1
|
Ndossi BA, Mjingo EE, Zebedayo MW, Choe S, Park H, Dongmin L, Eom KS, Bia MM. Occurrence of Echinococcus felidis in Apex Predators and Warthogs in Tanzania: First Molecular Evidence of Leopards as a New, Definitive Host and Implications for Ecosystem Health. Pathogens 2025; 14:443. [PMID: 40430762 PMCID: PMC12113990 DOI: 10.3390/pathogens14050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
(1) Background: Limited information on Echinococcus species among the wildlife in Tanzania has created a significant knowledge gap regarding their distribution, host range, and zoonotic potential. This study aimed to enhance the understanding of Echinococcus felidis transmission dynamics within the great Serengeti ecosystem. (2) Methods: A total of 37 adult Echinococcus specimens were collected from a leopard (Panthera pardus) (n = 1) in Maswa Game Reserve and 7 from a lion (Panthera leo) (n = 1) in Loliondo. Two hydatid cysts were also obtained from warthogs (n = 2) in the Serengeti National Park. (3) Results: Morphological examination revealed infertile cysts in warthogs that were molecularly identified as E. felidis. This marks the first molecular evidence of E. felidis in leopards and warthogs in Tanzania. Pairwise similarity analysis showed 98.7%-99.5% identity between Tanzanian, Ugandan, and South African isolates. Thirteen unique haplotypes were identified, with a haplotype diversity of (Hd = 0.9485) indicating genetic variability. Phylogenetic analysis grouped E. felidis into a single lineage, with the leopard isolate forming a distinct haplotype, suggesting leopards as an emerging host. Lion and warthog isolates shared multiple mutational steps, suggesting possible genetic divergence. (4) Conclusions: This study confirms African lions and leopards as definitive hosts and warthogs as potential intermediate hosts of E. felidis in the Serengeti ecosystem. Our findings highlight disease spillover risks and stress the importance of ecosystem-based conservation in wildlife-livestock overlap areas. Although E. felidis is believed to be confined to wildlife, the proximity of infected animals to pastoralist communities raises concerns for spillover. These findings highlight the importance of ecosystem-based surveillance, especially in wildlife-livestock-human interface areas.
Collapse
Affiliation(s)
- Barakaeli Abdieli Ndossi
- Tanzania Wildlife Research Institute, Arusha P.O. Box 661, Tanzania; (B.A.N.); (E.E.M.); (M.W.Z.)
- International Parasite Resource Bank, Cheongju 28644, Republic of Korea; (H.P.); (L.D.)
| | - Eblate Ernest Mjingo
- Tanzania Wildlife Research Institute, Arusha P.O. Box 661, Tanzania; (B.A.N.); (E.E.M.); (M.W.Z.)
| | - Mary Wokusima Zebedayo
- Tanzania Wildlife Research Institute, Arusha P.O. Box 661, Tanzania; (B.A.N.); (E.E.M.); (M.W.Z.)
| | - Seongjun Choe
- Department of Parasitology, Parasitology Research Center Chungbuk National University, School of Medicine, Cheongju 28644, Republic of Korea;
| | - Hansol Park
- International Parasite Resource Bank, Cheongju 28644, Republic of Korea; (H.P.); (L.D.)
| | - Lee Dongmin
- International Parasite Resource Bank, Cheongju 28644, Republic of Korea; (H.P.); (L.D.)
| | - Keeseon S. Eom
- International Parasite Resource Bank, Cheongju 28644, Republic of Korea; (H.P.); (L.D.)
- Department of Parasitology, Parasitology Research Center Chungbuk National University, School of Medicine, Cheongju 28644, Republic of Korea;
| | - Mohammed Mebarek Bia
- International Parasite Resource Bank, Cheongju 28644, Republic of Korea; (H.P.); (L.D.)
- Department of Parasitology, Parasitology Research Center Chungbuk National University, School of Medicine, Cheongju 28644, Republic of Korea;
| |
Collapse
|
2
|
Biedermann A, Laurimäe T, Anijalg L, Kamenetzky L, Soriano SV, Pierangeli N, Lazzarini LE, Umhang G, Bold B, Bayasgalan C, Karamon J, Samorek-Pieróg M, Simsek S, Celik F, Harandi MF, Nasibi S, Mehmood N, Chihai O, Casulli A, Saarma U. Zoonotic Echinococcus granulosus sensu lato genotypes G6 and G7: new insights from the global mitogenome analysis. Int J Parasitol 2025:S0020-7519(25)00077-3. [PMID: 40250726 DOI: 10.1016/j.ijpara.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/03/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Cystic echinococcosis is a severe zoonotic disease caused by different species and genotypes belonging to the Echinococcus granulosus sensu lato (s.l.) complex. Among these, genotypes G6 and G7 are the second most common cause of human cystic echinococcosis. One of the very first steps towards understanding the epidemiology of G6 and G7 is to study their genetic and host diversity, population structure and phylogenetic relationships. For this, we sequenced near-complete mitochondrial genomes (12,850-12,856 bp) of 72 new G6 and G7 samples from eight countries and six host species, including humans. By adding 103 sequences from previous studies, the total dataset for further analyses comprised of 175 sequences from 20 countries and seven host species. This is the most comprehensive global mitogenome study of Echinococcus granulosus s.l. G6 and G7 to date. The results of this work revealed: (i) a new divergent haplogroup G6b from Mongolia; (ii) the subdivision of genotype G6 into two major haplogroups: G6a (the nominal haplogroup) and G6b (the Mongolian haplogroup); (iii) highly divergent haplotypes of G6 and G7; (iv) the first molecularly confirmed findings of genotype G7 in camel; (v) genotype G7 in sheep - a rare species for G7; (vi) the importance of using long DNA sequences in phylogenetic analysis.
Collapse
Affiliation(s)
- Anti Biedermann
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Teivi Laurimäe
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Liina Anijalg
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Laura Kamenetzky
- IB3|Instituto de Biociencias, Biotecnología y Biología Traslacional Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Güiraldes 2160 - Ciudad Universitaria, Buenos Aires, Argentina
| | - Silvia V Soriano
- Cátedra de Microbiología y Parasitología. Facultad de Ciencias Médicas. Universidad Nacional del Comahue. Buenos Aires 1400. Neuquén. Argentina
| | - Nora Pierangeli
- Cátedra de Microbiología y Parasitología. Facultad de Ciencias Médicas. Universidad Nacional del Comahue. Buenos Aires 1400. Neuquén. Argentina
| | - Lorena E Lazzarini
- Cátedra de Microbiología y Parasitología. Facultad de Ciencias Médicas. Universidad Nacional del Comahue. Buenos Aires 1400. Neuquén. Argentina
| | - Gérald Umhang
- INTERFAS Unit, National Reference Laboratory for Echinococcus spp., Rabies and Wildlife Laboratory, ANSES, BP 40009, 54220 Malzéville, France
| | - Bolor Bold
- National Center for Zoonotic Disease, Songinokhairkhan District, Ulaanbaatar 18131, Mongolia; Department of Infectious Diseases, School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chimedtseren Bayasgalan
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, 17024 Ulaanbaatar, Mongolia
| | - Jacek Karamon
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Małgorzata Samorek-Pieróg
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119 Elazig, Türkiye
| | - Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119 Elazig, Türkiye
| | - Majid F Harandi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Saeid Nasibi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Naunain Mehmood
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Oleg Chihai
- Institute of Zoology, Moldova State University, Cisinau, Republic of Moldova
| | - Adriano Casulli
- European Union Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia.
| |
Collapse
|
3
|
Romig T, Wassermann M. Echinococcus species in wildlife. Int J Parasitol Parasites Wildl 2024; 23:100913. [PMID: 38405672 PMCID: PMC10884515 DOI: 10.1016/j.ijppaw.2024.100913] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Transmission of Echinococcus spp. in life cycles that involve mainly wildlife is well recognized for those species with small mammals as intermediate hosts (e. g. E. multilocularis), as well as for E. felidis and the 'northern' genotypes of E. canadensis (G8 and G10). In contrast, the remaining taxa of E. granulosus sensu lato are best known for their domestic life cycles, and the numerous wild mammal species (mainly ungulates) that have been recorded with cystic echinococcosis in the past were mainly considered a result of spill-over from the dog-livestock transmission system. This view was challenged with the advent of molecular characterization, allowing discrimination of the metacestodes, although the contribution of wild mammals to various Echinococcus life cycles has remained uncertain for scarcity of wildlife studies. Numerous records of cysts in wild ungulates date back to the 20th century, but cannot with certainty be allocated to the Echinococcus species and genotypes that are recognized today. This means that our current knowledge is largely restricted to studies of the past two decades that kept adding gradually to our concepts of transmission in various geographic regions. In particular, new insights were gathered in the past years on E. granulosus s.l. in wildlife of sub-Saharan Africa, but also on transmission patterns of E. multilocularis in previously neglected regions, e. g. North America. Here, an update is provided on the current state of knowledge on wild mammals as hosts for all Echinococcus species, listing >150 species of wild hosts with references, as well as estimates on their epidemiological impact and our current gaps of knowledge.
Collapse
Affiliation(s)
- Thomas Romig
- University of Hohenheim, Parasitology Unit, 70599, Stuttgart, Germany
- University of Hohenheim, Center for Biodiversity and Integrative Taxonomy, 70599, Stuttgart, Germany
| | - Marion Wassermann
- University of Hohenheim, Parasitology Unit, 70599, Stuttgart, Germany
- University of Hohenheim, Center for Biodiversity and Integrative Taxonomy, 70599, Stuttgart, Germany
| |
Collapse
|
4
|
Celik F, Selcuk MA, Kilinc SG, Kesik HK, Ahmed H, Wang Y, Simsek S, Cao J. Molecular discrimination of G1 and G3 genotypes of Echinococcus granulosus sensu stricto obtained from human, cattle, and sheep using the mitochondrial NADH dehydrogenase subunit 5 marker. Acta Trop 2024; 252:107124. [PMID: 38262573 DOI: 10.1016/j.actatropica.2024.107124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Cystic echinococcosis (CE) is a common zoonotic disease caused by the larval form of Echinococcus granulosus sensu lato. This study determined the genotype and haplotype differences using the NADH dehydrogenase subunit 5 gene in hydatid cyst samples. Human (n = 12), cattle (n = 28), and sheep (n = 31) hydatid cyst isolates were included. Seventy-one genomic DNA samples were successfully extracted, and a 759 bp mitochondrial NADH dehydrogenase subunit 5 gene fragment was amplified by PCR. Following the sequence analysis, E. granulosus sensu stricto isolates were identified as G1 (n = 61) and G3 (n = 10). A total of 23 haplotypes were obtained from the 71 E. granulosus s.s. G1 and G3 samples. The main haplotype was Hap01 (60.56 %), which consisted of the G1 genotype. The second largest haplotype was Hap04, which consisted entirely of the G3 genotype. Hap14 acted as a bridge between the G1 and G3 genotypes. This study identifies G1 as the dominant genotype in humans and farm animals in Turkey. High haplotype and nucleotide diversity in genotypes were observed. Additionally, this is the first report on the phylogeography and gene flow models of the E. granulosus s.s. population in Turkey using the NADH dehydrogenase subunit 5 gene, the best marker distinguishing between G1 and G3 genotypes.
Collapse
Affiliation(s)
- Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey
| | - Muhammed Ahmed Selcuk
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey; Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Seyma Gunyakti Kilinc
- Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Harun Kaya Kesik
- Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan
| | - Ying Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai 200025, China; World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Sami Simsek
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan.
| | - Jianping Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai 200025, China; World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China; The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Aregawi WG, Levecke B, Ashenafi H, Byaruhanga C, Kebede N, Mulinge E, Wassermann M, Romig T, Dorny P, Dermauw V. Epidemiology of Echinococcus granulosus sensu lato in the Greater Horn of Africa: A systematic review. PLoS Negl Trop Dis 2024; 18:e0011894. [PMID: 38271288 PMCID: PMC10810510 DOI: 10.1371/journal.pntd.0011894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a neglected zoonotic disease that is caused by Echinococcus granulosus sensu lato (s.l.), the life cycle of which involves multiple hosts. We conducted a systematic review (SR) on E. granulosus s.l. in the Greater Horn of Africa (GHA), to provide a picture of its recent epidemiology across all hosts. METHODS For this SR, conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, five electronic databases, as well experts in the region were consulted to retrieve records published between 2000 and 2022, reporting the presence of E. granulosus s.l. infections in any natural host in the GHA (Djibouti, Eritrea, Ethiopia, Kenya, Sudan, Somalia, South Sudan, Tanzania and Uganda). PRINCIPAL FINDINGS A total of 247 records were retained, describing the presence of E. granulosus s.l. throughout the GHA, except for Djibouti. Only few population surveys on human CE were conducted in the area, with the prevalence ranging between 0.3 and 11.3%. In animals, the reported prevalence ranged up to 61.6% in camels, 88.4% in cattle; 65.2% in goats, 9.9% in pigs, 67.8% in sheep and 94.5% in dogs. In addition, E. granulosus s.l. was also reported in wildlife. A total of five species were reported in the different hosts, namely E. granulosus sensu stricto (G1, G3, GOmo), E. canadensis (G6/7), E. ortleppi (G5), E. felidis, and E. equinus (G4). CONCLUSIONS We confirm that E. granulosus s.l. is prevalent throughout the GHA. Nevertheless, despite our efforts to screen grey literature, an accurate assessment of the epidemiology in GHA remains challenging, due to the lack of combined host, in-depth risk factor and behavioural studies, as well as the wide diversity in subpopulations studied and diagnostic tools used. Interdisciplinary and transboundary partnerships would be essential for the design of effective control strategies, tuned to the GHA setting.
Collapse
Affiliation(s)
- Weldegebrial G. Aregawi
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hagos Ashenafi
- Unit of Animal Health and Zoonotic Diseases Research, Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | - Charles Byaruhanga
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Nigatu Kebede
- Unit of Animal Health and Zoonotic Diseases Research, Addis Ababa University, Aklilu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | | | | | - Thomas Romig
- Parasitology Unit, University of Hohenheim, Stuttgart, Germany
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Veronique Dermauw
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
6
|
Alvi MA, Alshammari A, Ali RMA, Ul Haq S, Bashir R, Li L, Saqib M, Sajid MS, Ghafoor M, Imran M, Ijaz MU, Fu BQ, Saeed M, Ahmad I, Liu YY, Yan HB, Jia WZ. Revealing novel cytb and nad5 genes-based population diversity and benzimidazole resistance in Echinococcus granulosus of bovine origin. Front Vet Sci 2023; 10:1191271. [PMID: 37396990 PMCID: PMC10312306 DOI: 10.3389/fvets.2023.1191271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Cystic echinococcosis (CE) is a neglected zoonotic disease caused by Echinococcus granulosus (sensu stricto). The parasite affects a wide range of livestock and wild animals. In this study, the population diversity of the Echinococcus species was investigated based on mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (nad5) genes. In addition to this, β-tubulin gene isoforms of Echinococcus granulosus were amplified to determine the resistance against benzimidazoles. For this purpose, 40 cyst samples from cattle (n = 20) and buffaloes (n = 20) were collected from the main abattoir of Sialkot. DNA extraction was performed using Qiagen Blood and Tissue Kits. Amplification was performed through PCR. Each amplicon was confirmed by GelRed™ stained agarose gel (2%). Samples were sequenced in a DNA analyzer and viewed for any misread nucleotide by using MEGA (v.11). Corrections in nucleotide sequence and multiple sequence alignment were made through the same software. NCBI-BLAST was used for sample specific sequences to identify them as belonging to a particular species. Diversity indices were estimated using DnaSP (v.6) while phylogenetic analysis was inferred using the Bayesian method using MrBayes (v.1.1). β-tubulin gene isoforms sequence analysis was performed to find out the candidate gene causing benzimidazole resistance. All 40 isolates were found positive for E. granulosus. BLAST-based searches of sequences of each isolate for each gene (nad5 and cytb) confirmed their maximum similarity with the G1 genotype. Overall, high haplotype diversity (Hd nad5 = 1.00; Hd cytb = 0.833) and low nucleotide diversity (π nad5 = 0.00560; π = cytb = 0.00763) was identified based on diversity indices. For both the genes, non-significant values of Tajima's D (nad5 = -0.81734; cytb = -0.80861) and Fu's Fs (nad5 = -1.012; cytb = 0.731) indicate recent population expansion. Bayesian phylogeny-based results of nad5 and cytb sequences confirmed their genotypic status as distinct from other Echinococcus species. This study shed light on the status of benzimidazole resistance in Echinococcus granulosus for the very first time from Pakistan. The findings of this study will significantly add in the information available on genetic diversity of Echinoccous granulosus based on cytb and nad5 genes sequences.
Collapse
Affiliation(s)
- Mughees Aizaz Alvi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Ayed Alshammari
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Rana Muhammad Athar Ali
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Shahbaz Ul Haq
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rizwan Bashir
- Veterinary Disease Diagnostic Laboratory Sialkot, Livestock and Dairy Development Department, Government of Punjab, Lahore, Pakistan
| | - Li Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | | | - Muzafar Ghafoor
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - You-Yu Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong-Bin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wan-Zhong Jia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| |
Collapse
|
7
|
Aschenborn O, Aschenborn J, Kern P, Mackenstedt U, Romig T, Wassermann M. When wildlife comes to town: interaction of sylvatic and domestic host animals in transmission of Echinococcus spp. in Namibia. Helminthologia 2023; 60:117-124. [PMID: 37745225 PMCID: PMC10516471 DOI: 10.2478/helm-2023-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/29/2023] [Indexed: 09/26/2023] Open
Abstract
The present study was conducted in the isolated desert town of Oranjemund in the far south of Namibia. It is an extremely arid region where no livestock husbandry is practiced and only animals adapted to the desert can be found. However, in and around the city, artificial irrigation maintains lush green patches of grass that attract wild animals, in particular oryx antelopes (Oryx gazella). In 2015 four oryx antelopes were euthanised due to poor conditions and a post-mortem examination was conducted. Two were found positive for cystic echinococcosis and 16 cysts were collected for molecular analyses. In addition, faecal samples from black-backed jackals (n=5) and domestic dogs (n=9), which were regularly observed to feed on oryx carcasses, were collected and taeniid eggs isolated. Parasite species identification of the cysts and eggs was done by amplifying and sequencing the mitochondrial nad1 gene. Both oryx antelopes were found infected with E. ortleppi and one co-infected with E. canadensis G6/7. Both Echinococcus species were able to develop fertile cysts in oryx, making oryx antelopes competent hosts for these parasites. Therefore, the analysis of faecal samples was of high interest and although the numbers were quite small, taeniid eggs were found in three out of five faecal samples of jackals and in all nine dog samples. However, species determination was only successful with two jackal and one dog sample. All three were positive for E. canadensis G6/7. The absence of E. ortleppi may be due to the low number of faecal samples examined. In our small study, we discovered a rather unique lifecycle of Echinococcus spp. between jackals and domestic dogs as definitive hosts and oryx antelopes as intermediate hosts. Here, the presence of E. canadensis G6/7 is of particular concern, as it is the second most important causative agent of CE in humans.
Collapse
Affiliation(s)
- O. Aschenborn
- School of Veterinary Medicine, University of Namibia, Neudamm Campus, Windhoek, Namibia
- University of Hohenheim, Department of Parasitology, Emil-Wolff-Str. 34, 70599Stuttgart, Germany
- Leibniz Institute for Zoo and Wildlife Research, Department of Evolutionary Ecology, Alfred-Kowalke-Str. 17, 10315Berlin, Germany
- Ministry of Environment, Forestry and Tourism, Directorate of Scientific Services, Private Bag13306, Windhoek, Namibia
| | - J. Aschenborn
- University of Zurich, Institute of Parasitology, Winterthurerstr. 266a, 8057Zurich, Switzerland
| | - P. Kern
- University Hospital Ulm, Department of Medicine III, Albert-Einstein-Allee 23, 89081Ulm, Germany
| | - U. Mackenstedt
- University of Hohenheim, Department of Parasitology, Emil-Wolff-Str. 34, 70599Stuttgart, Germany
| | - T. Romig
- University of Hohenheim, Department of Parasitology, Emil-Wolff-Str. 34, 70599Stuttgart, Germany
| | - M. Wassermann
- University of Hohenheim, Department of Parasitology, Emil-Wolff-Str. 34, 70599Stuttgart, Germany
| |
Collapse
|
8
|
Abstract
Cystic echinococcosis (CE) is endemic in humans and domestic animals in eastern Africa. All the species of the Echinococcus granulosus sensu lato complex have been reported in this region except for E. equinus, possibly due to the small number of studies involving equids. This study reports the frequency of different Echinococcus species in donkeys from eastern Africa. A total of 5961 donkeys were examined during meat inspection in 3 slaughterhouses in Kenya. Identification of Echinococcus spp. was achieved through polymerase chain reaction-restriction fragment-length polymorphism and sequencing of the mitochondrial nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 1 gene. The prevalence of CE was 5.7% (337/5961). The 263 genotyped cysts belonged to E. equinus (n = 163), E. granulosus sensu stricto (n = 70), E. canadensis (G6/7) (n = 26) and E. ortleppi (n = 4). One donkey harboured a metacestode of Spirometra theileri. All E. equinus cases, except 2, originated from southern Ethiopia, whereas the other species were more evenly distributed across the study area. Most of the cysts belonging to E. equinus were fertile (111/163), while those of the other species were non-fertile. This is the first report of Echinococcus spp. in donkeys from sub-Saharan Africa and the first confirmation of E. equinus in East Africa. The frequent fertility of E. equinus cysts in donkeys affirms their suitability as intermediate hosts of this species, while low frequency and cyst fertility suggest a marginal role of donkeys in the transmission of E. granulosus s. s., E. canadensis (G6/7) and E. ortleppi.
Collapse
|
9
|
Alvi MA, Ali RMA, Li L, Saqib M, Qamar W, Hassan A, Ghafoor M, Rahman SU, Khan MUZ, Fu BQ, Liu Y, Yin H, Yan HB, Jia WZ. Phylogeny and population structure of Echinococcus granulosus (sensu stricto) based on full-length cytb-nad2-atp6 mitochondrial genes - First report from Sialkot District of Pakistan. Mol Biochem Parasitol 2023; 253:111542. [PMID: 36584819 DOI: 10.1016/j.molbiopara.2022.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Cystic echinococcosis is a zoonotic disease of livestock having serious economic setbacks. The etiological agents of the disease belong to Echinococcus granulosus sensu lato. Despite of worldwide distribution of the disease, the molecular studies mainly employ amplification of cox1, nad1 and nad5 genes. To further strengthen the knowledge about significance of other molecular markers and to investigate the genetic diversity and population structure of Echinococcus species in Pakistan, the current study was designed in which full length mitochondrial cytb, atp6 and nad2 genes were amplified. Based on BLAST searches of the generated cytb, atp6 and nad2 gene sequences from a total of 18 hydatid cysts collected from cattle, 12 isolates were identified as E. granulousus G3 and 6 as E. granulosus (G1). The phylogeny inferred by the Bayesian method using nucleotide sequences of cytb-atp6-nad2 further confirmed their identity. The diversity indices indicated a high haplotype and a low nucleotide diversity. The negative values of Tajima's D and Fu's Fs test demonstrated deviation from neutrality suggesting a recent population expansion. To the best of our knowledge, the present study described the genetic variation of E. granulosus population for the first time in Pakistan using full-length cytb, atp6 and nad2 mitochondrial genes. The findings on the genetic variation of E. granulosus in Pakistan will constitute useful baseline information for future studies on the prevalence and population structure of E. granulosus based on full-length cytb, atp6 and nad2.
Collapse
Affiliation(s)
- Mughees Aizaz Alvi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Athar Ali
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Hassan
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Muzafar Ghafoor
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | | | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Youyu Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Wan-Zhong Jia
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, National Para-reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
10
|
Massolo A, Simoncini A, Romig T. The ‘bridge effect’ by intermediate hosts may explain differential distributions of Echinococcus species. Trends Parasitol 2022; 38:501-512. [DOI: 10.1016/j.pt.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
11
|
Manterola C, Totomoch-Serra A, Rojas C, Riffo-Campos ÁL, García-Méndez N. Echinococcus granulosus sensu lato Genotypes in Different Hosts Worldwide: A Systematic Review. Acta Parasitol 2022; 67:161-185. [PMID: 34264444 DOI: 10.1007/s11686-021-00439-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The aim of this study was to develop a synthesis of the evidence available regarding verified E. granulosus sensu lato (s.l.) genotypes in different species worldwide. MATERIAL AND METHODS A systematic review was performed including studies concerning genotypes of E. granulosus s.l. without language or genotyped method restriction, published between 1990 and 2020. A systematic search was carried out in Trip Database, BIREME, SciELO, LILACS, IBECS, PAHO-WHO, EMBASE, PubMed, Scopus, and WoS. Variables of interest were year of publication, country, number of samples, and hosts; genotypes, molecular marker, haplotypes and molecular biology techniques used. Descriptive statistics were applied. RESULTS 2411 articles were analyzed, however 135 met the selection criteria, representing 8643 liver and lung samples. Of the samples selected 24% were human, the remaining samples pertained to non-human animal hosts; cattle and sheep prevailed with 28.6% and 26.6% of the studied samples, respectively. The reported evidence is mainly from Iran, Turkey, Argentina, China and Chile; with 50, 11, 6, 6 and 5 studies, respectively, published between 1992 and 2020 [most frequently during 2015-2020 (76/135 studies; 56.3%)]. The mitochondrial gene cox1 was generally sequenced and informative (91.8%). Genotypes most frequently identified were E. granulosus sensu stricto (s.s.) (83.2%). CONCLUSIONS Based on this overall evidence, it can be concluded that publications related to genotypes of E. granulosus s.l. are heterogeneous. E. granulosus ss accounts for the vast majority of the global burden of E. granulosus s.l. worldwide. Further studies including larger number of cases and adequate internal validity are required to specify the distribution of genotypes in various host species. TRIAL REGISTRATION PROSPERO CRD42018099827.
Collapse
|
12
|
Lightowlers MW, Gasser RB, Hemphill A, Romig T, Tamarozzi F, Deplazes P, Torgerson PR, Garcia HH, Kern P. Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years. Int J Parasitol 2021; 51:1167-1192. [PMID: 34757089 DOI: 10.1016/j.ijpara.2021.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
In the past 50 years, enormous progress has been made in the diagnosis, treatment and control of taeniid cestode infections/diseases and in the scientific understanding thereof. Most interest in this group of parasites stems from the serious diseases that they cause in humans. It is through this lens that we summarize here the most important breakthroughs that have made a difference to the treatment of human diseases caused by these parasites, reduction in transmission of the taeniid species associated with human disease, or understanding of the parasites' biology likely to impact diagnosis or treatment in the foreseeable future. Key topics discussed are the introduction of anti-cestode drugs, including benzimidazoles and praziquantel, and the development of new imaging modalities that have transformed the diagnosis and post-treatment monitoring of human echinococcoses and neurocysticercosis. The availability of new anti-cestode drugs for use in dogs and a detailed understanding of the transmission dynamics of Echinococcus granulosus sensu lato have underpinned successful programs that have eliminated cystic echinococcosis in some areas of the world and greatly reduced the incidence of infection in others. Despite these successes, cystic and alveolar echinococcosis and neurocysticercosis continue to be prevalent in many parts of the world, requiring new or renewed efforts to prevent the associated taeniid infections. Major advances made in the development of practical vaccines against E. granulosus and Taenia solium will hopefully assist in this endeavour, as might the understanding of the parasites' biology that have come from an elucidation of the nuclear genomes of each of the most important taeniid species causing human diseases.
Collapse
Affiliation(s)
- Marshall W Lightowlers
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
| | - Robin B Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Thomas Romig
- University of Hohenheim, Parasitology Unit, Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
| | - Francesca Tamarozzi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Verona, Italy
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse, and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Hector H Garcia
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú; Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Perú
| | - Peter Kern
- Ulm University Hospital, Division of Infectious Diseases, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
13
|
Shumuye NA, Ohiolei JA, Gebremedhin MB, Yan HB, Li L, Li WH, Zhang NZ, Fu BQ, Jia WZ. A systematic review and meta-analysis on prevalence and distribution of Taenia and Echinococcus infections in Ethiopia. Parasit Vectors 2021; 14:447. [PMID: 34488862 PMCID: PMC8419976 DOI: 10.1186/s13071-021-04925-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/24/2023] Open
Abstract
Background Tapeworm infections are among the tropical neglected parasitic diseases endemically occurring in Ethiopia. This systematic review and meta-analysis aims at estimating the pooled prevalence and distribution of Taenia and Echinococcus infections in humans and animals from reports from Ethiopia. Methods The systematic search was conducted in four bibliographic databases (PubMed, Google Scholar, Africa Journal Online and Science Direct). Additional data were retrieved from grey literature. Studies that met the inclusion criteria were considered for the systematic review and meta-analysis. The meta-analysis was conducted using MetaXL add-in for Microsoft Excel. Heterogeneity and inconsistency were evaluated using Cochran’s Q and I2 statistics, respectively. Results The study provides a country-based database of Taenia and Echinococcus infections consisting of 311 datasets from 201 publications which were mostly abattoir surveys; of these, 251 datasets were subjected to meta-analysis. Most of the studies were from Oromia (32.8%) followed by Amhara (22.9%) regional states. The pooled prevalence of cystic echinococcosis in intermediate and accidental hosts was calculated as 22% (95% CI 18–26%) and high study variability (Q = 24,420.65, I2 = 100%, P = 0.000). Moreover, a pooled prevalence of Echinococcus infections in final hosts was calculated as 33% (95% CI 20–48%) and low study variability (Q = 17.24, I2 = 65%, P = 0.001). Similarly, study subjects (human, cattle, sheep, goat and wolf) were infected by Taenia spp. with pooled prevalence of 3% (95% CI 2–4%) and moderate study variability (Q = 279.07, I2 = 89, P = 0.000). Meanwhile, the pooled prevalence of Taenia hydatigena, T. ovis and T. multiceps infections in intermediate hosts were calculated as 38%, 14% and 5%, respectively. The random effect meta-analysis of bovine cysticercosis showed a pooled prevalence of 7% (95% CI 5–9%) and high study variability was of (Q = 4458.76; I2 = 99%, P = 0.000). Significant differences in prevalence of Taenia and Echinococcus infections between study sites or different livestock origins have been reported. Conclusion The study evidenced a comprehensive dataset on the prevalence and distribution of Taenia and Echinococcus infections at different interfaces by regions and hosts and hence can aid in the design of more effective control strategies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04925-w.
Collapse
Affiliation(s)
- Nigus Abebe Shumuye
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China.,Department of Veterinary Clinical Medicine and Epidemiology, College of Veterinary Sciences, Mekelle University, Kalamino campus, P.O. Box 2084, Mekelle, Tigray, Ethiopia
| | - John Asekhaen Ohiolei
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China
| | - Mebrahtu Berhe Gebremedhin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, People's Republic of China
| | - Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China
| | - Wen-Hui Li
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China
| | - Wan-Zhong Jia
- State Key Laboratory of Veterinary Etiological Biology/National Animal Echinococcosis Para-Reference Laboratory/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
14
|
Fu MH, Wang X, Han S, Guan YY, Bergquist R, Wu WP. Advances in research on echinococcoses epidemiology in China. Acta Trop 2021; 219:105921. [PMID: 33878307 DOI: 10.1016/j.actatropica.2021.105921] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Echinococcoses are serious zoonotic diseases in China's vast, western and north-western pastoral areas that has one of the highest prevalence in the world. The two most common forms, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are co-epidemic in some areas causing a grave threat to people's health and economic development. Echinococcus spp. are transmitted through domestic, sylvatic and mixed cycles involving many kinds of host. Successful transmission requires a favourable environment for the growth of the parasites and survival of their eggs, while the unique customs and religious beliefs in the endemic areas pose a challenge to the prevention and control of these parasites. Based on previous epidemiological studies, this paper reviews the particular factors affecting the transmission of Echinococcus parasites in China, with a focus on biological (parasite genotype and the species, age, sex and density of hosts), environmental (landscape and climate) and social (age, gender, ethnicity, education, occupation, life style, cultural customs, living conditions and hygiene practices of humans in the endemic areas). These three factors interact with each other and jointly determine the parasites' transmission intensity, the study of which supports the formulation of the strategies and measures that are significant for control of these infections.
Collapse
|
15
|
Banda F, Sikasunge C, Addy F, Wassermann M, Mackenstedt U, Kern P, Daugschies A, Mulinge E, Romig T. Echinococcus ortleppi and Echinococcus canadensis G6/7 affect domestic animals in western Zambia. Acta Trop 2020; 211:105648. [PMID: 32739294 DOI: 10.1016/j.actatropica.2020.105648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
Abstract
Cystic echinococcosis (CE) is endemic in many parts of sub-Saharan Africa. In contrast to the eastern part of the continent, very little data exists on the current disease situation in southern Africa including Zambia. This study determined frequency and species identity of Echinococcus spp. circulating in livestock and dogs in the Western Province of Zambia. Cysts were collected in slaughterhouses at meat inspection (cattle) and during examination of home slaughtered pigs, while dog faecal samples were collected per-rectum and examined microscopically for the presence of taeniid eggs. Individual taeniid eggs from faecal samples and individual protoscoleces from cysts were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and/or sequencing of the NADH-dehydrogenase subunit 1 (nad1) and cytochrome C oxidase 1 (cox1) gene. Fifty-four of 2000 cattle (2.7%) were found infected with a total of 65 cysts, predominantly fertile lungs cysts; all cysts were identified as Echinococcus ortleppi. Two out of 52 home-slaughtered pigs (3.8%) were infected with a fertile lung cyst each; both cysts were also identified as E. ortleppi. Microscopic examination revealed 10/289 dog faecal samples to contain taeniid eggs, of which four samples (two each) contained Echinococcus canadensis (G6/7) or Taenia hydatigena, respectively. This is the first insight in the Echinococcus species circulating in Zambia providing premises for further studies into transmission dynamics of CE in the southern African region.
Collapse
Affiliation(s)
- Fredrick Banda
- Central Veterinary Research Institute, P.O. Box 33980, Lusaka, Zambia; University of Zambia, School of Veterinary Medicine, P. O. Box 32379, Lusaka, Zambia; University of Leipzig, Institute of Parasitology, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Chummy Sikasunge
- University of Zambia, School of Veterinary Medicine, P. O. Box 32379, Lusaka, Zambia
| | - Francis Addy
- University for Development Studies, Department of Biotechnology, P. O. Box TL 1882, Tamale, Ghana
| | - Marion Wassermann
- University of Hohenheim, Parasitology Unit, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany
| | - Ute Mackenstedt
- University of Hohenheim, Parasitology Unit, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany
| | - Peter Kern
- University Clinic of Ulm, Center for Internal Medicine, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Arwid Daugschies
- University of Leipzig, Institute of Parasitology, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Erastus Mulinge
- Kenya Medical Research Institute, Centre for Microbiology Research, P. O. Box 19464, 00202 Nairobi, Kenya
| | - Thomas Romig
- University of Hohenheim, Parasitology Unit, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany.
| |
Collapse
|
16
|
Maksimov P, Bergmann H, Wassermann M, Romig T, Gottstein B, Casulli A, Conraths FJ. Species Detection within the Echinococcus granulosus sensu lato Complex by Novel Probe-Based Real-Time PCRs. Pathogens 2020; 9:pathogens9100791. [PMID: 32993077 PMCID: PMC7599986 DOI: 10.3390/pathogens9100791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
Infections with eggs of Echinococcus granulosus sensu lato (s.l.) can cause cystic echinococcosis in intermediate host animals and humans. Upon ingestion of viable eggs, oncospheres hatch from the eggs and subsequently develop into fluid-filled larval cysts, most frequently in the liver or the lungs. The slowly growing cysts progressively interfere with organ function. The risk of infection is determined by the host range of the parasite, its pathogenicity and other epidemiologically relevant parameters, which differ significantly among the five species within the E. granulosus s.l. complex. It is therefore essential to diagnose the correct species within E. granulosus s.l. to help understand specific disease epidemiology and to facilitate effective implementation of control measures. For this purpose, simple, fast and cost-effective typing techniques are needed. We developed quantitative real-time polymerase chain reactions (qPCRs) to target polymorphic regions in the mitochondrial genome of E. granulosus s.l. In a single-step typing approach, we distinguished E. granulosus s.l. members in four epidemiologically relevant subgroups. These were E. granulosus sensu stricto, E. equinus, E. ortleppi and the E. canadensis cluster. The technique also allowed identification and differentiation of these species from other Echinococcus or Taenia taxa for samples isolated from cysts or faeces.
Collapse
Affiliation(s)
- Pavlo Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Echinococcosis, 17493 Greifswald-Insel Riems, Germany; (H.B.); (F.J.C.)
- Correspondence:
| | - Hannes Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Echinococcosis, 17493 Greifswald-Insel Riems, Germany; (H.B.); (F.J.C.)
| | - Marion Wassermann
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany; (M.W.); (T.R.)
| | - Thomas Romig
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany; (M.W.); (T.R.)
| | - Bruno Gottstein
- Institute of Parasitology, Vetsuisse Faculty and Faculty of Medicine, University of Bern, 3012 Bern, Switzerland;
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- European Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Echinococcosis, 17493 Greifswald-Insel Riems, Germany; (H.B.); (F.J.C.)
| |
Collapse
|
17
|
Vuitton DA, McManus DP, Rogan MT, Romig T, Gottstein B, Naidich A, Tuxun T, Wen H, Menezes da Silva A. International consensus on terminology to be used in the field of echinococcoses. ACTA ACUST UNITED AC 2020; 27:41. [PMID: 32500855 PMCID: PMC7273836 DOI: 10.1051/parasite/2020024] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Echinococcoses require the involvement of specialists from nearly all disciplines; standardization of the terminology used in the field is thus crucial. To harmonize echinococcosis terminology on sound scientific and linguistic grounds, the World Association of Echinococcosis launched a Formal Consensus process. Under the coordination of a Steering and Writing Group (SWG), a Consultation and Rating Group (CRG) had the main missions of (1) providing input on the list of terms drafted by the SWG, taking into account the available literature and the participants’ experience; and (2) providing independent rating on all debated terms submitted to vote. The mission of the Reading and Review Group (RRG) was to give an opinion about the recommendation paper in terms of readability, acceptability and applicability. The main achievements of this process were: (1) an update of the current nomenclature of Echinococcus spp.; (2) an agreement on three names of diseases due to Echinococcus spp.: Cystic Echinococcosis (CE), Alveolar Echinococcosis (AE) and Neotropical Echinococcosis (NE), and the exclusion of all other names; (3) an agreement on the restricted use of the adjective “hydatid” to refer to the cyst and fluid due to E. granulosus sensu lato; and (4) an agreement on a standardized description of the surgical operations for CE, according to the “Approach, cyst Opening, Resection, and Completeness” (AORC) framework. In addition, 95 “approved” and 60 “rejected” terms were listed. The recommendations provided in this paper will be applicable to scientific publications in English and communication with professionals. They will be used for translation into other languages spoken in endemic countries.
Collapse
Affiliation(s)
- Dominique A Vuitton
- National French Reference Centre for Echinococcosis, University Bourgogne Franche-Comté and University Hospital, FR-25030 Besançon, France
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, AU-4006 Brisbane, Queensland, Australia
| | - Michael T Rogan
- Department of Biology and School of Environment & Life Sciences, University of Salford, GB-M5 4WT Manchester, United Kingdom
| | - Thomas Romig
- Department of Parasitology, Hohenheim University, DE-70599 Stuttgart, Germany
| | - Bruno Gottstein
- Institute of Parasitology, School of Medicine and Veterinary Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Ariel Naidich
- Department of Parasitology, National Institute of Infectious Diseases, ANLIS "Dr. Carlos G. Malbrán", AR-1281 Buenos Aires, Argentina
| | - Tuerhongjiang Tuxun
- WHO Collaborating Centre for Prevention and Care Management of Echinococcosis and State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, CN-830011 Urumqi, PR China
| | - Hao Wen
- WHO Collaborating Centre for Prevention and Care Management of Echinococcosis and State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, CN-830011 Urumqi, PR China
| | - Antonio Menezes da Silva
- Past-President of the World Association of Echinococcosis, President of the College of General Surgery of the Portuguese Medical Association, PT-1649-028 Lisbon, Portugal
| | | |
Collapse
|
18
|
Molecular characterization of Echinococcus granulosus in livestock of Al-Madinah (Saudi Arabia). J Helminthol 2020; 94:e157. [PMID: 32478648 DOI: 10.1017/s0022149x20000395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Echinococcus granulosus is the causative agent of cystic echinococcosis, which has serious impacts on human and/or animal health, resulting in significant economic losses. Echinococcus granulosus comprises a number of intra-specific variants or strains at the genetic level. In Saudi Arabia, few studies were performed on genetic variations in Echinococcus species. Therefore, the present study aimed to investigate the phenotypic and genetic characterization of hydatid cysts harboured by sheep and camels in Al-Madinah Al-Munawarah. Samples of hydatid cysts were collected from local sheep (n = 25) and camels (n = 8). The morphological criteria of protoscoleces were investigated. To investigate the molecular characterization, random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR), single-stranded conformation polymorphism (SSCP) were carried out. DNA was extracted from individual fertile cysts and subjected to RAPD-PCR analysis (using five arbitrary primers) and PCR amplification of cytochrome c oxidase I (cox1) and 12S ribosomal ribonucleic acid (12S rRNA) genes. The PCR products were subjected to SSCP analysis for genetic discrimination in E. granulosus isolates. In addition, partially sequencing of the mitochondrial DNA cox1 genes was achieved for assessing the phylogenetic positions of collected isolates using some global published sequence data of cox1 genes. The rostellar hooks of camel and local sheep isolates show remarkable variability in their dimensions. Five distinct SSCP patterns were identified in the 12S rRNA gene, showing intraspecific variations in E. granulosus of camels and local sheep. Sequencing of (cox1) genes of both local sheep and camels exhibit high similarity with those of the same gene (E. granulosus sensu stricto) published in NCBI BLAST.
Collapse
|
19
|
Abstract
Purpose Cystic echinococcosis (CE) caused by Echinococcus granulosus sensu lato is a widespread zoonotic disease of global concern. In Nigeria, the exact picture/status of CE is unclear, as most of the states are largely uninvestigated. Yet, as with every parasitic zoonosis, the first step towards planning a comprehensive management and control programme involves assessment of available national/regional prevalence data, host range, and risk factors at play in the transmission dynamics.
Methods Published articles on echinococcosis were searched on PubMed and Africa Journal Online (AJOL) databases. Inclusion criteria were based on studies reporting prevalence of echinococcosis in animals and humans (including case reports) from 1970 to 2018. Results In this study, we evaluated and summarized cystic echinococcosis reports in Nigeria and found that post 1970–80s, studies on cystic echinococcosis have remained sparse regardless of the high prevalence recorded in the early years of CE investigation. In addition, information on the genetic population structure and the role of wildlife in CE transmission is still lacking. Conclusions This study appraises the prevalence and distribution of CE in Nigeria and identified areas where surveillance and control efforts should be focused and intensified.
Collapse
|
20
|
Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, Jenkins DJ, Li J, Li J, Young ND, Gasser RB. Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasit Vectors 2019; 12:238. [PMID: 31097022 PMCID: PMC6521400 DOI: 10.1186/s13071-019-3492-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (> 1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method. Methods We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled using a recently-developed workflow. Results We assembled a complete mt genome sequence of 17,675 bp, which is > 4 kb larger than the complete mt genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, which is 4417 bp long and consists of ten near-identical 441–445 bp repeat units, each harbouring a 184 bp non-coding region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted repeat. Conclusions We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such ‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the completeness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to achieve improved genomes.
Collapse
Affiliation(s)
- Liina Kinkar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Huimin Cai
- BGI Research, Shenzhen, Guangdong, China
| | - Charles G Gauci
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Marshall W Lightowlers
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - David J Jenkins
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | | | - Junhua Li
- BGI Research, Shenzhen, Guangdong, China
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Terefe Y, Addy F, Alemu S, Mackenstedt U, Romig T, Wassermann M. Genetic characterization of Echinococcus species in eastern Ethiopia. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2019; 17:100302. [PMID: 31303217 DOI: 10.1016/j.vprsr.2019.100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/02/2019] [Accepted: 04/25/2019] [Indexed: 11/19/2022]
Abstract
Cystic echinococcosis (CE) is a neglected zoonotic disease with considerable economic and public health burden worldwide, particularly affecting developing countries like Ethiopia. To initiate effective prevention and control of CE, comprehensive data on the local lifecycles of the various species/genotypes of Echinococcus are needed. In the present study, conducted in eastern Ethiopia, a total of 1106 livestock animals were examined at three slaughterhouses, which resulted in combined prevalence of morphologically and molecularly confirmed CE of 8.4% (75/891) in cattle, 1.1% (1/95) in sheep, 0.0% (0/95) in goats and 12.0% (3/25) in camels. All cystic lesions recovered during post mortem examination were assessed for cyst condition and underwent molecular characterization by PCR and sequencing of a 1081 bp fragment of the mitochondrial cox1 gene. A total of 175 cysts belonged to E. granulosus s.s. (n = 165), E. ortleppi (n = 6) and E. canadensis G6/7 (n = 4). Of all examined cysts, only 14 were fertile and contained protoscoleces, all from the lungs of cattle: 5 were E. granulosus s.s., 6 E. ortleppi and 3 E. canadensis G6/7. In sheep, only one sterile liver cyst of E. granulosus s.s. was found, while in camels seven sterile or caseated/calcified cysts of E. granulosus s.s. and E. canadensis G6/7 were found in liver and lungs. In conclusion, the prevalence of CE was rather low compared to other regions of Ethiopia, and, based on the number of fertile cysts, three Echinococcus spp. contributed almost equally to transmission. Cattle seem to be, epidemiologically, the most important livestock species. Our data provide a substantial basis for more detailed investigations of the transmission dynamics of CE in the study area.
Collapse
Affiliation(s)
- Y Terefe
- College of Veterinary Medicine, Haramaya University, Dira Dawa, Ethiopia
| | - F Addy
- Department of Biotechnology, University for Development Studies, Faculty of Agriculture, Tamale, Ghana
| | - S Alemu
- College of Veterinary Medicine, Haramaya University, Dira Dawa, Ethiopia
| | - U Mackenstedt
- Department of Parasitology, University of Hohenheim, Stuttgart, Germany
| | - T Romig
- Department of Parasitology, University of Hohenheim, Stuttgart, Germany
| | - M Wassermann
- Department of Parasitology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
22
|
Kinkar L, Laurimäe T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, Gasser RB, González LM, Haag KL, Zait H, Irshadullah M, Jabbar A, Jenkins DJ, Manfredi MT, Mirhendi H, M'rad S, Rostami-Nejad M, Oudni-M'rad M, Pierangeli NB, Ponce-Gordo F, Rehbein S, Sharbatkhori M, Kia EB, Simsek S, Soriano SV, Sprong H, Šnábel V, Umhang G, Varcasia A, Saarma U. Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: A practical guide. INFECTION GENETICS AND EVOLUTION 2018; 64:178-184. [PMID: 29936039 DOI: 10.1016/j.meegid.2018.06.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Cystic echinococcosis (CE), a zoonotic disease caused by tapeworms of the species complex Echinococcus granulosus sensu lato, represents a substantial global health and economic burden. Within this complex, E. granulosus sensu stricto (genotypes G1 and G3) is the most frequent causative agent of human CE. Currently, there is no fully reliable method for assigning samples to genotypes G1 and G3, as the commonly used mitochondrial cox1 and nad1 genes are not sufficiently consistent for the identification and differentiation of these genotypes. Thus, a new genetic assay is required for the accurate assignment of G1 and G3. Here we use a large dataset of near-complete mtDNA sequences (n = 303) to reveal the extent of genetic variation of G1 and G3 on a broad geographical scale and to identify reliable informative positions for G1 and G3. Based on extensive sampling and sequencing data, we developed a new method, that is simple and cost-effective, to designate samples to genotypes G1 and G3. We found that the nad5 is the best gene in mtDNA to differentiate between G1 and G3, and developed new primers for the analysis. Our results also highlight problems related to the commonly used cox1 and nad1. To guarantee consistent identification of G1 and G3, we suggest using the sequencing of the nad5 gene region (680 bp). This region contains six informative positions within a relatively short fragment of the mtDNA, allowing the differentiation of G1 and G3 with confidence. Our method offers clear advantages over the previous ones, providing a significantly more consistent means to distinguish G1 and G3 than the commonly used cox1 and nad1.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51003, Estonia
| | - Teivi Laurimäe
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51003, Estonia
| | - Gerardo Acosta-Jamett
- Instituto de Medicina Preventiva Veterinaria y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Vanessa Andresiuk
- Laboratorio de Zoonosis Parasitarias, FCEyN, UNMdP, Funes 3350, CP: 7600 Mar del Plata, Buenos Aires, Argentina
| | - Ibrahim Balkaya
- Department of Parasitology, Faculty of Veterinary Medicine, University of Atatürk, Erzurum, Turkey
| | - Adriano Casulli
- World Health Organization Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, European Union Reference Laboratory for Parasites (EURLP), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luis Miguel González
- Parasitology Department, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Karen L Haag
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Houria Zait
- Parasitology and Mycology department, Mustapha University Hospital, 16000 Algiers, Algeria
| | - Malik Irshadullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David J Jenkins
- School of Animal and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Maria Teresa Manfredi
- Department of Veterinary Medicine, Università degli Studi di Milano, via Celoria 10, 20133 Milan, Italy
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Selim M'rad
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), LR 12ES08, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Myriam Oudni-M'rad
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), LR 12ES08, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Nora Beatriz Pierangeli
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Comahue National University, Buenos Aires, 1400, 8300 Neuquén, Argentina
| | - Francisco Ponce-Gordo
- Department of Parasitology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Steffen Rehbein
- Merial GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany
| | - Mitra Sharbatkhori
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Eshrat Beigom Kia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119 Elazig, Turkey
| | - Silvia Viviana Soriano
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Comahue National University, Buenos Aires, 1400, 8300 Neuquén, Argentina
| | - Hein Sprong
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and Environment, P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Viliam Šnábel
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Gérald Umhang
- ANSES, Nancy Laboratory for Rabies and Wildlife, Wildlife surveillance and eco-epidemiology unit, Malzéville 54220, France
| | - Antonio Varcasia
- Laboratory of Parasitology, Veterinary Teaching Hospital, Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51003, Estonia.
| |
Collapse
|
23
|
Laurimäe T, Kinkar L, Romig T, Omer RA, Casulli A, Umhang G, Gasser RB, Jabbar A, Sharbatkhori M, Mirhendi H, Ponce-Gordo F, Lazzarini LE, Soriano SV, Varcasia A, Rostami Nejad M, Andresiuk V, Maravilla P, González LM, Dybicz M, Gawor J, Šarkūnas M, Šnábel V, Kuzmina T, Saarma U. The benefits of analysing complete mitochondrial genomes: Deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7. INFECTION GENETICS AND EVOLUTION 2018; 64:85-94. [PMID: 29906638 DOI: 10.1016/j.meegid.2018.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease caused by the larval stage of the species complex Echinococcus granulosus sensu lato. Within this complex, genotypes G6 and G7 have been frequently associated with human CE worldwide. Previous studies exploring the genetic variability and phylogeography of genotypes G6 and G7 have been based on relatively short mtDNA sequences, and the resolution of these studies has often been low. Moreover, using short sequences, the distinction between G6 and G7 has in some cases remained challenging. The aim here was to sequence complete mitochondrial genomes (mitogenomes) to obtain deeper insight into the genetic diversity, phylogeny and population structure of genotypes G6 and G7. We sequenced complete mitogenomes of 94 samples collected from 15 different countries worldwide. The results demonstrated that (i) genotypes G6 and G7 can be clearly distinguished when mitogenome sequences are used; (ii) G7 is represented by two major haplogroups, G7a and G7b, the latter being specific to islands of Corsica and Sardinia; (iii) intensive animal trade, but also geographical isolation, have likely had the largest impact on shaping the genetic structure and distribution of genotypes G6 and G7. In addition, we found phylogenetically highly divergent haplotype from Mongolia (Gmon), which had a higher affinity to G6.
Collapse
Affiliation(s)
- Teivi Laurimäe
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Liina Kinkar
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Thomas Romig
- Institute of Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Rihab A Omer
- National University Research Institute, National University Sudan, Khartoum, Sudan
| | - Adriano Casulli
- World Health Organization Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis (in humans and animals), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; European Union Reference Laboratory for Parasites (EURLP), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gérald Umhang
- Anses, Wildlife Surveillance and Eco-epidemiology Unit, National Reference Laboratory for Echinococcus spp., Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mitra Sharbatkhori
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Mirhendi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Francisco Ponce-Gordo
- Department of Parasitology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Lorena E Lazzarini
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Comahue National University, Buenos Aires, 1400, 8300 Neuquén, Argentina
| | - Silvia V Soriano
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Comahue National University, Buenos Aires, 1400, 8300 Neuquén, Argentina
| | - Antonio Varcasia
- Laboratorio di Parassitologia e Malattie Parassitarie, Ospedale Didattico Veterinario Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mohammad Rostami Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vanessa Andresiuk
- Laboratorio de Zoonosis Parasitarias, FCEyN, UNMdP, Funes 3350, CP: 7600, Mar del Plata, Buenos Aires, Argentina
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecologia de Agentes Patogenos, DF 14080, Mexico
| | - Luis Miguel González
- Parasitology Department, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Monika Dybicz
- Department of General Biology and Parasitology, 5 Chałubińskiego Str., 02-004 Warsaw, Medical University of Warsaw, Poland
| | - Jakub Gawor
- W. Stefański Institute of Parasitology, Polish Academy of Science, Twarda51/55, Warsaw 00-818, Poland
| | - Mindaugas Šarkūnas
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžes Street 18, 47181 Kaunas, Lithuania
| | - Viliam Šnábel
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Tetiana Kuzmina
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia.
| |
Collapse
|
24
|
Molecular phylogeny based on six nuclear genes suggests that Echinococcus granulosus sensu lato genotypes G6/G7 and G8/G10 can be regarded as two distinct species. Parasitology 2018; 145:1929-1937. [PMID: 29781421 DOI: 10.1017/s0031182018000719] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tapeworms of the species complex of Echinococcus granulosus sensu lato (s. l.) are the cause of a severe zoonotic disease - cystic echinococcosis, which is listed among the most severe parasitic diseases in humans and is prioritized by the World Health Organization. A stable taxonomy of E. granulosus s. l. is essential to the medical and veterinary communities for accurate and effective communication of the role of different species in this complex on human and animal health. E. granulosus s. l. displays high genetic diversity and has been divided into different species and genotypes. Despite several decades of research, the taxonomy of E. granulosus s. l. has remained controversial, especially the species status of genotypes G6-G10. Here the Bayesian phylogeny based on six nuclear loci (7387 bp in total) demonstrated, with very high support, the clustering of G6/G7 and G8/G10 into two separate clades. According to the evolutionary species concept, G6/G7 and G8/G10 can be regarded as two distinct species. Species differentiation can be attributed to the association with distinct host species, largely separate geographical distribution and low level of cross-fertilization. These factors have limited the gene flow between genotypic groups G6/G7 and G8/G10, resulting in the formation of distinct species. We discuss ecological and epidemiological differences that support the validity of these species.
Collapse
|
25
|
Genetic diversity and phylogeography of the elusive, but epidemiologically important Echinococcus granulosus sensu stricto genotype G3. Parasitology 2018; 145:1613-1622. [PMID: 29661261 DOI: 10.1017/s0031182018000549] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystic echinococcosis (CE) is a severe parasitic disease caused by the species complex Echinococcus granulosus sensu lato. Human infections are most commonly associated with E. granulosus sensu stricto (s.s.), comprising genotypes G1 and G3. The objective of the current study was to provide first insight into the genetic diversity and phylogeography of genotype G3. Despite the epidemiological importance of the genotype, it has remained poorly explored due to the ambiguity in the definition of the genotype. However, it was recently demonstrated that long sequences of mitochondrial DNA (mtDNA) provide a reliable method to discriminate G1 and G3 from each other. Therefore, we sequenced near-complete mtDNA of 39 G3 samples, covering most of the known distribution range and host spectra of the genotype. The phylogenetic network revealed high genetic variation within E. granulosus s.s. G3 and while G3 is significantly less prevalent worldwide than G1, the genetic diversity of both of the genotypes is equally high. We also present the results of the Bayesian phylogeographic analysis, which yielded several well-supported diffusion routes of genotype G3 originating from Turkey and Iran, suggesting the Middle East as the origin of the genotype.
Collapse
|
26
|
Molecular characterization of Echinococcus species in dogs from four regions of Kenya. Vet Parasitol 2018; 255:49-57. [PMID: 29773136 DOI: 10.1016/j.vetpar.2018.03.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 11/22/2022]
Abstract
Cystic echinococcosis is endemic both in livestock and humans in many parts of Kenya. However, very little data exists on Echinococcus infections in dogs, and therefore their role in maintaining the transmission cycles and environmental contamination with eggs of Echinococcus species is unknown. The study aimed to establish the prevalence and distribution of Echinococcus granulosus sensu lato causing infection in dogs in Kenya. A total of 1621 dog faecal samples were collected from the environment in four different regions and examined microscopically for the presence of taeniid eggs. Up to 20 individual taeniid eggs per faecal sample were picked, lysed and genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing of the NADH dehydrogenase subunit 1 (nad1) gene. Eleven percent (178/1621) of faecal samples had taeniid eggs, while 4.4% (71/1621) contained Echinococcus spp. eggs. Area-wise, the faecal prevalence of Echinococcus spp. was 9.2% (48/524) in Turkana, 4.0% (20/500) in Maasai Mara, 0.7% (2/294) in Isiolo and 0.3% (1/303) in Meru. E. granulosus sensu stricto (s. s.) was the dominant Echinococcus taxon, followed by E. canadensis (G6/7) that was detected in 51 and 23 faecal samples, respectively. E. ortleppi was detected in only 5 faecal samples. We report for the first time the presence of E. felidis eggs in two dog faecal samples (from Maasai Mara region). Mixed infections of these taxa were also found in faecal samples, including: E. granulosus s. s. and E. canadensis (G6/7) (n = 7), E. granulosus s. s. and E. ortleppi (n = 1) and all three species (n = 1). The dog data presented here confirm the differences in diversity and abundance of Echinococcus spp. between regions of Kenya, correspond well with previously published data from livestock, and tentatively suggest a role of domestic dogs as a link between domestic and sylvatic cycles of Echinococcus spp.
Collapse
|
27
|
Ito A, Budke CM. The echinococcoses in Asia: The present situation. Acta Trop 2017; 176:11-21. [PMID: 28728830 DOI: 10.1016/j.actatropica.2017.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
Abstract
Human alveolar and cystic echinococcosis, caused by the accidental ingestion of eggs of the tapeworms Echinococcus multilocularis and Echinococcus granulosus sensu lato, respectively, are endemic in Asia. Various Echinococcus species are maintained in domesticated and/or wild mammals through predator-prey interactions. Molecular analysis is used to help differentiate infecting parasite species and genotypes, with the goal of better understanding parasite life cycles in order to aid in the planning and implementation of control programs. This paper discusses the various echinococcoses in Asia, with limited reference to neighboring areas, including parts of Central Asia, Russia, Europe and North America.
Collapse
|
28
|
Kinkar L, Laurimäe T, Sharbatkhori M, Mirhendi H, Kia EB, Ponce-Gordo F, Andresiuk V, Simsek S, Lavikainen A, Irshadullah M, Umhang G, Oudni-M'rad M, Acosta-Jamett G, Rehbein S, Saarma U. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. INFECTION GENETICS AND EVOLUTION 2017; 52:52-58. [PMID: 28456662 DOI: 10.1016/j.meegid.2017.04.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022]
Abstract
Cystic echinococcosis, a zoonotic disease caused by Echinococcus granulosus sensu lato (s. l.), is a significant global public health concern. Echinococcus granulosus s. l. is currently divided into numerous genotypes (G1-G8 and G10) of which G1-G3 are the most frequently implicated genotypes in human infections. Although it has been suggested that G1-G3 could be regarded as a distinct species E. granulosus sensu stricto (s. s.), the evidence to support this is inconclusive. Most importantly, data from nuclear DNA that provide means to investigate the exchange of genetic material between G1-G3 is lacking as none of the published nuclear DNA studies have explicitly included G2 or G3. Moreover, the commonly used relatively short mtDNA sequences, including the complete cox1 gene, have not allowed unequivocal differentiation of genotypes G1-G3. Therefore, significantly longer mtDNA sequences are required to distinguish these genotypes with confidence. The main aim of this study was to evaluate the phylogenetic relations and taxonomy of genotypes G1-G3 using sequences of nearly complete mitogenomes (11,443bp) and three nuclear loci (2984bp). A total of 23 G1-G3 samples were analysed, originating from 5 intermediate host species in 10 countries. The mtDNA data demonstrate that genotypes G1 and G3 are distinct mitochondrial genotypes (separated by 37 mutations), whereas G2 is not a separate genotype or even a monophyletic cluster, but belongs to G3. Nuclear data revealed no genetic separation of G1 and G3, suggesting that these genotypes form a single species due to ongoing gene flow. We conclude that: (a) in the taxonomic sense, genotypes G1 and G3 can be treated as a single species E. granulosus s. s.; (b) genotypes G1 and G3 should be regarded as distinct genotypes only in the context of mitochondrial data; (c) we recommend excluding G2 from the genotype list.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 50410 Tartu, Estonia
| | - Teivi Laurimäe
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 50410 Tartu, Estonia
| | - Mitra Sharbatkhori
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Mirhendi
- Department of Medical Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Eshrat Beigom Kia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Francisco Ponce-Gordo
- Departmento de Parasitología, Facultad de Farmacia, Plaza Ramón y Cajal s/n, UCM, Madrid, Spain
| | - Vanessa Andresiuk
- Laboratorio de Zoonosis Parasitarias, FCEyN, UNMdP, Funes 3350, CP: 7600, Mar del Plata, Buenos Aires, Argentina
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119 Elazig, Turkey
| | - Antti Lavikainen
- Department of Bacteriology and Immunology/Immunobiology Program, Faculty of Medicine, P.O. Box 21, FIN-00014, University of Helsinki, Finland
| | - Malik Irshadullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Gérald Umhang
- Anses, Wildlife Surveillance and Eco-epidemiology Unit, National Reference Laboratory for Echinococcus spp., Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Myriam Oudni-M'rad
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, LR12ES08, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Gerardo Acosta-Jamett
- Instituto de Medicina Preventiva Veterinaria y Programa de Investgación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Steffen Rehbein
- Merial GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 50410 Tartu, Estonia.
| |
Collapse
|
29
|
Boué F, El Berbri I, Hormaz V, Boucher JM, El Mamy AB, Traore A, Fihri OF, Petavy AF, Dakkak A, Umhang G. Use of FTA® card methodology for sampling and molecular characterization of Echinococcus granulosus sensu lato in Africa. Exp Parasitol 2017; 173:29-33. [DOI: 10.1016/j.exppara.2016.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
|
30
|
Romig T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, Wassermann M, Takahashi K, de la Rue M. Ecology and Life Cycle Patterns of Echinococcus Species. ADVANCES IN PARASITOLOGY 2017; 95:213-314. [PMID: 28131364 DOI: 10.1016/bs.apar.2016.11.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies.
Collapse
Affiliation(s)
- T Romig
- University of Hohenheim, Stuttgart, Germany
| | - P Deplazes
- University of Zürich, Zurich, Switzerland
| | - D Jenkins
- Charles Sturt University, Wagga Wagga, NSW, Australia
| | - P Giraudoux
- University of Franche-Comté and Institut Universitaire de France, Besancon, France
| | - A Massolo
- University of Calgary, Calgary, Alberta, Canada
| | - P S Craig
- University of Salford, Greater Manchester, United Kingdom
| | | | | | - M de la Rue
- University of Santa Maria, Santa Maria RS, Brazil
| |
Collapse
|
31
|
Ito A, Nakao M, Lavikainen A, Hoberg E. Cystic echinococcosis: Future perspectives of molecular epidemiology. Acta Trop 2017; 165:3-9. [PMID: 27237060 DOI: 10.1016/j.actatropica.2016.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023]
Abstract
Human cystic echinococcosis (CE) has been considered to be caused predominantly by Echinococcus granulosus sensu stricto (the dog-sheep strain). Molecular approaches on CE, however, have revealed that human cases are also commonly caused by another species, Echinococcus canadensis. All indices for classification and standardization of CE pathology including available images, epidemiology, diagnostics and treatment are currently based largely on a mixture of infections which include at least E. granulosus s.s. and E. canadensis. Involvement of other species of Echinococcus in CE including E. ortleppi or otherwise cryptic diversity demonstrated recently in Africa requires further elucidation. Molecular identification of the causative species in CE cases is essential for better understanding of pathogenesis and disease. This article stresses the importance of molecular species identification of human CE as a foundation for re-evaluation of evidence-based epidemiology.
Collapse
|
32
|
Lymbery AJ. Phylogenetic Pattern, Evolutionary Processes and Species Delimitation in the Genus Echinococcus. ADVANCES IN PARASITOLOGY 2016; 95:111-145. [PMID: 28131362 DOI: 10.1016/bs.apar.2016.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An accurate and stable alpha taxonomy requires a clear conception of what constitutes a species and agreed criteria for delimiting different species. An evolutionary or general lineage concept defines a species as a single lineage of organisms with a common evolutionary trajectory, distinguishable from other such lineages. Delimiting evolutionary species is a two-step process. In the first step, phylogenetic reconstruction identifies putative species as groups of organisms that are monophyletic (share a common ancestor) and exclusive (more closely related to each other than to organisms outside the group). The second step is to assess whether members of the group possess genetic exchangeability (where cohesion is maintained by gene flow among populations) or ecological exchangeability (where cohesion is maintained because populations occupy the same ecological niche). Recent taxonomic reviews have recognized nine species within the genus Echinococcus. Phylogenetic reconstructions of the relationships between these putative species using mtDNA and nuclear gene sequences show that for the most part these nine species are monophyletic, although there are important incongruences that need to be resolved. Applying the criteria of genetic and ecological exchangeability suggests that seven of the currently recognized species represent evolutionarily distinct lineages. The species status of Echinococcus canadensis and Echinococcus ortleppi could not be confirmed. Coalescent-based analyses represent a promising approach to species delimitation in these closely related taxa. It seems likely, from a comparison of sister species groups, that speciation in the genus has been driven by geographic isolation, but biogeographic scenarios are largely speculative and require further testing.
Collapse
|
33
|
Abstract
The biology of Echinococcus, the causative agent of echinococcosis (hydatid disease) is reviewed with emphasis on the developmental biology of the adult and metacestode stages of the parasite. Major advances include determining the origin, structure and functional activities of the laminated layer and its relationship with the germinal layer; and the isolation, in vitro establishment and characterization of the multipotential germinal cells. Future challenges are to identify the mechanisms that provide Echinococcus with its unique developmental plasticity and the nature of activities at the parasite-host interface, particularly in the definitive host. The revised taxonomy of Echinococcus is presented and the solid nomenclature it provides will be essential in understanding the epidemiology of echinococcosis.
Collapse
|