwok
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Rainbow W S Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Juan C Astudillo
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China; Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
3
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Hunter AT, Cogger AJ, Boutilier K, Curnew KH, Purvis K, Trevors A, Wyeth RC. Development of marine antifouling performance in hard fouling-release coatings. BIOFOULING 2025; 41:429-442. [PMID: 40326497 DOI: 10.1080/08927014.2025.2498027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025]
Abstract
Marine biofouling is a substantial economic and environmental issue. Hard fouling-release coatings present a promising solution, combining fouling-release characteristics with durability. This study tested proprietary hard fouling-release prototype coatings from GIT Coatings, Inc. alongside uncoated controls, colour controls, and commercial performance standards. Three successive experiments were completed, incorporating static and dynamic flow conditions at sites in Nova Scotia, Canada. Initially, biofouling percent cover and cleanability for prototype coatings were comparable to untreated controls. By the final experiment, prototype coatings had significantly lower percent covers than both uncoated controls and the durability performance comparison, Ecospeed. Furthermore, several prototype hard fouling-release coatings had comparable percent cover (and possibly cleanability) to the fouling-release performance comparison, Intersleek. The results indicate that hard fouling-release coatings with potentially greater durability and longevity can achieve similar fouling-release performance as commercial fouling-release coatings. Further tests are needed to determine if unintended toxicity contributes to the antifouling effects.
Collapse
Affiliation(s)
- Allanique T Hunter
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Aaron J Cogger
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Kristyn Boutilier
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Kylie H Curnew
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Katherine Purvis
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Alexis Trevors
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
5
|
Chang RC, Huang Y, To K, Whitlock RS, Nguyen KU, Joemon MC, Lopez M, Deeprompt KG, Shioda T, Blumberg B. Transgenerational Effects of the Obesogen Tributyltin on Metabolic Health in Mice: Interactions With a Western Diet. Endocrinology 2025; 166:bqaf063. [PMID: 40179257 PMCID: PMC11986328 DOI: 10.1210/endocr/bqaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/26/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Obesity is a global health crisis, with increasing evidence linking environmental factors such as exposure to endocrine-disrupting chemicals (EDCs) to its development. This study examines the transgenerational effects of exposure to the model obesogen, tributyltin (TBT), on obesity and metabolic health, specifically focusing on how these effects interact with a diet modeling the 50th percentile of US dietary consumption [the Total Western Diet (TWD)]. Pregnant F0 dams were exposed to TBT, and their offspring were subjected at adulthood to different diets, including a high-fat diet and TWD, across multiple subsequent generations (F1-F3). We found that TBT exposure predisposed male offspring to increased fat accumulation, insulin resistance, and metabolic dysfunction, effects that were exacerbated by the TWD. Notably, male offspring displayed elevated leptin levels, hepatic fibrosis, and inflammatory responses under TWD exposure, suggesting an additive or synergistic relationship between obesogen exposure and dietary fat intake. These transgenerational effects were largely absent in female offspring, underscoring sex-specific vulnerabilities to environmental and dietary factors. Our results demonstrated that the combination of prenatal TBT exposure and TWD amplifies metabolic disturbances across generations, highlighting the need to consider both environmental chemicals and dietary patterns in addressing the obesity pandemic. This study underscores the critical role of early-life EDC exposures and dietary factors in shaping long-term metabolic health and the potential for transgenerational programming of susceptibility to obesity and metabolic disorders.
Collapse
Affiliation(s)
- Richard C Chang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yikai Huang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Kaitlin To
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ryan Scott Whitlock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Katelyn Uyen Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Michelle Clara Joemon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Miranda Lopez
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Kritin Guy Deeprompt
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
6
|
Wang J, Gu X, Chen P, Wang S, Huang P, Niu Y, Yang W, Ding Z, Liang Y, Shi M, Wei R, Wang W. Systematic transcriptome-wide analysis and validation of tributyltin-induced differential changes in the liver with sex-specific effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:117995. [PMID: 40068549 DOI: 10.1016/j.ecoenv.2025.117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Tributyltin (TBT), a prevalent environmental antiseptic, contaminates seafood, fish, and drinking water, posing health risks. While TBT's hepatic toxicity is well-known, its sex-specific effects on liver function remain poorly understood. METHODS To address this gap, a comprehensive analysis was conducted utilizing the Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET) dataset. Chromatin accessibility changes and transcriptomic alterations were analyzed via ATAC-seq and RNA-seq in liver tissues from TBT-exposed male and female mice. In vitro experiments were performed to validate the key bioinformatic findings. RESULTS TBT exposure induced significant chromatin accessibility changes and transcriptomic alterations in male liver compared to female counterparts. Notably, Signal transducer and activator of transcription 3 (STAT3) was identified as a central regulator among differentially expressed genes (DEGs) in male liver cells. Functional validation experiments confirmed that TBT-mediated downregulation of STAT3 impaired liver cell function and contributed to increased hepatotoxicity in males. CONCLUSIONS Our study highlights significant sex-dependent differences in TBT-induced hepatotoxicity and identifies STAT3 as a critical mediator in male liver cells, providing a novel perspective on the toxicology of TBT.
Collapse
Affiliation(s)
- Jinyan Wang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xin Gu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Pengchen Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Sisi Wang
- School of Pharmaceutical Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pan Huang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yaping Niu
- School of Pharmaceutical Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyue Yang
- The First Clinical Medicine School, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ziyang Ding
- School of Pharmaceutical Sciences, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanting Liang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Mingjun Shi
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China.
| | - Ran Wei
- School of Medical and Health Engineering, Changzhou University, Changzhou, China.
| | - Wei Wang
- Foshan Fetal Medicine Research Institute, Foshan Maternity and Children's Healthcare Hospital Affiliated to Guangdong Medical University, Foshan, China; Department of Obstetrics, Foshan Maternity and Children's Healthcare Hospital Affiliated to Guangdong Medical University, Foshan, Guangdong, China.
| |
Collapse
|
7
|
Giulianelli S, Ruivo R, Neuparth T, Castro LFC, Bigatti G, Santos MM. Cloning and comparative analysis of the retinoid X receptor in two marine gastropods with varying sensitivity to imposex under tributyltin contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9479-9488. [PMID: 40128418 DOI: 10.1007/s11356-025-36278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
The Retinoid X Receptor (RXR) has been identified as a primary target in diverse endocrine disruption processes resulting from exposure to tributyltin (TBT), particularly concerning imposex development in gastropods. Two partial open reading frames encoding RXR were successfully isolated from the marine gastropods Buccinastrum deforme (BgRXR) and Trophon geversianus (TgRXR). These edible species, residing in the same area and exposed to similar environmental pollution conditions in Patagonia, Argentina, display different levels of imposex development. Here, we present a thorough functional characterization of both RXRs, examining their responsiveness and modulation by 9-cis-retinoic acid (9-cis-RA) and TBT. BgRXR and TgRXR exhibited dose-dependent activation by both 9-cis-RA and TBT, in luciferase reporter assays. TgRXR displayed higher transcriptional activation than BgRXR triggered by both tested ligands, whereas only BgRXR was activated by low TBT concentrations. Our findings highlight RXR's role in imposex development, emphasizing the importance of species-specific factors in response to environmental contaminants.
Collapse
Affiliation(s)
- Sebastián Giulianelli
- Instituto de Biología de Organismos Marinos, IBIOMAR (CCT CONICET-CENPAT), Puerto Madryn, Argentina.
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
| | - Teresa Neuparth
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
| | - Luís Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gregorio Bigatti
- Instituto de Biología de Organismos Marinos, IBIOMAR (CCT CONICET-CENPAT), Puerto Madryn, Argentina
- Universidad Nacional de La Patagonia San Juan Bosco, Puerto Madryn, Argentina
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
9
|
da Costa CS, Alahmadi H, Warner GR, Nunes MT, Dias GRM, Miranda-Alves L, Graceli JB. Effects of tributyltin on placental and reproductive abnormalities in offspring. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240186. [PMID: 39876959 PMCID: PMC11771755 DOI: 10.20945/2359-4292-2024-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 01/31/2025]
Abstract
Tributyltin (TBT) is an organotin compound and a common persistent environmental pollutant with endocrine-disrupting chemical (EDC) actions. It can accumulate in the environment at various concentrations throughout the food chain in the ecosystem, posing a risk to human health, especially during critical periods such as gestation and fetal and offspring development. In this review, we report the results of studies describing the consequences of TBT exposure on placental and reproductive parameters in offspring of both sexes. Results from in vivo and in vitro studies clearly indicate that TBT causes adverse effects on placental development and reproductive parameters in offspring. However, substantial knowledge gaps remain in the literature, requiring further research to better understand the mechanisms behind TBT effects on placental and reproductive disruption in offspring.
Collapse
Affiliation(s)
- Charles S. da Costa
- Universidade Federal do Espírito SantoDepartamento de MorfologiaVitóriaESBrasilDepartamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - Hanin Alahmadi
- New Jersey Institute of TechnologyDepartment of Chemistry and Environmental ScienceNewarkNJUSADepartment of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Genoa R. Warner
- New Jersey Institute of TechnologyDepartment of Chemistry and Environmental ScienceNewarkNJUSADepartment of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maria Tereza Nunes
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Fisiologia e BiofísicaSão PauloSPBrasilDepartamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Glaecir Roseni Mundstock Dias
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoLaboratório de Fisiologia Endócrina Doris RosenthalRio de JaneiroRJBrasilLaboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | - Leandro Miranda-Alves
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoLaboratório de Fisiologia Endócrina Doris RosenthalRio de JaneiroRJBrasilLaboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | - Jones B. Graceli
- Universidade Federal do Espírito SantoDepartamento de MorfologiaVitóriaESBrasilDepartamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
- Southern Illinois UniversitySchool of Agricultural SciencesAnimal ScienceCarbondaleILUSAAnimal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
10
|
Wang B, Zhang C, Ma J, Wang Y, Zhang L, Yang X, Jia T, Zhang K, Zhang Q. Protective Role of Sulforaphane against Physiological Toxicity of Triphenyltin in Common Carp ( Cyprinus carpio haematopterus). Antioxidants (Basel) 2024; 13:1173. [PMID: 39456427 PMCID: PMC11504319 DOI: 10.3390/antiox13101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
This experiment mainly explored the protective role of sulforaphane (SFN) against physiological toxicity of triphenyltin (TPT) in Cyprinus carpio haematopterus. In total, 320 Fish (56.90 ± 0.40 g) were randomly divided into four groups with four replicates each. The control group was fed the basal diet, the TPT group (TPT) was exposed to 10 ng L-1 TPT on the basis of the control group, the SFN + TPT group (TPT + SFN) was fed a diet supplemented with 10 mg kg-1 SFN on the TPT group, and the SFN group (SFN) was fed a diet supplemented with 10 mg kg-1 SFN. After 56 days of breeding trials, the results showed that TPT exposure resulted in a remarkable decrease (p < 0.05) in final weight, weight gain rate (WGR), specific growth rate (SGR), and condition factor (CF), but an increase (p < 0.05) in feed conversion ratio (FCR) and hepatosomatic index (HSI) of fish. TPT treatment decreased (p < 0.05) the amounts of hematocrit (Hct) and hemoglobin (Hb), plasma complement component 3 (C3) and C4 contents, alternative complement pathway (ACH50), acid phosphatase (ACP) and lysozyme (LZM) activities, liver glutathione (GSH) content, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) activities, interleukin 10 (IL-10), and SOD mRNA expressions, but increased (p < 0.05) plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, liver malonaldehyde (MDA) content, tumor Cyclooxygenase 2 (COX2), and necrosis factor α (TNFα), IL-1β, and MDA mRNA expressions. A histological analysis of the liver showed that a higher occurrence rates of the hepatocyte hypertrophy, nuclear disappearance and hepatocyte vacuolization was observed in the hepatocytes of fish exposed to TPT, and it was accompanied by the dilation of hepatic sinusoids. In addition, the toxicity induced by TPT was significantly improved in the groups that were treated with SFN, and SFN was able to improve growth performance and immunity, alleviate TPT-induced changes in inflammatory factors, ameliorate oxidative stress, and increase the activity of antioxidant enzymes (p < 0.05). The addition of SFN also alleviated liver damage caused by TPT and protected the structural integrity of the liver. Overall, these findings suggest that TPT inhibited the growth, immunity, and antioxidant capacity of Cyprinus carpio haematopteru. Dietary SFN could be beneficial for growth promotion, immunity, antioxidant capacity, and protection of liver structural integrity. Therefore, SFN is a prospective feed supplement for ameliorating the damage caused to fish by TPT contamination.
Collapse
Affiliation(s)
- Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jianshuang Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanhui Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| | - Ling Zhang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| | - Xingli Yang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| | - Tao Jia
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| | - Kaisong Zhang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| | - Qin Zhang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China; (B.W.)
- Henan Fishery Engineering Technology Research Center, Zhengzhou 450044, China
| |
Collapse
|
11
|
Szapoczka WK, Larsen VH, Böpple H, Kleinegris DMM, Diao Z, Skodvin T, Spatz JP, Holst B, Thomas PJ. Transparent, Antibiofouling Window Obtained with Surface Nanostructuring. ACS OMEGA 2024; 9:39464-39471. [PMID: 39346844 PMCID: PMC11425857 DOI: 10.1021/acsomega.4c03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Biofouling is one of the key factors which limits the long-term performance of seawater sensors. Common measures to hinder biofouling include toxic paints, mechanical cleaning and UV radiation. All of these measures have various limitations. A very attractive solution would be to prevent biofilm formation by changing the surface structure of the sensor. This idea has been implemented successfully in various settings, but little work has been done on structuring optically transparent materials, which are often needed in sensor applications. In order to achieve good antibiofouling properties and efficient optical transparency, the structuring must be on the nanoscale. Here, we investigate a transparent, antibiofouling surface obtained by patterning a semihexagonal nanohole structure on borosilicate glass. The nanoholes are approximately 50 nm in diameter and 200 nm deep, and the interparticle distance is 135 nm, allowing the structure to be optically transparent. The antibiofouling properties of the surface were tested by exposing the substrates to the microalgae Phaeodactylum tricornutum for four different time intervals. This species was chosen because it is common in the Norwegian coastal waters. The tests were compared with unstructured borosilicate glass substrates. The experiments show that the nanostructured surface exhibits excellent antibiofouling properties. We attribute this effect to the relative size between the structure and the biofouling microorganism. Specifically, the small dimensions of the nanoholes, compared to the biofouling microorganism, make it more difficult for the microalgae to attach. However, lubrication of the substrates with FC-70 perfluorocarbon resulted in contamination at a rate comparable to the reference substrate, possibly due to the chemical attractiveness of the alkane chains in FC-70 for the microalgae.
Collapse
Affiliation(s)
| | - Viljar H Larsen
- University of Bergen, Department of Physics and Technology, Bergen 5007, Norway
| | - Hanna Böpple
- NORCE Norwegian Research Centre AS, Bergen 5008, Norway
| | - Dorinde M M Kleinegris
- University of Bergen, Department of Biological Sciences, Bergen 5006, Norway
- NORCE Norwegian Research Centre AS, Bergen 5008, Norway
| | - Zhaolu Diao
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg D-69120, Germany
| | - Tore Skodvin
- University of Bergen, Department of Chemistry, Bergen 5007, Norway
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg D-69120, Germany
| | - Bodil Holst
- University of Bergen, Department of Physics and Technology, Bergen 5007, Norway
| | | |
Collapse
|
12
|
Berezina NA, Sharov AN, Yurchenko VV, Morozov AA, Malysheva OA, Kukhareva GI, Zhakovskaya ZA. Responses of zebra and quagga mussels to copper and tribytiltin exposure: Bioconcentration, metabolic and cardiac biomarkers. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109967. [PMID: 38925283 DOI: 10.1016/j.cbpc.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
One of the top ecological priorities is to find sensitive indicators for pollution monitoring. This study focuses on the bioconcentration and responses (condition index, survival, oxygen consumption, heart rates, and oxidative stress and neurotoxic effect biomarkers) of mussels from the Volga River basin, Dreissena polymorpha and Dreissena bugensis, to long-term exposure to toxic chemicals such as tributyltin (TBT, 25 and 100 ng/L) and copper (Cu, 100 and 1000 μg/L). We found that TBT was present in the tissues of zebra and quagga mussels in comparable amounts, whereas the bioconcentration factor of Cu varied depending on its concentration in water. Differences in responses between the two species were revealed. When exposed to high Cu concentrations or a Cu-TBT mixture, quagga mussels had a lower survival rate and a longer heart rate recovery time than zebra mussels. TBT treatment caused neurotoxicity (decreased acetylcholinesterase activity) and oxidative stress (increased levels of thiobarbituric acid reactive substances) in both species. TBT and Cu levels in mussel tissues correlated positively with the condition index, but correlated with the level of acetylcholinesterase in the mussel gills. The principal component analysis revealed three main components: the first consists of linear combinations of 14 variables reflecting TBT water pollution, TBT and Cu levels in mussel tissues, and biochemical indicators; the second includes Cu water concentration, cardiac tolerance, and mussel size; and the third combines weight, metabolic rate, and heart rates. Quagga mussels are less tolerable to contaminants than zebra mussels, so they may be used as a sensitive indicator.
Collapse
Affiliation(s)
| | - Andrey N Sharov
- St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg, Russia; AquaBioSafe, Tyumen State University, Tyumen, Russia
| | - Victoria V Yurchenko
- AquaBioSafe, Tyumen State University, Tyumen, Russia; Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexey A Morozov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Olga A Malysheva
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Galina I Kukhareva
- St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg, Russia
| | - Zoya A Zhakovskaya
- St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
13
|
Silva NP, da Costa CS, Barbosa KL, Januario CDF, Gama-de-Souza LN, Breves C, Fortunato RS, Miranda-Alves L, de Oliveira M, Nogueira CR, Graceli JB. Subacute tributyltin exposure alters the development and morphology of mammary glands in association with CYP19A1 expression in female rats. Reprod Toxicol 2024; 128:108635. [PMID: 38936095 DOI: 10.1016/j.reprotox.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.
Collapse
Affiliation(s)
- Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Kayke L Barbosa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Cidália de F Januario
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | | | - Cinthia Breves
- Health Science Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | - Rodrigo S Fortunato
- Health Science Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941902, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Celia R Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil.
| |
Collapse
|
14
|
Vilas-Boas C, Sousa J, Lima E, Running L, Resende D, Ribeiro ARL, Sousa E, Santos MM, Aga DS, Tiritan ME, Ruivo R, Atilla-Gokcumen GE, Correia-da-Silva M. Preliminary hazard assessment of a new nature-inspired antifouling (NIAF) agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172824. [PMID: 38688370 DOI: 10.1016/j.scitotenv.2024.172824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g., being non-toxic to the marine crustacea Artemia salina (<10 % mortality at 50 μM) and showing low bioconcentration factor in marine organisms. In order to meet the EU Biocidal Product Regulation, a preliminary hazard assessment of this new nature-inspired antifouling (NIAF) agent was conducted in this work. Xantifoul2 did not affect the swimming ability of the planktonic crustacean Daphnia magna, the growth of the diatom Phaeodactylum tricornutum, and the cellular respiration of luminescent Gram-negative bacteria Vibrio fischeri, supporting the low toxicity towards several non-target marine species. Regarding human cytotoxicity, Xantifoul2 did not affect the cell viability of retinal human cells (hTERT-RPE-1) and lipidomic studies revealed depletion of lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress only at a high concentration (10 μM). Accelerated degradation studies in water were conducted under simulated sunlight to allow the understanding of putative transformation products (TPs) that could be generated in the aquatic ecosystems. Both Xantifoul2 and photolytic-treated Xantifoul2 in the aqueous matrix were therefore evaluated on several nuclear receptors (NRs). The results of this preliminary hazard assessment of Xantifoul2, combined with the high degradation rates in water, provide strong evidence of the safety of this AF agent under the evaluated conditions, and provide the support for future validation studies before this compound can be introduced in the market.
Collapse
Affiliation(s)
- Cátia Vilas-Boas
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - João Sousa
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Erica Lima
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Logan Running
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Diana Resende
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| | | | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
15
|
Delvadiya RS, Patel UD, Tank MR, Patel HB, Patel SS, Trangadia BJ. Long-term tributyltin exposure alters behavior, oocyte maturation, and histomorphology of the ovary due to oxidative stress in adult zebrafish. Reprod Toxicol 2024; 126:108600. [PMID: 38670349 DOI: 10.1016/j.reprotox.2024.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tributyltin (TBT), an organotin endocrine-disrupting substance, is recognized as one of the important toxic environmental pollutants. The present study was carried out to investigate the toxic effects of TBT on behavior and the ovary of adult zebrafish with a focus on oxidative stress markers and oocyte maturation. Adult zebrafish were exposed to three different concentrations (125, 250, and 500 ng/L of water) of TBT for 28 days. TBT exposure produced a concentration-dependent negative effect on the body weight and behavior (anxiety-like symptoms) of adult zebrafish. Alterations in the activity of superoxide dismutase (SOD) and catalase (CAT), the total antioxidant capacity of ovarian tissue by the highest exposure level of TBT resulted in lipid peroxidation as indicated by increased malondialdehyde (MDA) level. The numbers of early-vitellogenic oocytes were significantly increased in zebrafish exposed to TBT as low as 125 ng/L. However, the numbers and size of fully-grown (mature) oocytes were significantly reduced in the highest exposure group only. Correlation between the MDA level and pre-vitellogenic oocytes in the 500 ng/L group indicated that lipid peroxidation prevented the maturation of pre-vitellogenic oocytes. TBT exposure produced significant histological changes in the ovary as evidenced by disturbed maturation of oocytes. In conclusion, TBT adversely affected the maturation of oocytes in zebrafish ovary through oxidative stress-mediated mechanisms.
Collapse
Affiliation(s)
- Rajkumar S Delvadiya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India.
| | - Mihir R Tank
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Swati S Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| |
Collapse
|
16
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
17
|
Xiong Y, Guo G, Xian H, Hu Z, Ouyang D, He J, He S, Liu R, Gao Z, Tang M, Chen Y, Tan S, Zhu X, Abulimiti A, Zheng S, Huang H, Hu D. MCF-7 cell - derived exosomes were involved in protecting source cells from the damage caused by tributyltin chloride via transport function. Toxicology 2024; 505:153844. [PMID: 38801937 DOI: 10.1016/j.tox.2024.153844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Tributyltin chloride (TBTC) is a ubiquitous environmental pollutant with various adverse effects on human health. Exosomes are cell - derived signaling and substance transport vesicles. This investigation aimed to explore whether exosomes could impact the toxic effects caused by TBTC via their transport function. Cytotoxicity, DNA and chromosome damage caused by TBTC on MCF-7 cells were analyzed with CCK-8, flow cytometry, comet assay and micronucleus tests, respectively. Exosomal characterization and quantitative analysis were performed with ultracentrifugation, transmission electron microscope (TEM) and bicinchoninic acid (BCA) methods. TBTC content in exosomes was detected with Liquid Chromatography-Mass Spectrometry (LC-MS). The impacts of exosomal secretion on the toxic effects of TBTC were analyzed. Our data indicated that TBTC caused significant cytotoxicity, DNA and chromosome damage effects on MCF-7 cells, and a significantly increased exosomal secretion. Importantly, TBTC could be transported out of MCF-7 cells by exosomes. Further, when exosomal secretion was blocked with GW4869, the toxic effects of TBTC were significantly exacerbated. We concluded that TBTC promoted exosomal secretion, which in turn transported TBTC out of the source cells to alleviate its toxic effects. This investigation provided a novel insight into the role and mechanism of exosomal release under TBTC stress.
Collapse
Affiliation(s)
- Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Guoqiang Guo
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China; Public Health Service Centre of Baoan District, Shenzhen City 518000, China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Renyi Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Zhenjie Gao
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Meilin Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Ying Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Suqin Tan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China; Grade 2020 Undergraduate Student Majoring in Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqi Zhu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China; Grade 2020 Undergraduate Student Majoring in Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Abudumijiti Abulimiti
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China; Grade 2020 Undergraduate Student Majoring in Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Sujin Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China; Grade 2020 Undergraduate Student Majoring in Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hehai Huang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China; Public Health Service Centre of Baoan District, Shenzhen City 518000, China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| |
Collapse
|
18
|
Oliveira ICCS, Marinsek GP, Correia LVB, da Silva RCB, Castro IB, Mari RB. Tributyltin (TBT) toxicity: Effects on enteric neuronal plasticity and intestinal barrier of rats' duodenum. Auton Neurosci 2024; 253:103176. [PMID: 38669866 DOI: 10.1016/j.autneu.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Tributyltin (TBT) is a biocide used in the formulation of antifouling paints and it is highly harmful. Despite the ban, the compound persists in the environment, contaminating marine foodstuffs and household products. Therefore, considering the route of exposure to the contaminant, the gastrointestinal tract (GIT) acts as an important barrier against harmful substances and is a potential biomarker for understanding the consequences of these agents. This work aimed to evaluate histological and neuronal alterations in the duodenum of male Wistar rats that received 20 ng/g TBT and 600 ng/g via gavage for 30 consecutive days. After the experimental period, the animals were euthanized, and the duodenum was intended for neuronal histochemistry (total and metabolically active populations) and histological routine (morphometry and histopathology). The results showed more severe changes in neuronal density and intestinal morphometry in rats exposed to 20 ng/g, such as total neuronal density decrease and reduction of intestinal layers. In rats exposed to 600 ng/g of TBT, it was possible to observe only an increase in intraepithelial lymphocytes. We conclude that TBT can be more harmful to intestinal homeostasis when consumed in lower concentrations.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP- São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP- São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - L V B Correia
- UNIFESP- Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B da Silva
- UNIFESP- Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP- Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil.
| | - R B Mari
- UNESP- São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| |
Collapse
|
19
|
Zheng J, Gao H, Zhang G, Sun Z, Zhang J, Wang L, Lin C. Design and synthesis of a new bioactive compound for marine antifouling inspired by natural products. Nat Prod Res 2024; 38:1624-1628. [PMID: 36469680 DOI: 10.1080/14786419.2022.2152020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
A marine antifouling compound, N-octyl-2-hydroxybenzamide (OHBA), inspired by ceramide and paeonol molecules, was created. First, methyl salicylate was synthesized with salicylic acid and methanol, followed by n-octylamine through an ester-amine condensation reaction. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry confirmed the characteristic structure of the OHBA compound. Bioassays showed that OHBA inhibits the growth of typical marine fouling organisms, such as Vibrio azureus, Navicula subminuscula, Ulva pertusa, Mytilus edulis, and Amphibalanus amphitrite, indicating its broad-spectrum antifouling ability. A one-year marine real-sea test further demonstrated the excellent antifouling properties of OHBA. OHBA is also extremely biodegradable, with a half-life of 6.3 days, making it a less environmentally harmful replacement for widely-used heavy metal-containing antifoulants.
Collapse
Affiliation(s)
- Jiyong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Haiping Gao
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Guanglong Zhang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Zhiyong Sun
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Jinwei Zhang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Li Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, P. R. China
| |
Collapse
|
20
|
Wang P, Ji Z, Chen H, Chen S, Pan C, Fei Q, Ge RS, Duan P, Li L. Structure-activity relationship and mechanistic study of organotins as inhibitors of human, pig, and rat gonadal 3β-hydroxysteroid dehydrogenases. Toxicol Appl Pharmacol 2024; 486:116942. [PMID: 38692360 DOI: 10.1016/j.taap.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3β-hydroxysteroid dehydrogenases (3β-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3β-HSD2 with IC50 values of 114.79, 106.98, and 5.40 μM, respectively. For pig 3β-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 μM, respectively. Similarly, for rat 3β-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 μM, respectively. They were mixed inhibitors of pig and rat 3β-HSD, while triphenyltin was identified as a competitive inhibitor of human 3β-HSD2. The mechanism underlying the inhibition of organotins on 3β-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3β-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongyao Ji
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huiqian Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sailing Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengshuang Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Linxi Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
21
|
Pascuali N, Pu Y, Waye AA, Pearl S, Martin D, Sutton A, Shikanov A, Veiga-Lopez A. Evaluation of Lipids and Lipid-Related Transcripts in Human and Ovine Theca Cells and an in Vitro Mouse Model Exposed to the Obesogen Chemical Tributyltin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47009. [PMID: 38630605 PMCID: PMC11023052 DOI: 10.1289/ehp13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng / ml ). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.
Collapse
Affiliation(s)
- Natalia Pascuali
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yong Pu
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anita A. Waye
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Allison Sutton
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
23
|
Gomez NA, Sturla Lompré J, Ferrando A, Garrido M, Domini CE. Update on the status of the contamination by organotin compounds in sediment of Nuevo Gulf, Argentina. Insights from field and experimental studies. MARINE POLLUTION BULLETIN 2024; 200:116087. [PMID: 38335631 DOI: 10.1016/j.marpolbul.2024.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Organotin compounds are persistent pollutants and are considered chemicals of high environmental concern. In the present study, the distribution and degradation of tributyltin were evaluated in field sediments and through an ex situ experiment. For this, sediment samples from two locations were analysed: Luis Piedrabuena Harbour, with higher maritime traffic, and Cerro Avanzado, which receives less impact from anthropogenic activities. The results indicated that pollution levels at Luis Piedrabuena Harbour have decreased compared with studies performed 9 years ago for the same area. On the contrary, traces of organotin compounds have been found for the first time at Cerro Avanzado. Moreover, the butyltin degradation index indicated that organotin compounds undergo an advanced degradation process in the collected samples at both sites. Ex situ experiments revealed a limited capacity of sediments to retain tributyltin, and suggested an active role of bioturbation activity in the degradation of these compounds. In addition, visualisation using chemometric techniques (principal components analysis) allowed a simpler analysis of two sediment characteristics: the degree of contamination and the degradation levels of organotin compounds.
Collapse
Affiliation(s)
- N A Gomez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - J Sturla Lompré
- Centro para el Estudio de Sistemas Marinos (CESIMAR) - CCT CONICET - CENPAT, Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Laboratorio de Ecotoxicología de Invertebrados Acuáticos (LEIA) - IPaM - UNPSJB, Boulevard Brown 3051, U9120 Puerto Madryn, Chubut, Argentina
| | - A Ferrando
- Centro para el Estudio de Sistemas Marinos (CESIMAR) - CCT CONICET - CENPAT, Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Laboratorio de Ecotoxicología de Invertebrados Acuáticos (LEIA) - IPaM - UNPSJB, Boulevard Brown 3051, U9120 Puerto Madryn, Chubut, Argentina.
| | - M Garrido
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - C E Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Pereira D, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. The Role of Natural and Synthetic Flavonoids in the Prevention of Marine Biofouling. Mar Drugs 2024; 22:77. [PMID: 38393048 PMCID: PMC10889971 DOI: 10.3390/md22020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
25
|
Mandal A, Giri S, Giri A. Assessment of toxicity, genotoxicity and oxidative stress in Fejervarya limnocharis exposed to tributyltin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14938-14948. [PMID: 38286928 DOI: 10.1007/s11356-024-32220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Tributyltin (TBT) is widely used in various commercial applications due to its biocidal properties. Toxicological and genotoxicological data on TBT exposure to amphibians is insufficient. Our study aimed to determine the acute toxicity and genotoxic potential of TBT in Fejervarya limnocharis tadpoles. Furthermore, oxidative stress was also investigated in TBT-treated tadpoles. Tadpoles of Gosner stage (26-30) were screened and subjected to increasing concentrations of TBT (0, 3, 7, 11, 15, 19, 23 µg/L) for determining the LC50 values for 24 h, 48 h, 72 h, and 96 h. LC50 values of TBT for 24 h, 48 h, 72 h, and 96 h were found to be 19.45, 15.07, 13.12, and 11.84 μg/L respectively. Based on the 96 h LC50 value (11.84 µg/L), tadpoles were exposed to different sub-lethal concentrations of TBT for the evaluation of its genotoxic potential and effects on oxidative balance. The role of TBT on survivability, growth, and time to metamorphosis was also assessed. TBT exposure significantly altered the life history traits measured, increased mortality, and delayed the time taken to metamorphosis. Results indicated significant induction of micronucleus (MN, p < 0.001) and other erythrocytic nuclear aberrations (ENA, p < 0.01) in the TBT-treated groups. Significant alterations in comet parameters and oxidative balance were also observed in the treated groups. The present study findings might add to the cause of the gradual population decline seen in the amphibians. This study also demonstrates the alteration of the life-history traits, oxidative balance, and DNA damage upon TBT exposure which can have long-term consequences for the anuran amphibian F. limnocharis.
Collapse
Affiliation(s)
- Abhijit Mandal
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Anirudha Giri
- Laboratory of Environmental and Human Toxicology, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| |
Collapse
|
26
|
Qian M, Ren X, Mao P, Li Z, Qian T, Wang L, Liu H. Transcriptomics-based analysis reveals the nephrotoxic effects of triphenyltin (TPT) on SD rats by affecting RAS, AQPs and lipid metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105792. [PMID: 38458666 DOI: 10.1016/j.pestbp.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 03/10/2024]
Abstract
Triphenyltin (TPT) is a class of organotin compounds that are extensively used in industry and agriculture. They have endocrine-disrupting effects and cause severe environmental contamination. Pollutants may accumulate in the kidneys and cause pathological complications. However, the mechanism of TPT's toxicological effects on the kidney remains unclear. This study aimed to investigate the toxic effects and mechanism of action of TPT exposure on renal impairment in rats. Male SD rats were divided into four groups: the Ctrl group (control group), TPT-L group (0.5 mg/kg/d), TPT-M group (1 mg/kg/d), and TPT-H group (2 mg/kg/d). After 28 days of exposure to TPT, we observed the morphology and structure of kidney tissue using HE, PASM, and Masson staining. We also detected serum biochemical indexes, performed transcriptome sequencing of rat kidney tissue using RNA-seq. Furthermore, protein expression levels were measured through immunohistochemistry and gene expression levels were determined using RT-qPCR. The study results indicated a decrease in kidney weight and relative kidney weight after 28 days of exposure to TPT. Additionally, TPT caused damage to kidney structure and function, as evidenced by HE staining, PASM staining, and serum biochemical tests. Transcriptomics identified 352 DEGs, and enrichment analyses revealed that TPT exposure primarily impacted the renin-angiotensin system (RAS). The expression levels of water channel proteins were reduced, and the expression levels of RAS and lipid metabolism-related genes (Mme, Ace, Fasn, Cyp4a8, Cpt1b and Ppard) were significantly decreased in the TPT-treated group. In summary, exposure to TPT may impair renal structure and function in rats by affecting RAS, AQPs, and lipid metabolism.
Collapse
Affiliation(s)
- Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Penghui Mao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Zhi Li
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Tingting Qian
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
27
|
Panga MJ, Zhao Y. Male Reproductive Toxicity of Antifouling Chemicals: Insights into Oxidative Stress-Induced Infertility and Molecular Mechanisms of Zinc Pyrithione (ZPT). Antioxidants (Basel) 2024; 13:173. [PMID: 38397771 PMCID: PMC10886347 DOI: 10.3390/antiox13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc pyrithione (ZPT), a widely utilized industrial chemical, is recognized for its versatile properties, including antimicrobial, antibacterial, antifungal, and antifouling activities. Despite its widespread use, recent research has shed light on its toxicity, particularly towards the male reproductive system. While investigations into ZPT's impact on male reproduction have been conducted, most of the attention has been directed towards marine organisms. Notably, ZPT has been identified as a catalyst for oxidative stress, contributing to various indicators of male infertility, such as a reduced sperm count, impaired sperm motility, diminished testosterone levels, apoptosis, and degenerative changes in the testicular tissue. Furthermore, discussions surrounding ZPT's effects on DNA and cellular structures have emerged. Despite the abundance of information regarding reproductive toxicity, the molecular mechanisms underlying ZPT's detrimental effects on the male reproductive system remain poorly understood. This review focuses specifically on ZPT, delving into its reported toxicity on male reproduction, while also addressing the broader context by discussing other antifouling chemicals, and emphasizing the need for further exploration into its molecular mechanisms.
Collapse
Affiliation(s)
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
28
|
Norén A, Strömvall AM, Rauch S, Andersson-Sköld Y, Modin O, Karlfeldt Fedje K. The effects of electrochemical pretreatment and curing environment on strength and leaching of stabilized/solidified contaminated sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5866-5880. [PMID: 38133763 PMCID: PMC10799133 DOI: 10.1007/s11356-023-31477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Stabilization and solidification (S/S) is known to improve the structural properties of sediment and reduce contaminant mobility, enabling the utilization of dredged contaminated sediment. Further reduction of contaminants (e.g., tributyltin (TBT) and metals) can be done using electrochemical treatment prior to S/S and could potentially minimize contaminant leaching. This is the first study on how electrochemical pretreatment affects the strength and leaching properties of stabilized sediments. It also investigates how salinity and organic carbon in the curing liquid affect the stabilized sediment.The results showed that the electrolysis reduced the content of TBT by 22% and zinc by 44% in the sediment. The electrolyzed stabilized samples met the requirements for compression strength and had a reduced surface leaching of zinc. Curing in saline water was beneficial for strength development and reduced the leaching of TBT compared to curing in fresh water. The results indicate that pretreatment prior to stabilization could be beneficial in reducing contaminant leaching and recovering metals from the sediment. The conclusion is that a better understanding of the changes in the sediment caused by electrochemical treatment and how these changes interact with stabilization reactions is needed. In addition, it is recommended to investigate the strength and leaching behavior in environments similar to the intended in situ conditions.
Collapse
Affiliation(s)
- Anna Norén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Sebastien Rauch
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute (VTI), Box 8072, 402 78, Gothenburg, Sweden
- Division of Geology and Geotechnics, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Karin Karlfeldt Fedje
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Recycling and Waste Management, Renova AB, Box 156, 401 22, Gothenburg, Sweden.
| |
Collapse
|
29
|
Zamora Z, Wang S, Chen YW, Diamante G, Yang X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. ENVIRONMENT INTERNATIONAL 2024; 183:108339. [PMID: 38043319 PMCID: PMC11216742 DOI: 10.1016/j.envint.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Cardiometabolic disorders (CMD) are a growing public health problem across the world. Among the known cardiometabolic risk factors are compounds that induce endocrine and metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially considering the complexity contributed by species-, chemical-, and dose-specific effects. Moreover, different experimental and analytical methodologies employed by different studies pose challenges when comparing findings across studies. To explore the molecular mechanisms of EDCs in a systematic manner, we established a data-driven computational approach to meta-analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological pathways, modeled gene regulatory networks and regulators, and determined CMD associations based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma (PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT exhibited highly divergent gene signatures, pathways, network regulators, and disease associations from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed highly variable transcriptomic patterns, providing molecular support for the variability in BPA responses. Our work offers insights into the commonality and differences in the molecular mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare molecular mechanisms of environmental substances to elucidate the underlying connections between chemical exposure and disease risks.
Collapse
Affiliation(s)
- Zacary Zamora
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Kim DH, Alayande AB, Lee JM, Jang JH, Jo SM, Jae MR, Yang E, Chae KJ. Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167459. [PMID: 37788783 DOI: 10.1016/j.scitotenv.2023.167459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Numerous marine sessile organisms adhere to ship hulls and increase the sailing resistance. Antibiofouling paints are employed to maintain the ship performance. However, the chemicals employed for antifouling purposes are becoming increasingly diverse, lacking clear toxicological information. Particularly, the imperfect antibiofouling efficacies of these chemicals necessitate periodic hull cleaning to dislodge attached marine organisms. This hull cleaning process inadvertently releases a plethora of hazardous substances, including antibiofouling chemicals, heavy metals, and cleaning agents, alongside exotic microorganisms. This results in profound marine pollution and ecosystem disruption. Specifically, these exotic microorganisms pose a novel ecological threat in coastal waters. However, despite the gravity of ship hull cleaning-related issues, comprehensive investigations have been lacking, and international regulatory measures are gaining attention recently. Aiming to provide solutions to the emerging challenges associated with hull cleaning, this review endeavors to comprehensively address the biofouling organisms and their mechanisms, potential antifouling paint hazards, and effective hull cleaning methodologies.
Collapse
Affiliation(s)
- Dong-Ho Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Abayomi Babatunde Alayande
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29625, United States
| | - Jung-Min Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Su-Min Jo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mi-Ri Jae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
31
|
Shi G, Wen L, Zhang S, Cheng J, Chen X, Zhou Y, Xu Z, Xin B. Facile manufacture of high-purity CuSO 4 from waste Cu-containing paint residue using combined processes of H 2SO 4 leaching and extraction stripping. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2974-2985. [PMID: 38096082 PMCID: wst_2023_388 DOI: 10.2166/wst.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Waste copper-containing paint residue (WCPR) represents a typical hazardous waste containing both toxic organic substances and toxic heavy metals, but there are few reports on the recycling of heavy metals. The recovery of Cu from WCPR by H2SO4 leaching-extraction-stripping has the advantages of eco-friendliness, simplicity of operation, and high value-added product. The results show that under the optimal conditions, the leaching rate of Cu in WCPR is 94.31% (18.02 g/L), while the extraction and stripping rates of Cu in the leaching solution are 99.46 and 95.32%, respectively. Due to the high concentration of Cu2+ with fewer impurities in the stripping solution, the stripping solution is heated, evaporated, cooled, and crystallized to successfully produce high-purity dark blue CuSO4 crystal, accomplishing the high-value recycling of Cu in WCPR. In addition, the leach residue of WCPR contains acrylic resin and SiO2, which can be used in cement kilns for incineration, thus realizing the overall recycling and utilization of WCPR.
Collapse
Affiliation(s)
- Gongchu Shi
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China E-mail:
| | - Lingkai Wen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shihao Zhang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Cheng
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaohui Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanyu Zhou
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhikai Xu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baoping Xin
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China
| |
Collapse
|
32
|
Luo HW, Jiang JM, Wang X, Li M, Ding JJ, Hong WJ, Guo LH. Contaminant occurrence, water quality criteria and tiered ecological risk assessment in water: A case study of antifouling biocides in the Qiantang River and its estuary, Eastern China. MARINE POLLUTION BULLETIN 2023; 194:115311. [PMID: 37480803 DOI: 10.1016/j.marpolbul.2023.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Antifouling biocides may cause adverse effects on non-target species. This study aims to determine the distribution, sources, and ecological risks of antifouling biocides in the surface waters of the Qiantang River and its estuary in eastern China. The concentrations of total antifouling biocides were ranged from 12.9 to 215 ng/L for all water samples. Atrazine, diuron and tributyltin were the major compounds in the water bodies of the study area. The acute and chronic toxicity criteria for tributyltin, diuron and atrazine were derived for freshwater and saltwater, respectively, based on the species sensitivity distribution approach. The freshwater and saltwater criteria were slightly different, and the toxicity to aquatic organisms could be summarized as tributyltin > diuron > atrazine. The graded ecological risk rating showed that the long-term risk of TBT was significant in coastal waters. The pollution of TBT in the Qiantang River deserves further attention.
Collapse
Affiliation(s)
- Hai-Wei Luo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jian-Ming Jiang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xun Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jin-Jian Ding
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
33
|
da Silva RC, Teixeira MP, de Paiva LS, Miranda-Alves L. Environmental Health and Toxicology: Immunomodulation Promoted by Endocrine-Disrupting Chemical Tributyltin. TOXICS 2023; 11:696. [PMID: 37624201 PMCID: PMC10458372 DOI: 10.3390/toxics11080696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Tributyltin (TBT) is an environmental contaminant present on all continents, including Antarctica, with a potent biocidal action. Its use began to be intensified during the 1960s. It was effectively banned in 2003 but remains in the environment to this day due to several factors that increase its half-life and its misuse despite the bans. In addition to the endocrine-disrupting effect of TBT, which may lead to imposex induction in some invertebrate species, there are several studies that demonstrate that TBT also has an immunotoxic effect. The immunotoxic effects that have been observed experimentally in vertebrates using in vitro and in vivo models involve different mechanisms; mainly, there are alterations in the expression and/or secretion of cytokines. In this review, we summarize and update the literature on the impacts of TBT on the immune system, and we discuss issues that still need to be explored to fill the knowledge gaps regarding the impact of this endocrine-disrupting chemical on immune system homeostasis.
Collapse
Affiliation(s)
- Ricardo Correia da Silva
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.C.d.S.); (M.P.T.)
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana Pires Teixeira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.C.d.S.); (M.P.T.)
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luciana Souza de Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói 24210-201, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.C.d.S.); (M.P.T.)
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
34
|
She W, Wang H, Linardi D, Chik SY, Lan Y, Chen F, Cheng A, Qian PY. Mode of action of antifouling compound albofungin in inhibiting barnacle larval settlement. iScience 2023; 26:106981. [PMID: 37534162 PMCID: PMC10391604 DOI: 10.1016/j.isci.2023.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Marine biofouling causes huge economic losses to the marine industry every year. Albofungin is a potential antifoulant showing strong anti-macrofouling activities against larval settlement of major fouling organisms. In the present study, directed RNA-seq and proteomic analyses were used to investigate changes in the transcriptome and proteome of a major fouling barnacle Amphibalanus amphitrite cyprids in response to albofungin treatment. Results showed that albofungin treatment remarkably upregulated the metabolism of xenobiotics by the cytochrome P450 pathway to discharge the compound and downregulated energy metabolic processes. Intriguingly, immunostaining and whole-mount in situ hybridization (WISH) revealed the spatial expression patterns of selected differentially expressed genes (glutathione S-transferase [GST], nitric oxide synthase [NOS], and calmodulin [CaM]) distributed in the thorax and antennule of A. amphitrite. Our study provides new insights into the mechanism of albofungin in interrupting the larval settlement of A. amphitrite and suggests its potential application as an antifouling agent in marine environments.
Collapse
Affiliation(s)
- Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Darwin Linardi
- Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sin Yu Chik
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
35
|
Liang W, Fu L, Feng M, Wang X, Yun Z, Xu J. Endoplasmic Reticulum Stress and Autophagy Are Involved in Hepatotoxicity Induced by Tributyltin. TOXICS 2023; 11:607. [PMID: 37505572 PMCID: PMC10386594 DOI: 10.3390/toxics11070607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Tributyltin (TBT), a common contaminant in aquatic ecosystems, has severe toxic effects on multiple tissues and organs, especially the liver. Previous toxicogenomic analysis has indicated that the main mechanism of TBT-induced hepatotoxicity is related to the activation of the apoptotic pathway. However, the mechanism of action occurring before the activation of apoptosis is still unclear. Herein, we applied proteomic technology to explore the protein expression profile of TBT-treated HL7702 normal human liver cells. The ultrastructural changes in cells were observed by transmission electron microscopy. After low dose (2 μΜ) TBT treatment, activation of the unfolded protein response and endoplasmic reticulum stress were observed; the expression levels of PERK, ATF6, BiP, and CHOP were significantly elevated, and splicing of XBP1 mRNA was initiated. When the TBT concentration increased to 4 μΜ, the protein levels of Beclin1, Atg3, Atg5, Atg7, and Atg12-Atg5 were significantly elevated, and the protein level of LC3Ⅰ decreased while that of LC3Ⅱ increased, suggesting the activation of autophagy. As the TBT concentration continued to increase, autophagy could not eliminate the damage, and apoptosis eventually occurred. These results indicate novel pathways of hepatotoxicity induced by TBT and provide insights for future studies.
Collapse
Affiliation(s)
- Weiqi Liang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingling Fu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mei Feng
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xiaorong Wang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhaohui Yun
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
36
|
Shaban SF, Khattab MA, Abd El Hameed SH, Abdelrahman SA. Evaluating the histomorphological and biochemical changes induced by Tributyltin Chloride on pituitary-testicular axis of adult albino rats and the possible ameliorative role of hesperidin. Ultrastruct Pathol 2023; 47:304-323. [PMID: 36988127 DOI: 10.1080/01913123.2023.2195489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This study was performed to explore in detail the toxic effects of Tributyltin Chloride (TBT) on the pituitary-testicular axis and the possible amelioration with Hesperidin. Seventy-two adult male albino rats were divided into four groups: Control group (I), TBT-treated group (II), TBT+Hesperidin group (III), and Recovery group (IV). Body and testicular weights were measured. Blood samples were taken to estimate serum levels of testosterone, FSH and LH hormones by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) level was measured in testes homogenates. Tissue samples from the pituitary glands and testes were processed for light, electron microscope examination, and immunohistochemical detection of anti-FSH, and Ki67 proteins. Results showed a statistically significant decrease in testicular weight, serum testosterone, FSH and LH levels and a significant increase in tissue MDA in the TBT group when compared to the control group. TBT treatment caused severe histopathological changes with decreased area percent of PAS-stained basophils, and anti FSH immuno-stained gonadotrophs in the pituitary gland. The testes of group II also showed marked tissue damage, cell loss with decreased epithelial height and decreased number of proliferating spermatogenic cells. Hesperidin supplementation with TBT proved significant amelioration of the previously mentioned parameters in both glands which could improve male fertility. In conclusion: The flavonoid Hesperidin has the potential to protect against the reproductive damage induced by TBT in susceptible individuals.
Collapse
Affiliation(s)
- Sahar F Shaban
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar H Abd El Hameed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Elsammak GA, Talaat A, Reda S. The possible ameliorative role of Lycopene on Tributyltin induced thyroid damage in adult male albino rats (histological, immunohistochemical and biochemical study). Ultrastruct Pathol 2023; 47:324-338. [PMID: 37125846 DOI: 10.1080/01913123.2023.2205922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Tributyltin is used in industrial applications. This current research aimed to study the effect of Tributyltin on the thyroid gland structure and function of adult male albino rats and the protective effect of Lycopene. Twenty-one male adult albino rats were classified into three groups: Control, treated that received Tributyltin, and protective that received Lycopene with Tributyltin. At the end of the experiment, blood samples were collected and T4, T3, and (TSH) were measured. Tissue superoxide dismutase (SOD) and malondialdehyde (MDA) were estimated. Thyroid gland specimens were processed for histological and immunohistochemical examination. Then morphometric and statistical analyses were done. The treated group showed affection in thyroid function and histological structure as vacuolated colloid and cytoplasm and dark nuclei. Ultrastructurally, follicular cells showed irregular shrunken nuclei, atrophied apical microvilli, vacuoles, multiple lysosomal granules, mitochondria with destructed cristae, and extensively dilated rough endoplasmic reticulum. There was increase in Caspase-3 immunoexpression and decrease in Beclin-1 immunoexpression. The thyroid structure and biochemical markers improved after Lycopene administration. The thyroid gland damage caused by Tributyltin is ameliorated by Lycopene.
Collapse
Affiliation(s)
- Ghada A Elsammak
- Medical Histology and cell biology Department, Zagazig University Faculty of Human Medicine, Zagazig, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Zagazig University Faculty of Human Medicine, Zagazig, Egypt
| | - Samar Reda
- Medical Histology and cell biology Department, Zagazig University Faculty of Human Medicine, Zagazig, Egypt
| |
Collapse
|
38
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
39
|
Mandal A, Ghosh M, Talukdar D, Dey P, Das A, Giri S. Cytotoxicity and genotoxicity of tributyltin in the early embryonic chick, Gallus gallus domesticus. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503656. [PMID: 37491115 DOI: 10.1016/j.mrgentox.2023.503656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
Tributyltin (TBT) is used in many commercial applications, including pesticides and antifouling paints, due to its biocidal properties. We examined the cytotoxicity and genotoxicity of TBT in the early chick embryo (Gallus gallus domesticus). Chick embryos (11 days) were treated with various doses of TBT to measure LD50 values for 24, 48, and 72 h exposures, which were determined to be 110, 54, and 18 μg/egg, respectively. The embryos were exposed to sub-lethal doses of TBT for evaluation of cytotoxicity and genotoxicity. An increase in the incidence of micronuclei (MN) was observed but it was not statistically significant. Induction of other nuclear abnormalities (ONA) after 72 h TBT exposure was significant. A significant increase in comet assay tail DNA content was also detected in TBT-exposed embryos. Cytotoxicity was also evidenced by alteration in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio and by an increase in the erythroblast population in treated organisms. The cytotoxicity and genotoxicity of TBT may have long-term complications in later stages of the life cycle.
Collapse
Affiliation(s)
- Abhijit Mandal
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Malaya Ghosh
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Doli Talukdar
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Pubali Dey
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Aparajita Das
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India.
| |
Collapse
|
40
|
Höthker S, Gansäuer A. Formal Anti-Markovnikov Addition of Water to Olefins by Titanocene-Catalyzed Epoxide Hydrosilylation: From Stoichiometric to Sustainable Catalytic Reactions. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200240. [PMID: 37483422 PMCID: PMC10362118 DOI: 10.1002/gch2.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Indexed: 07/25/2023]
Abstract
Here, the evolution of the titanocene-catalyzed hydrosilylation of epoxides that yields the corresponding anti-Markovnikov alcohols is summarized. The study focuses on aspects of sustainability, efficient catalyst activation, and stereoselectivity. The latest variant of the reaction employs polymethylhydrosiloxane (PMHS), a waste product of the Müller-Rochow process as terminal reductant, features an efficient catalyst activation with benzylMgBr and the use of the bench stable Cp2TiCl2 as precatalyst. The combination of olefin epoxidation and epoxide hydrosilylation provides a uniquely efficient approach to the formal anti-Markovnikov addition of H2O to olefins.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| |
Collapse
|
41
|
Ticiani E, Pu Y, White M, Adomshick V, Veiga-Lopez A. Organotin mixtures reveal interactions that modulate adipogenic differentiation in 3T3-L1 preadipocytes. Arch Toxicol 2023; 97:1649-1658. [PMID: 37142754 PMCID: PMC10424724 DOI: 10.1007/s00204-023-03512-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Organotin chemicals (butyltins and phenyltins) are the most widely used organometallic chemicals worldwide and are used in industrial applications, such as biocides and anti-fouling paints. Tributyltin (TBT) and more recently, dibutyltin (DBT) and triphenyltin (TPT) have been reported to stimulate adipogenic differentiation. Although these chemicals co-exist in the environment, their effect in combination remains unknown. We first investigated the adipogenic effect of eight organotin chemicals (monobutyltin (MBT), DBT, TBT, tetrabutyltin (TeBT), monophenyltin (MPT), diphenyltin (DPT), TPT, and tin chloride (SnCl4)) in the 3T3-L1 preadipocyte cell line in single exposures at two doses (10 and 50 ng/ml). Only three out of the eight organotins induced adipogenic differentiation with TBT eliciting the strongest adipogenic differentiation (in a dose-dependent manner) followed by TPT and DBT, as demonstrated by lipid accumulation and gene expression. We then hypothesized that, in combination (TBT, DBT, and TPT), adipogenic effects will be exacerbated compared to single exposures. However, at the higher dose (50 ng/ml), TBT-induced differentiation was reduced by TPT and DBT when in dual or triple combination. We tested whether TPT or DBT would interfere with adipogenic differentiation stimulated by a peroxisome proliferator-activated receptor (PPARγ) agonist (rosiglitazone) or a glucocorticoid receptor agonist (dexamethasone). Both DBT50 and TPT50 reduced rosiglitazone-, but not dexamethasone-stimulated adipogenic differentiation. In conclusion, DBT and TPT interfere with TBT's adipogenic differentiation possibly via PPARγ signaling. These findings highlight the antagonistic effects among organotins and the need to understand the effects and mechanism of action of complex organotin mixtures on adipogenic outcomes.
Collapse
Affiliation(s)
- Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Madison White
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Victoria Adomshick
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
42
|
Malouch D, Berchel M, Dreanno C, Stachowski-Haberkorn S, Chalopin M, Godfrin Y, Jaffrès PA. Evaluation of lipophosphoramidates-based amphiphilic compounds on the formation of biofilms of marine bacteria. BIOFOULING 2023; 39:591-605. [PMID: 37584265 DOI: 10.1080/08927014.2023.2241377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
The bacteriostatic and/or bactericidal properties of few phosphoramide-based amphiphilic compounds on human pathogenic bacteria were previously reported. In this study, the potential of two cationic (BSV36 and KLN47) and two zwitterionic (3 and 4) amphiphiles as inhibitors of marine bacterial growth and biofilm formation were investigated. Results showed that the four compounds have little impact on the growth of a panel of 18 selected marine bacteria at a concentration of 200 µM, and up to 700 µM for some bacterial strains. Interestingly, cationic lipid BSV36 and zwitterionic lipids 3 and 4 effectively disrupt biofilm formation of Paracoccus sp. 4M6 and Vibrio sp. D02 at 200 µM and to a lesser extent of seven other bacterial strains tested. Moreover, ecotoxicological assays on four species of microalgae highlighted that compounds 3 and 4 have little impact on microalgae growth with EC50 values of 51 µM for the more sensitive species and up to 200 µM for most of the others. Amphiphilic compounds, especially zwitterionic amphiphiles 3 and 4 seem to be promising candidates against biofilm formation by marine bacteria.
Collapse
Affiliation(s)
- Dorsaf Malouch
- Univ Brest, CNRS, CEMCA UMR 6521, Brest, France
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Catherine Dreanno
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Morgane Chalopin
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | | |
Collapse
|
43
|
Jiang M, Zhang Z, Han Q, Peng R, Shi H, Jiang X. Embryonic exposure to environmentally relevant levels of tributyltin affects embryonic tributyltin bioaccumulation and the physiological responses of juveniles in cuttlefish (Sepia pharaonis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114894. [PMID: 37059015 DOI: 10.1016/j.ecoenv.2023.114894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Tributyltin (TBT) is a typical organic pollutant that persists in aquatic sediments due to its wide usage as an antifouling fungicide during the past few decades. Despite increased awareness of the serious negative consequences of TBT on aquatic species, studies on the effects of TBT exposure on cephalopod embryonic development and juvenile physiological performance are scarce. To investigate the lasting effects of TBT toxicity on Sepia pharaonis from embryo to hatchling, embryos (gastrula stage, 3-5 h post fertilization) were exposed to four levels of TBT until hatching: 0 (control), 30 (environmental level), 60, and 120 ng/L. Subsequently, juvenile growth performance endpoints and behavioral alterations were assessed over 15 days post-hatching. Egg hatchability was significantly reduced and embryonic development (i.e., premature hatching) was accelerated in response to 30 ng/L TBT exposure. Meanwhile, TBT-induced alterations in embryonic morphology primarily included yolk-sac lysis, embryonic malformations, and uneven pigment distributions. During the pre-middle stage of embryonic development, the eggshell serves as an effective barrier to safeguard the embryo from exposure to 30-60 ng/L TBT, according to patterns of TBT accumulation and distribution in the egg compartment. However, even environmental relevant levels of TBT (30 ng/L) exposure during embryonic development had a negative impact on juvenile behavior and growth, including slowing growth, shortening eating times, causing more irregular movements, and increasing inking times. These findings indicate that after TBT exposure, negative long-lasting effects on S. pharaonis development from embryo to hatchling persist, suggesting that long-lasting toxic effects endure from S. pharaonis embryos to hatchlings.
Collapse
Affiliation(s)
- Maowang Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Zihan Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Qingxi Han
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Ruibing Peng
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Huilai Shi
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, China
| | - Xiamin Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China.
| |
Collapse
|
44
|
Dauwe Y, Mary L, Oliviero F, Grimaldi M, Balaguer P, Gayrard V, Mselli-Lakhal L. Steatosis and Metabolic Disorders Associated with Synergistic Activation of the CAR/RXR Heterodimer by Pesticides. Cells 2023; 12:cells12081201. [PMID: 37190111 DOI: 10.3390/cells12081201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.
Collapse
Affiliation(s)
- Yannick Dauwe
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lucile Mary
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
45
|
Chen P, Song Y, Tang L, Zhong W, Zhang J, Cao M, Chen J, Cheng G, Li H, Fan T, Kwok HF, Wang J, Yang C, Xiao W. Tributyltin chloride (TBTCL) induces cell injury via dysregulation of endoplasmic reticulum stress and autophagy in Leydig cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130785. [PMID: 36860030 DOI: 10.1016/j.jhazmat.2023.130785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Tributyltin chloride (TBTCL), a commonly used antiseptic substance, is commonly found in the environment. Human exposure to TBTCL through the consumption of contaminated seafood, fish, or drinking water has aroused concern. It is well-characterized that TBTCL has multiple detrimental effects on the male reproductive system. However, the potential cellular mechanisms are not fully elucidated. Here, we characterized molecular mechanisms of TBTCL-induced cell injury in Leydig cells, a critical supporter for spermatogenesis. We showed that TBTCL induces apoptosis and cell cycle arrest in TM3 mouse Leydig cells. RNA sequencing analyses revealed that endoplasmic reticulum (ER) stress and autophagy were potentially involved in TBTCL-induced cytotoxicity. We further showed that TBTCL causes ER stress and inhibited autophagy flux. Notably, the inhibition of ER stress attenuates not only TBTCL-induces autophagy flux inhibition but also apoptosis and cell cycle arrest. Meanwhile, the activation of autophagy alleviates, and inhibition of autophagy exaggerates TBTCL-induced apoptosis and cell cycle arrest flux. These results suggest that TBTCL-induced ER stress and autophagy flux inhibition contributed to apoptosis and cell cycle arrest in Leydig cells, providing novel understanding into the mechanisms of TBTCL-induced testis toxicity.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Wenbin Zhong
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - JingJing Zhang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Cao
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Junhui Chen
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Guangqing Cheng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiying Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Tianyun Fan
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanbin Yang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Wei Xiao
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
46
|
Borrego BB, Gracioso LH, Karolski B, Cardoso LOB, Melo LBU, Castro ÍB, Perpetuo EA. Tributyltin degrading microbial enzymes: A promising remediation approach. MARINE POLLUTION BULLETIN 2023; 189:114725. [PMID: 36805770 DOI: 10.1016/j.marpolbul.2023.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Brazil is one of the countries most impacted along the entire coastline by the presence of tributyltin (TBT), a biocide used in antifouling paints. Despite being banned since 2008, its use is still registered in the country, and it is possible to find recent inputs of this substance in places under the influence of shipyards, marinas, and fishing ports. In this study, a bacterium isolated from TBT-contaminated sediment from Santos and São Vicente Estuarine System (SESS) in Brazil, identified as Achromobacter sp., proved to be resistant to this compound. Furthermore, its crude enzymatic extract presented the ability to reduce up to 25 % of the initial TBT concentration in the liquid phase in 1 h, demonstrating to be a simple, fast, effective procedure and a potential tool for the environmental attenuation of TBT.
Collapse
Affiliation(s)
- Bruna Bacaro Borrego
- The Interunits Postgraduate Program in Biotechnology, University of São Paulo, PPIB-USP, Lineu Prestes Ave, 2415, São Paulo, SP, Brazil; Bio4Tec Lab, Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd, 270 km, Cubatão, SP, Brazil.
| | - Louise Hase Gracioso
- Bio4Tec Lab, Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd, 270 km, Cubatão, SP, Brazil; School of Arts, Science and Humanities of University of São Paulo, EACH-USP, Arlindo Bettio Ave, 1000, São Paulo, SP, Brazil
| | - Bruno Karolski
- Bio4Tec Lab, Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd, 270 km, Cubatão, SP, Brazil
| | - Letícia Oliveira Bispo Cardoso
- Bio4Tec Lab, Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd, 270 km, Cubatão, SP, Brazil; Chemical Engineering Department, Escola Politécnica, University of São Paulo, POLI-USP, Prof. Luciano Gualberto Ave, 380, São Paulo, SP, Brazil
| | - Letícia Beatriz Ueda Melo
- Bio4Tec Lab, Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd, 270 km, Cubatão, SP, Brazil; Graduate Interdisciplinary Program in Marine Science and Technology, PPG-ICTMar-UNIFESP, Carvalho de Mendonça Ave, 144, Santos, SP, Brazil
| | - Ítalo Braga Castro
- Institute of Marine Sciences, Federal University of São Paulo, IMar-UNIFESP, Carvalho de Mendonça Ave, 144, Santos, SP, Brazil
| | - Elen Aquino Perpetuo
- Bio4Tec Lab, Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd, 270 km, Cubatão, SP, Brazil; Graduate Interdisciplinary Program in Marine Science and Technology, PPG-ICTMar-UNIFESP, Carvalho de Mendonça Ave, 144, Santos, SP, Brazil; Institute of Marine Sciences, Federal University of São Paulo, IMar-UNIFESP, Carvalho de Mendonça Ave, 144, Santos, SP, Brazil
| |
Collapse
|
47
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
48
|
Merlo E, Zimerman J, Dos Santos FCF, Zanol JF, da Costa CS, Carneiro PH, Miranda-Alves L, Warner GR, Graceli JB. Subacute and low dose of tributyltin exposure leads to brown adipose abnormalities in male rats. Toxicol Lett 2023; 376:26-38. [PMID: 36638932 PMCID: PMC9928871 DOI: 10.1016/j.toxlet.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tributyltin (TBT) is an obesogenic endocrine disrupting chemical (EDC) linked with several metabolic complications. Brown adipose tissue (BAT) is the principal site for thermogenesis, making it a potential target for obesity management and metabolic disease. However, few studies have evaluated TBT effect on BAT function. In this investigation, we assessed whether subacute (15 days) and low dose of TBT exposure (100 ng/kg/day) results in abnormal BAT morphophysiology in adult male rats. Body temperature, BAT morphology, inflammation, oxidative stress, collagen deposition and BAT metabolic gene expression markers were assessed in room temperature (Room, ∼24 ºC) and after cold tolerance test (Cold, ∼4 ºC) conditions. A reduction in body temperature was observed in both Room and Cold conditions in TBT rats, suggesting abnormal BAT thermogenic function. Changes in BAT morphology were observed in TBT rats, with an increase in BAT lipid accumulation, an increase in BAT unilocular adipocyte number and a decrease in BAT multilocular adipocyte number in Room condition. All these parameters were opposite in Cold condition TBT rats, leading to a borderline increase in BAT UCP1 protein expression. An increase in BAT mast cell number was observed in TBT rats in Room condition. An increase in ED1 protein expression (macrophage marker) was observed in TBT rats in Cold condition. Oxidative stress and collagen deposition increased in both Room and Cold conditions in TBT rats. TBT exposure caused a borderline increase in BAT COL1A1 protein expression in Cold condition. Further, strong negative correlations were observed between body temperature and BAT lipid accumulation, and BAT lipid accumulation and multilocular adipocyte number. Thus, these data suggest that TBT exposure impaired BAT morphophysiology through impacts on lipid accumulation, inflammation, fibrosis and oxidative stress in male rats.
Collapse
Affiliation(s)
- Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Pedro H Carneiro
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, USA
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
49
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
50
|
He S, Li P, Liu L, Li ZH. NMR technique revealed the metabolic interference mechanism of the combined exposure to cadmium and tributyltin in grass carp larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17828-17838. [PMID: 36201083 DOI: 10.1007/s11356-022-23368-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Widespread human activity has resulted in the presence of different pollutants in the aquatic environment that does not exist in isolation. The study of the effects of contamination of aquatic organisms is of great significance. To assess the individual and combined toxicity of cadmium (Cd) and tributyltin (TBT) to aquatic organisms, juvenile grass carp (Ctenopharyngodon idella) were exposed to Cd (2.97 mg/L), TBT (7.5 μg/L), and their mixture MIX. The biological response was evaluated by nuclear magnetic resonance (NMR) analysis of plasma metabolites. Plasma samples at 1, 2, 4, 8, 16, 32, and 48 days post-exposure were analyzed using detection by NMR technique. The typical correlation analysis (CCA) analysis revealed that TBT had the greatest effect on plasma metabolism, followed by MIX and Cd. The interference pathway to grass carp was similar to that of TBT and MIX. Both Cd and TBT exposure alone or in combination can lead to metabolic abnormalities in TCA cycle-related pathways and interfere with energy metabolism. These results provide more detailed information for the metabolic study of pollutants and data for assessing the health risks of Cd, TBT, and MIX at the metabolic level.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|