1
|
Rostami A, Lundström-Stadelmann B, Frey CF, Beldi G, Lachenmayer A, Chang BCH, Norouzian MM, Hemphill A, Gasser RB. Human Alveolar Echinococcosis-A Neglected Zoonotic Disease Requiring Urgent Attention. Int J Mol Sci 2025; 26:2784. [PMID: 40141427 PMCID: PMC11943292 DOI: 10.3390/ijms26062784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Alveolar echinococcosis (AE) in humans is caused by the larval (metacestode) stage of Echinococcus multilocularis, commonly known as the 'fox tapeworm'. This disease predominantly targets the liver and has an invasive growth pattern, allowing it to spread to adjacent and distant tissues. Due to its gradual progression and tumour-like characteristics, early diagnosis and prompt intervention are crucial, particularly as there are currently no highly effective vaccines or chemotherapeutics against AE. Current estimates suggest that ~10,500 new infections occur annually worldwide; however, more research is required to refine the prevalence and incidence data for both human and animal hosts in endemic areas of the world. This article discusses the biology of E. multilocularis, outlines aspects of the pathogenesis, diagnosis, treatment, and management of AE, reviews its global distribution, annual incidence, and prevalence, highlights the role of molecular parasitology in advancing therapeutic strategies, and presents recommendations for improving the prevention and control of AE in human populations.
Collapse
Affiliation(s)
- Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; (A.R.); (M.M.N.)
| | - Britta Lundström-Stadelmann
- Multidisciplinary Center for Infectious Diseases, University of Bern, Hallerstrasse 6, 3012 Bern, Switzerland; (B.L.-S.); (G.B.)
- Reference Laboratory of Federal Office for Food Safety and Veterinary Affairs, Institute of Parasitology and Echinococcus, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland;
| | - Caroline F. Frey
- Reference Laboratory of Federal Office for Food Safety and Veterinary Affairs, Institute of Parasitology and Echinococcus, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland;
| | - Guido Beldi
- Multidisciplinary Center for Infectious Diseases, University of Bern, Hallerstrasse 6, 3012 Bern, Switzerland; (B.L.-S.); (G.B.)
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Department for Biomedical Research, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
| | - Anja Lachenmayer
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Bill C. H. Chang
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Mohammad Mobin Norouzian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; (A.R.); (M.M.N.)
| | - Andrew Hemphill
- Reference Laboratory of Federal Office for Food Safety and Veterinary Affairs, Institute of Parasitology and Echinococcus, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland;
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
2
|
Lima CM, Uliassi E, Thoré ES, Bertram MG, Cardoso L, Cordeiro da Silva A, Costi MP, de Koning HP. Environmental impacts of drugs against parasitic vector-borne diseases and the need to integrate sustainability into their development and use. OPEN RESEARCH EUROPE 2024; 4:207. [PMID: 39534878 PMCID: PMC11555358 DOI: 10.12688/openreseurope.18008.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Background The current scientific discourse on environmental impacts of veterinary medicines mostly focuses on ectoparasiticides. Meanwhile, the environmental impacts of widely prescribed drugs for the treatment of human and animal parasitic vector-borne diseases (PVBD) remain largely unexplored. There is thus a need for evidence-based information to support guidelines and protocols for sustainable One Health PVBD drug development and use, while promoting greener research practices. Here, we reflect on the potential environmental impacts of PVBD drugs in current use, and the environmental impact of our research practices for developing new antiparasitics. Methods We conducted a survey of the membership of the "One Health drugs against parasitic vector borne diseases in Europe and beyond" Cooperation in Science and Technology (COST) Action 21111 (OneHealth drugs) to assess the current appreciation of sustainable drug design concepts and the extent to which One Health and sustainability principles are integrated into PVBD drug discovery and development. The survey also explored which human, technical, and funding resources are currently used in Europe and neighbouring countries in PVBD drugs research. Results The survey was conducted and analysed by OneHealth drugs and garnered 89 respondents, representing a response rate of 66% from 32 countries, predominantly European. 87% of participating collaborators worked in Academia; research groups were small (60% with 1-4 researchers) and mostly consist of few researchers, mostly at early career stages (63% <35 years old). Collaborations were mostly between academics, and 60% collaborated with non-European researchers, while funding was mostly from national governments. Motivation for greener research practices was high but there was as yet low implementation of green strategies or the incorporation of ecotoxicological test in drug development workflows, due to cost and unfamiliarity. Conclusions We highlight the need for early-ecotoxicological testing of new drug candidates and suggest best practices as we move towards standardized protocols in developing safe and efficacious PVBD drugs.
Collapse
Affiliation(s)
- Clara M. Lima
- Host-Parasite Interaction Group, Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
- Microbiology Laboratory, Department of Biological Sciences, University of Porto, Porto, 4050-313, Portugal
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Eli S.J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, SE-907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth and Environment, University of Namur, Namur 5000, Belgium, Namur, 5000, Belgium
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, SE-907 36, Sweden
- Department of Zoology, Stockholm University, Stockholm, Stockholm 114 18, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Luis Cardoso
- Department of Veterinary Sciences, and Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, University of Trás-os-Montes e Alto Douro, Lisbon, 5000-801 Vila Real, Portugal
| | - Anabela Cordeiro da Silva
- Host-Parasite Interaction Group, Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
- Microbiology Laboratory, Department of Biological Sciences, University of Porto, Porto, 4050-313, Portugal
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Harry P. de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8TA, UK
| |
Collapse
|
3
|
Kulakowski Corá R, Prado Paludo G, Andrade Paes J, Bunselmeyer Ferreira H. In silico comparative analysis of cestode and human NPC1 provides insights for ezetimibe repurposing to visceral cestodiases treatment. Sci Rep 2024; 14:21282. [PMID: 39261546 PMCID: PMC11391042 DOI: 10.1038/s41598-024-72136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Visceral cestodiases, like cysticercoses and echinococcoses, are caused by cystic larvae from parasites of the Cestoda class and are endemic or hyperendemic in many areas of the world. Current therapeutic approaches for these diseases are complex and present limitations and risks. Therefore, new safer and more effective treatments are urgently needed. The Niemann-Pick C1 (NPC1) protein is a cholesterol transporter that, based on genomic data, would be the solely responsible for cholesterol uptake in cestodes. Considering that human NPC1L1 is a known target of ezetimibe, used in the treatment of hypercholesterolemia, it has the potential for repurposing for the treatment of visceral cestodiases. Here, phylogenetic, selective pressure and structural in silico analyses were carried out to assess NPC1 evolutive and structural conservation, especially between cestode and human orthologs. Two NPC1 orthologs were identified in cestode species (NPC1A and NPC1B), which likely underwent functional divergence, leading to the loss of cholesterol transport capacity in NPC1A. Comparative interaction analyses performed by molecular docking of ezetimibe with human NPC1L1 and cestode NPC1B pointed out to similarities that consolidate the idea of cestode NPC1B as a target for the repurposing of ezetimibe as a drug for the treatment of visceral cestodiases.
Collapse
Affiliation(s)
- Renato Kulakowski Corá
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Lee SO, Chu KB, Yoon KW, Eom GD, Mao J, Lee H, No JH, Song JH, Hong SJ, Kim SS, Quan FS. Efficacy assessment of miltefosine and curcumin against Clonorchis sinensis infection. Antimicrob Agents Chemother 2024; 68:e0064224. [PMID: 39082882 PMCID: PMC11373209 DOI: 10.1128/aac.00642-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Praziquantel (PZQ) is currently the only approved drug for treating clonorchiasis, but its poor efficacy against Clonorchis sinensis larvae has highlighted the need to develop newer drugs. In this study, to address this challenge, we investigated the anti-parasitic efficacy of miltefosine (MLT), curcumin (CUR), and PZQ against C. sinensis metacercariae (CsMC), newly excysted juvenile worms (CsNEJs), and adults. Larvicidal effects of MLT and CUR surpassed those elicited by PZQ in vitro. These two drugs exerted their effect against both CsMC and CsNEJs in a dose- and time-dependent manner. To confirm the effect of these drugs in vivo, Syrian golden hamsters were orally infected with 100 CsMC and subsequently treated with MLT, CUR, or PZQ at 1 and 4 weeks post-infection (wpi). MLT and CUR reduced the worm recoveries at 1 and 4 wpi, indicating that these drugs were efficacious against both larvae and adult C. sinensis. PZQ was only efficacious against adult worms. Interestingly, both MLT and CUR showed lower levels of C. sinensis-specific IgG responses than the infection control group, implying that worm burden and bile IgG responses could be correlated. These results indicate that MLT and CUR are efficacious against both larval and adult stages of C. sinensis, thereby highlighting their potential for further development as alternative therapeutic options for clonorchiasis.
Collapse
Affiliation(s)
- Soon-Ok Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, Republic of Korea
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Jin Ho Song
- Department Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
El-Attar NA, El-Sawi MR, El-Shabasy EA. The synergistic effect of Ficus carica nanoparticles and Praziquantel on mice infected by Schistosoma mansoni cercariae. Sci Rep 2024; 14:18944. [PMID: 39147839 PMCID: PMC11327331 DOI: 10.1038/s41598-024-68957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Bilharzia is a parasitic flatworm that causes schistosomiasis, a neglected tropical illness worldwide. Praziquantel (PZQ) is a commercial single treatment of schistosomiasis so alternative drugs are needed to get rid of its side effects on the liver. The current study aimed to estimate the effective role of Ficus carica nanoparticles (Fc-NPCs), silver nanoparticles (Ag-NPCs) and Ficus carica nanoparticles loaded on silver nanoparticles (Fc-Ag NPCs) on C57BL/6 black female mice infected by Schistosoma mansoni and treated with PZQ treatment. It was proved that schistosomiasis causes liver damage in addition to the PZQ is ineffective as an anti-schistosomiasis; it is recorded in the infected mice group and PZQ treated group as in liver function tests, oxidative stress markers & anti-oxidants, pro-inflammatory markers, pro-apoptotic and anti-apoptotic markers also in liver cells' DNA damage. The amelioration in all tested parameters has been clarified in nanoparticle-protected mice groups. The Fc-Ag NPCs + PZQ group recorded the best preemptive effects as anti-schistosomiasis. Fc-NPCs, Ag-NPCs and Fc-Ag NPCs could antagonize PZQ effects that were observed in amelioration of all tested parameters. The study showed the phytochemicals' nanoparticles groups have an ameliorated effect on the health of infected mice.
Collapse
Affiliation(s)
- Naira A El-Attar
- Zoology Department, Faculty of Science, Mansoura University, Mansoura City, Egypt.
| | - Mamdouh R El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura City, Egypt
| | - Eman A El-Shabasy
- Zoology Department, Faculty of Science, Mansoura University, Mansoura City, Egypt
| |
Collapse
|
6
|
Lotz CN, Krollenbrock A, Imhof L, Riscoe M, Keiser J. Robenidine derivatives as potential antischistosomal drug candidates. Int J Parasitol Drugs Drug Resist 2024; 25:100546. [PMID: 38733883 PMCID: PMC11101930 DOI: 10.1016/j.ijpddr.2024.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Schistosomiasis caused by Schistosoma spp. is a disease that causes a considerable health burden to millions of people worldwide. The limited availability of effective drugs on the market and the increased risk of resistance development due to extensive usage, highlight the urgent need for new antischistosomal drugs. Recent studies have shown that robenidine derivatives, containing an aminoguanidine core, exhibit promising activities against Plasmodium falciparum, motivating further investigation into their efficacy against Schistosoma mansoni, due to their similar habitat and the resulting related cellular mechanisms like the heme detoxification pathway. The conducted phenotypic screening of robenidine and 80 derivatives against newly transformed schistosomula and adult Schistosoma mansoni yielded 11 candidates with low EC50 values for newly transformed schistosomula (1.12-4.63 μM) and adults (2.78-9.47 μM). The structure-activity relationship revealed that electron-withdrawing groups at the phenyl moiety, as well as the presence of methyl groups adjacent to the guanidine moiety, enhanced the activity of derivatives against both stages of Schistosoma mansoni. The two compounds 2,2'-Bis[(3-cyano-4-fluorophenyl)methylene] carbonimidic Dihydrazide Hydrochloride (1) and 2,2'-Bis[(4-difluoromethoxyphenyl) ethylidene] carbonimidic Dihydrazide Hydrochloride (19), were selected for an in vivo study in Schistosoma mansoni-infected mice based on their potency, cytotoxicity, pharmacokinetic-, and physicochemical properties, but failed to reduce the worm burden significantly (worm burden reduction <20%). Thus, robenidine derivatives require further refinements to obtain higher antischistosomal specificity and in vivo activity.
Collapse
Affiliation(s)
- Christian N Lotz
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Switzerland; University of Basel, Petersplatz 1, Basel, 4051, Switzerland.
| | - Alina Krollenbrock
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, United States.
| | - Lea Imhof
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Switzerland; University of Basel, Petersplatz 1, Basel, 4051, Switzerland.
| | - Michael Riscoe
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, United States.
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Switzerland; University of Basel, Petersplatz 1, Basel, 4051, Switzerland.
| |
Collapse
|
7
|
Oyinloye BE, Shamaki DE, Agbebi EA, Onikanni SA, Ubah CS, Aruleba RT, Dao TNP, Owolabi OV, Idowu OT, Mathenjwa-Goqo MS, Esan DT, Ajiboye BO, Omotuyi OI. In Silico Comparison of Bioactive Compounds Characterized from Azadirachta indica with an FDA-Approved Drug against Schistosomal Agents: New Insight into Schistosomiasis Treatment. Molecules 2024; 29:1909. [PMID: 38731401 PMCID: PMC11084920 DOI: 10.3390/molecules29091909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.
Collapse
Affiliation(s)
- Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - David Ezekiel Shamaki
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Emmanuel Ayodeji Agbebi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Department of Pharmacognosy and Natural Products, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | | | - Tran Nhat Phong Dao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Makhosazana Siduduzile Mathenjwa-Goqo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Deborah Tolulope Esan
- Faculty of Nursing Sciences, College of Health Sciences, Bowen University, Iwo 232102, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| |
Collapse
|
8
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Hamid A, Mäser P, Mahmoud AB. Drug Repurposing in the Chemotherapy of Infectious Diseases. Molecules 2024; 29:635. [PMID: 38338378 PMCID: PMC10856722 DOI: 10.3390/molecules29030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Repurposing is a universal mechanism for innovation, from the evolution of feathers to the invention of Velcro tape. Repurposing is particularly attractive for drug development, given that it costs more than a billion dollars and takes longer than ten years to make a new drug from scratch. The COVID-19 pandemic has triggered a large number of drug repurposing activities. At the same time, it has highlighted potential pitfalls, in particular when concessions are made to the target product profile. Here, we discuss the pros and cons of drug repurposing for infectious diseases and analyze different ways of repurposing. We distinguish between opportunistic and rational approaches, i.e., just saving time and money by screening compounds that are already approved versus repurposing based on a particular target that is common to different pathogens. The latter can be further distinguished into divergent and convergent: points of attack that are divergent share common ancestry (e.g., prokaryotic targets in the apicoplast of malaria parasites), whereas those that are convergent arise from a shared lifestyle (e.g., the susceptibility of bacteria, parasites, and tumor cells to antifolates due to their high rate of DNA synthesis). We illustrate how such different scenarios can be capitalized on by using examples of drugs that have been repurposed to, from, or within the field of anti-infective chemotherapy.
Collapse
Affiliation(s)
- Amal Hamid
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Abdelhalim Babiker Mahmoud
- Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan;
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Kaethner M, Rennar G, Gallinger T, Kämpfer T, Hemphill A, Mäder P, Luque-Gómez A, Schlitzer M, Lundström-Stadelmann B. In Vitro Activities of Dithiocarbamate Derivatives against Echinococcus multilocularis Metacestode Vesicles. Trop Med Infect Dis 2023; 8:517. [PMID: 38133449 PMCID: PMC10747736 DOI: 10.3390/tropicalmed8120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the severe zoonotic disease alveolar echinococcosis. New treatment options are urgently needed. Disulfiram and dithiocarbamates were previously shown to exhibit activity against the trematode Schistosoma mansoni. As both parasites belong to the platyhelminths, here we investigated whether these compounds were also active against E. multilocularis metacestode vesicles in vitro. We used an in vitro drug-screening cascade for the identification of novel compounds against E. multilocularis metacestode vesicles with disulfiram and 51 dithiocarbamates. Five compounds showed activity against E. multilocularis metacestode vesicles after five days of drug incubation in a damage marker release assay. Structure-activity relationship analyses revealed that a S-2-hydroxy-5-nitro benzyl moiety was necessary for anti-echinococcal activity, as derivatives without this group had no effect on E. multilocularis metacestode vesicles. The five active compounds were further tested for potential cytotoxicity in mammalian cells. For two compounds with low toxicity (Schl-32.315 and Schl-33.652), IC50 values in metacestode vesicles and IC50 values in germinal layer cells were calculated. The compounds were not highly active on isolated GL cells with IC50 values of 27.0 ± 4.2 µM for Schl-32.315 and 24.7 ± 11.5 µM for Schl-33.652, respectively. Against metacestode vesicles, Schl-32.315 was not very active either with an IC50 value of 41.6 ± 3.2 µM, while Schl-33.652 showed a low IC50 of 4.3 ± 1 µM and should be further investigated in the future for its activity against alveolar echinococcosis.
Collapse
Affiliation(s)
- Marc Kaethner
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.K.); (T.K.); (A.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Georg Rennar
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, 35037 Marburg, Germany (M.S.)
| | - Tom Gallinger
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, 35037 Marburg, Germany (M.S.)
| | - Tobias Kämpfer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.K.); (T.K.); (A.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.K.); (T.K.); (A.H.)
| | - Patrick Mäder
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, 35037 Marburg, Germany (M.S.)
| | - Ana Luque-Gómez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Martin Schlitzer
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, 35037 Marburg, Germany (M.S.)
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (M.K.); (T.K.); (A.H.)
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Golenser J, Hunt NH, Birman I, Jaffe CL, Zech J, Mäder K, Gold D. Applicability of Redirecting Artemisinins for New Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300030. [PMID: 38094863 PMCID: PMC10714028 DOI: 10.1002/gch2.202300030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Indexed: 10/16/2024]
Abstract
Employing new therapeutic indications for drugs that are already approved for human use has obvious advantages, including reduced costs and timelines, because some routine steps of drug development and regulation are not required. This work concentrates on the redirection of artemisinins (ARTS) that already are approved for clinical use, or investigated, for malaria treatment. Several mechanisms of action are suggested for ARTS, among which only a few have been successfully examined in vivo, mainly the induction of oxidant stress and anti-inflammatory effects. Despite these seemingly contradictory effects, ARTS are proposed for repurposing in treatment of inflammatory disorders and diverse types of diseases caused by viral, bacterial, fungal, and parasitic infections. When pathogens are treated the expected outcome is diminution of the causative agents and/or their inflammatory damage. In general, repurposing ARTS is successful in only a very few cases, specifically when a valid mechanism can be targeted using an additional therapeutic agent and appropriate drug delivery. Investigation of repurposing should include optimization of drug combinations followed by examination in relevant cell lines, organoids, and animal models, before moving to clinical trials.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Nicholas H. Hunt
- School of Medical SciencesUniversity of SydneySydney2050Australia
| | - Ida Birman
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Charles L. Jaffe
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Johanna Zech
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Karsten Mäder
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Daniel Gold
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
12
|
Panesso MP, Cancela M, Corá RK, Paes JA, Paludo GP, Ferreira HB. Ribonucleotide reductase as a therapeutic target for drug repurposing as anthelmintics. Exp Parasitol 2023; 255:108641. [PMID: 37949425 DOI: 10.1016/j.exppara.2023.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Visceral cestodiases, like echinococcoses and cysticercoses, are zoonoses of worldwide distribution and are responsible for public health problems in many countries, especially in underdeveloped regions. Current treatments have low efficiency and there are few drugs currently in use for chemotherapy, making the development of new anthelmintics an urgent matter. The nucleotide salvage pathways are the only ones available for nucleotide synthesis in cestodes and other parasitic helminths, and, here, we used in silico approaches to assess the potential of the enzymes in these pathways as targets for drug repurposing as anthelminthics. First, a genomic survey allowed to identify a repertoire of 28 enzymes of the purine and pyrimidine salvage pathways from the cestode Echinococcus granulosus sensu stricto. Regarding purines, the parasite relies on salvaging free bases rather than salvaging nucleosides. Pyrimidines, on the other hand, can be salvaged from both bases and nucleosides. Druggability of the parasite enzymes was assessed, as well as the availability of commercial inhibitors for them. Druggable enzymes were then ranked according to their potential for drug repurposing and the 17 most promising enzymes were selected for evolutionary analyses. The constructed phylogenetic trees allowed to assess the degree of conservation among ortholog enzymes from parasitic helminths and their mammalian hosts. Positive selection is absent in all assessed flatworm enzymes. A potential target enzyme for drug repurposing, ribonucleotide reductase (RNR), was selected for further assessment. RNR 3D-modelling showed structural similarities between the E. granulosus and the human orthologs suggesting that inhibitors of the human RNR should be effective against the E. granulosus enzyme. In line with that, E. granulosus protoscolices treated in vitro with the inhibitor hydroxyurea had their viability and DNA synthesis reduced. These results are consistent with nucleotide synthesis inhibition and confirm the potential of a nucleotide salvage inhibitors for repurposing as an anthelmintic.
Collapse
Affiliation(s)
- Marcelo Pasa Panesso
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Martin Cancela
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Renato Kulakowski Corá
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Folliero V, Dell’Annunziata F, Santella B, Roscetto E, Zannella C, Capuano N, Perrella A, De Filippis A, Boccia G, Catania MR, Galdiero M, Franci G. Repurposing Selamectin as an Antimicrobial Drug against Hospital-Acquired Staphylococcus aureus Infections. Microorganisms 2023; 11:2242. [PMID: 37764086 PMCID: PMC10535345 DOI: 10.3390/microorganisms11092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of multidrug-resistant strains requires the urgent discovery of new antibacterial drugs. In this context, an antibacterial screening of a subset of anthelmintic avermectins against gram-positive and gram-negative strains was performed. Selamectin completely inhibited bacterial growth at 6.3 μg/mL concentrations against reference gram-positive strains, while no antibacterial activity was found against gram-negative strains up to the highest concentration tested of 50 μg/mL. Given its relevance as a community and hospital pathogen, further studies have been performed on selamectin activity against Staphylococcus aureus (S. aureus), using clinical isolates with different antibiotic resistance profiles and a reference biofilm-producing strain. Antibacterial studies have been extensive on clinical S. aureus isolates with different antibiotic resistance profiles. Mean MIC90 values of 6.2 μg/mL were reported for all tested S. aureus strains, except for the macrolide-resistant isolate with constitutive macrolide-lincosamide-streptogramin B resistance phenotype (MIC90 9.9 μg/mL). Scanning Electron Microscopy (SEM) showed that selamectin exposure caused relevant cell surface alterations. A synergistic effect was observed between ampicillin and selamectin, dictated by an FIC value of 0.5 against methicillin-resistant strain. Drug administration at MIC concentration reduced the intracellular bacterial load by 81.3%. The effect on preformed biofilm was investigated via crystal violet and confocal laser scanning microscopy. Selamectin reduced the biofilm biomass in a dose-dependent manner with minimal biofilm eradication concentrations inducing a 50% eradication (MBEC50) at 5.89 μg/mL. The cytotoxic tests indicated that selamectin exhibited no relevant hemolytic and cytotoxic activity at active concentrations. These data suggest that selamectin may represent a timely and promising macrocyclic lactone for the treatment of S. aureus infections.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Federica Dell’Annunziata
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Biagio Santella
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (E.R.); (M.R.C.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Nicoletta Capuano
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, Hospital D Cotugno, 80131 Naples, Italy;
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Giovanni Boccia
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
- Hospital Hygiene and Epidemiology Complex Operating Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (E.R.); (M.R.C.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
| |
Collapse
|
14
|
Pavičić A, Zajíčková M, Šadibolová M, Svobodová G, Matoušková P, Szotáková B, Langhansová L, Maršík P, Skálová L. Anthelmintic activity of European fern extracts against Haemonchus contortus. Vet Res 2023; 54:59. [PMID: 37443113 DOI: 10.1186/s13567-023-01192-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Most drugs used in the treatment of helminthiasis in humans and animals have lost their efficacy due to the development of drug-resistance in helminths. Moreover, since anthelmintics, like many pharmaceuticals, are now recognized as hazardous contaminants of the environment, returning to medicinal plants and their products represents an environmentally friendly way to treat helminthiasis. The goal of the present study was to test the anthelminthic activity of methanol extracts of eight selected European ferns from the genera Dryopteris, Athyrium and Blechnum against the nematode Haemonchus contortus, a widespread parasite of small ruminants. Eggs and adults of H. contortus drug-susceptible strain ISE and drug-resistant strain WR were isolated from experimentally infected sheep. The efficacy of fern extracts was assayed using egg hatch test and adults viability test based on ATP-level measurement. Among the ferns tested, only Dryopteris aemula extract (0.2 mg/mL) inhibited eggs hatching by 25% in comparison to control. Athyrium distentifolium, Dryopteris aemula and Dryopteris cambrensis were effective against H. contortus adults. In concentration 0.1 mg/mL, A. distentifolium, D. aemula, D. cambrensis significantly decreased the viability of females from ISE and WR strains to 36.2%, 51.9%, 32.9% and to 35.3%, 27.0%, 23.3%, respectively in comparison to untreated controls. None of the extracts exhibited toxicity in precise cut slices from ovine liver. Polyphenol's analysis identified quercetin, kaempferol, luteolin, 3-hydroxybenzoic acid, caffeic acid, coumaric acid and protocatechuic acid as the major components of these anthelmintically active ferns.
Collapse
Affiliation(s)
- Antonio Pavičić
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Petr Maršík
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
15
|
Chakroborty A, Pritchard DR, Bouillon ME, Cervi A, Kraehenbuehl R, Wild C, Fenn C, Holdsworth P, Capner C, Padalino G, Forde-Thomas JE, Payne J, Smith BG, Fisher M, Lahmann M, Baird MS, Hoffmann KF. Modified Hederagenin Derivatives Demonstrate Ex Vivo Anthelmintic Activity against Fasciola hepatica. Pharmaceutics 2023; 15:1869. [PMID: 37514055 PMCID: PMC10385850 DOI: 10.3390/pharmaceutics15071869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Infection with Fasciola hepatica (liver fluke) causes fasciolosis (or fascioliasis) and poses a considerable economic as well as welfare burden to both the agricultural and animal health sectors. Here, we explore the ex vivo anthelmintic potential of synthetic derivatives of hederagenin, isolated in bulk from Hedera helix. Thirty-six compounds were initially screened against F. hepatica newly excysted juveniles (NEJs) of the Italian strain. Eleven of these compounds were active against NEJs and were selected for further study, using adult F. hepatica derived from a local abattoir (provenance unknown). From these eleven compounds, six demonstrated activity and were further assessed against immature liver flukes of the Italian strain. Subsequently, the most active compounds (n = 5) were further evaluated in ex vivo dose response experiments against adult Italian strain liver flukes. Overall, MC042 was identified as the most active molecule and the EC50 obtained from immature and adult liver fluke assays (at 24 h post co-culture) are estimated as 1.07 μM and 13.02 μM, respectively. When compared to the in vitro cytotoxicity of MDBK bovine cell line, MC042 demonstrated the highest anthelmintic selectivity (44.37 for immature and 3.64 for adult flukes). These data indicate that modified hederagenins display properties suitable for further investigations as candidate flukicides.
Collapse
Affiliation(s)
- Anand Chakroborty
- The Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth SY23 3DA, UK
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | - Marc E Bouillon
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Anna Cervi
- Naturiol Bangor Ltd., MSParc, Gaerwen, Anglesey LL60 6AG, UK
| | | | - Charlotte Wild
- Ridgeway Research Limited, Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, UK
| | - Caroline Fenn
- Ridgeway Research Limited, Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, UK
| | - Peter Holdsworth
- Ridgeway Research Limited, Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, UK
- PAH Consultancy Pty Ltd., 3/27 Gaunson Crescent, Wanniassa, Canberra 2903, Australia
| | - Colin Capner
- Ridgeway Research Limited, Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, UK
| | - Gilda Padalino
- The Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth SY23 3DA, UK
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | | | - Joseph Payne
- Ridgeway Research Limited, Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, UK
| | - Brendan G Smith
- Bimeda UK, Bryn Cefni Industrial Estate, Unit 2A, Llangefni LL77 7XA, UK
| | - Maggie Fisher
- Ridgeway Research Limited, Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, UK
| | - Martina Lahmann
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
- KTH Royal Institute of Technology, Biomedical Engineering and Health Systems, Hälsovägen 11, 141 52 Huddinge, Sweden
| | - Mark S Baird
- Naturiol Bangor Ltd., MSParc, Gaerwen, Anglesey LL60 6AG, UK
| | - Karl F Hoffmann
- The Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|
16
|
Hernández-Cerón M, Chavarria V, Ríos C, Pineda B, Palomares-Alonso F, Rojas-Tomé IS, Jung-Cook H. Melatonin in Combination with Albendazole or Albendazole Sulfoxide Produces a Synergistic Cytotoxicity against Malignant Glioma Cells through Autophagy and Apoptosis. Brain Sci 2023; 13:869. [PMID: 37371349 DOI: 10.3390/brainsci13060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma is the most aggressive and lethal brain tumor in adults, presenting diffuse brain infiltration, necrosis, and drug resistance. Although new drugs have been approved for recurrent patients, the median survival rate is two years; therefore, new alternatives to treat these patients are required. Previous studies have reported the anticancer activity of albendazole, its active metabolite albendazole sulfoxide, and melatonin; therefore, the present study was performed to evaluate if the combination of melatonin with albendazole or with albendazole sulfoxide induces an additive or synergistic cytotoxic effect on C6 and RG2 rat glioma cells, as well as on U87 human glioblastoma cells. Drug interaction was determined by the Chou-Talalay method. We evaluated the mechanism of cell death by flow cytometry, immunofluorescence, and crystal violet staining. The cytotoxicity of the combinations was mainly synergistic. The combined treatments induced significantly more apoptotic and autophagic cell death on the glioma cell lines. Additionally, albendazole and albendazole sulfoxide inhibited proliferation independently of melatonin. Our data justify continuing with the evaluation of this proposal since the combinations could be a potential strategy to aid in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Miguel Hernández-Cerón
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico
| | - Camilo Ríos
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico
| | | | - Irma Susana Rojas-Tomé
- Neuropsycopharmacology Lab, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Helgi Jung-Cook
- Pharmacy Department, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
17
|
Flori L, Brogi S, Sirous H, Calderone V. Disruption of Irisin Dimerization by FDA-Approved Drugs: A Computational Repurposing Approach for the Potential Treatment of Lipodystrophy Syndromes. Int J Mol Sci 2023; 24:ijms24087578. [PMID: 37108741 PMCID: PMC10145865 DOI: 10.3390/ijms24087578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, we present the development of a computer-based repurposing approach to identify FDA-approved drugs that are potentially able to interfere with irisin dimerization. It has been established that altered levels of irisin dimers are a pure hallmark of lipodystrophy (LD) syndromes. Accordingly, the identification of compounds capable of slowing down or precluding the irisin dimers' formation could represent a valuable therapeutic strategy in LD. Combining several computational techniques, we identified five FDA-approved drugs with satisfactory computational scores (iohexol, XP score = -7.70 kcal/mol, SP score = -5.5 kcal/mol, ΔGbind = -61.47 kcal/mol, ΔGbind (average) = -60.71 kcal/mol; paromomycin, XP score = -7.23 kcal/mol, SP score = -6.18 kcal/mol, ΔGbind = -50.14 kcal/mol, ΔGbind (average) = -49.13 kcal/mol; zoledronate, XP score = -6.33 kcal/mol, SP score = -5.53 kcal/mol, ΔGbind = -32.38 kcal/mol, ΔGbind (average) = -29.42 kcal/mol; setmelanotide, XP score = -6.10 kcal/mol, SP score = -7.24 kcal/mol, ΔGbind = -56.87 kcal/mol, ΔGbind (average) = -62.41 kcal/mol; and theophylline, XP score = -5.17 kcal/mol, SP score = -5.55 kcal/mol, ΔGbind = -33.25 kcal/mol, ΔGbind (average) = -35.29 kcal/mol) that are potentially able to disrupt the dimerization of irisin. For this reason, they deserve further investigation to characterize them as irisin disruptors. Remarkably, the identification of drugs targeting this process can offer novel therapeutic opportunities for the treatment of LD. Furthermore, the identified drugs could provide a starting point for a repositioning approach, synthesizing novel analogs with improved efficacy and selectivity against the irisin dimerization process.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
18
|
Cardoso de Souza Z, Humberto Xavier Júnior F, Oliveira Pinheiro I, de Souza Rebouças J, Oliveira de Abreu B, Roberto Ribeiro Mesquita P, de Medeiros Rodrigues F, Costa Quadros H, Manuel Fernandes Mendes T, Nguewa P, Marques Alegretti S, Paiva Farias L, Rocha Formiga F. Ameliorating the antiparasitic activity of the multifaceted drug ivermectin through a polymer nanocapsule formulation. Int J Pharm 2023; 639:122965. [PMID: 37084836 DOI: 10.1016/j.ijpharm.2023.122965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4,266.5 ± 38.6 μg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4°C and 25°C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.
Collapse
Affiliation(s)
- Zilyane Cardoso de Souza
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Irapuan Oliveira Pinheiro
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Brenda Oliveira de Abreu
- Graduate Program in Health Sciences, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | | | | | - Helenita Costa Quadros
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | | | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), 31009, Pamplona, Spain
| | - Silmara Marques Alegretti
- Departament of Animal Biology, State University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Leonardo Paiva Farias
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | - Fabio Rocha Formiga
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil; Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil.
| |
Collapse
|
19
|
Memedovski R, Preza M, Müller J, Kämpfer T, Rufener R, de Souza MVN, da Silva ET, de Andrade GF, Braga S, Uldry AC, Buchs N, Heller M, Lundström-Stadelmann B. Investigation of the mechanism of action of mefloquine and derivatives against the parasite Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2023; 21:114-124. [PMID: 36921443 PMCID: PMC10025029 DOI: 10.1016/j.ijpddr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Alveolar echinococcosis (AE) is caused by infection with the fox tapeworm E. multilocularis. The disease affects humans, dogs, captive monkeys, and other mammals, and it is caused by the metacestode stage of the parasite growing invasively in the liver. The current drug treatment is based on non-parasiticidal benzimidazoles. Thus, they are only limitedly curative and can cause severe side effects. Therefore, novel and improved treatment options for AE are needed. Mefloquine (MEF), an antimalarial agent, was previously shown to be effective against E. multilocularis in vitro and in experimentally infected mice. However, MEF is not parasiticidal and needs improvement for successful treatment of patients, and it can induce strong neuropsychiatric side-effects. In this study, the structure-activity relationship and mode of action of MEF was investigated by comparative analysis of 14 MEF derivatives. None of them showed higher activity against E. multilocularis metacestodes compared to MEF, but four compounds caused limited damage. In order to identify molecular targets of MEF and effective derivatives, differential affinity chromatography combined with mass spectrometry was performed with two effective compounds (MEF, MEF-3) and two ineffective compounds (MEF-13, MEF-22). 1'681 proteins were identified that bound specifically to MEF or derivatives. 216 proteins were identified as binding only to MEF and MEF-3. GO term enrichment analysis of these proteins and functional grouping of the 25 most abundant MEF and MEF-3 specific binding proteins revealed the key processes energy metabolism and cellular transport and structure, as well as stress responses and nucleic acid binding to be involved. The previously described ferritin was confirmed as an exclusively MEF-binding protein that could be relevant for its efficacy against E. multilocularis. The here identified potential targets of MEF will be further investigated in the future for a clear understanding of the pleiotropic effects of MEF, and improved therapeutic options against AE.
Collapse
Affiliation(s)
- Roman Memedovski
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Kämpfer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | | | - Sophie Braga
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Natasha Buchs
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Hürlimann E, Hofmann D, Keiser J. Ivermectin and moxidectin against soil-transmitted helminth infections. Trends Parasitol 2023; 39:272-284. [PMID: 36804383 DOI: 10.1016/j.pt.2023.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/19/2023]
Abstract
Ivermectin and moxidectin, two macrocyclic lactones, are potent antiparasitic drugs currently registered and mainly used against filarial diseases; however, their potential value for improved soil-transmitted helminth (STH) control has been acknowledged. This review provides insights on recent studies evaluating the efficacy of ivermectin and moxidectin as single or coadministered therapy against human soil-transmitted helminthiases (including Strongyloides stercoralis infections) and on pharmacokinetic/pharmacodynamic parameters measured in treated populations. Furthermore, we discuss current gaps for research, highlight advantages - but also existing challenges - for uptake of ivermectin and/or moxidectin treatment schemes into routine STH control in endemic countries.
Collapse
Affiliation(s)
- Eveline Hürlimann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Daniela Hofmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Ahmed AF, Dai CF, Kuo YH, Sheu JH. The Invasive Anemone Condylactis sp. of the Coral Reef as a Source of Sulfur- and Nitrogen-Containing Metabolites and Cytotoxic 5,8-Epidioxy Steroids. Metabolites 2023; 13:metabo13030392. [PMID: 36984832 PMCID: PMC10056678 DOI: 10.3390/metabo13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
The Condylactis-genus anemones were examined for their proteinaceous poisons over 50 years ago. On the other hand, the current research focuses on isolating and describing the non-proteinaceous secondary metabolites from the invasive Condylactis anemones, which help take advantage of their population outbreak as a new source of chemical candidates and potential drug leads. From an organic extract of Condylactis sp., a 1,2,4-thiadiazole-based alkaloid, identified as 3,5-bis(3-pyridinyl)-1,2,4-thiadiazole (1), was found to be a new natural alkaloid despite being previously synthesized. The full assignment of NMR data of compound 1, based on the analysis of 2D NMR correlations, is reported herein for the first time. The proposed biosynthetic precursor thionicotinamide (2) was also isolated for the first time from nature along with nicotinamide (3), uridine (5), hypoxanthine (6), and four 5,8-epidioxysteroids (7–10). A major secondary metabolite (−)-betonicine (4) was isolated from Condylactis sp. and found for the first time in marine invertebrates. The four 5,8-epidioxysteroids, among other metabolites, exhibited cytotoxicity (IC50 3.5–9.0 μg/mL) toward five cancer cell lines.
Collapse
Affiliation(s)
- Atallah F. Ahmed
- Department of Marine Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Chang-Feng Dai
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Yao-Haur Kuo
- Division of Herbal Drugs and Natural Products, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +88-(67)-5252000 (ext. 5030)
| |
Collapse
|
22
|
Riaz S, Ahmed H, Kiani SA, Afzal MS, Simsek S, Celik F, Wasif S, Bangash N, Naqvi SK, Zhang J, Cao J. Knowledge, attitudes and practices related to neglected tropical diseases (schistosomiasis and fascioliasis) of public health importance: A cross-sectional study. Front Vet Sci 2023; 10:1088981. [PMID: 36925606 PMCID: PMC10011641 DOI: 10.3389/fvets.2023.1088981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Snails play an important role as an intermediate host in various parasitic diseases, which are referred to as snail-borne parasitic diseases (SBPDs). The prevalence of the SBPDs, schistosomiasis and fascioliasis is low in Pakistan compared to other countries. The present study investigated knowledge, attitudes, and practices related to these two SPBDs and risk factors associated with them among the humans living in close contact with livestock and pets from three regions of Pakistan: Punjab, Islamabad and Azad Jammu and Kashmir (AJK). METHODS A cross-sectional survey was conducted using a structured questionnaire to assess participants' knowledge, attitude and practices related to schistosomiasis and fascioliasis during 2021-2022. RESULTS The majority of the 507 participants who were interviewed had good knowledge of schistosomiasis and fascioliasis: 43% were aware of schistosomiasis and 57% were aware of fascioliasis, but only 25% knew about snails as an intermediate host. Most respondents had a positive attitude toward treatment, prevention and control of the diseases but they did not have any healthcare facilities. CONCLUSION This study highlights the importance of the public's awareness for the need to control SBPDs. It also draws attention to the need for health education for risk reduction and the prevention of SBPDs in endemic areas.
Collapse
Affiliation(s)
- Sajida Riaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Sana Azeem Kiani
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, Elazig, Türkiye
| | - Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, Elazig, Türkiye
| | - Samia Wasif
- Department of Humanities, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Nazneen Bangash
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Kamran Naqvi
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Bioassay-Guided Isolation of Anthelmintic Components from Semen pharbitidis, and the Mechanism of Action of Pharbitin. Int J Mol Sci 2022; 23:ijms232415739. [PMID: 36555386 PMCID: PMC9779150 DOI: 10.3390/ijms232415739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Semen pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae), is a well-known traditional Chinese medicinal botanical preparation widely used for treating intestinal parasites in China owing to its desirable efficacy. However, the anthelmintic compounds in Semen pharbitidis and their mechanism of action have not been investigated yet. This study aimed to identify the compounds active against helminths from Semen pharbitidis, and to establish the mechanism of action of these active compounds. Bioassay-guided fractionation was used to identify the anthelmintic compounds from Semen pharbitidis. The anthelmintic assay was performed by monitoring Caenorhabditis elegans (C. elegans) motility with a WMicrotracker instrument. Active compounds were identified by high-resolution mass spectrometry. Several (analogues of) fragments of the anthelmintic compounds were purchased and tested to explore the structure-activity relationship, and to find more potent compounds. A panel of C. elegans mutant strains resistant to major currently used anthelmintic drugs was used to explore the mechanism of action of the active compounds. The bioassay-guided isolation from an ethanol extract of Semen pharbitidis led to a group of glycosides, namely pharbitin (IC50: 41.0 ± 9.4 μg/mL). Hit expansion for pharbitin fragments yielded two potent analogues: 2-bromohexadecanoic acid (IC50: 1.6 ± 0.7 μM) and myristoleic acid (IC50: 35.2 ± 7.6 μM). One drug-resistant mutant ZZ37 unc-63 (x37) demonstrated a ~17-fold increased resistance to pharbitin compared with wild-type worms. Collectively, we provide further experimental scientific evidence to support the traditional use of Semen pharbitidis for the treatment of intestinal parasites. The anthelmintic activity of Semen pharbitidis is due to pharbitin, whose target could be UNC-63 in C. elegans.
Collapse
|
24
|
Jain S, Sahu U, Kumar A, Khare P. Metabolic Pathways of Leishmania Parasite: Source of Pertinent Drug Targets and Potent Drug Candidates. Pharmaceutics 2022; 14:pharmaceutics14081590. [PMID: 36015216 PMCID: PMC9416627 DOI: 10.3390/pharmaceutics14081590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a tropical disease caused by a protozoan parasite Leishmania that is transmitted via infected female sandflies. At present, leishmaniasis treatment mainly counts on chemotherapy. The currently available drugs against leishmaniasis are costly, toxic, with multiple side effects, and limitations in the administration route. The rapid emergence of drug resistance has severely reduced the potency of anti-leishmanial drugs. As a result, there is a pressing need for the development of novel anti-leishmanial drugs with high potency, low cost, acceptable toxicity, and good pharmacokinetics features. Due to the availability of preclinical data, drug repurposing is a valuable approach for speeding up the development of effective anti-leishmanial through pointing to new drug targets in less time, having low costs and risk. Metabolic pathways of this parasite play a crucial role in the growth and proliferation of Leishmania species during the various stages of their life cycle. Based on available genomics/proteomics information, known pathways-based (sterol biosynthetic pathway, purine salvage pathway, glycolysis, GPI biosynthesis, hypusine, polyamine biosynthesis) Leishmania-specific proteins could be targeted with known drugs that were used in other diseases, resulting in finding new promising anti-leishmanial therapeutics. The present review discusses various metabolic pathways of the Leishmania parasite and some drug candidates targeting these pathways effectively that could be potent drugs against leishmaniasis in the future.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
- Correspondence: or (A.K.); (P.K.)
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
- Correspondence: or (A.K.); (P.K.)
| |
Collapse
|
25
|
Novel compound shows in vivo anthelmintic activity in gerbils and sheep infected by Haemonchus contortus. Sci Rep 2022; 12:13004. [PMID: 35906366 PMCID: PMC9338094 DOI: 10.1038/s41598-022-17112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
The control of gastrointestinal nematodes in livestock is becoming increasingly difficult due to the limited number of available drugs and the rapid development of anthelmintic resistance. Therefore, it is imperative to develop new anthelmintics that are effective against nematodes. Under this context, we tested the potential toxicity of three compounds in mice and their potential anthelmintic efficacy in Mongolian gerbils infected with Haemonchus contortus. The compounds were selected from previous in vitro experiments: two diamine (AAD-1 and AAD-2) and one benzimidazole (2aBZ) derivatives. 2aBZ was also selected to test its efficacy in sheep. In Mongolian gerbils, the benzimidazole reduced the percentage of pre-adults present in the stomach of gerbils by 95% at a dose of 200 mg/kg. In sheep, there was a 99% reduction in the number of eggs shed in faeces after 7 days at a dose of 120 mg/kg and a 95% reduction in the number of worm adults present in the abomasum. In conclusion, 2aBZ could be considered a promising candidate for the treatment of helminth infections in small ruminants.
Collapse
|
26
|
Aspartyl Protease Inhibitors as Anti-Filarial Drugs. Pathogens 2022; 11:pathogens11060707. [PMID: 35745561 PMCID: PMC9227574 DOI: 10.3390/pathogens11060707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The current treatments for lymphatic filariasis and onchocerciasis do not effectively kill the adult parasitic nematodes, allowing these chronic and debilitating diseases to persist in millions of people. Thus, the discovery of new drugs with macrofilaricidal potential to treat these filarial diseases is critical. To facilitate this need, we first investigated the effects of three aspartyl protease inhibitors (APIs) that are FDA-approved as HIV antiretroviral drugs on the adult filarial nematode, Brugia malayi and the endosymbiotic bacteria, Wolbachia. From the three hits, nelfinavir had the best potency with an IC50 value of 7.78 µM, followed by ritonavir and lopinavir with IC50 values of 14.3 µM and 16.9 µM, respectively. The three APIs have a direct effect on killing adult B. malayi after 6 days of exposure in vitro and did not affect the Wolbachia titers. Sequence conservation and stage-specific gene expression analysis identified Bm8660 as the most likely primary aspartic protease target for these drug(s). Immunolocalization using antibodies raised against the Bm8660 ortholog of Onchocerca volvulus showed it is strongly expressed in female B. malayi, especially in metabolically active tissues such as lateral and dorsal/ventral chords, hypodermis, and uterus tissue. Global transcriptional response analysis using adult female B. pahangi treated with APIs identified four additional aspartic proteases differentially regulated by the three effective drugs, as well as significant enrichment of various pathways including ubiquitin mediated proteolysis, protein kinases, and MAPK/AMPK/FoxO signaling. In vitro testing against the adult gastro-intestinal nematode Trichuris muris suggested broad-spectrum potential for these APIs. This study suggests that APIs may serve as new leads to be further explored for drug discovery to treat parasitic nematode infections.
Collapse
|
27
|
Marchand A, Van Bree JWM, Taki AC, Moyat M, Turcatti G, Chambon M, Smith AAT, Doolan R, Gasser RB, Harris NL, Bouchery T. Novel High-Throughput Fluorescence-Based Assay for the Identification of Nematocidal Compounds That Target the Blood-Feeding Pathway. Pharmaceuticals (Basel) 2022; 15:ph15060669. [PMID: 35745589 PMCID: PMC9231213 DOI: 10.3390/ph15060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Hookworm infections cause a neglected tropical disease (NTD) affecting ~740 million people worldwide, principally those living in disadvantaged communities. Infections can cause high morbidity due to their impact on nutrient uptake and their need to feed on host blood, resulting in a loss of iron and protein, which can lead to severe anaemia and impaired cognitive development in children. Currently, only one drug, albendazole is efficient to treat hookworm infection and the scientific community fears the rise of resistant strains. As part of on-going efforts to control hookworm infections and its associated morbidities, new drugs are urgently needed. We focused on targeting the blood-feeding pathway, which is essential to the parasite survival and reproduction, using the laboratory hookworm model Nippostrongylus brasiliensis (a nematode of rodents with a similar life cycle to hookworms). We established an in vitro-drug screening assay based on a fluorescent-based measurement of parasite viability during blood-feeding to identify novel therapeutic targets. A first screen of a library of 2654 natural compounds identified four that caused decreased worm viability in a blood-feeding-dependent manner. This new screening assay has significant potential to accelerate the discovery of new drugs against hookworms.
Collapse
Affiliation(s)
- Anthony Marchand
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
| | - Joyce W. M. Van Bree
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
| | - Aya C. Taki
- Melbourne Veterinary School, The University of Melbourne, Melbourne, VIC 3052, Australia; (A.C.T.); (R.B.G.)
| | - Mati Moyat
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
| | - Gerardo Turcatti
- Biomolecular Screening Facility, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (G.T.); (M.C.)
| | - Marc Chambon
- Biomolecular Screening Facility, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (G.T.); (M.C.)
| | | | - Rory Doolan
- Hookworm Immuno-Biology Laboratory, Swiss Tropical and Public Health Institute, 4123 Allschwill, Switzerland;
- Basel University, 4001 Basel, Switzerland
| | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Melbourne, VIC 3052, Australia; (A.C.T.); (R.B.G.)
| | - Nicola Laraine Harris
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
| | - Tiffany Bouchery
- Laboratory of Intestinal Immunology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (A.M.); (M.M.); (N.L.H.)
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia;
- Hookworm Immuno-Biology Laboratory, Swiss Tropical and Public Health Institute, 4123 Allschwill, Switzerland;
- Basel University, 4001 Basel, Switzerland
- Correspondence:
| |
Collapse
|
28
|
Ravaynia PS, Biendl S, Grassi F, Keiser J, Hierlemann A, Modena MM. Real-time and automated monitoring of antischistosomal drug activity profiles for screening of compound libraries. iScience 2022; 25:104087. [PMID: 35378863 PMCID: PMC8976133 DOI: 10.1016/j.isci.2022.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects over 200 million people annually. As the antischistosomal drug pipeline is currently empty, repurposing of compound libraries has become a source for accelerating drug development, which demands the implementation of high-throughput and efficient screening strategies. Here, we present a parallelized impedance-based platform for continuous and automated viability evaluation of Schistosoma mansoni schistosomula in 128 microwells during 72 h to identify antischistosomal hits in vitro. By initially screening 57 repurposed compounds against larvae, five drugs are identified, which reduce parasite viability by more than 70%. The activity profiles of the selected drugs are then investigated via real-time dose-response monitoring, and four compounds reveal high potency and rapid action, which renders them suitable candidates for follow-up tests against adult parasites. The study shows that our device is a reliable tool for real-time drug screening analysis of libraries to identify new promising therapeutics against schistosomiasis. Scalable, plastic microwell chip with integrated platinum electrodes Automated impedance-based recording of 128 microwell units in parallel Continuous monitoring of in vitro drug library efficacy on schistosomula for 72 h Identification of four fast-acting antischistosomal drugs for in vivo testing
Collapse
Affiliation(s)
- Paolo S Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Francesco Grassi
- Centre for Microsystems Technology, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mario M Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
29
|
Charlier J, Bartley DJ, Sotiraki S, Martinez-Valladares M, Claerebout E, von Samson-Himmelstjerna G, Thamsborg SM, Hoste H, Morgan ER, Rinaldi L. Anthelmintic resistance in ruminants: challenges and solutions. ADVANCES IN PARASITOLOGY 2022; 115:171-227. [PMID: 35249662 DOI: 10.1016/bs.apar.2021.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anthelmintic resistance (AR) is a growing concern for effective parasite control in farmed ruminants globally. Combatting AR will require intensified and integrated research efforts in the development of innovative diagnostic tests to detect helminth infections and AR, sustainable anthelmintic treatment strategies and the development of complementary control approaches such as vaccination and plant-based control. It will also require a better understanding of socio-economic drivers of anthelmintic treatment decisions, in order to support a behavioural shift and develop targeted communication strategies that promote the uptake of evidence-based sustainable solutions. Here, we review the state-of-the-art in these different fields of research activity related to AR in helminths of livestock ruminants in Europe and beyond. We conclude that in the advent of new challenges and solutions emerging from continuing spread of AR and intensified research efforts, respectively, there is a strong need for transnational multi-actor initiatives. These should involve all key stakeholders to develop indicators of infection and sustainable control, set targets and promote good practices to achieve them.
Collapse
Affiliation(s)
| | - D J Bartley
- Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - S Sotiraki
- Veterinary Research Institute, Hellenic Agricultural Organisation ELGO-DIMITRA, Thessaloniki, Greece
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, León, Spain
| | - E Claerebout
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Parasitology, Merelbeke, Belgium
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - S M Thamsborg
- Veterinary Parasitology, University of Copenhagen, Frederiksberg C, Denmark
| | - H Hoste
- INRAE, UMR 1225 IHAP INRAE/ENVT, Toulouse University, Toulouse, France
| | - E R Morgan
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - L Rinaldi
- University of Naples Federico II, Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, CREMOPAR, Napoli, Italy.
| |
Collapse
|
30
|
Magnaval JF, Bouhsira E, Fillaux J. Therapy and Prevention for Human Toxocariasis. Microorganisms 2022; 10:microorganisms10020241. [PMID: 35208697 PMCID: PMC8875715 DOI: 10.3390/microorganisms10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
For the last four decades, knowledge about human toxocariasis with regard to its epidemiology, pathophysiology, clinical spectrum, and imaging or laboratory diagnosis has substantially progressed. Knowledge about specific therapy with anthelmintics has lagged behind. To date, only four drugs are registered for human use, and their efficacy has rarely been assessed in prospective controlled trials. It is likely that the repurposing of potent anthelmintics from veterinary medicine will improve this situation. Due to its wide availability and a lack of major side effects during short regimens, albendazole has become the drug of choice. However, its efficacy should be more precisely assessed. The role of anthelmintics in the treatment of neurological or ocular toxocariasis remains to be clarified. Prophylactic measures in humans or companion animals are efficient and represent first-line treatments for the control of this zoonosis. Unfortunately, their implementation in areas or countries where toxocariasis epidemiology is driven by poverty is quite difficult or unrealistic.
Collapse
Affiliation(s)
- Jean-François Magnaval
- Service de Parasitologie Médicale, Faculté de Médecine, Université de Toulouse, 37 Allées Jules-Guesde, 31000 Toulouse, France
- Correspondence:
| | - Emilie Bouhsira
- Service de Parasitologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, 31076 Toulouse, France;
| | - Judith Fillaux
- Service de Parasitologie-Mycologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 330 Avenue de Grande-Bretagne, 31059 Toulouse, France;
| |
Collapse
|
31
|
Keiser J, Häberli C. Assessment of FDA-approved drugs against Strongyloides ratti in vitro and in vivo to identify potentially active drugs against strongyloidiasis. Parasit Vectors 2021; 14:615. [PMID: 34949209 PMCID: PMC8705154 DOI: 10.1186/s13071-021-05117-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Infections with Strongyloides stercoralis belong to the most neglected helminth diseases, and research and development (R&D) efforts on novel drugs are inadequate. METHODS A commercially available library containing 1600 FDA-approved drugs was tested in vitro against Strongyloides ratti larvae (L3) at 100 µM. Hits (activity > 70%) were then evaluated against S. ratti adult worms at 10 µM. Morantel, prasterone, and levamisole were tested in the S. ratti rat model using dosages of 1-100 mg/kg. RESULTS Seventy-one of the 1600 compounds tested against S. ratti L3 revealed activity above 70%. Of 64 compounds which progressed into the adult screen, seven compounds achieved death of all worms (benzethonium chloride, cetylpyridinium chloride, Gentian violet, methylbenzethonium chloride, morantel citrate, ivermectin, coumaphos), and another eight compounds had activity > 70%. Excluding topical and toxic compounds, three drugs progressed into in vivo studies. Prasterone lacked activity in vivo, while treatment with 100 mg/kg morantel and levamisole cured all rats. The highest in vivo activity was observed with levamisole, yielding a median effective dose (ED50) of 1.1 mg/kg. CONCLUSIONS Using a drug repurposing approach, our study identified levamisole as a potential backup drug for strongyloidiasis. Levamisole should be evaluated in exploratory clinical trials.
Collapse
Affiliation(s)
- Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, 4003, Basel, Switzerland.
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4003, Basel, Switzerland
| |
Collapse
|
32
|
Zajíčková M, Prchal L, Navrátilová M, Vodvárková N, Matoušková P, Vokřál I, Nguyen LT, Skálová L. Sertraline as a new potential anthelmintic against Haemonchus contortus: toxicity, efficacy, and biotransformation. Vet Res 2021; 52:143. [PMID: 34895342 PMCID: PMC8666012 DOI: 10.1186/s13567-021-01012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lukáš Prchal
- Biomedical Research Centre, University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Nikola Vodvárková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
33
|
Hofmann D, Smit C, Sayasone S, Pfister M, Keiser J. Optimizing moxidectin dosing for Strongyloides stercoralis infections: Insights from pharmacometric modeling. Clin Transl Sci 2021; 15:700-708. [PMID: 34889057 PMCID: PMC8932710 DOI: 10.1111/cts.13189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
Moxidectin is a frontrunner drug candidate in the treatment of strongyloidiasis. A dose of 8 mg is recommended to treat this indication, which shows a reasonably good efficacy and tolerability profile. Yet, owing to the unique life cycle of Strongyloides stercoralis (S. stercoralis) that entails internal autoinfection, a curative treatment would be desirable. Population‐based pharmacometric modeling that would help to identify an ideal dosing strategy are yet lacking. The aims of this study were to (i) explore the exposure‐efficacy response relationship of moxidectin in treating S. stercoralis and (ii) evaluate whether moxidectin treatment outcomes in terms of cure rates at baseline as compared to post‐treatment could be optimized. Our pharmacodynamic model suggests high predictive power (area under the concentration time curve‐receiver operating characteristic [AUC‐ROC] 0.817) in the probability of being cured by linking an exposure metric (i.e., AUC0‐24 or maximum concentration [Cmax]) to baseline infection intensity. Pharmacometric simulations indicate that with a minimum dose of 4 mg a maximum cure rate of ~ 95% is established in the low infection intensity group (larvae per gram [LPG] ≥0.4–1), whereas in the moderate‐to‐high intensity group (LPG >1) the cure rate plateaus at ~ 87%, following an 8 mg dose. To enhance efficacy further, studies using repeated dosing based on the duration of the autoinfection cycle, for example a two‐dose regimen 3 weeks apart should be considered. Simulations revealed similar Cmax in both treatment courses of a two‐dose regimen; hence safety should not be a concern. Collectively, our results provide evidence‐based guidance for enhanced dosing strategies and should be considered when designing future treatment strategies.
Collapse
Affiliation(s)
- Daniela Hofmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Cornelis Smit
- Pediatric Pharmacology and Pharmacometrics Research, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Somphou Sayasone
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.,Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Marc Pfister
- Pediatric Pharmacology and Pharmacometrics Research, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Certara, Princeton, New Jersey, USA
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Biendl S, Häberli C, Keiser J. Discovery of novel antischistosomal scaffolds from the open access Pandemic Response Box. Expert Rev Anti Infect Ther 2021; 20:621-629. [PMID: 34612126 DOI: 10.1080/14787210.2022.1990042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Treatment and control of schistosomiasis rely on a single drug, praziquantel. New orally active antischistosomals featuring novel molecular scaffolds are urgently needed to prevent the emergence of resistance. METHODS We screened 400 drug-like compounds contained in the open-access Pandemic Response Box (PRB) against newly transformed schistosomula (NTS) at a concentration of 10 µM scoring death, changes in motility, and morphological alterations. Compounds displaying an activity ≥66% at 72 h underwent testing against adult Schistosoma mansoni in vitro. Fast-acting (≥66% at 24 h), nontoxic drugs focusing on late-stage and approved drugs were investigated in the patent S. mansoni mouse model. RESULTS We identified 26 hits active against NTS, of which 17 elicited ≥66% activity against adult S. mansoni following 24 h of drug exposure. The highest activity against adult S. mansoni was observed with MMV1581558 (EC50 value of 0.18 ± 0.01 µM) and nitazoxanide (0.47 ± 0.07 µM). Of the five compounds tested in vivo, MMV1581558 and the approved drug ozanimod reduced average worm burden versus controls by 42 % and 36 %, respectively, after a single oral dose of 200 mg/kg bodyweight in mice harboring a chronic S. mansoni infection. CONCLUSION MMV1581558 discovered from screening the PRB represents a novel antischistosomal scaffold with high in vitro antischistosomal activity amenable to chemical modification for drug development.
Collapse
Affiliation(s)
- Stefan Biendl
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
In Vitro and In Vivo Efficacy of Albendazole Chitosan Microspheres with Intensity-Modulated Radiation Therapy in the Treatment of Spinal Echinococcosis. Antimicrob Agents Chemother 2021; 65:e0079521. [PMID: 34460300 PMCID: PMC8522759 DOI: 10.1128/aac.00795-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, there is a lack of clinically safe and effective treatment for spinal cystic echinococcosis (CE). Recent studies have shown that albendazole chitosan microspheres (ABZ-CS-MPs) and irradiation have certain anti-abdominal echinococcosis ability, so this study aims to compare the in vitro and in vivo therapeutic effects of ABZ-CS-MPs, intensity-modulated radiation therapy (IMRT), and combination therapy on spinal echinococcosis. First, protoscoleces were processed by different treatments to evaluate their respective antiechinococcosis effects by monitoring the viability change of protoscoleces. Then, the apoptotic status of protoscoleces was evaluated by detecting the changes of mitochondrial membrane potential, the expression of apoptosis proteins, and the ultrastructural alterations of protoscoleces. After that, we constructed a gerbil model of spinal CE and further applied B-ultrasound and magnetic resonance imaging (MRI) technology to assess the size of hydatid in vivo. Finally, the cysts were obtained and weighed to compare the inhibition rate in different groups. The combined therapy increased protoscoleces mortality to over 90% after 18 days, which showed the highest scolicidal effect. Moreover, confocal imaging, expression of apoptotic proteins, and ultrastructural changes of protoscoleces showed the highest apoptotic rate in this group. In vivo, the combination treatment also exhibited the highest cyst inhibition rate (61.4%). In conclusion, our results showed that ABZ-CS-MPs combined with IMRT could be a new treatment option for spinal CE. We also provided a method to evaluate the growth and metastasis of hydatid in animals with B-ultrasound and MRI technologies.
Collapse
|
36
|
Ahuir-Baraja AE, Cibot F, Llobat L, Garijo MM. Anthelmintic resistance: is a solution possible? Exp Parasitol 2021; 230:108169. [PMID: 34627787 DOI: 10.1016/j.exppara.2021.108169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023]
Abstract
More than 50 years after anthelmintic resistance was first identified, its prevalence and impact on the animal production industry continues to increase across the world. The term "anthelmintic resistance" (AR) can be briefly defined as the reduction in efficacy of a certain dose of anthelmintic drugs (AH) in eliminating the presence of a parasite population that was previously susceptible. The main aim of this study is to examine anthelmintic resistance in domestic herbivores. There are numerous factors playing a role in the development of AR, but the most important is livestock management. The price of AH and the need to treat a high number of animals mean that farmers face significant costs in this regard, yet, since 1981, little progress has been made in the discovery of new molecules and the time and cost required to bring a new AH to market has increased dramatically in recent decades. Furthermore, resistance has also emerged for new AH, such as monepantel or derquantel. Consequently, ruminant parasitism cannot be controlled solely by using synthetic chemicals. A change in approach is needed, using a range of preventive measures in order to achieve a sustainable control programme. The use of nematophagous fungi or of plant extracts rich in compounds with anthelmintic properties, such as terpenes, condensed tannins, or flavonoids, represent potential alternatives. Nevertheless, although new approaches are showing promising results, there is still much to do. More research focused on the control of AR is needed.
Collapse
Affiliation(s)
- A E Ahuir-Baraja
- Parasitology and Parasitic Diseases Research Group (PARAVET), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - F Cibot
- Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - L Llobat
- Microbiological Agents Associated with Animal Reproduction Research Group (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| | - M M Garijo
- Parasitology and Parasitic Diseases Research Group (PARAVET), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| |
Collapse
|
37
|
Jayawardene KLTD, Palombo EA, Boag PR. Natural Products Are a Promising Source for Anthelmintic Drug Discovery. Biomolecules 2021; 11:1457. [PMID: 34680090 PMCID: PMC8533416 DOI: 10.3390/biom11101457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes infect almost all forms of life. In the human context, parasites are one of the major causative factors for physical and intellectual growth retardation in the developing world. In the agricultural setting, parasites have a great economic impact through a reduction in livestock performance or control cost. The main method of controlling these devastating conditions is the use of anthelmintic drugs. Unfortunately, there are only a few anthelmintic drug classes available in the market and significant resistance has developed in most of the parasitic species of livestock. Therefore, development of new anthelmintics with different modes of action is critical for sustainable parasitic control in the future. The drug development pipeline is broadly limited to two types of molecules, namely synthetic compounds and natural plant products. Compared to synthetic compounds, natural products are highly diverse, and many have historically proven valuable in folk medicine to treat various gastrointestinal ailments. This review focus on the use of traditional knowledge-based plant extracts in the development of new therapeutic leads, the approaches used as screening techniques, and common bottlenecks and opportunities in plant-based anthelmintic drug discovery.
Collapse
Affiliation(s)
- K. L. T. Dilrukshi Jayawardene
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Peter R. Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
38
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
39
|
Evidence for in vitro and in vivo activity of the antimalarial pyronaridine against Schistosoma. PLoS Negl Trop Dis 2021; 15:e0009511. [PMID: 34166393 PMCID: PMC8263063 DOI: 10.1371/journal.pntd.0009511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/07/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background Schistosomiasis is highly prevalent in Africa. Praziquantel is effective against adult schistosomes but leaves prepatent stages unaffected—which is a limit to patient management and elimination. Given the large-scale use of praziquantel, development of drug resistance by Schistosoma is feared. Antimalarials are promising drugs for alternative treatment strategies of Schistosoma infections. Development of drugs with activity against both malaria and schistosomiasis is particularly appealing as schistosome infections often occur concomitantly with malaria parasites in sub-Saharan Africa. Therefore, antiplasmodial compounds were progressively tested against Schistosoma in vitro, in mice, and in a clinical study. Results Amongst 16 drugs and 1 control tested, pyronaridine, methylene blue and 5 other antimalarials were highly active in vitro against larval stage schistosomula with a 50% inhibitory concentration below 10 μM. Both drugs were lethal to ex vivo adult worms tested at 30 μM with methylene blue also active at 10 μM. Pyronaridine treatment of mice infected with S. mansoni at the prepatent stage reduced worm burden by 82% and cured 7 out of 12 animals, however in mice adult stages remained viable. In contrast, methylene blue inhibited adult worms by 60% but cure was not achieved. In an observational pilot trial in Gabon in children, the antimalarial drug combination pyronaridine-artesunate (Pyramax) reduced S. haematobium egg excretion from 10/10 ml urine to 0/10 ml urine, and 3 out of 4 children were cured. Conclusion Pyronaridine and methylene blue warrant further investigation as candidates for schistosomiasis treatment. Both compounds are approved for human use and evidence for their potential as antischistosomal compounds can be obtained directly from clinical testing. Particularly, pyronaridine-artesunate, already available as an antimalarial drug, calls for further clinical evaluation. Trial registration ClinicalTrials.gov Identifier NCT03201770. Praziquantel is still the only drug in use for the treatment of all Schistosoma spp. and is exclusively active against the adult life cycle stage, since schistosomes in the prepatent period of up to eight weeks are not affected by the drug. Although resistance to praziquantel has not been confirmed and its existence remains controversial, some countries have identified clinical schistosome isolates with reduced sensitivity to praziquantel, after deployment in mass drug administration programs. The need for a new antischistosomal compound is urgent, ideally exhibiting broad activity against all stages of the parasite’s life cycle present in humans. After testing a series of antiplasmodial compounds, the authors found that several compounds also exhibited antischistosomal activity at various life cycle stages of the worms, including pyronaridine and methylene blue, both compounds already approved for human use. A pilot trial with pyronaridine-artesunate done in Gabon showed the first promising results against Schistosoma infections.
Collapse
|
40
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
41
|
Therapeutic Efficacy of Albendazole and Mefloquine Alone or in Combination Against Early and Late Stages of Trichinella Spiralis Infection in Mice. Helminthologia 2021; 58:179-187. [PMID: 34248378 PMCID: PMC8256455 DOI: 10.2478/helm-2021-0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to determine the effectiveness of mefl oquine alone or combined with albendazole in reduced doses against T. spiralis infection. One hundred and twenty albino mice were orally infected with 200 T. spiralis larvae/mouse. Drugs were administered during the enteral phase on days 1 to 3 and on the chronic phase on days 35 to 37 post-infection, and mice were sacrificed, respectively, at days 7 or 48 post-infection to count mature intestinal worms or encysted muscle larvae. The effect of the treatment on the histology of the target organs of each phase, intestine and diaphragm, was also evaluated. A signifi cant decrease in intestinal worms was found in all treated groups relative to the untreated control group at a peak of 93.7% in the combination albendazole-mefl oquine group. Results in all treated groups demonstrated a signifi cant decrease in muscle larvae relative to untreated control groups, achieving 86.2 % in the combined albendazole-mefl oquine group. There was a marked improvement in the intestinal and muscular architecture in all treated groups compared to the non-treated control group. Notably, the albendazole-mefl oquine group showed an almost complete recovery. The combined albendazole-mefl oquine low dose regimen had the highest effect on reducing parasite burden and restoring normal histological architecture.
Collapse
|
42
|
Bityukov OV, Vil’ VA, Terent’ev AO. Synthesis of Acyclic Geminal Bis-peroxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
New evidence for tamoxifen as an antischistosomal agent: in vitro, in vivo and target fishing studies. Future Med Chem 2021; 13:945-957. [PMID: 33896196 DOI: 10.4155/fmc-2020-0311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Praziquantel is the only drug available to treat schistosomiasis, and there is an urgent demand for new anthelmintic agents. Methodology & results: We conducted in-depth in vitro and in vivo studies and report a target fishing investigation. In vitro, tamoxifen was active against adult and immature worms at low concentrations (<5 μM). Tamoxifen at a single dose (400 mg/kg) or once daily for five consecutive days (100 mg/kg/day) in mice harboring either adult (patent infection) or juvenile (prepatent infection) significantly reduced worm burden (30-70%) and egg production (70-90%). Target fishing studies revealed propionyl-CoA carboxylase as a potential target for tamoxifen in Schistosoma mansoni and glucose uptake by S. mansoni was also significantly reduced. Conclusion: Our results provide news evidence of antiparasitic effect of tamoxifen and reveal propionyl-CoA carboxylase as a potential target.
Collapse
|
44
|
Shiee MR, Kia EB, Zahabiun F, Naderi M, Motevaseli E, Nekoeian S, Fasihi Harandi M, Dehpour AR. In vitro effects of tropisetron and granisetron against Echinococcus granulosus (s.s.) protoscoleces by involvement of calcineurin and calmodulin. Parasit Vectors 2021; 14:197. [PMID: 33845889 PMCID: PMC8042905 DOI: 10.1186/s13071-021-04691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystic echinococcosis (CE) is a disease caused by the larval stage of Echinococcus granulosus sensu lato (s.l.). The treatment of CE mainly relies on the use of benzimidazoles, which can commonly cause adverse side effects. Therefore, more efficient treatment options are needed. Drug repurposing is a useful approach for advancing drug development. We have evaluated the in vitro protoscolicidal effects of tropisetron and granisetron in E. granulosus sensu stricto (s.s.) and assessed the expression of the calcineurin (CaN) and calmodulin (CaM) genes, both of which have been linked to cellular signaling activities and thus are potentially promising targets for the development of drugs. Methods Protoscoleces (PSC) of E. granulosus (s.s.) (genotype G1) obtained from sheep hepatic hydatid cysts were exposed to tropisetron and granisetron at concentrations of 50, 150 and 250 µM for various periods of time up to 10 days. Cyclosporine A (CsA) and albendazole sulfoxide were used for comparison. Changes in the morphology of PSC were investigated by light microscopy and scanning electron microscopy. Gene expression was assessed using real-time PCR at the mRNA level for E. granulosus calcineurin subunit A (Eg-CaN-A), calcineurin subunit B (Eg-CaN-B) and calmodulin (Eg-CaM) after a 24-h exposure at 50 and 250 µM, respectively. Results At 150 and 250 µM, tropisetron had the highest protoscolicidal effect, whereas CsA was most effective at 50 µM. Granisetron, however, was less effective than tropisetron at all three concentrations. Examination of morphological alterations revealed that the rate at which PSC were killed increased with increasing rate of PSC evagination, as observed in PSC exposed to tropisetron. Gene expression analysis revealed that tropisetron at 50 μM significantly upregulated Eg-CaN-B and Eg-CaM expression while at 250 μM it significantly downregulated both Eg-CaN-B and Eg-CaM expressions; in comparison, granisetron decreased the expression of all three genes at both concentrations. Conclusions Tropisetron exhibited a higher efficacy than granisetron against E. granulosus (s.s.) PSC, which is probably due to the different mechanisms of action of the two drugs. The concentration-dependent effect of tropisetron on calcineurin gene expression might reflect its dual functions, which should stimulate future research into its mechanism of action and evaluation of its potential therapeutical effect in the treatment of CE. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Mohammad Reza Shiee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Eshrat Beigom Kia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Zahabiun
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Nekoeian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Yadav S, Sharma P, Sharma A, Ganga L, Saxena JK, Srivastava M. Immunization with Brugia malayi Calreticulin Protein Generates Robust Antiparasitic Immunity and Offers Protection during Experimental Lymphatic Filariasis. ACS Infect Dis 2021; 7:790-799. [PMID: 33667079 DOI: 10.1021/acsinfecdis.0c00565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lymphatic filariasis causes permanent and long-term disability worldwide. Lack of potent adulticidal drugs, the emergence of drug resistance, and the nonavailability of effective vaccines are the major drawbacks toward LF elimination. However, immunomodulatory proteins present in the parasite secretome are capable of providing good protection against LF and thus offer hope in designing new vaccines against LF. Here, we evaluated the immunogenicity and protective efficacy of B. malayi calreticulin protein (BmCRT) using in vitro and in vivo approaches. Stimulation with recombinant BmCRT (rBmCRT) significantly upregulated Th1 cytokine production in mouse splenocytes, mesenteric lymph nodes (mLNs), and splenic and peritoneal macrophages (PMΦs). Heightened NO release, ROS generation, increased lymphocyte proliferation, and increased antigen uptake were also observed after rBmCRT exposure. Mice immunized with rBmCRT responded with increased Th1 and Th2 cytokine secretion and exhibited highly elevated titers of anti-BmCRT specific IgG at day 14 and day 28 postimmunization while splenocytes and mLNs from immunized mice showed a robust recall response on restimulation with rBmCRT. Infective larvae (L3) challenge and protection studies undertaken in Mastomys coucha, a permissive model for LF, showed that rBmCRT-immunized animals mounted a robust humoral immune response as evident by elevated levels of total IgG, IgG1, IgG2a, IgG2b, and IgG3 in their serum even 150 days after L3 challenge, which led to significantly reduced microfilariae and worm burden in infected animals. BmCRT is highly immunogenic and generates robust antiparasitic immunity in immunized animals and should therefore be explored further as a putative vaccine candidate against LF.
Collapse
Affiliation(s)
| | | | - Aditi Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Mrigank Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Hofmann D, Sayasone S, Sengngam K, Chongvilay B, Hattendorf J, Keiser J. Efficacy and safety of ascending doses of moxidectin against Strongyloides stercoralis infections in adults: a randomised, parallel-group, single-blinded, placebo-controlled, dose-ranging, phase 2a trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1151-1160. [PMID: 33798487 DOI: 10.1016/s1473-3099(20)30691-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Strongyloidiasis represents a major public health issue, particularly in resource-limited countries. Preliminary studies suggest that moxidectin might serve as an alternative to the only available treatment option, ivermectin. We aimed to evaluate the efficacy and safety of ascending doses of moxidectin in Strongyloides stercoralis-infected patients. METHODS We did a randomised, parallel-group, single-blinded, placebo-controlled, dose-ranging, phase 2a trial in four villages in northern Laos. Eligible adults (aged 18-65 years) with S stercoralis infection intensities of at least 0·4 larvae per g of stool in at least two stool samples were randomly assigned (1:1:1:1:1:1:1) by use of computerised, stratified, block randomisation into seven treatment groups: 2 mg of moxidectin, 4 mg of moxidectin, 6 mg of moxidectin, 8 mg of moxidectin, 10 mg of moxidectin, 12 mg of moxidectin, or placebo. Participants and primary outcome assessors were masked to treatment allocation, but study site investigators were not. Participants received a single oral dose of their allocated dose of moxidectin in 2 mg tablets, or four placebo tablets. Three stool samples were collected at baseline and two stool samples were collected 28 days after treatment from each participant. A Baermann assay was used to quantify S stercoralis infection and Kato-Katz thick smears were used to qualitatively identify coinfections with additional helminths species. The primary endpoint was cure rate against S stercoralis and was analysed in an available case analysis set, defined as all randomly assigned participants with primary endpoint data. Predicted cure rates and associated CIs were estimated with hyperbolic Emax models. Safety was evaluated in the intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT04056325, and is complete. FINDINGS Between Nov 27, 2019, and March 15, 2020, 785 adults were screened for trial eligibility. Of these, 223 participants were randomly assigned to treatment groups and 209 completed the study and were analysed for the primary outcome. 2 mg of moxidectin had a predicted cure rate of 75% (95% CI 59-87; 22 [73%] of 30 cured) against S stercoralis compared with a predicted cure rate of 14% (5-31; four [14%] of 29 cured) for placebo. With escalating doses, the probability of cure increased from 83% (95% CI 76-88; 26 [90%] of 29 cured) at 4 mg to 86% (79-90; 27 [84%] of 32 cured) at 6 mg, and to 87% (80-92; 24 [83%] of 29 cured) at 8 mg, levelling off at 88% (80-93; 29 [97%] of 30 cured) at 10 mg and 88% (80-93; 26 [87%] of 30 cured) at 12 mg. Moxidectin was well tolerated across all treatment groups, with no serious adverse events being recorded and all reported symptoms being classified as mild. INTERPRETATION 4-12 mg of moxidectin showed promising tolerability and efficacy profiles in the treatment of S stercoralis infections in adults. Because 8 mg of moxidectin is used for the treatment of onchocerciasis and has been evaluated for other helminth infections, we recommend this dose for phase 2b and phase 3 trials of strongyloidiasis therapy. FUNDING Fondazione Adiuvare.
Collapse
Affiliation(s)
- Daniela Hofmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Somphou Sayasone
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Lao Tropical and Public Health Institute, Vientiane, Laos
| | | | | | - Jan Hattendorf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Elizondo-Luévano JH, Castro-Ríos R, Vicente B, Fernández-Soto P, López-Aban J, Muro A, Chávez-Montes A. In Vitro Antischistosomal Activity of the Argemone mexicana Methanolic Extract and Its Main Component Berberine. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:91-100. [PMID: 33786051 PMCID: PMC7988676 DOI: 10.18502/ijpa.v16i1.5518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: Schistosomiasis has been identified as a major public health problem in tropical countries. The present study aimed to investigate the schistosomicidal effects of the methanolic extract of Argemone mexicana L. and its active component, berberine against Schistosoma mansoni on in-vitro experiments. Methods: S. mansoni adults were used. Various concentrations of the methanolic extract (10 – 200 μg/ml) and berberine (2.5 – 50 μM) were tested from 24 to 72 h. The viability of S. mansoni was confirmed with an invertoscope-microscope. Furthermore, cytotoxic (Hemolysis test), and antioxidant (DPPH radical scavenging assay) capacities were determined. Results: The viability tests on S. mansoni showed that A. mexicana at 50 μg/mL is lethal at 48 h and berberine at 10 μM is lethal at 24 h. The hemolytic activity at 1,000 μg/mL was 2.9% for A. mexicana and 90.2% for berberine. The antioxidant capacities shown by A. mexicana and berberine, were EC50 156.3 and 84.1 μg/mL, respectively. Conclusion: The extract of A. mexicana and berberine demonstrated high antischistosomal activities in low concentration and short exposure time on the in-vitro model.
Collapse
Affiliation(s)
- Joel H Elizondo-Luévano
- Department of Chemistry, School of Biological Sciences, Autonomous University of Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Rocío Castro-Ríos
- Department of Analytical Chemistry, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, México
| | - Belén Vicente
- Infectious and Tropical Diseases Group (e-INTRO), Biomedical Research Institute of Salamanca -Tropical Diseases Research Centre, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Group (e-INTRO), Biomedical Research Institute of Salamanca -Tropical Diseases Research Centre, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Julio López-Aban
- Infectious and Tropical Diseases Group (e-INTRO), Biomedical Research Institute of Salamanca -Tropical Diseases Research Centre, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Biomedical Research Institute of Salamanca -Tropical Diseases Research Centre, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Abelardo Chávez-Montes
- Department of Chemistry, School of Biological Sciences, Autonomous University of Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
48
|
Jawahar S, Tricoche N, Bulman CA, Sakanari J, Lustigman S. Drugs that target early stages of Onchocerca volvulus: A revisited means to facilitate the elimination goals for onchocerciasis. PLoS Negl Trop Dis 2021; 15:e0009064. [PMID: 33600426 PMCID: PMC7891776 DOI: 10.1371/journal.pntd.0009064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of “prophylactic” drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These “prophylactic” drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections.
Collapse
Affiliation(s)
- Shabnam Jawahar
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Nancy Tricoche
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Sara Lustigman
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
49
|
Roy S, Dhaneshwar S, Bhasin B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr Drug Res Rev 2021; 13:101-119. [PMID: 33573567 DOI: 10.2174/2589977513666210211163711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning or repurposing is a revolutionary breakthrough in drug development that focuses on rediscovering new uses for old therapeutic agents. Drug repositioning can be defined more precisely as the process of exploring new indications for an already approved drug while drug repurposing includes overall re-development approaches grounded in the identical chemical structure of the active drug moiety as in the original product. The repositioning approach accelerates the drug development process, curtails the cost and risk inherent to drug development. The strategy focuses on the polypharmacology of drugs to unlocks novel opportunities for logically designing more efficient therapeutic agents for unmet medical disorders. Drug repositioning also expresses certain regulatory challenges that hamper its further utilization. The review outlines the eminent role of drug repositioning in new drug discovery, methods to predict the molecular targets of a drug molecule, advantages that the strategy offers to the pharmaceutical industries, explaining how the industrial collaborations with academics can assist in the discovering more repositioning opportunities. The focus of the review is to highlight the latest applications of drug repositioning in various disorders. The review also includes a comparison of old and new therapeutic uses of repurposed drugs, assessing their novel mechanisms of action and pharmacological effects in the management of various disorders. Various restrictions and challenges that repurposed drugs come across during their development and regulatory phases are also highlighted.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Bhavya Bhasin
- Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
50
|
Siddiqua T, Habeeb A. Neurocysticercosis. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2021; 31:254-258. [PMID: 32129220 DOI: 10.4103/1319-2442.279948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neurocysticercosis (NCC) is one of the common parasitic central nervous system (CNS) infections. Improperly cooked pork and eggs of the tapeworm Taenia solium, entering the body through the feco-oral route, are the common sources of its infection. Affected person may remain asymptomatic for long periods and can present with a variety of neurological manifestations, including focal neurological deficits and generalized seizures. Neuroimaging along with serological test can aid in its diagnosis. Treatment of NCC varies from case to case and must always be individualized based on the patients' condition. Common therapeutic strategies include surgery and treatment with drugs, such as antiparasitic agents (albendazole) and corticosteroids (hydrocortisone), apart from other agents which are based on the patient presentation. Proper prevention strategy has to be followed to control the spread of infection within and among the individuals. We herewith present a case of NCC in a tertiary care hospital of Hyderabad, India.
Collapse
Affiliation(s)
- Tayyaba Siddiqua
- Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad, Telangana, India
| | - Ayesha Habeeb
- Department of Pharmacy Practice, Deccan School of Pharmacy, Hyderabad, Telangana, India
| |
Collapse
|