1
|
Osei ED, Amotoe‐Bondzie A, Ataa Pokuah A, Laar WS, Afoakwah NA, Ivanišová E. Cashew Apple Pomace: Chemical Composition and Applications in Functional Food Product Development-A Review. Food Sci Nutr 2025; 13:e70185. [PMID: 40264685 PMCID: PMC12012003 DOI: 10.1002/fsn3.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/02/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Cashew nut production and fruit processing generate significant by-products, particularly cashew apple and cashew apple pomace (CAP), which are often treated as waste. However, CAP is a valuable source of nutrients and bioactive compounds that can be repurposed to develop functional food products. Valorizing this by-product represents a pivotal advancement toward achieving sustainability and circularity in the food industry. This review aimed to highlight the chemical composition and potential applications of CAP in functional food development. The review shows that CAP is enriched with bioactive compounds, including phenolic acids, carotenoids, and flavonoids, alongside essential nutrients such as fiber, minerals, carbohydrates, and proteins. The incorporation of CAP into food products may confer a myriad of health benefits, including antioxidant, antimicrobial, antidiabetic, antiobesity, and gastroprotective properties. This review elucidates approaches to effectively integrate CAP into food formulations while preserving their sensory attributes. Utilizing CAP in food products can significantly reduce food waste and enhance the overall nutritional and functional profile of food, contributing to a more sustainable and circular food system.
Collapse
Affiliation(s)
- Emmanuel Duah Osei
- Faculty of Agrobiology, Food, and Natural ResourcesCzech University of Life SciencesPragueCzech Republic
- Institute of Food Science, Faculty of Biotechnology and Food SciencesSlovak University of AgricultureNitraSlovakia
| | - Anthony Amotoe‐Bondzie
- Faculty of Agrobiology, Food, and Natural ResourcesCzech University of Life SciencesPragueCzech Republic
- Institute of Food Science, Faculty of Biotechnology and Food SciencesSlovak University of AgricultureNitraSlovakia
| | - Abigail Ataa Pokuah
- Department of Food Science and Technology, Faculty of Agriculture, Food and Consumer Sciences, Nyankpala CampusUniversity for Development StudiesTamaleGhana
| | - Wisdom Sambian Laar
- Department of Food Science and Technology, Faculty of Agriculture, Food and Consumer Sciences, Nyankpala CampusUniversity for Development StudiesTamaleGhana
| | - Newlove Akowuah Afoakwah
- Department of Food Science and Technology, Faculty of Agriculture, Food and Consumer Sciences, Nyankpala CampusUniversity for Development StudiesTamaleGhana
| | - Eva Ivanišová
- Institute of Food Science, Faculty of Biotechnology and Food SciencesSlovak University of AgricultureNitraSlovakia
| |
Collapse
|
2
|
Sahu S, Kumari D, Kusam, Kuila A, Gurjar RS, Sharma K, Verma R. Deep eutectic solvent extraction of polyphenol from plant materials: Current status and future prospects in food applications. Food Chem 2025; 482:144125. [PMID: 40187311 DOI: 10.1016/j.foodchem.2025.144125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The increasing environmental concerns related to biomass waste have led to the exploration of sustainable methods for extracting bioactive compounds from plant materials, especially polyphenols, which are valued for their health benefits and use in functional foods and natural additives. These bioactive compounds are abundant in fruits, vegetables, tea, and herbs, and encompass flavonoids, phenolic acids, tannins, stilbenes, and lignans. Traditional extraction methods often rely on harmful petrochemical solvents, which pose significant environmental and health risks. In contrast, Deep Eutectic Solvents (DESs) have emerged as an eco-friendly alternative, offering advantages such as low toxicity, cost-efficiency, and a wide range of solubility. This review focused recent advancements in DES-based polyphenol extraction, emphasizing their applications in the food industry. It highlights the potential of DES to efficiently extract polyphenols, improving their bioavailability and stability, and exploring future prospect for enhancing food quality, safety, and functionality through functional foods and natural preservatives.
Collapse
Affiliation(s)
- Shivani Sahu
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Diksha Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kusam
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | | | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Rajpura, Punjab 140401, India
| | - Rajan Verma
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| |
Collapse
|
3
|
Sójka M, Hejduk A, Piekarska-Radzik L, Ścieszka S, Grzelak-Błaszczyk K, Klewicka E. Antilisterial activity of tannin rich preparations isolated from raspberry (Rubus Idaeus L.) and strawberry (Fragaria X Ananassa Duch.) fruit. Sci Rep 2025; 15:10196. [PMID: 40133376 PMCID: PMC11937420 DOI: 10.1038/s41598-025-94731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
The tannin rich preparations isolated from red raspberry (Rubus idaeus L.) and strawberry (Fragaria x ananassa Duch.) fruits were evaluated for their polyphenol composition and antimicrobial activity against six strains of Listeria monocytogenes, sourced from the ATCC collection. The preparations were obtained using solvent extraction with a water-acetone solution, followed by purification using Amberlite XAD 1600 resin. The resulting products, RTRP (raspberry tannin rich preparation) and STRP (strawberry tannin rich preparation), were characterized by their content of ellagitannins, proanthocyanidins, and anthocyanins. Polyphenol content was determined using HPLC-FD and UHPLC-DAD-MS with QExactive mass spectrometer. The antagonistic activity of the preparations against Listeria spp. strains was assessed using the disk diffusion method, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined by dilution techniques. The RTRP and STRP exhibited tannin contents of 74 g/100 g and 47 g/100 g, respectively. In the raspberry preparation, ellagitannins were dominant, while in the strawberry preparation, ellagitannins and proanthocyanidins were present at similar levels. In the general antagonism test at a concentration of 60 mg/mL, inhibition zones for L. monocytogenes ranged from 10.0 to 24.5 mm. The MIC values for the preparations ranged from 1.563 to 25 mg/mL, varying depending on the tested strains. Based on MIC and MBC, L. monocytogenes ATCC 19,111 was the most sensitive to the preparations, whereas ATCC 15,313 exhibited the greatest resistance. Despite their different tannin profiles, the preparations generally did not show statistically significant differences in their antilisterial activity. The results indicate that the tannin rich preparations from red raspberry and strawberry fruits exhibit moderate antilisterial activity, dependent on the sensitivity of the specific L. monocytogenes strain tested.
Collapse
Affiliation(s)
- Michał Sójka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego St. 2/22, Lodz, 90-537, Poland.
| | - Agnieszka Hejduk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego St. 2/22, Lodz, 90-537, Poland
| | - Lidia Piekarska-Radzik
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 171/173 Wólczańska St, Lodz, 90-530, Poland
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 171/173 Wólczańska St, Lodz, 90-530, Poland
| | - Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego St. 2/22, Lodz, 90-537, Poland
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 171/173 Wólczańska St, Lodz, 90-530, Poland.
| |
Collapse
|
4
|
Jiang L, Zhao J, Zuo C, Tan W, Tan L, Li P, Ren Y, Liu X. Eco-friendly coating fabricated by quaternary chitosan/tannins assembly coupled with DOPO towards fabricating multifunctional PA66 fabrics. Int J Biol Macromol 2025; 307:141819. [PMID: 40057089 DOI: 10.1016/j.ijbiomac.2025.141819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Polyamide 66 (PA66) fabric has attracted significant attention due to its excellent overall performance. However, its flammability and melt droplet defects severely restricted its wide application. In this work, we successfully developed a bio-based multifunctional intumescent flame retardant (MIFR) coating for PA66 fabric via the interactions between quaternary chitosan (QC), tannins (TA), 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and 4-Formylphenylboronic acid (4-FB). The results indicated that the coated polyamide 66 (PA66) fabric (P-PA66@TA@QC) achieved a limiting oxygen index (LOI) of 30.1 % and no molten droplets generated during the combustion. Additionally, the peak heat release rate (pHRR) and total heat release rate (THR) of P-PA66@TA@QC were reduced by 50.3 % and 55.7 %, while the total smoke production (TSP) was decreased by 80 % compared to the control sample, exhibiting a lower fire risk and excellent smoke suppression performances. Furthermore, P-PA66@TA@QC exhibited good hydrophilicity, high UV protection factor (UPF > 180), and high inhibition rate against E. coli (> 99.9 %) and S. aureus (> 99.9 %), indicating outstanding UV resistance and excellent antibacterial properties. This study successfully developed a bio-based multifunctional flame retardant coating, providing significant guidance for preparing eco-friendly and multifunctional PA66 fabrics.
Collapse
Affiliation(s)
- Lina Jiang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jieyun Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chunlong Zuo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Tan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lei Tan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ping Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanlin Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China.
| | - Xiaohui Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Song W, Guan J, Wei W, Jia S, Li Z, Yang X, Shi H. Fabrication of multifunctional hydrogels based on tannic acid-coated nanocrystalline cellulose. 3 Biotech 2025; 15:66. [PMID: 39995884 PMCID: PMC11846811 DOI: 10.1007/s13205-025-04232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Composite hydrogels are promising for wound healing, but combining strong antimicrobial properties with mechanical performance remains challenging due to potential disruptions in cross-linking. This study presented a one-step method to incorporate tannic acid-coated cellulose nanocrystals (TA@CNC) into polyacrylamide hydrogels. The resulting composite hydrogel exhibited superior mechanical strength, environmental stability, and antimicrobial and antioxidant activities. TA@CNC served as a dynamic reinforcement within the porous network, enhancing mechanical stability. The hydrogel also demonstrated sustained and repeatable adhesion, attributed to the moisture-resistant properties of tannic acid. This work offers valuable insights for the design of multifunctional composite hydrogels, with the developed materials showing great potential for use in medical dressings due to their stretchability, self-adhesion, and antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- Wancheng Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Jialin Guan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Wei Wei
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Siqi Jia
- College of Fine Arts, Hongik University, Seoul, 04066 Republic of Korea
| | - Zhuojin Li
- Faculty of Philology and Communication, University of Barcelona, 08007 Barcelona, Spain
| | - Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| |
Collapse
|
7
|
Dos Santos AV, Santos RN, Santana AN, Santos de Jesus A, Torquato SDJC, Pereira MDG, Santos LFG, Lassarote Lavall R, Malta M, Dos Santos GS, Ferraz CG, Ribeiro PR, de Souza Neta LC. Antimicrobial Potential of Chitosan Films Incorporated with Alcoholic Extract from Mimosa tenuiflora Leaves. Chem Biodivers 2025; 22:e202400645. [PMID: 38923658 DOI: 10.1002/cbdv.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Antimicrobial films were prepared with chitosan containing the methanolic extract of M. tenuiflora leaves (FECT20 %, FECT30 %, and FECT40 %), and their antimicrobial activities were evaluated by agar diffusion. The films were characterized by IR spectroscopy, scanning electron microscopy (SEM) and TG/DTG curves. TG/DTG curves showed thermal stability of chitosan-extract films up to 166 °C. Micrographs of chitosan-extract films revealed an increase in porosity with the addition of extract. The FECT40 % film showed inhibition zone diameters (IZ) against Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and B. cereus, ranging from 1.0±0.02 to 0.72±0.09 cm. Only FECT30 % and FECT40 % inhibited the P. aeruginosa with IZs of 0.68±0.02 and 0.77±0.06 cm, respectively. In turn, the extract showed inhibition against B. subtilis and B. cereus, with IZs values of 0.92±0.2 cm and 0.72±0.05 cm, respectively. Additionally, the crude extract presented antioxidant potential with inhibition percentages of 32.74 %±0.90 for ABTS and 27.04 %±1.36 for DPPH. The antimicrobial and antioxidant activities of the crude extract, as well as the antimicrobial property of chitosan-extract films, suggests the potential of these biopolymers for the development of wound healing bandages and new food packaging alternatives.
Collapse
Affiliation(s)
- Arnaud Victor Dos Santos
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Rodrigo N Santos
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Aiane N Santana
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Andreza Santos de Jesus
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Suzimone de Jesus C Torquato
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Madson de G Pereira
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Luis Filipe G Santos
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Rodrigo Lassarote Lavall
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Malta
- Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Gustavo Souza Dos Santos
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Lourdes C de Souza Neta
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia., Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| |
Collapse
|
8
|
Barbarossa A, Rosato A, Tardugno R, Carrieri A, Corbo F, Limongelli F, Fumarola L, Fracchiolla G, Carocci A. Antibiofilm Effects of Plant Extracts Against Staphylococcus aureus. Microorganisms 2025; 13:454. [PMID: 40005818 PMCID: PMC11858306 DOI: 10.3390/microorganisms13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The global rise in antimicrobial resistance poses a significant threat to public health, necessitating alternative therapeutic options. One critical challenge is treating infections caused by biofilm-forming bacteria, which are notably resistant to conventional antibiotics. Staphylococcus aureus, including methicillin-resistant strains (MRSA), is a major pathogen in biofilm-related infections, complicating treatment and leading to chronic cases. Plant extracts have emerged as promising alternatives, offering new avenues for effective treatment. This study evaluated the antibacterial and antibiofilm activities of commercial extracts of Vitis vinifera L. (grape), Camellia sinensis L. (green tea), Olea europaea L. (olive), Quercus robur (oak), and Coffea arabica L. (coffee) against S. aureus strains from ATCC collections and clinical isolates. Preliminary screening using the disk diffusion test assessed the zones of inhibition, which was followed by minimum inhibitory concentration (MIC) determination via broth microdilution, with Quercus robur L. showing the best overall MIC results. The results obtained demonstrate the strong antibacterial activity of the extracts, with the MIC values ranging from 0.2 to 12.4 mg/mL. Using the XTT reduction assay, the extracts inhibited biofilm growth by 80-85% after 24 h of incubation, with Coffea arabica L. achieving interesting antibiofilm activities. These findings suggest that the investigated plant extracts hold potential as antimicrobial agents and biofilm inhibitors, offering an alternative approach to tackling antimicrobial resistance. Further research is needed to explore their potential applications in developing novel adjuvant therapies.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Francesco Limongelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Luciana Fumarola
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| |
Collapse
|
9
|
Alejo-Armijo A, Cobo A, Alejo-Armijo A, Altarejos J, Salido S, Ortega-Morente E. Evaluation of Antibacterial and Antibiofilm Properties of Phenolics with Coumarin, Naphthoquinone and Pyranone Moieties Against Foodborne Microorganisms. Molecules 2025; 30:944. [PMID: 40005254 PMCID: PMC11857956 DOI: 10.3390/molecules30040944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Numerous studies have previously demonstrated the antimicrobial activity of plant extracts rich in procyanidins. However, these investigations that focused on uncharacterized extracts do not provide information on the structure-activity relationships of these compounds. The aim of this work was to investigate the antibacterial and antibiofilm properties of 27 phenolics with coumarin, naphthoquinone and pyranone moieties against foodborne microorganisms, as well as to establish structure-activity relationships. Minimal inhibitory concentrations (MICs) for each compound were investigated, as well as their ability for inhibiting biofilm formation as well as disrupting previously formed biofilms by food pathogens. Our compounds show high antibacterial and antibiofilm activities against Gram-positive bacteria. Regarding the structure-activity relationships observed, the coumarin moiety seems to favor the antibacterial activity against both S. aureus strains assayed, while a naphthoquinone moiety enhances antibacterial effects against B. cereus. Moreover, the replacement of OH groups in the B-ring by methoxy groups impairs antibacterial activity of the compounds against target bacteria, while the presence of Cl or OH groups in the molecules seems to enhance the inhibition of biofilm formation as well as the disruption of preformed biofilms. These results may be of great relevance for the food sector, increasing the options of additives that can be used industrially.
Collapse
Affiliation(s)
- Alejandra Alejo-Armijo
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (A.A.-A.); (A.C.)
| | - Antonio Cobo
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (A.A.-A.); (A.C.)
| | - Alfonso Alejo-Armijo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (J.A.); (S.S.)
| | - Joaquín Altarejos
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (J.A.); (S.S.)
| | - Sofía Salido
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (J.A.); (S.S.)
| | - Elena Ortega-Morente
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (A.A.-A.); (A.C.)
| |
Collapse
|
10
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 PMCID: PMC11851925 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| |
Collapse
|
11
|
Cosme F, Aires A, Pinto T, Oliveira I, Vilela A, Gonçalves B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025; 30:800. [PMID: 40005115 PMCID: PMC11858154 DOI: 10.3390/molecules30040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Tannins, a diverse class of polyphenolic compounds, are widely present in a variety of plant-based foods and beverages, where they contribute significantly to flavor, astringency, and numerous health benefits. Known for their antioxidant, anti-inflammatory, and cardioprotective properties, tannins are associated with a reduced risk of chronic diseases such as cardiovascular disease, cancer, and diabetes. Their bioavailability and metabolism are influenced by factors such as polymerization, solubility, and interactions with the gut microbiota. Tannin-rich beverages, including tea, wine, fruit juices, and cider, offer a range of health-promoting effects, including antioxidant, cardioprotective, and antimicrobial activities. In addition, tannins contribute significantly to the sensory and nutritional characteristics of fruits, nuts, and vegetables, influencing flavor, color, and nutrient absorption. The levels and efficacy of tannins are subject to variation due to factors such as ripeness and food processing methods, which can increase their impact on food quality and health. This review provides a comprehensive examination of the bioactive roles of tannins, their nutritional implications, and their sensory effects, highlighting their importance in both dietary applications and overall well-being.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (T.P.); (I.O.); (B.G.)
| |
Collapse
|
12
|
Polat Yemiş G, Yemiş O, Öztürk A. Optimization of Haskap Extract and Tannic Acid Combined with Mild Heat Treatment: A Predictive Study on the Inhibition of Cronobacter sakazakii. Foods 2025; 14:562. [PMID: 40002006 PMCID: PMC11854248 DOI: 10.3390/foods14040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cronobacter sakazakii is an opportunistic food-borne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. The plant extracts containing natural antibacterial compounds are currently under consideration as alternatives to synthetic artificial preservatives for the control of C. sakazakii. There has been increasing interest in using plant-derived antimicrobials in combination with mild heat to control pathogens in preservative-free foods. In this study, the individual and combined effects of four independent variables, i.e., polyphenol-rich haskap extract (HE) concentration (2-10%), tannic acid (TA) concentration (0.1-0.5), temperature (35-55 °C), and time (1-5 min), on C. sakazakii inactivation were investigated by response surface methodology (RSM) with a five-level four factor central composite design (CCD) and an optimal combination for maximum inhibition was determined. The statistic metrics of R2, R2adjusted, R2predicted, coefficient of variation (CV), Predicted Residual Error Sum of Squares (PRESSs), adequate precision, and lack-of-fit were used to reveal the prediction performance. The results revealed that all the independent variables, except time, influenced C. sakazakii inactivation. Among the independent variables, the temperature was the most effective variable (p < 0.0001) as regards inactivation. The synergistic effects of HE with TA and temperature were observed. Many possible optimum conditions of mild heat treatment that maximized the inhibition of C. sakazakii were obtained. The findings indicated that two distinct combinations were identified as the most effective inhibition of C. sakazakii: high concentration at low temperature and high temperature at low concentration. It can be concluded that haskap polyphenol extract, alone or in combination with tannic acid, has the potential to be used as a natural preservative to reduce the risk of C. sakazakii.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya 54187, Turkey;
| | - Oktay Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya 54187, Turkey;
- Sakarya University Research, Development, and Application Center (SARGEM), Sakarya University, Sakarya 54050, Turkey
| | - Aysun Öztürk
- Department of Food Technology, Atatürk Horticultural Central Research Institute, Yalova 77102, Turkey;
| |
Collapse
|
13
|
Leitão MM, Gonçalves ASC, Moreira J, Fernandes C, Borges F, Simões M, Borges A. Unravelling the potential of natural chelating agents in the control of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Eur J Med Chem 2025; 283:117163. [PMID: 39700872 DOI: 10.1016/j.ejmech.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Iron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellular motility, hydrophobicity and protein composition of the bacterial surface. In this study, the antibiofilm activity of two natural iron chelating agents, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and maltol (3-hydroxy-2-methyl-4-pyrone), were investigated against Staphylococcus aureus and Pseudomonas aeruginosa. In addition, the ability of these 2-hydroxy-4-pyrone derivatives in preventing and eradicating S. aureus and P. aeruginosa biofilms through the enhancement of the efficacy of two antibiotics (tobramycin and ciprofloxacin) was explored. The iron binding capacity of the kojic acid and maltol was confirmed by their affinity for iron (III) which was found to be about 90 %, comparable to the regular chelating agent ethylenediaminetetraacetic acid (EDTA, 89 %). The antibiofilm efficacy of 2-hydroxy-4-pyrone derivatives, alone and in combination with antibiotics, was evaluated by measuring the total biomass, metabolic activity, and culturability of biofilm cells. Furthermore, their impact on the membrane integrity of S. aureus biofilm cells was investigated using flow cytometry and epifluorescence microscopy with propidium iodide staining. It was also examined the ability of 2-hydroxy-4-pyrone derivatives and 2-hydroxy-4-pyrone derivate-antibiotic dual-combinations in inhibiting the production of virulence factors (total proteases, lipases, gelatinases and siderophores) by S. aureus. Regarding biofilm formation, the results showed that 2-hydroxy-4-pyrone derivatives alone reduced the metabolic activity of S. aureus biofilm cells by over 40 %. When combined with tobramycin, a 2-log (CFU cm-2) reduction in S. aureus biofilm cells was observed. Moreover, the combination of maltol and kojic acid with ciprofloxacin prevented P. aeruginosa biomass production by 60 %, compared to 36 % with ciprofloxacin alone. In pre-established S. aureus and P. aeruginosa biofilms, selected compounds reduced the metabolic activity by over 75 %, and a 3-log (CFU cm-2) reduction in the culturability of biofilm cells was noted when kojic acid and maltol were combined with antibiotics. Moreover, 2-hydroxy-4-pyrone derivatives alone and in combination with tobramycin, damaged the cell membranes of pre-established biofilms and completely inhibited total proteases production. Despite the increasing of reactive oxygen species production caused by the cellular treatment of maltol, both 2-hydroxy-4-pyrone derivatives showed good safe profile when tested in human hepatocarcinoma (HepG2) cells. The pre-treatment of HepG2 cells with both compounds was crucial to prevent the cellular damage caused by iron (III). This study demonstrates for the first time that the selected 2-hydroxy-4-pyrone derivatives significantly enhance the antibiofilm activity of tested antibiotics against S. aureus and P. aeruginosa, highlighting their potential as antibiotic adjuvants in preventing and eradicating biofilm-related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Joana Moreira
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
14
|
Sceglovs A, Skadins I, Chitto M, Kroica J, Salma-Ancane K. Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers. Front Microbiol 2025; 16:1526250. [PMID: 39963493 PMCID: PMC11830819 DOI: 10.3389/fmicb.2025.1526250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
The global crisis of antimicrobial resistance (AMR) is escalating due to the misuse and overuse of antibiotics, the slow development of new therapies, and the rise of multidrug-resistant (MDR) infections. Traditional antibiotic treatments face limitations, including the development of resistance, disruption of the microbiota, adverse side effects, and environmental impact, emphasizing the urgent need for innovative alternative antibacterial strategies. This review critically examines naturally derived biopolymers with intrinsic (essential feature) antibacterial properties as a sustainable, next-generation alternative to traditional antibiotics. These biopolymers may address bacterial resistance uniquely by disrupting bacterial membranes rather than cellular functions, potentially reducing microbiota interference. Through a comparative analysis of the mechanisms and applications of antibiotics and antibacterial naturally derived biopolymers, this review highlights the potential of such biopolymers to address AMR while supporting human and environmental health.
Collapse
Affiliation(s)
- Artemijs Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | | | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Kristine Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
15
|
Miguel Libanori MC, Gomes Dos Santos G, Souza AP, da Silva Costa D, Saldaña-Serrano M, Ferreira MB, de Araújo Pereira Junior J, Bellettini F, Pereira Dutra SA, Martins ML, Owatari MS, Pedreira Mouriño JL. Anti-inflammatory, immunostimulant and antimicrobial properties of tannic acid in the diet of Oreochromis niloticus infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110119. [PMID: 39798627 DOI: 10.1016/j.fsi.2025.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The study aimed to assess the impact of dietary supplementation with tannic acid on the growth, health, and survival of Oreochromis niloticus following exposure to Aeromonas hydrophila. A total of 320 fish were divided into 16 tanks and assigned to four treatment groups: feed with 0.2 % tannic acid (TA0.2 %), 0.4 % tannic acid (TA0.4 %), 0.8 % tannic acid (TA0.8 %), or no tannic acid (Control0%), with each treatment replicated four times, over a 50-day period. At the end of the 50-day period, biological samples were collected from the fish, which were then intraperitoneally injected with A. hydrophila. No significant differences in growth performance were detected between treatments. As expected, levels of total leukocytes, lymphocytes, monocytes, hemoglobin, and mean corpuscular hemoglobin concentration (MCHC) were notably higher in the blood of the fish after infection, regardless of the treatment received. During both the pre- and post-infection periods, monocytes were more abundant in the TA0.2 % and TA0.8 % treatments compared to the TA0.4 % treatment. Additionally, there was a significant interaction between the factors affecting thrombocytes, neutrophils, basophils, hemoglobin, and MCHC. Thrombocytosis and neutrophilia were significantly greater in the TA0.8 % treatment pre-infection than in the post-infection and control group. Conversely, a higher number of basophils were observed in the post-infection period in the TA0.8 % treatment group compared to the pre-infection period. Total plasma protein levels decreased significantly in the post-infection period, regardless of tannic acid supplementation levels, while immunoglobulin levels increased after exposure to A. hydrophila. Histological analyses revealed a significant increase in the perimeter and number of intestinal villi in the TA0.4 % treatment group before infection. The number of goblet cells also increased in the control group (0 %), TA0.4 %, and TA0.8 % before infection. In splenic tissue, the TA0.4 % treatment resulted in a reduction in eosinophilic and mononuclear infiltrates, as well as decreased congestion and vacuolation. Hemosiderin levels were lower in the TA0.4 % and TA0.2 % treatment groups. In the liver, lymphocytic infiltrates were reduced in the TA0.2 % and TA0.4 % treatment groups, and portal vein congestion was decreased in the TA0.2 % post-infection and TA0.4 % pre-infection groups. Post-infection survival rates were significantly higher (p < 0.05) in the TA0.4 % treatment group (91 %) compared to the TA0.8 % treatment group (85 %) and the control group (71 %). The results of the present study show that tannic acid has a positive effect on the immune system of Nile tilapia. This is supported by improvements in innate immunity in the blood, as well as the antimicrobial and anti-inflammatory effects seen in histological analyses. Therefore, it is suggested to use a 0.4 % tannic acid dose for dietary supplementation of Nile tilapia, along with further studies on the potential benefits of this food additive for tilapia.
Collapse
Affiliation(s)
- Maria Clara Miguel Libanori
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Gracienhe Gomes Dos Santos
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Ana Paula Souza
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Domickson da Silva Costa
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Miguel Saldaña-Serrano
- Laboratory of Aquatic Contamination Biomarkers and Immunochemistry (LABCAI), Department of Biochemistry, UFSC, Rua João Pio Duarte Silva 241, 88037-000, Florianópolis, SC, Brazil.
| | - Matheus Berlofa Ferreira
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Jucimauro de Araújo Pereira Junior
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Frank Bellettini
- Laboratory of Marine Shrimps (LCM), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Scheila Anelise Pereira Dutra
- Laboratory of Marine Shrimps (LCM), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Maurício Laterça Martins
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| | - Marco Shizuo Owatari
- Laboratory of Algae Cultivation, Aquaculture Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - José Luiz Pedreira Mouriño
- Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil.
| |
Collapse
|
16
|
Tran TNT, Tran QM, Le NHT. Optimization of Piper betle L. extraction under ultrasound and its effects on chitosan/polyvinyl alcohol film properties for wound dressing. Int J Biol Macromol 2025; 289:138768. [PMID: 39675616 DOI: 10.1016/j.ijbiomac.2024.138768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This study aimed to prepare Piper betle L. extract-load chitosan/polyvinyl alcohol (CS/PVA) film potential for wound dressing and investigate the effects of PLE and PLE-loading methods on physicochemical and biological properties of CS/PVA films. First, Piper betle L. extract (PLE) was optimized using ultrasonication and the response surface methodology employed the Box-Behnken design to maximize total phenolic content (TPC), total flavonoid content (TFC), and natural antioxidant activity. The optimal ultrasonic conditions resulting in an extract yield of 17.466 %, TPC of 261.904 mg GA/g, TFC of 148.726 mg Q/g, and IC50 of 53.100 mg/L were achieved with a sonication time of 3.958 min, power of 30.548 W, and duty cycle of 84.576 % using water as the green solvent. The systematic analysis explored the effects of extraction duration, power, and pulse mode providing valuable insights into novel extraction techniques for potential pharmaceutical applications. Subsequently, PLE was incorporated into a CS/PVA biocomposite film using two loading methods: direct mixing and immersion. The study revealed that the immersion method offers several advantages related to the physicochemical and biological properties of the PLE-treated CS/PVA film. These advantages include improved PLE bioavailability (with PLE releasing 81.42 ± 2.44 % over 24 h, 8.6 times higher than the direct mixing method), removal of excess acetic acid from the manufacturing process of CS/PVA film, which causes cell cytotoxicity (L929 cell viability of 70.47 ± 2.18 %), enhanced tensile strength of 1.19 times greater than the original CS/PVA film, and efficient exudate absorption (allowing appropriate water vapor transmission at a rate of 2477.00 ± 35.39 g/m2·day). The results show the prepared PLE-treated CS/PVA film is a potential candidate for wound dressing, and the immersion method represents an advanced drug-loading method, especially for medicinal herbs on CS/PVA thin film surfaces.
Collapse
Affiliation(s)
- Thi Ngoc Tran Tran
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 700000, Viet Nam; Viet Nam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Quang Minh Tran
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 700000, Viet Nam; Viet Nam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Ha-Thu Le
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 700000, Viet Nam; Viet Nam National University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
17
|
Barbarossa A, Rosato A, Carocci A, Arpini S, Bosisio S, Pagni L, Piatti D, Spinozzi E, Angeloni S, Sagratini G, Zengin G, Cespi M, Maggi F, Caprioli G. Efficacy of Willow Herb ( Epilobium angustifolium L. and E. parviflorum Schreb.) Crude and Purified Extracts and Oenothein B Against Prostatic Pathogens. Antibiotics (Basel) 2025; 14:117. [PMID: 40001361 PMCID: PMC11851509 DOI: 10.3390/antibiotics14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Plants species of the Epilobium genus are traditionally used to treat prostatitis and other urinary tract disorders and are particularly rich in ellagitannins and flavonol 3-O-glycosides. The aim of this work was to evaluate the inhibitory activity of different extracts from E. angustifolium L. and E. parviflorum Schreb. and their major bioactive compound, oenothein B, against a panel of Gram-positive (Enterococcus faecalis ATCC 29212, Enterococcus faecalis BS, Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 29213, and Staphylococcus aureus ATCC 43300) and Gram-negative (Escherichia coli ATCC 25922, Escherichia coli ATCC 35218, Escherichia coli BS, Klebsiella pneumoniae ATCC 13883, Klebsiella pneumoniae ATCC 70063, Klebsiella pneumoniae BS, Proteus mirabilis BS, and Pseudomonas aeruginosa ATCC 27853) bacteria responsible for prostatitis. Methods: Aqueous and ethanolic raw extracts were prepared, and the latter were further purified using the resin AmberliteTM XAD7HP. Then, an HPLC-MS/MS method was developed for the quantification of the marker bioactives and their levels were correlated with the antimicrobial activity. Results: Purified extracts were richer in polyphenols (330.80 and 367.66 mg/g of dry extract for E. angustifolium and E. parvifolium, respectively) than the raw extracts. Oenothein B was the predominant compound in all the extracts (119.98 to 327.57 mg/g of dry extract). The minimum inhibitory concentrations (MICs) in the range of µg/mL indicated significant antibacterial activity, which was higher for the purified extracts and oenothein B (MIC values from 4 to 16 and 8 to 1024 µg/mL on Gram-positive and Gram-negative strains, respectively). Conclusions: These results outline the outstanding potential of E. angustifolium and E. parviflorum extracts and oenothein B as therapeutic alternatives or complementary agents to conventional antibiotic treatments of prostatitis and other urinary tract infections.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.)
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.)
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (A.B.); (A.R.); (A.C.)
| | - Sabrina Arpini
- Indena S.p.A., Via Don Minzoni 6, 20090 Settala, Italy; (S.A.); (S.B.); (L.P.)
| | - Stefania Bosisio
- Indena S.p.A., Via Don Minzoni 6, 20090 Settala, Italy; (S.A.); (S.B.); (L.P.)
| | - Luca Pagni
- Indena S.p.A., Via Don Minzoni 6, 20090 Settala, Italy; (S.A.); (S.B.); (L.P.)
| | - Diletta Piatti
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| | - Simone Angeloni
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| | - Gianni Sagratini
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Marco Cespi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle carceri, 62032 Camerino, Italy; (D.P.); (E.S.); (S.A.); (G.S.)
| |
Collapse
|
18
|
Ahmadpoor F, Eghbalifam N, Canepa P, Palombo D, Perego P, Ferrari PF. Self-Assembled Nanoflowers from Natural Building Blocks with Antioxidant, Antibacterial, and Antibiofilm Properties. ACS APPLIED BIO MATERIALS 2025; 8:152-165. [PMID: 39761423 DOI: 10.1021/acsabm.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Polyphenols, natural compounds abundant in phenolic structures, have received widespread attention due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable for biomedical applications. However, the green synthesis of polyphenol-based materials with economical and environmentally friendly strategies is of great significance. In this study, a multifunctional wound dressing was achieved by introducing polyphenol-based materials of copper phosphate-tannic acid with a flower-like structure (Cu-TA NFs), which show the reactive oxygen species scavenging performance. This strategy endowed the electrospun wound dressing, composed of poly(caprolactone)-coated gum arabic-poly(vinyl alcohol) nanofibers (GPP), with the antibacterial and antibiofilm properties. Our research demonstrates that GPP/Cu-TA NFs are effective against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Furthermore, the developed GPP/Cu-TA NFs showed excellent hemocompatibility and biocompatibility. These results suggest that the synergistic properties of this multifunctional polyphenol platform (GPP/Cu-TA NFs) make it a promising candidate for the further development of wound dressing materials.
Collapse
Affiliation(s)
- Fatemeh Ahmadpoor
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy
| | - Naeimeh Eghbalifam
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-143 Tehran, Iran
| | - Paolo Canepa
- Department of Physics, University of Genoa, via Dodecaneso, 33, 16146 Genoa, Italy
| | - Domenico Palombo
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132 Genoa, Italy
| |
Collapse
|
19
|
Ma J, Huang X, Jin L, Xu Q. Effect of dialdehyde nanocellulose-tannin fillers on antioxidant, antibacterial, mechanical and barrier properties of chitosan films for cherry tomato preservation. Food Chem 2025; 463:141274. [PMID: 39305641 DOI: 10.1016/j.foodchem.2024.141274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 11/14/2024]
Abstract
In this study, bio-based composite films from nanocellulose, tannin and chitosan were fabricated. First, tannin was covalently immobilized onto dialdehyde CNCs (DACNCs) through the nucleophilic reaction to obtain TA-CNCs. TA-CNCs were then added into chitosan matrix as the nanofillers to obtain chitosan-TA-CNC (CS-TA-CNC) films. Compared with pure chitosan film, the water solubility, swelling ratio, water vapor and oxygen barrier properties of CS-TA-CNC films decreased, indicating the improved water-resistant and barrier properties. The composite films exhibited high UV blocking, antioxidant capacity and antimicrobial properties against both E. coli and S. aureus. CS-TA-CNC film with a TA-CNC content of 10 % exhibited the highest tensile strength (77.57 MPa) and toughness (23.51 MJ/m3), 2.23 and 2.5 times higher than that of pure chitosan film, respectively. The composite films extended postharvest life of tomato cherries compared to the pure chitosan film. Films prepared from sustainable bioresources show promising potential for use in active packaging.
Collapse
Affiliation(s)
- Jinzhao Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaodi Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liqiang Jin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
20
|
Barreto-Cruz OT, Henao Zambrano JC, Ospina Barrero MA, Castañeda-Serrano RD. Effects of Tithonia diversifolia Extract as a Feed Additive on Digestibility and Performance of Hair Lambs. Animals (Basel) 2024; 14:3648. [PMID: 39765551 PMCID: PMC11672614 DOI: 10.3390/ani14243648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Animal production requires efficiency, safety and environmental sustainability. Bioactive compounds from tropical plants could modulate ruminal fermentation, providing an alternative method to antibiotic treatment and addressing concerns about antibiotic resistance. In this study, the aim was to determine the effects of Tithonia diversifolia extract (TDE) on performance, intake, digestibility and blood parameters [i.e., glucose, blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT)] in crossbreed sheep. The main biocompounds of the TDE include caffeic acid (CA), quercetin (QCT), luteolin (LT) and apigenin (AP). Experiment 1: An in vitro dry matter digestibility (IVDMD) study was conducted to determine the optimal inclusion levels. The IVDM values were 73.09a, 82.03b, 81.01b, 73.20a and 74.51a for the control, 5, 10, 15 and 20 g/kg for the DM treatments, respectively (R-Sq adj = 0.857). The levels of 5 and 10 g were selected for the in vivo experiment. Experiment 2: Twenty-eight male crossbred hair lambs were assigned to four treatments (n = 7): control, 20 mg monensin/day, 5 g TDE/day and 10 g TDE/day groups. No differences in animal performance were observed, including body weight and feed conversion (p > 0.05). The TDE at 10 g/day improved NDF digestibility) (61.32%) and reduced the ruminal acetate to propionate ratio. The total digestible nutrients (TDN) were higher in 10 g TDE treatment with 66.41% and the lowest acetate production (67.82%) (p = 0.042), and propionate production (21.07%) were observed. The TDE were safe at 5 g and 10 g/day for liver function and exhibited lower BUN levels suggesting an improvement in protein metabolism. TDE extract at 10 g/day (TDE10), showed improvements in total tract digestibility of NDF and reduced the ruminal acetate to propionate ratio. However, due to TDE10 reducing the DM intake, the improvements in digestibility and ruminal fermentation were not reflected in growth performance improvements.
Collapse
Affiliation(s)
- Olga Teresa Barreto-Cruz
- Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Universidad Cooperativa de Colombia, Ibagué 730003, Tolima, Colombia
- Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia
| | - Juan Carlos Henao Zambrano
- Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia
| | - Maria Alejandra Ospina Barrero
- Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Universidad Cooperativa de Colombia, Ibagué 730003, Tolima, Colombia
- Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia
| | | |
Collapse
|
21
|
Zahra NI, Songtipya P, Songtipya L, Prodpran T, Sengsuk T, Utami T. Xyloglucan based edible coating in combination with Borassus flabellifer seed coat extract for extending strawberry postharvest shelf life. Int J Biol Macromol 2024; 285:138288. [PMID: 39631578 DOI: 10.1016/j.ijbiomac.2024.138288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
In this study, xyloglucan (XG) based edible coatings were developed and combined with a bioactive compound, Borassus flabellifer seed coat extract (BFE). The effect of designed edible coatings on the quality of strawberry fruits was investigated over an 8-day storage under ambient conditions. The results revealed the preservation effects in intrinsic properties of coated strawberries that the XG/BFE coated strawberries showed superior maintenance of qualitative parameters over uncoated strawberries, showing delayed weight loss, pH, and total soluble solids, tritratable acidity, retained firmness and lightness, as well as minimized the total color difference at the end of storage. Furthermore, the inclusion of BFE significantly enhanced the antimicrobial properties of developed edible coatings, evidenced by reduced microbial load. These results paved a solid way for designing the active edible XG/BFE coating for maintaining the postharvest quality and extending the shelf life of strawberries under ambient conditions.
Collapse
Affiliation(s)
- Nastiti Isnania Zahra
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Packaging and Materials Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Ponusa Songtipya
- Packaging and Materials Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Ladawan Songtipya
- Packaging and Materials Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Thummanoon Prodpran
- Packaging and Materials Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Theerarat Sengsuk
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Tyas Utami
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
22
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
23
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
24
|
Qin J, Huang X, Xu Q, Jin L. Active polyvinyl alcohol films with enhanced strength, antioxidant and antibacterial properties by incorporating nanocellulose and tannin. Int J Biol Macromol 2024; 283:137873. [PMID: 39566794 DOI: 10.1016/j.ijbiomac.2024.137873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
There is an increasing demand of food packaging materials from sustainable bio- polymers. In this study, tannin-cellulose nanocrystal (TCNCs) fillers were first prepared using dialdehyde cellulose nanocrystal (DACNCs) and tannin through the nucleophilic addition reaction, and then added to PVA matrix as reinforcement fillers to fabricate active food packaging films. FT-IR analysis confirmed the successful reaction between PVA and TCNCs. The incorporation of TCNCs imparted high antibacterial, UV blocking and antioxidant capabilities to the composite films, maximumly achieving a 75 % DPPH free radical scavenging rate while blocking all UV rays. The addition of TCNCs resulted in an increase in water contact angle, alongside decreases in swelling ratio and solubility, indicating the enhanced water resistance. The composite films exhibited a 66.7 % decrease in oxygen permeability (OP) compared to the PVA film, with a slight increase observed in water vapor permeability (WVP). The tensile strength increased from 49.65 MPa to 74.17 MPa by adding 15 % of TCNCs due to the chemical crosslinking between PVA and TCNCs. Wrapping cherry tomatoes with these films prolonged the postharvest life compared to using polyethylene (PE) and pure PVA films. Films derived from sustainable biopolymers show great potential for use in fresh produce packaging.
Collapse
Affiliation(s)
- Juman Qin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaodi Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Liqiang Jin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
25
|
Paié-Ribeiro J, Baptista F, Gomes MJ, Teixeira A, Pinheiro V, Outor-Monteiro D, Barros AN. Exploring the Variability in Phenolic Compounds and Antioxidant Capacity in Olive Oil By-Products: A Path to Sustainable Valorization. Antioxidants (Basel) 2024; 13:1470. [PMID: 39765799 PMCID: PMC11672913 DOI: 10.3390/antiox13121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
The olive oil industry generates large volumes of by-products, creating notable environmental and economic concerns. Among these, olive cake (OC)-a primary by-product of olive oil extraction-stands out due to its high content of bioactive compounds and potential for value-added recycling. This study focused on characterizing six OC samples from the Trás-os-Montes and Alto Douro regions, collected at different processing times and mills. The samples included two derived from pressing (COC), two from two-phase centrifugation (TPOC; one partially pitted and one dehydrated), and two exhausted OC (EOC) samples. Fundamental analyses assessed total phenols, ortho-diphenols, flavonoids, antioxidant capacity, and tannin content. Results revealed significant variation (p < 0.05) in phenolic composition, namely ortho-diphenols and flavonoid levels among the samples. EOC 2 exhibited the highest concentrations (19.61, 21.82, and 20.12 mg CAT/g, respectively), while COC 2 had the lowest (5.08, 5.08, and 2.76 mg GA/g, respectively). This correlated with elevated antioxidant activity in EOC 2, as measured by FRAP, DPPH, and ABTS assays (129.98, 78.00, and 56.65 μmol Trolox/g). In contrast, COC 1 and COC 2 displayed the lowest antioxidant activities (32.61 μmol Trolox/g in FRAP and 17.24 and 18.98 μmol Trolox/g in DPPH). Tannin analysis showed the highest total tannin content in the dehydrated and pitted OC samples (250.31 and 240.89 mg CAT/100 g), with COC 2 showing the lowest (88.17 mg CAT/100 g). Condensed tannin content varied significantly, with EOC 2 presenting the highest level (328.17 mg CAT/100 g) and COC 2 the lowest one (20.56 mg CAT/100 g). Through HPLC-PDA-MS, 22 compounds were identified, with luteolin and verbascoside being particularly prevalent. This in-depth characterization supports the potential valorization of olive by-products, advancing sustainability and promoting a circular economy in the olive oil sector.
Collapse
Affiliation(s)
- Jessica Paié-Ribeiro
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria José Gomes
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AL4animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Alfredo Teixeira
- Mountain Research Center (CIMO), Polytechnic Instituto of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Victor Pinheiro
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AL4animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Divanildo Outor-Monteiro
- Animal Science Department, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.J.G.); (V.P.); (D.O.-M.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- AL4animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| |
Collapse
|
26
|
Valentin BC, Salvius BA, Jean Baptiste LS. Antibacterial and Antioxidant Activities, Toxicity, and Physicochemical Properties of Crassocephalum montuosum (S Moore) Milne-Redh and Crassocephalum picridifolium (DC) S Moore. Adv Pharmacol Pharm Sci 2024; 2024:9954073. [PMID: 39640498 PMCID: PMC11620814 DOI: 10.1155/adpp/9954073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
In traditional Congolese medicine, the plants Crassocephalum montuosum (CrasMon) and Crassocephalum picridifolium (CrasPic) are used to treat bacterial gastroenteritis. In the present study, the antibacterial and antioxidant activities as well as the acute and subacute toxicity of organic extracts from the whole plant of the two investigated taxa were evaluated. Physicochemical parameters were also determined, and total phenolics, flavonoids, and tannins were investigated and assayed. The antibacterial and antioxidant activities of the plant extracts were evaluated using disc diffusion, tube macrodilution, and DPPH tests. Conversely, traditional solution reactions, gravimetric tests, and spectrophotometric tests were used to generate physicochemical profiles, identify secondary metabolite groups, and perform microdilution and DPPH tests to evaluate the antibacterial and antioxidant activities, respectively. OECD tests were adapted to assess the acute and subacute toxicity. All the extracts showed antibacterial activity against E. coli and S. typhi strains with the diameter zone of inhibition (DZI) ranging from 12 to 23 mm and the minimum inhibitory concentration (MIC): 15.625-125 μg·mL-1. The methanolic extract of CrasPic showed the most pronounced activity with a DZI of 21-23 mm and MIC of 15.625-62.5 μg·mL-1. All extracts showed high antioxidant activity with IC50 (half maximal inhibitory concentration) ranging from 11.6 to 21.8 μg·mL-1, with the methanolic extract of CrasMon showing the most pronounced activity. Both plants contain a variety of phytochemicals including coumarins, quinones, flavonoids, phenols, saponins, tannins, and terpenoids. The methanolic extract of CrasPic exhibits the highest content of total phenolics (300 mg·GAE·g-1), flavonoids (56 mg·QE·g-1), and tannins (155 mg·GAE·g-1). These extracts have a median lethal dose (LD50) > 5000 mg·kg-1 and no signs of toxicity at 200 mg·kg-1 after 30 days of oral administration to Cavia porcellus. The total ash content was determined to be 14.2% and 15.8% (on a dry weight basis), with the ash insoluble in hydrochloric acid exhibiting a range of 4.04%-5.03%. CrasMon and CrasPic have been demonstrated to exhibit a good antibacterial and antioxidant activities, at least in part, due to the presence of phenolic compounds. These activities may provide a rationale for their use in traditional Congolese medicine against gastroenteritis.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, av. Kato, Commune of Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Bakari Amuri Salvius
- Department of Pharmacology, Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, av Kato, Commune of Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Lumbu Simbi Jean Baptiste
- Department of Chemistry, Faculty of Sciences–University of Lubumbashi (UNILU), N°1 Maternity Avenue, Commune of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| |
Collapse
|
27
|
Alagna A, Giacalone VM, Zenone A, Martinez M, D’Anna G, Buffa G, Cavalca CJ, Poli A, Varese GC, Prigione VP, Badalamenti F. Tannins and copper sulphate as antimicrobial agents to prevent contamination of Posidonia oceanica seedling culture for restoration purposes. FRONTIERS IN PLANT SCIENCE 2024; 15:1433358. [PMID: 39654965 PMCID: PMC11625593 DOI: 10.3389/fpls.2024.1433358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Seed-based restoration methods are increasingly recognized as a relevant tool contributing to halt and reverse the loss of seagrass meadows while providing genetic and evolutionary benefit for the conservation of these habitats. Ad-hoc protocols aimed at maximizing the survival of plantlets obtained from seeds in cultivation systems are therefore required. Previous trials of seedling culture of Posidonia oceanica, the dominant seagrass of the Mediterranean Sea, recorded up to 40% loss due to mould development. In this study we aim to (i) identify the putative causal agents of seed decay and (ii) test the efficacy of copper sulphate (0.2 and 2 ppm) and of tannin-based products derived from chestnut, tara and quebracho in reducing seed and seedling decay, while assessing possible phytotoxic effects on plant development. Halophytophthora lusitanica, H. thermoambigua and a putative new Halophytophtora species were identified as possible causal agents of seed loss. The antimicrobial agents (copper and tannins) reduced seed contamination by 20%, although copper sulphate at 2 ppm strongly inhibited the root growth. Among tannins, chestnut and tara reduced seeds germination by up to 75% and decreased shoot and root development, while quebracho showed a less severe phytotoxic effect. The use of copper sulphate at 0.2 ppm is therefore recommended to prevent P. oceanica seedling loss in culture facilities since it reduces seed contamination with no phytotoxic effects. Our results contribute to improving the seedling culture of one the key species of the Mediterranean Sea, increasing propagule availability for restoration purposes.
Collapse
Affiliation(s)
- Adriana Alagna
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Palermo, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - Vincenzo Maximiliano Giacalone
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic impacts and Sustainability in Marine Environment, IAS-CNR, Capo Granitola, Italy
| | - Arturo Zenone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Palermo, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Palermo, Italy
| | - Marco Martinez
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Palermo, Italy
| | - Giovanni D’Anna
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Castellammare del Golfo, Italy
| | - Gaspare Buffa
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic impacts and Sustainability in Marine Environment, IAS-CNR, Capo Granitola, Italy
| | - Caterina Jessica Cavalca
- Institute for the Anthropic impacts and Sustainability in Marine Environment, IAS-CNR, Capo Granitola, Italy
| | - Anna Poli
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Life Sciences and Systems Biology, University of Torino, Mycotheca Universitatis Taurinensis (MUT), Torino, Italy
| | - Giovanna Cristina Varese
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Life Sciences and Systems Biology, University of Torino, Mycotheca Universitatis Taurinensis (MUT), Torino, Italy
| | - Valeria Paola Prigione
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Life Sciences and Systems Biology, University of Torino, Mycotheca Universitatis Taurinensis (MUT), Torino, Italy
| | - Fabio Badalamenti
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Institute for the Anthropic Impacts and Sustainability in Marine Environment, IAS-CNR, Palermo, Italy
| |
Collapse
|
28
|
Patil TV, Jin H, Dutta SD, Aacharya R, Chen K, Ganguly K, Randhawa A, Lim KT. Zn@TA assisted dual cross-linked 3D printable glycol grafted chitosan hydrogels for robust antibiofilm and wound healing. Carbohydr Polym 2024; 344:122522. [PMID: 39218566 DOI: 10.1016/j.carbpol.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Rapid regeneration of the injured tissue or organs is necessary to achieve the usual functionalities of the damaged parts. However, bacterial infections delay the regeneration process, a severe challenge in the personalized healthcare sector. To overcome these challenges, 3D-printable multifunctional hydrogels of Zn/tannic acid-reinforced glycol functionalized chitosan for rapid wound healing were developed. Polyphenol strengthened intermolecular connections, while glutaraldehyde stabilized 3D-printed structures. The hydrogel exhibited enhanced viscoelasticity (G'; 1.96 × 104 Pa) and adhesiveness (210 kPa). The dual-crosslinked scaffolds showed remarkable antibacterial activity against Bacillus subtilis (∼81 %) and Escherichia coli (92.75 %). The hydrogels showed no adverse effects on human dermal fibroblasts (HDFs) and macrophages (RAW 264.7), indicating their superior biocompatibility. The Zn/TA-reinforced hydrogels accelerate M2 polarization of macrophages through the activation of anti-inflammatory transcription factors (Arg-1, VEGF, CD163, and IL-10), suggesting better immunomodulatory effects, which is favorable for rapid wound regeneration. Higher collagen deposition and rapid re-epithelialization occurred in scaffold-treated rat groups vis-à-vis controls, demonstrating superior wound healing. Taken together, the developed multifunctional hydrogels have great potential for rapidly regenerating bacteria-infected wounds in the personalized healthcare sector.
Collapse
Affiliation(s)
- Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Hexiu Jin
- Department of Plastic and Traumatic Surgery, Capital Medical University, Beijing-10096, China
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California Davis, Sacramento, California-95817, United States
| | - Rumi Aacharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Kehan Chen
- Department of Plastic and Traumatic Surgery, Capital Medical University, Beijing-10096, China
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon-24341, Republic of Korea.
| |
Collapse
|
29
|
Michalak M, Stryjecka M, Żarnowiec P, Zagórska-Dziok M, Kiełtyka-Dadasiewicz A. Chemical Composition of Extracts from Various Parts of Feverfew ( Tanacetum parthenium L.) and Their Antioxidant, Protective, and Antimicrobial Activities. Int J Mol Sci 2024; 25:12179. [PMID: 39596244 PMCID: PMC11594288 DOI: 10.3390/ijms252212179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Tanacetum parthenium is a medicinal plant from the Asteraceae family that can be applied externally in the case of various skin diseases. The aim of the study was to perform a phytochemical analysis of hydroethanolic extracts from the aerial parts (herb), flower heads, and leaves of feverfew and to assess their biological properties. Hydrodistilled oils were analyzed using GC-MS. The chemical composition of the extracts was estimated using spectrophotometry and the HPLC method. Moreover, the extracts were evaluated to determine their antioxidant potential using DPPH and FRAP and measuring the intracellular level of ROS. The cytotoxicity of extracts toward keratinocytes and fibroblasts was also analyzed, as well as their antimicrobial properties against 12 microorganisms. The results of the research revealed that chrysanthenone and α-thujone were the dominant volatile compounds in the essential oil from the flowers, while camphor, trans-chrysanthenyl acetate, and camphene were predominant in the essential oil from the leaves and herb. The results of HPLC showed that the major polyphenol compounds present in the hydroethanolic extracts from various parts of T. parthenium were 3,5-dicaffeoyl-quinic acid, chlorogenic acid, and 3,4-dicaffeoyl-quinic acid. The extract from feverfew flowers was shown to have the highest content of total polyphenols, flavonoids, and phenolic acids, as well as the highest antioxidant potential. In turn, the herb extract had the highest content of condensed tannins and terpenoids and exhibited the most effective antimicrobial properties against the 12 bacterial and fungal strains. Moreover, the hydroethanolic extracts from different parts of T. parthenium plants were shown to have a potent protective effect on skin cells. The present study supports the potential applications of Tanacetum parthenium in the cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Pharmaceutical Sciences, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Małgorzata Stryjecka
- Department of Dietetics, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
- Garden of Cosmetics Plants and Raw Materials, Research and Science Innovation Centre, Tarasowa 4/96, 20-819 Lublin, Poland;
| | - Paulina Żarnowiec
- Department of Microbiology, Faculty of Natural Sciences, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland;
| | - Anna Kiełtyka-Dadasiewicz
- Garden of Cosmetics Plants and Raw Materials, Research and Science Innovation Centre, Tarasowa 4/96, 20-819 Lublin, Poland;
- Department of Plant Production Technology and Commodity Sciences, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
30
|
Kim HS, Kim M, Kim Y, Shin HH, Lee SW, Ryu JH. Antimicrobial adhesive self-healing hydrogels for efficient dental biofilm removal from periodontal tissue. Dent Mater 2024; 40:1970-1980. [PMID: 39322446 DOI: 10.1016/j.dental.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES Oral biofilms, including pathogens such as Porphyromonas gingivalis, are involved in the initiation and progression of various periodontal diseases. However, the treatment of these diseases is hindered by the limited efficacy of many antimicrobial materials in removing biofilms under the harsh conditions of the oral cavity. Our objective is to develop a gel-type antimicrobial agent with optimal physicochemical properties, strong tissue adhesion, prolonged antimicrobial activity, and biocompatibility to serve as an adjunctive treatment for periodontal diseases. METHODS Phenylboronic acid-conjugated alginate (Alg-PBA) was synthesized using a carbodiimide coupling agent. Alg-PBA was then combined with tannic acid (TA) to create an Alg-PBA/TA hydrogel. The composition of the hydrogel was optimized to enhance its mechanical strength and tissue adhesiveness. Additionally, the hydrogel's self-healing ability, erosion and release profile, biocompatibility, and antimicrobial activity against P. gingivalis were thoroughly characterized. RESULTS The Alg-PBA/TA hydrogels, with a final concentration of 5 wt% TA, exhibited both mechanical properties comparable to conventional Minocycline gel and strong tissue adhesiveness. In contrast, the Minocycline gel demonstrated negligible tissue adhesion. The Alg-PBA/TA hydrogel also retained its rheological properties under repeated 5 kPa stress owing to its self-healing capability, whereas the Minocycline gel showed irreversible changes in rheology after just one stress cycle. Additionally, Alg-PBA/TA hydrogels displayed a sustained erosion and TA release profile with minimal impact on the surrounding pH. Additionally, the hydrogels exhibited potent antimicrobial activity against P. gingivalis, effectively eliminating its biofilm without compromising the viability of MG-63 cells. SIGNIFICANCE The Alg-PBA/TA hydrogel demonstrates an optimal combination of mechanical strength, self-healing ability, tissue adhesiveness, excellent biocompatibility, and sustained antimicrobial activity against P. gingivalis. These attributes make it superior to conventional Minocycline gel. Thus, the Alg-PBA/TA hydrogel is a promising antiseptic candidate for adjunctive treatment of various periodontal diseases.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Youngjoon Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Smart Convergence Materials Analysis Center, Wonkwang Univeristy, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
31
|
Bátora D, Dienes-Nagy Á, Zeng L, Gerber CE, Fischer JP, Lochner M, Gertsch J. Hypersensitive quantification of major astringency markers in food and wine by substoichiometric quenching of silicon-rhodamine conjugates. Food Chem X 2024; 23:101592. [PMID: 39040149 PMCID: PMC11261284 DOI: 10.1016/j.fochx.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tannins are chemically diverse polyphenols in plant-derived products that not only show diverse biological activities but also play a crucial role in determining the sensory attributes of food and beverages. Therefore, their accurate and cost-effective quantification is essential. Here, we identified a novel fluorescence quenching mechanism of different synthetic rhodamine fluorophores, with a high selectivity towards tannic acid (TA) and catechin-3-gallate (C3G) compared to a structurally diverse panel of tannins and polyphenols. Specific chemical conjugates of silicon-rhodamine with alkyl linkers attached to bulky apolar moieties had a limit of detection near 500 pM and a linear range spanning 5-100 nM for TA. We validated the assay on 18 distinct red wine samples, which showed high linearity (R2 = 0.92) with methylcellulose precipitation with no interference from anthocyanins. In conclusion, a novel assay was developed and validated that allows the sensitive and selective quantification of major astringency markers abundant in food and beverages.
Collapse
Affiliation(s)
- Daniel Bátora
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Liming Zeng
- University of Applied Sciences and Arts of Western Switzerland (HES-SO), Changins Viticulture and Enology College, 1260 Nyon, Switzerland
| | - Christian E. Gerber
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jérôme P. Fischer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
32
|
Xiong M, Chen Y, Hu HJ, Cheng H, Li WX, Tang S, Hu X, Lan LM, Zhang H, Jiang GB. Multifunctional pH-responsive hydrogel dressings based on carboxymethyl chitosan: Synthesis, characterization fostering the wound healing. Carbohydr Polym 2024; 341:122348. [PMID: 38876718 DOI: 10.1016/j.carbpol.2024.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic abuse is increasing the present rate of drug-resistant bacterial wound infections, producing a significant healthcare burden globally. Herein, we prepared a pH-responsive CMCS/PVP/TA (CPT) multifunctional hydrogel dressing by embedding the natural plant extract TA as a nonantibiotic and cross-linking agent in carboxymethyl chitosan (CMCS) and polyvinylpyrrolidone (PVP) to prompt wound healing. The CPT hydrogel demonstrated excellent self-healing, self-adaptive, and adhesion properties to match different wound requirements. Importantly, this hydrogel showed pH sensitivity and exhibited good activity against resistant bacteria and antioxidant activity by releasing TA in case of bacterial infection (alkaline). Furthermore, the CPT hydrogel exhibited coagulant ability and could rapidly stop bleeding within 30 s. The biocompatible hydrogel effectively accelerated wound healing in a full-thickness skin defect model by thickening granulation tissue, increasing collagen deposition, vascular proliferation, and M2-type macrophage polarization. In conclusion, this study demonstrates that multifunctional CPT hydrogel offers a candidate material with potential applications for infected skin wound healing.
Collapse
Affiliation(s)
- Mingxin Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hao Cheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shipeng Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Min Lan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongyan Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Batovska D, Inbar M. Beyond the Nut: Pistacia Leaves as Natural Food Preservatives. Foods 2024; 13:3138. [PMID: 39410171 PMCID: PMC11475244 DOI: 10.3390/foods13193138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The pistachio tree (Pistacia vera) is globally renowned for its nutritious nuts, while its leaves remain an underutilized source of chemicals with significant potential value as food preservatives. Similar value may be found in the leaves of other wild Pistacia species common in Central Asia, the Levant, and around the Mediterranean. Some species' leaves have been used as natural preservatives, demonstrating their effectiveness and highlighting their rich bioactive components. This review investigates the antioxidant and antimicrobial properties of Pistacia leaves, comparing both cultivated and wild species. A comprehensive search was performed across several scientific databases, including PubMed, Scopus, Web of Science, and Google Scholar, utilizing a combination of keywords related to Pistacia species and their bioactive compounds. The inclusion criteria focused on articles published in English from 2017 till the end of June 2024, analyzing the antioxidant and antimicrobial activities of Pistacia leaves and employing relevant extraction methods. A total of 71 literature sources were included, covering species such as P. vera, P. atlantica, P. terebinthus, and others sourced from countries such as Iran, Turkey, and Italy. This review found that Pistacia leaves are rich in polyphenolic compounds and exhibit robust antioxidant and antimicrobial properties, with certain wild species outperforming P. vera, suggesting species-specific traits that enhance their preservative potential. The major findings indicate that extracts from wild species exhibit superior bioactivity, which could be harnessed for food preservation. These insights underscore the promising role of Pistacia leaves as natural food preservatives, with further research needed to address challenges in extraction and application. Exploring their synergistic effects with other preservatives could lead to innovative solutions in food preservation while fostering local economic growth.
Collapse
Affiliation(s)
- Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Moshe Inbar
- Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
34
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Kaczmarek-Szczepańska B, Zasada L, D'Amora U, Pałubicka A, Michno A, Ronowska A, Wekwejt M. Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46102-46112. [PMID: 39163280 PMCID: PMC11378156 DOI: 10.1021/acsami.4c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Wound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing and address several problems plaguing partially healed injuries, including severe inflammation, scarring, and wound infection. Naturally derived compounds offer unique advantages such as minimal toxicity, cost-effectiveness, and outstanding biocompatibility along with potential anti-inflammatory and antimicrobial activity. Herein, the main driving idea of the work was the design and development of konjac glucomannan d-glucono-1,5-lactone (KG) films bioactivated by tannic acid and d-glucono-1,5-lactone (GL) addition. Our analysis, using attenuated total reflectance-Fourier transform infrared, atomic force microscopy, and surface energy measurements demonstrated that tannic acid (TA) clearly interacted with the KG matrix, acting as its cross-linker, whereas GL was embedded within the polymer structure. All developed films maintained a moist environment, which represents a pivotal property for wound dressing. Hemocompatibility experiments showed that all tested films exhibited no hemolytic impact on human erythrocytes. Moreover, the presence of TA and GL enhanced the metabolic and energetic activity in human dermal fibroblasts, as indicated by the MTT assay, showing results exceeding 150%. Finally, all films demonstrated high antibacterial properties as they significantly reduced the multiplication rate of both Staphylococcus aureus and Escherichia coli in bacterial broth and created the inhibition zones for S. aureus in agar plates. These remarkable outcomes make the KG/TA/GL film promising candidates for wound healing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d'OLtremare Pad. 20, 80125 Naples, Italy
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
- Laboratory for Biomaterials and Bioengineering (CRC-Tier I), Dept Min-Met-Materials Eng & Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| |
Collapse
|
36
|
Sun Q, Yang Z, Xu R, Li R, Li Y, Wang F, Li Y. Smart responsive staple for dynamic promotion of anastomotic stoma healing. Bioact Mater 2024; 39:630-642. [PMID: 38883312 PMCID: PMC11180322 DOI: 10.1016/j.bioactmat.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging. Here, we develop a smart responsive anastomotic staple (Ti-OH-MC) by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating. This design achieves dynamic sequential regulation of antibacterial, anti-inflammatory, and cell proliferation properties. During the inflammatory phase of the anastomotic stoma, our Ti-OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties, together with immune microenvironment regulation function. At the same time, as the healing progresses, the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple, which promotes cell adhesion and proliferation during the later proliferative and remodeling phases. As a result, our Ti-OH-MC exceeds the properties of clinically used titanium anastomotic staple, and can effectively promote the healing. The staple's preparation strategy is simple and biocompatible, promising for industrialisation and clinical application. This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials.
Collapse
Affiliation(s)
- Qi Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruijun Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Renjie Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yang Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Yong Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
37
|
Huang J, Zaynab M, Sharif Y, Khan J, Al-Yahyai R, Sadder M, Ali M, Alarab SR, Li S. Tannins as antimicrobial agents: Understanding toxic effects on pathogens. Toxicon 2024; 247:107812. [PMID: 38908527 DOI: 10.1016/j.toxicon.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
"Tannins" are compounds that belong to a group of secondary metabolites found in plants. They have a polyphenolic nature and exhibit active actions as first line defenses against invading pathogens. Several studies have demonstrated the multiple activities of tannins, highlighting their effectiveness as broad-spectrum antimicrobial agents. Tannins have reported as antibacterial, antifungal, and antiviral compounds by preventing enzymatic activities and inhibiting the synthesis of nucleic acids. Additionally, tannins primarily strengthen the plant cell wall, making it almost impenetrable to harmful pathogens. Most tannins are synthesized via the phenylpropanoid pathway to become secondary metabolites. Increased uptake of tannins has the potential to provide permanent immunity to subsequent infections by strengthening cell walls and producing antimicrobial compounds. Tannins also demonstrate a synergistic response with other defense-related molecules, such as phytoalexins and pathogenesis-related proteins, including antimicrobial peptides. Studying the mechanisms mediated by tannins on pathogen behaviors would be beneficial in stimulating plant defense against pathogens. This understanding could help explain the occurrence of diseases and outbreaks and enable potential mitigation in both natural and agricultural ecosystems.
Collapse
Affiliation(s)
- Jianzi Huang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Madiha Zaynab
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jallat Khan
- Institute of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Pakistan
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Oman
| | - Monther Sadder
- School of Agriculture University of Jordan, Amman, 11942, Jordan
| | - Munawar Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saber R Alarab
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Hałasa R, Mizerska U, Kula M, Krauze-Baranowska M. Screening Tests for the Interaction of Rubus idaeus and Rubus occidentalis Extracts with Antibiotics against Gram-Positive and Gram-Negative Human Pathogens. Antibiotics (Basel) 2024; 13:653. [PMID: 39061335 PMCID: PMC11274272 DOI: 10.3390/antibiotics13070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
WHO (World Health Organization) reports from recent years warn about the growing number of antibiotic-resistant bacterial strains. Therefore, there is an urgent need to constantly search for new substances effective in the fight against microorganisms. Plants are a rich source of chemical compounds with antibacterial properties. These compounds, classified as secondary metabolites, may act independently or support the action of currently used antibiotics. Due to the large number of metabolites isolated from the plant kingdom and new plant species being studied, there is a need to develop new strategies/techniques or modifications of currently applied methods that can be used to select plant extracts or chemical compounds isolated from them that enter into positive, synergistic interactions with currently used antibiotics. One such method is the dual-disk synergy test (DDST). It involves the diffusion of active compounds in the agar environment and influencing the growth of microorganisms grown on it. The method was used to assess the interaction of extracts from the fruit and shoots of some cultivated varieties of Rubus idaeus and Rubus occidentalis with selected antibiotics. The research was conducted on strains of bacteria pathogenic to humans, including Staphylococcus aureus, Corynebacterium diphtheriae, Escherichia coli, Pseudomonas aeruginosa, Helicobacter pylori, and Candida albicans, showing synergy, antagonism, or lack of interaction of the tested substances-plant extract and antibiotic. As a result, it was found that the diffusion method is useful in screening tests to assess the impact of antibiotic-herbal substance interactions on Gram-positive and Gram-negative microorganisms.
Collapse
Affiliation(s)
- Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Urszula Mizerska
- Department of Polymeric Nanomaterials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Marta Kula
- Moderna Poland sp.zoo, Rondo Ignacego Daszyńskiego 1, 00-843 Warszawa, Poland;
| | | |
Collapse
|
39
|
Celi D, Quiroz E, Beltrán-Noboa A, Machado A, Tejera E, Fernandez-Soto P. A chemical analysis of the Pelargonium species: P. odoratissimum, P. graveolens, and P. zonale identifies secondary metabolites with activity against gram-positive bacteria with multidrug-resistance. PLoS One 2024; 19:e0306637. [PMID: 38985712 PMCID: PMC11236107 DOI: 10.1371/journal.pone.0306637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
The Pelargonium genus encompasses around 280 species, most of which are used for medicinal purposes. While P. graveolens, P. odoratissimum, and P. zonale are known to exhibit antimicrobial activity, there is an evident absence of studies evaluating all three species to understand their chemical differences and biological effects. Through the analysis of the hydroalcoholic extracts of P. graveolens, P. odoratissimum, and P. zonale, using HPLC-DAD-MS/MS, quercetin and kaempferol derivatives were identified in these three species. Conversely, gallotannins and anthocyanins were uniquely detected in P. zonale. P. graveolens stood out due to the various types of myricetin derivatives that were not detected in P. odoratissimum and P. zonale extracts. Evaluation of their biological activities revealed that P. zonale displayed superior antibacterial and antibiofilm activities in comparison to the other two species. The antibacterial efficacy of P. zonale was observed towards the clinically relevant strains of Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus (MRSA) 333, Enterococcus faecalis ATCC 29212, and the Vancomycin-resistant E. faecalis INSPI 032. Fractionation analysis of P. zonale suggested that the antibacterial activity attributed to this plant is due to the presence of quercetin derivatives and kaempferol and its derivatives, alongside their synergistic interaction with gallotannins and anthocyanins. Lastly, the three Pelargonium species exhibited notable antioxidant activity, which may be attributed to their high content of total phenolic compounds.
Collapse
Affiliation(s)
- Diana Celi
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Evelyn Quiroz
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- Departamento de Química Analítica, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - António Machado
- Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Paulina Fernandez-Soto
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| |
Collapse
|
40
|
Aktaş H, Kurek MA. Deep eutectic solvents for the extraction of polyphenols from food plants. Food Chem 2024; 444:138629. [PMID: 38341914 DOI: 10.1016/j.foodchem.2024.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Deep Eutectic Solvents (DESs) offer a promising, sustainable alternative for extracting polyphenols from food plants, known for their health benefits. Traditional extraction methods are often costly and involve toxic solvents. This review discusses the basic concepts, preparation techniques, and factors influencing the effective and safe use of DESs in polyphenol extraction. DESs' adaptability allows integration with other green extraction technologies, such as microwave- and ultrasound-assisted extractions, enhancing their efficiency. This adaptability demonstrates the potential of DESs in the sustainable extraction of bioactive compounds. Current research indicates that DESs could play a significant role in the sustainable procurement of these compounds, marking an important advancement in food science research and development. The review underscores DESs as a realistic, eco-friendly alternative in the realm of natural extraction technologies, offering a significant contribution to sustainable practices in food science.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
41
|
Allel K, Fernandez-Miyakawa M, Gaze W, Petroni A, Corso A, Luna F, Barcelona L, Boden L, Pitchforth E. Opportunities and challenges in antimicrobial resistance policy including animal production systems and humans across stakeholders in Argentina: a context and qualitative analysis. BMJ Open 2024; 14:e082156. [PMID: 38889938 PMCID: PMC11191766 DOI: 10.1136/bmjopen-2023-082156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Gaps in antimicrobial resistance (AMR) surveillance and control, including implementation of national action plans (NAPs), are evident internationally. Countries' capacity to translate political commitment into action is crucial to cope with AMR at the human-animal-environment interface. METHODS We employed a two-stage process to understand opportunities and challenges related to AMR surveillance and control at the human-animal interface in Argentina. First, we compiled the central AMR policies locally and mapped vital stakeholders around the NAP and the national commission against bacterial resistance. Second, we conducted qualitative interviews using a semistructured questionnaire covering stakeholders' understanding and progress towards AMR and NAP. We employed a mixed deductive-inductive approach and used the constant comparative analysis method. We created categories and themes to cluster subthemes and determined crucial relationships among thematic groups. RESULTS Crucial AMR policy developments have been made since 1969, including gradually banning colistin in food-producing animals. In 2023, a new government decree prioritised AMR following the 2015 NAP launch. Our qualitative analyses identified seven major themes for tackling AMR: (I) Cultural factors and sociopolitical country context hampering AMR progress, (II) Fragmented governance, (III) Antibiotic access and use, (IV) AMR knowledge and awareness throughout stakeholders, (V) AMR surveillance, (VI) NAP efforts and (VII) External drivers. We identified a fragmented structure of the food production chain, poor cross-coordination between stakeholders, limited surveillance and regulation among food-producing animals and geographical disparities over access, diagnosis and treatment. The country is moving to integrate animal and food production into its surveillance system, with most hospitals experienced in monitoring AMR through antimicrobial stewardship programmes. CONCLUSION AMR accountability should involve underpinning collaboration at different NAP implementation levels and providing adequate resources to safeguard long-term sustainability. Incorporating a multisectoral context-specific approach relying on different One Health domains is crucial to strengthening local AMR surveillance.
Collapse
Affiliation(s)
- Kasim Allel
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Heatlh Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxfordshire, UK
| | | | - William Gaze
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Alejandro Petroni
- Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Alejandra Corso
- Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina
| | | | - Laura Barcelona
- Comisión Nacional de Control de la Resistencia Antimicrobiana, Buenos Aires, Argentina
| | - Lisa Boden
- University of Edinburgh Royal Dick School of Veterinary Studies, Easter Bush Campus, Midlothian, UK
| | - Emma Pitchforth
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
42
|
Namuga C, Muwonge H, Nasifu K, Sekandi P, Sekulima T, Kirabira JB. Hoslundia opposita vahl; a potential source of bioactive compounds with antioxidant and antibiofilm activity for wound healing. BMC Complement Med Ther 2024; 24:236. [PMID: 38886717 PMCID: PMC11181642 DOI: 10.1186/s12906-024-04540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Biofilms and oxidative stress retard wound healing. The resistance of biofilms to antibiotics has led to a search for alternative approaches in biofilm elimination. Antioxidants work synergistically with antibacterial agents against biofilms. Hence recent research has suggested plants as candidates in the development of new alternatives in biofilm treatments and as antioxidants due to the presence of phytocompounds which are responsible for their bioactivities. Hoslundia opposita Vahl is one of the plants used by traditional healers to treat wounds and other infections, this makes it a potential candidate for drug discovery hence, in this study, we investigate the antibiofilm and antioxidant activity of methanolic extract of hoslundia opposita Vahl from Uganda. We also identify phytochemicals responsible for its bioactivity. METHOD the plant was extracted by maceration using methanol, and the extract was investigated for antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. The antibiofilm activity using microtiter plate assay (MTP) assay where the Minimum biofilm inhibitory concentration required to inhibit 50% or 90% of the biofilm (MBIC50 and MBIC90) and Minimum biofilm eradication concentration required to remove 50% or 90% of the biofilm (MBEC50 and MBEC90) were measured. It was further analysed for its phytochemical composition using quantitative screening, as well as Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography mass-spectrometry (LC-MS). RESULTS H. Opposita Vahl extract showed good antioxidant activity with of 249.6 mg/mL. It inhibited the growth of P. aeruginosa and S. aureus biofilms with MBIC50 of 28.37 mg/mL and 10 mg/mL, respectively. It showed the ability to eradicate P. aeruginosa and S. aureus biofilms with MBEC50 of 23.85 and 39.01 mg/mL respectively. Phytochemical analysis revealed the presence of alkaloids, tannins, flavonoids, and phenols. GC-MS analysis revealed 122 compounds in the extract of which, 23 have evidence of antioxidant or antibiofilm activity in literature. The most abundant compounds were; 1,4- Citric acid, Tetracontane-1,40-diol (43.43.3%, 1, Olean-12-en-28-oic acid, 3-hydroxy-, methyl ester, (3.beta) (15.36%) 9-Octadecenamide (12.50%), Squalene (11.85%) Palmitic Acid 4TMS (11.28%), and alpha Amyrin (11.27%). The LC-MS identified 115 and 57 compounds in multiple reaction mode (MRM) and scan modes respectively. CONCLUSION H. opposita Vahl showed antibiofilm and antioxidant activity due to bioactive compounds identified, hence the study justifies its use for wound healing. It can be utilised in further development of new drugs as antibiofilm and antioxidants.
Collapse
Affiliation(s)
- Catherine Namuga
- Depatment of Polymer, Textile, and Industrial Engineering, Busitema University, P. O. Box 256, Tororo, Uganda.
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Haruna Muwonge
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Kerebba Nasifu
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Peter Sekandi
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Tahalu Sekulima
- Department of Mechanical Engineering, College of Engineering, Design, Art, and Technology, Makerere University, Kampala, Uganda
| | - John Baptist Kirabira
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
43
|
Molnar M, Jakovljević Kovač M, Pavić V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024; 29:2615. [PMID: 38893491 PMCID: PMC11173854 DOI: 10.3390/molecules29112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
44
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
45
|
Feng Q, Fan B, He YC. Antibacterial, antioxidant, Cr(VI) adsorption and dye adsorption effects of biochar-based silver nanoparticles‑sodium alginate-tannic acid composite gel beads. Int J Biol Macromol 2024; 271:132453. [PMID: 38772472 DOI: 10.1016/j.ijbiomac.2024.132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs‑sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.
Collapse
Affiliation(s)
- Qian Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
46
|
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024; 29:2576. [PMID: 38893451 PMCID: PMC11173950 DOI: 10.3390/molecules29112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Jessica Paié-Ribeiro
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Mariana Almeida
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|
47
|
Kurnia D, Padilah R, Apriyanti E, Dharsono HDA. Phytochemical Analysis and Anti-Biofilm Potential That Cause Dental Caries from Black Cumin Seeds ( Nigella sativa Linn.). Drug Des Devel Ther 2024; 18:1917-1932. [PMID: 38828022 PMCID: PMC11144408 DOI: 10.2147/dddt.s454217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
The oral cavity is an excellent place for various microorganisms to grow. Spectrococcus mutans and Spectrococcus sanguinis are Gram-negative bacteria found in the oral cavity as pioneer biofilm formers on the tooth surface that cause caries. Caries treatment has been done with antibiotics and therapeutics, but the resistance level of S. mutans and S. sanguinis bacteria necessitates the exploration of new drug compounds. Black cumin (Nigella sativa Linn.) is known to contain secondary metabolites that have antioxidant, antibacterial, anti-biofilm, anti-inflammatory and antifungal activities. The purpose of this review article is to present data on the potential of Nigella sativa Linn seeds as anti-biofilm. This article will discuss biofilm-forming bacteria, the resistance mechanism of antibiotics, the bioactivity of N. sativa extracts and seed isolates together with the Structure Activity Relationship (SAR) review of N. sativa compound isolates. We collected data from reliable references that will illustrate the potential of N. sativa seeds as anti-biofilm drug.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rizal Padilah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Eti Apriyanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
| |
Collapse
|
48
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
49
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
50
|
Miller HK, Branan M, Priestley RA, Álvarez-Alonso R, Cherry C, Smith C, Urie NJ, Wiedenheft A, Bliss C, Marshall K, Kersh GJ. Coxiella burnetii in domestic doe goats in the United States, 2019-2020. Front Vet Sci 2024; 11:1393296. [PMID: 38774910 PMCID: PMC11107086 DOI: 10.3389/fvets.2024.1393296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Coxiella burnetii is a bacterial pathogen capable of causing serious disease in humans and abortions in goats. Infected goats can shed C. burnetii through urine, feces, and parturient byproducts, which can lead to infections in humans when the bacteria are inhaled. Goats are important C. burnetii reservoirs as evidenced by goat-related outbreaks across the world. To better understand the current landscape of C. burnetii infection in the domestic goat population, 4,121 vaginal swabs from 388 operations across the United States were analyzed for the presence of C. burnetii by IS1111 PCR as part of the United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services' National Animal Health Monitoring System Goats 2019 Study. In total, 1.5% (61/4121) of swabs representing 10.3% (40/388) (weighted estimate of 7.8, 95% CI 4.4-13.5) of operations were positive for C. burnetii DNA. The quantity of C. burnetii on positive swabs was low with an average Ct of 37.9. Factors associated with greater odds of testing positive included suspected Q fever in the herd in the previous 3 years, the presence of wild deer or elk on the operation, and the utilization of hormones for estrus synchronization. Factors associated with reduced odds of testing positive include the presence of kittens and treatment of herds with high tannin concentrate plants, diatomaceous earth, and tetrahydropyrimidines. In vitro analysis demonstrated an inhibitory effect of the tetrahydropyrimidine, pyrantel pamoate, on the growth of C. burnetii in axenic media as low as 1 μg per mL. The final multivariable logistic regression modeling identified the presence of wild predators on the operation or adjacent property (OR = 9.0, 95% CI 1.3-61.6, p value = 0.0248) as a risk factor for C. burnetii infection.
Collapse
Affiliation(s)
- Halie K. Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew Branan
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Rachael A. Priestley
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Raquel Álvarez-Alonso
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Cara Cherry
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Cody Smith
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Natalie J. Urie
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Alyson Wiedenheft
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Clayton Bliss
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Katherine Marshall
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|