1
|
Zhou W, Zhou JZ, Ahmed A, Kim MJ, JRI Live Cell Bank, Guo CJ, Sonnenberg GF. ILC3s sense gut microbiota through STING to initiate immune tolerance. Immunity 2025:S1074-7613(25)00237-7. [PMID: 40527323 DOI: 10.1016/j.immuni.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/30/2024] [Accepted: 05/16/2025] [Indexed: 06/19/2025]
Abstract
Immune tolerance to gut microbiota is necessary for health, yet the mechanisms initiating it remain elusive. We profiled MHC II+ cells at single-cell resolution from the large intestine. Following colonization with the pathobiont Helicobacter hepaticus, group 3 innate lymphoid cells (ILC3s) were a key RORγt+ antigen-presenting cell that expressed low levels of pattern-recognition receptors but upregulated signatures for antigen presentation and STING signaling. We revealed that STING signaling in ILC3s permitted direct sensing of microbes and enhanced CCR7-dependent migration to gut-draining lymph nodes. ILC3-intrinsic STING signaling supported the instruction of microbiota-specific regulatory T cells and restrained chronic inflammation. However, gut inflammation induced exuberant STING activation, which resulted in the cell death of ILC3s. Our results define STING as a key sensor of gut microbiota in ILC3s. At steady state, this endows ILC3s with the ability to instruct immune tolerance, but heightened STING activation becomes detrimental and eliminates this tissue-protective cell type.
Collapse
Affiliation(s)
- Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Jordan Z Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Anees Ahmed
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Myeong Joon Kim
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Munisha M, Huang R, Khan J, Schimenti JC. Chronic replication stress-mediated genomic instability disrupts placenta development in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640689. [PMID: 40093167 PMCID: PMC11908151 DOI: 10.1101/2025.02.28.640689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Abnormal placentation drives many pregnancy-related pathologies and poor fetal outcomes, but the underlying molecular causes are understudied. Here, we show that persistent replication stress due to mutations in the MCM2-7 replicative helicase disrupts placentation and reduces embryo viability in mice. MCM-deficient embryos exhibited normal morphology but their placentae had a drastically diminished junctional zone (JZ). Whereas cell proliferation in the labyrinth zone (LZ) remained unaffected, JZ cell proliferation was reduced during development. MCM2-7 deficient trophoblast stem cells (TSCs) failed to maintain stemness, suggesting that replication stress affects the initial trophoblast progenitor pool in a manner that preferentially impacts the developing JZ. In contrast, pluripotency of mouse embryonic stem cells with MCM2-7 deficiency were not affected. Developing female mice deficient for FANCM, a protein involved in replication-associated DNA repair, also had placentae with a diminished JZ. These findings indicate that replication stress-induced genomic instability compromises embryo outcomes by impairing placentation.
Collapse
|
3
|
D'Souza LJ, Young JN, Coffman H, Petrow EP, Bhattacharya D. A genome wide CRISPR screen reveals novel determinants of long-lived plasma cell secretory capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640639. [PMID: 40060628 PMCID: PMC11888458 DOI: 10.1101/2025.02.28.640639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Plasma cell subsets vary in their lifespans and ability to sustain humoral immunity. We conducted a genome-wide CRISPR-Cas9 screen in a myeloma cell line for factors that promote surface expression of CD98, a marker of longevity in primary mouse plasma cells. A large fraction of genes found to promote CD98 expression in this screen are involved in secretory and other vesicles, including many subunits of the V-type ATPase complex. Chemical inhibition or genetic ablation of V-type ATPases in myeloma cells reduced antibody secretion. Primary mouse and human long-lived plasma cells had greater numbers of acidified vesicles than did their short-lived counterparts, and this correlated with increased secretory capacity of IgM, IgG, and IgA. The screen also identified PI4KB, which promoted acidified vesicle numbers and secretory capacity, and DDX3X, an ATP-dependent RNA helicase, the deletion of which reduced immunoglobulin secretion independently of vesicular acidification. Finally, we report a plasma-cell intrinsic function of the signaling adapter MYD88 in both antibody secretion and plasma cell survival in vivo. These data reveal novel regulators of plasma cell secretory capacity, including those that also promote lifespan.
Collapse
Affiliation(s)
- Lucas J D'Souza
- Department of Immunobiology, University of Arizona; Tucson, AZ
| | - Jonathan N Young
- Department of Otolaryngology, University of Arizona; Tucson, AZ
- Current Address: Department of Otolaryngology, Sutter Medical Group; Sacramento, CA
| | - Heather Coffman
- Department of Otolaryngology, University of Arizona; Tucson, AZ
- Current Address: Phoenix Indian Medical Center; Phoenix, AZ
| | | | | |
Collapse
|
4
|
Li R, Bao K, Liu C, Ma X, Hua Z, Zhu P, Hou B. Competition propels, rather than limits, the success of low-affinity B cells in the germinal center response. Cell Rep 2025; 44:115334. [PMID: 39955776 DOI: 10.1016/j.celrep.2025.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/01/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025] Open
Abstract
The germinal center (GC) sets an environment where antigen-specific B cells are compelled to continuously increase their affinity to compete for the antigen and obtain Tfh help for survival and propagation. Previous studies indicated that low-affinity B cells are disadvantaged in the presence of high-affinity ones, suggesting that competition may lead to the elimination of low-affinity B cells and their descendants. However, using a multivalent virus-mimicking antigen, our study demonstrates that low-affinity B cells not only successfully participate in GC responses alongside high-affinity B cells but also undergo accelerated affinity maturation under the more stringent competition. Furthermore, our cryo-electron-microscopy-based structural analysis reveals that both low-affinity and high-affinity B cells compete for the same antigenic epitope. Although the applicability of this idealized GC competition to true pathogen-induced responses remains uncertain, this change in perspective on the role of competition in low-affinity B cell evolution provides valuable insights for vaccine development.
Collapse
Affiliation(s)
- Runhan Li
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Keyan Bao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Ma
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaolin Hua
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Zhu
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baidong Hou
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Vázquez-Guerrero E, Kneubehl AR, Reyes-Solís GC, Machain-Williams C, Krishnavajhala A, Estrada-de los Santos P, Lopez JE, Ibarra JA. Use of a mouse model for the isolation of Borrelia puertoricensis from soft ticks. PLoS One 2025; 20:e0318652. [PMID: 39965001 PMCID: PMC11835249 DOI: 10.1371/journal.pone.0318652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
The isolation of tick-borne relapsing fever (TBRF) spirochetes has proven to be a useful tool to understand their distribution in geographic areas where the tick vectors inhabit. However, their isolation and culture are not easy and in general an animal model is needed to achieve this task. Here, argasid ticks were collected from a neighborhood in Ciudad Caucel, and they were identified as Ornithodoros (Alectorobius) puertoricensis. To determine whether these were infected with TBRF bacteria they were fed with healthy mice but only a low burden of spirochetes was observed. An immunosuppressed mouse model was used to feed the ticks suspected to be infected with spirochetes. After tick feeding, a higher number of bacteria was observed in blood samples, and spirochetes were successfully cultivated in Barbour-Stoenner-Kelly (BSK)-IIB media. Molecular analyses indicated that the isolate was Borrelia puertoricensis, while whole genome sequencing confirmed the finding. In summary, the present report shows that A. puertoricensis is present in Ciudad Caucel, an urban neighborhood in the outskirts of Merida city, and these ticks are infected with B. puertoricensis. Despite the fact that this species has not been directly associated with TBRF it represents a potential medical and veterinary health risk.
Collapse
Affiliation(s)
- Edwin Vázquez-Guerrero
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Alexander R. Kneubehl
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Guadalupe C. Reyes-Solís
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Carlos Machain-Williams
- Estudios en Una Salud, Unidad Profesional Interdisciplinaria de Ingeniería Campus Palenque, Instituto Politécnico Nacional, Palenque, Chiapas, Mexico
| | - Aparna Krishnavajhala
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - José Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
6
|
Li Y, Bel S, Benjamin JL, Ruhn KA, Hassell B, Behrendt CL, Kuang Z, Hooper LV. BCL2 regulates antibacterial autophagy in the intestinal epithelium. Proc Natl Acad Sci U S A 2024; 121:e2410205121. [PMID: 39602254 PMCID: PMC11626146 DOI: 10.1073/pnas.2410205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Autophagy is a key innate immune defense mechanism in intestinal epithelial cells. Bacterial invasion of epithelial cells activates antibacterial autophagy through a process that requires the innate immune adaptor protein MYD88, yet how MYD88 signaling connects to the autophagy machinery is unknown. Here, we show that the mouse intestinal pathogen Salmonella enterica Serovar Typhimurium (Salmonella Typhimurium) triggers MYD88 signaling that regulates binding of the anti-autophagy factor B cell lymphoma 2 (BCL2) to the essential autophagy protein Beclin1 (BECN1) in small intestinal enterocytes, a key epithelial cell lineage. Salmonella infection activated the kinase c-Jun N-terminal protein kinase 1 (JNK1) downstream of MYD88. JNK1 induced enterocyte BCL2 phosphorylation, promoting dissociation of the inhibitory BCL2-BECN1 complex and releasing BECN1 to initiate autophagy. Mice with BCL2 phosphorylation site mutations that prevent BCL2-BECN1 dissociation showed increased Salmonella invasion of enterocytes and dissemination to extraintestinal sites. These findings reveal that BCL2 links MYD88 signaling to enterocyte autophagy initiation, providing mechanistic insight into how invading bacteria trigger autophagy in the intestinal epithelium.
Collapse
Affiliation(s)
- Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shai Bel
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jamaal L. Benjamin
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Kelly A. Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Brian Hassell
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Cassie L. Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
7
|
Yan Y, Huang X, Yuan L, Ngai T, Ma G, Xia Y. Dictating the spatial-temporal delivery of molecular adjuvant and antigen for the enhanced vaccination. Biomaterials 2024; 311:122697. [PMID: 38968687 DOI: 10.1016/j.biomaterials.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
The incorporation of molecular adjuvants has revolutionized vaccine by boosting overall immune efficacy. While traditional efforts have been concentrated on the quality and quantity of vaccine components, the impact of adjuvant and antigen delivery kinetics on immunity remains to be fully understood. Here, we employed poly (lactic-co-glycolic acid) nanoparticle (PLGA NP) -stabilized Pickering emulsion (PPE) to refine the delivery kinetics of molecular adjuvant CpG and antigen, aiming to optimize immune responses. The hierarchical structure of PPE enabled spatially differential loading of CpG and antigen. The component inserted on the oil-water interphase exhibited a rapid release profile, while the one encapsulated in the PLGA NPs demonstrated a sustained release. This led to distinct intracellular spatial-temporal release kinetics. Compared to the PPE with sustained CpG release and burst release of antigen, we found that the PPE with rapid CpG release and sustained antigen release triggered an early and robust activation of Toll-like receptor 9 (TLR9) in direct way. This fostered a more immunogenic microenvironment, significantly outperforming the inverted delivery profile in dendritic cells (DCs) activation, resulting in higher CD40 expression, elevated proinflammatory cytokine levels, sustained antigen cross-presentation, an enhanced Th1 response, and increased CD8+ T cells. Moreover, prior exposure of CpG led to suppressed tumor growth and enhanced efficacy in Varicella-zoster virus (VZV) vaccine. Our findings underscore the importance of tuning adjuvant and antigen delivery kinetics in vaccine design, proposing a novel path for enhancing vaccination outcomes.
Collapse
Affiliation(s)
- Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaonan Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China; Sinovac Biotech Ltd., Beijing, 100085, PR China
| | - Lili Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
8
|
Wholey WY, Meyer AR, Yoda ST, Mueller JL, Mathenge R, Chackerian B, Zikherman J, Cheng W. An Integrated Signaling Threshold Initiates IgG Response toward Virus-like Immunogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1061-1075. [PMID: 39212443 PMCID: PMC11458362 DOI: 10.4049/jimmunol.2400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Class-switched neutralizing Ab (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures, in this study, we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses without T cell help or TLR but requires CD19. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response, and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harboring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab in mice and reproduced the IgG2a/2c restriction that is long observed in live viral infections. These findings reveal a shared mechanism for the nAb response in mice. High ED is capable but not necessary for driving Ab secretion. Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong IgG production. As a result, the signaling threshold for induction of IgG in individual B cells is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander R. Meyer
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - James L. Mueller
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, California 94143 USA
| | - Raisa Mathenge
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, California 94143 USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, California 94143 USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, 1150 W. Medical Center Dr., University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Bao L, Juarez CFG, Li J, Pigors M, Emtenani S, Liu Y, Ahmed A, Ishii N, Hashimoto T, White BEP, Green S, Kunstman K, Nowak NC, Cole C, Macias V, Sverdlov M, McAlexander MA, McCrae C, Nazaroff CD, Schmidt E, Amber KT. IgG autoantibodies in bullous pemphigoid directly induce a pathogenic MyD88-dependent pro-inflammatory response in keratinocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616103. [PMID: 39569141 PMCID: PMC11577246 DOI: 10.1101/2024.10.07.616103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
While autoantibodies in bullous pemphigoid (BP) are known to activate the innate immune response, their direct effect on keratinocytes, and the contribution of BP-IgG autoantibody-dependent keratinocyte responses to BP pathology is largely unknown. Herein, we performed multiplex immunoassays and bulk RNA-seq on primary keratinocytes treated with IgG from BP patients or controls. We identified a pro-inflammatory and proteolytic response with release of several cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP-9. We further validated this response using spatial transcriptomics and scRNA-seq of diseased and control skin. Blistering itself appeared to be major driver of this inflammatory response, with attached BP skin and spongiotic dermatitis revealing highly similar transcriptomes. Based on elevated levels of MyD88 and MyD88-dependent cytokines, we studied the impact of MyD88 deficiency in keratinocytes and demonstrated that MyD88 regulates BP-IgG-induced expression of IL-8, IL-24, and MMP-9. Induction of experimental BP in mice with Krt14 -specific Myd88 knockout revealed significantly decreased disease severity with decreased serum levels of IL-1β, IL-4, and IL-9 indicating the contributory role of keratinocyte-derived skin inflammation towards systemic response. Our work demonstrates the key contributions of keratinocyte and MyD88 dependent signaling in response to autoantibodies in BP. Key Messages -IgG antibodies from bullous pemphigoid (BP) patients induce significant upregulation of several inflammatory markers in keratinocytes including cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP9. Several of these markers, including IL-8, IL-24, and MMP9 are regulated by MyD88.-Spatial transcriptomics reveals that BP patient blistered skin demonstrated similar transcriptomic profiles to BP-IgG-treated keratinocytes. With attached skin demonstrating a comparable transcriptome to that seen in spongiotic dermatitis.-In a mouse BP model, keratinocyte-specific MyD88 deficiency results in decreased disease severity with a subsequent decrease in serum IL-1β, IL-4, and IL-9 levels. Capsule summary IgG from patients with bullous pemphigoid (BP) induces a pro-inflammatory response in keratinocytes, indicating their direct role in driving the inflammatory response in BP.
Collapse
|
10
|
Wan D, Bai Z, Zhang Y, Chen L, Que H, Lan T, Hong W, Huang J, He C, Wei Y, Pu Q, Wei X. Simultaneous enhancement of cellular and humoral immunity by the lymph node-targeted cholesterolized TLR7 agonist liposomes. Acta Pharm Sin B 2024; 14:4577-4590. [PMID: 39525596 PMCID: PMC11544185 DOI: 10.1016/j.apsb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 11/16/2024] Open
Abstract
Toll-like receptor (TLR) agonists, as promising adjuvants and immunotherapeutic agents, have the potential to enhance immune responses and modulate antigen-dependent T-cell immune memory through activation of distinct signaling pathways. However, their clinical application is hindered by uncontrolled systemic inflammatory reactions. Therefore, it is imperative to create a vaccine adjuvant for TLR receptors that ensures both safety and efficacy. In this study, we designed lymph node-targeted cholesterolized TLR7 agonist cationic liposomes (1V209-Cho-Lip+) to mitigate undesired side effects. Co-delivery of the model antigen OVA and cholesterolized TLR7 agonist facilitated DC maturation through TLR activation while ensuring optimal presentation of the antigen to CD8+ T cells. The main aim of the present study is to evaluate the adjuvant effectiveness of 1V209-Cho-Lip+ in tumor vaccines. Following immunization with 1V209-Cho-Lip++OVA, we observed a pronounced "depot effect" and enhanced trafficking to secondary lymphoid organs. Prophylactic vaccination with 1V209-Cho-Lip++OVA significantly delays tumor development, prolongs mouse survival, and establishes durable immunity against tumor recurrence. Additionally, 1V209-Cho-Lip++OVA, while used therapeutic tumor vaccine, has demonstrated its efficacy in inhibiting tumor progression, and when combined with anti-PD-1, it further enhances antitumor effects. Therefore, the co-delivery of antigen and lymph node-targeted cholesterolized TLR7 agonist shows great promise as a cancer vaccine.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayu Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Ding X, Sun M, Guo F, Qian X, Yuan H, Lou W, Wang Q, Lei X, Zeng W. Picrasidine S Induces cGAS-Mediated Cellular Immune Response as a Novel Vaccine Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310108. [PMID: 38900071 PMCID: PMC11348072 DOI: 10.1002/advs.202310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/21/2024]
Abstract
New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Mengxue Sun
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Haoyu Yuan
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenjiao Lou
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Qixuan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute of Cancer ResearchShen Zhen Bay LaboratoryShen Zhen518107China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Tsinghua‐Peking Center for Life SciencesBeijing100084China
| |
Collapse
|
12
|
Gaertner F, Ishikawa-Ankerhold H, Stutte S, Fu W, Weitz J, Dueck A, Nelakuditi B, Fumagalli V, van den Heuvel D, Belz L, Sobirova G, Zhang Z, Titova A, Navarro AM, Pekayvaz K, Lorenz M, von Baumgarten L, Kranich J, Straub T, Popper B, Zheden V, Kaufmann WA, Guo C, Piontek G, von Stillfried S, Boor P, Colonna M, Clauß S, Schulz C, Brocker T, Walzog B, Scheiermann C, Aird WC, Nerlov C, Stark K, Petzold T, Engelhardt S, Sixt M, Hauschild R, Rudelius M, Oostendorp RAJ, Iannacone M, Heinig M, Massberg S. Plasmacytoid dendritic cells control homeostasis of megakaryopoiesis. Nature 2024; 631:645-653. [PMID: 38987596 PMCID: PMC11254756 DOI: 10.1038/s41586-024-07671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| | | | - Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wenwen Fu
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jutta Weitz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Bhavishya Nelakuditi
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Larissa Belz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Gulnoza Sobirova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Zhe Zhang
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatic Core facility, LMU Munich, Planegg-Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU Munich, Planegg-Martinsried, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Chenglong Guo
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St Louis, MO, USA
| | - Sebastian Clauß
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert A J Oostendorp
- Laboratory of Stem Cell Physiology, Department of Internal Medicine III-Hematology and Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
Schonblum A, Ali Naser D, Ovadia S, Egbaria M, Puyesky S, Epshtein A, Wald T, Mercado-Medrez S, Ashery-Padan R, Landsman L. Beneficial islet inflammation in health depends on pericytic TLR/MyD88 signaling. J Clin Invest 2024; 134:e179335. [PMID: 38885342 PMCID: PMC11245159 DOI: 10.1172/jci179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
While inflammation is beneficial for insulin secretion during homeostasis, its transformation adversely affects β cells and contributes to diabetes. However, the regulation of islet inflammation for maintaining glucose homeostasis remains largely unknown. Here, we identified pericytes as pivotal regulators of islet immune and β cell function in health. Islets and pancreatic pericytes express various cytokines in healthy humans and mice. To interfere with the pericytic inflammatory response, we selectively inhibited the TLR/MyD88 pathway in these cells in transgenic mice. The loss of MyD88 impaired pericytic cytokine production. Furthermore, MyD88-deficient mice exhibited skewed islet inflammation with fewer cells, an impaired macrophage phenotype, and reduced IL-1β production. This aberrant pericyte-orchestrated islet inflammation was associated with β cell dedifferentiation and impaired glucose response. Additionally, we found that Cxcl1, a pericytic MyD88-dependent cytokine, promoted immune IL-1β production. Treatment with either Cxcl1 or IL-1β restored the mature β cell phenotype and glucose response in transgenic mice, suggesting a potential mechanism through which pericytes and immune cells regulate glucose homeostasis. Our study revealed pericyte-orchestrated islet inflammation as a crucial element in glucose regulation, implicating this process as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Anat Schonblum
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Dunia Ali Naser
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mohammed Egbaria
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shani Puyesky
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Alona Epshtein
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Tomer Wald
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Sophia Mercado-Medrez
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| |
Collapse
|
14
|
Jin H, Li M, Jeong E, Castro-Martinez F, Zuker CS. A body-brain circuit that regulates body inflammatory responses. Nature 2024; 630:695-703. [PMID: 38692285 PMCID: PMC11186780 DOI: 10.1038/s41586-024-07469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The body-brain axis is emerging as a principal conductor of organismal physiology. It senses and controls organ function1,2, metabolism3 and nutritional state4-6. Here we show that a peripheral immune insult strongly activates the body-brain axis to regulate immune responses. We demonstrate that pro-inflammatory and anti-inflammatory cytokines communicate with distinct populations of vagal neurons to inform the brain of an emerging inflammatory response. In turn, the brain tightly modulates the course of the peripheral immune response. Genetic silencing of this body-brain circuit produced unregulated and out-of-control inflammatory responses. By contrast, activating, rather than silencing, this circuit affords neural control of immune responses. We used single-cell RNA sequencing, combined with functional imaging, to identify the circuit components of this neuroimmune axis, and showed that its selective manipulation can effectively suppress the pro-inflammatory response while enhancing an anti-inflammatory state. The brain-evoked transformation of the course of an immune response offers new possibilities in the modulation of a wide range of immune disorders, from autoimmune diseases to cytokine storm and shock.
Collapse
Affiliation(s)
- Hao Jin
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Mengtong Li
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Eric Jeong
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Charles S Zuker
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Möckel T, Boegel S, Schwarting A. Transcriptome Analysis of BAFF/BAFF-R System in Murine Nephrotoxic Serum Nephritis. Int J Mol Sci 2024; 25:5415. [PMID: 38791453 PMCID: PMC11121395 DOI: 10.3390/ijms25105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is an emerging cause for morbidity and mortality worldwide. Acute kidney injury (AKI) can transition to CKD and finally to end-stage renal disease (ESRD). Targeted treatment is still unavailable. NF-κB signaling is associated with CKD and activated by B cell activating factor (BAFF) via BAFF-R binding. In turn, renal tubular epithelial cells (TECs) are critical for the progression of fibrosis and producing BAFF. Therefore, the direct involvement of the BAFF/BAFF-R system to the pathogenesis of CKD is conceivable. We performed non-accelerated nephrotoxic serum nephritis (NTN) as the CKD model in BAFF KO (B6.129S2-Tnfsf13btm1Msc/J), BAFF-R KO (B6(Cg)-Tnfrsf13ctm1Mass/J) and wildtype (C57BL/6J) mice to analyze the BAFF/BAFF-R system in anti-glomerular basement membrane (GBM) disease using high throughput RNA sequencing. We found that BAFF signaling is directly involved in the upregulation of collagen III as BAFF ko mice showed a reduced expression. However, these effects were not mediated via BAFF-R. We identified several upregulated genes that could explain the effects of BAFF in chronic kidney injury such as Txnip, Gpx3, Igfbp7, Ccn2, Kap, Umod and Ren1. Thus, we conclude that targeted treatment with anti-BAFF drugs such as belimumab may reduce chronic kidney damage. Furthermore, upregulated genes may be useful prognostic CKD biomarkers.
Collapse
Affiliation(s)
- Tamara Möckel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Sebastian Boegel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
- Center for Rheumatic Disease Rhineland-Palatinate GmbH, 55543 Bad Kreuznach, Germany
| |
Collapse
|
16
|
Park MK, Park HK, Yu HS. The Recombinant Profilin from Free-Living Amoebae Induced Allergic Immune Responses via TLR2. J Inflamm Res 2024; 17:2915-2925. [PMID: 38764493 PMCID: PMC11100517 DOI: 10.2147/jir.s450866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Background Repeated exposure to recombinant profilin from Acanthamoeba (rAc-PF) induces allergic airway responses in vitro and in vivo. Based on the role of toll-like receptors (TLRs) in allergic airway diseases, TLRs play a central role in innate immune responses and the adaptive immune system and regulate responses against antigens through antigen-specific receptors. In this study, we attempted to determine the molecular mechanisms underlying rAc-PF-induced allergic inflammatory responses. Methods We determined the correlation between rAc-PF and TLRs and analyzed changes in allergic immune responses after blocking multiple TLR signaling under rAc-PF treatment conditions in vitro. We also compared allergic inflammatory responses in TLR2 knockout (KO) and wild-type (WT) mice. To investigate the effect of TLR2 on antigen prototyping and T cell activation in the inflammatory response induced by rAc-PF, we assessed maturation of BMDCs and polarization of naïve T cells by rAc-PF stimulation. Additionally, we compared changes in inflammation-related gene expression by rAc-PF treatment in primary lung epithelial cells isolated from TLR2 KO and WT mice. Results The rAc-PF treatment was increased the expression level of TLR2 and 9 in vitro. But, there were not significantly differ the others TLRs expression by rAc-PF treated group. And then, the mRNA expression levels of inflammation-related genes were reduced in the TLR2 or TLR9 antagonist-treated groups compared to those in the rAc-PF alone, were no difference the treated with the other TLRs (TLR4, 6, and 7/8) antagonist. The difference was higher in the TLR2 antagonist group. Additionally, the levels of airway inflammatory disease indicators were lower in the TLR2 KO group than in the WT group after rAc-PF treatment. Furthermore, the expression of bone marrow-derived dendritic cell (BMDC) surface molecular markers following rAc-PF stimulation was lower in TLR2 KO mice than in WT mice, and TLR2 KO in BMDCs resulted in a remarkable decline in Th2/17-related cytokine production and Th2/17 subset differentiation. In addition, the expression levels of rAc-PF-induced inflammatory genes were reduced inTLR2 KO primary lung cells compared to those in normal primary lung cells. Conclusion These results suggest that the rAc-PF-induced airway inflammatory response is regulated by TLR2 signaling.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye-Kyung Park
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
17
|
Korangath P, Jin L, Yang CT, Healy S, Guo X, Ke S, Grüttner C, Hu C, Gabrielson K, Foote J, Clarke R, Ivkov R. Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer. ACS NANO 2024; 18:10509-10526. [PMID: 38564478 PMCID: PMC11025112 DOI: 10.1021/acsnano.3c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-β (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.
Collapse
Affiliation(s)
- Preethi Korangath
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Lu Jin
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Chun-Ting Yang
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Sean Healy
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xin Guo
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Suqi Ke
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | | | - Chen Hu
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | - Kathleen Gabrielson
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jeremy Foote
- Department
of Microbiology, School of Medicine, University
of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert Clarke
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Robert Ivkov
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
19
|
Ou J, Zheng L, Chen Y, Fu Q, Tan L, Liang E, Huang L, Pan Y, Ke J, Chen Z, Cheng K. Heterocyclic-Modified Imidazoquinoline Derivatives: Selective TLR7 Agonist Regulates Tumor Microenvironment against Melanoma. J Med Chem 2024; 67:3321-3338. [PMID: 38363069 DOI: 10.1021/acs.jmedchem.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Immunotherapy targeting the toll-like receptor 7 (TLR7) is a promising strategy for cancer treatment. Herein, we describe the design and synthesis of a series of imidazoquinoline-based TLR7 agonists and assess NF-κB pathway activation using HEK-Blue hTLR7 cells to identify the most potent small-molecule TLR7 agonist, SMU-L11 (EC50 = 0.024 ± 0.002 μM). In vitro experiments demonstrated that SMU-L11 specifically activated TLR7, resulting in recruitment of the MyD88 adaptor protein and activation of the NF-κB and MAPK signaling pathways. Moreover, SMU-L11 was found to exert immune-enhancing effects by significantly inducing the secretion of proinflammatory cytokines in murine dendritic cells, macrophages, and human peripheral blood mononuclear cells while promoting M1 macrophage polarization. In vivo studies using a B16-F10 mouse tumor model showed that SMU-L11 significantly enhanced immune cell activation and augmented CD4+ T and CD8+ T-cell proliferation, directly killing tumor cells and inhibiting tumor growth.
Collapse
Affiliation(s)
- Jiaxin Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanlin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahua Ke
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Fischer LA, Bittner-Eddy PD, Costalonga M. Major Histocompatibility Complex II Expression on Oral Langerhans Cells Differentially Regulates Mucosal CD4 and CD8 T Cells. J Invest Dermatol 2024; 144:573-584.e1. [PMID: 37838330 PMCID: PMC10922315 DOI: 10.1016/j.jid.2023.09.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
In murine periodontitis, the T helper (Th)17 response against Porphyromonas gingivalis in cervical lymph node is abrogated by diphtheria toxin-driven depletion of Langerhans cells (LCs). We determined the impact of major histocompatibility complex class II (MHC-II) presentation in LCs on Th17 cells in the oral mucosa of mice. Using an established human-Langerin promoter-Cre mouse model, we generated LC-specific deletion of the H2-Ab1 (MHC-II) gene. MHC-II expression was ablated in 81.2% of oral-resident LCs compared with >99% of skin-resident LCs. MHC-II (LCΔMHC-II) depletion did not reduce the number of CD4 T cells nor the frequency of Th17 cells compared with that in wild-type mice. However, the frequencies of Th1 cells decreased, and Helios+ T-regulatory cells increased. In ligature-induced periodontitis, the numbers of CD4 T cells and Th17 cells were similar in LCΔMHC-II and wild-type mice. Normal numbers of Th17 cells can therefore be sustained by as little as 18.8% of MHC-II-expressing LCs in oral mucosa. Unexpectedly, oral mucosa CD8 T cells increased >25-fold in LCΔMHC-II mice. Hence, these residual MHC-II-expressing LCs appear unable to suppress the local expansion of CD8 T cells while sufficient to sustain a homeostatic CD4 T-cell response. Reducing the expression of MHC-II on specific LC subpopulations may ultimately boost CD8-mediated intraepithelial surveillance at mucosal surfaces.
Collapse
Affiliation(s)
- Lori A Fischer
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter D Bittner-Eddy
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
21
|
Wholey WY, Meyer AR, Yoda ST, Chackerian B, Zikherman J, Cheng W. Minimal determinants for lifelong antiviral antibody responses in BALB/c mice from a single exposure to virus-like immunogens at low doses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.20.529089. [PMID: 36865112 PMCID: PMC9979986 DOI: 10.1101/2023.02.20.529089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs in primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. Introduction of internal nucleic acids dramatically modulates the magnitude of long-term Ab responses without alteration of the long-term kinetic trends. These Abs are characterized by exceptionally slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in BALB/c mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimized vaccine design.
Collapse
|
22
|
Wholey WY, Meyer AR, Yoda ST, Mueller JL, Mathenge R, Chackerian B, Zikherman J, Cheng W. An integrated signaling threshold initiates IgG response towards virus-like immunogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577643. [PMID: 38469153 PMCID: PMC10926662 DOI: 10.1101/2024.01.28.577643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Class-switched neutralizing antibody (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in typical virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures (SVLS) containing minimal, highly purified biochemical components commonly found in enveloped viruses, here we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses in the absence of cognate T cell help or Toll-like receptor signaling but requires CD19, the antigen (Ag) coreceptor on B cells. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harbouring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab known in mice and reproduced the IgG2a/2c restriction that has been long observed in live viral infections. These findings reveal a shared mechanism for nAb response upon viral infection. High ED is capable but not necessary for driving Ab secretion in vivo . Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong antiviral IgG production. As a result, the signaling threshold for the induction of neutralizing IgG is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens. One-sentence summary Reconstitution of minimal viral signals necessary to initiate antiviral IgG.
Collapse
|
23
|
Schaaf KR, Landstreet SR, Pugazenthi S, Qian EY, Putz ND, Siderova T, Owen AM, Bohannon JK, Ware LB, Bastarache JA, Shaver CM. Cell-free hemoglobin triggers macrophage cytokine production via TLR4 and MyD88. Am J Physiol Lung Cell Mol Physiol 2024; 326:L29-L38. [PMID: 37991487 PMCID: PMC11279742 DOI: 10.1152/ajplung.00123.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 β, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1β, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.
Collapse
Affiliation(s)
- Kaitlyn R Schaaf
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sangami Pugazenthi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Emily Y Qian
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Tatiana Siderova
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julia K Bohannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Molecular Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
24
|
Gray JM, Major K, Castillo-Ruiz A, Shipley M, Gangappa S, Forger NG. The inflammatory response to birth requires MyD88 and is driven by both mother and offspring. Brain Behav Immun 2024; 115:617-630. [PMID: 37967662 PMCID: PMC11913035 DOI: 10.1016/j.bbi.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Birth is an inflammatory event for the newborn, characterized by elevations in interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α peripherally and/or centrally, as well as changes in brain microglia. However, the mechanism(s) underlying these responses is unknown. Toll-like receptors (TLRs) play crucial roles in innate immunity and initiate inflammatory cascades upon recognition of endogenous or exogenous antigens. Most TLR signaling depends on the adaptor molecule myeloid differentiation primary response 88 (MyD88). We independently varied MyD88 gene status in mouse dams and their offspring to determine whether the inflammatory response to birth depends on MyD88 signaling and, if so, whether that signaling occurs in the offspring, the mother, or both. We find that the perinatal surges in plasma IL-6 and brain expression of TNF-α depend solely on MyD88 gene status of the offspring, whereas postnatal increases in plasma IL-10 and TNF-α depend on MyD88 in both the pup and dam. Interestingly, MyD88 genotype of the dam primarily drives differences in offspring brain microglial density and has robust effects on developmental neuronal cell death. Milk cytokines were evaluated as a possible source of postnatal maternal influence; although we found high levels of CXCL1/GROα and several other cytokines in ingested post-partum milk, their presence did not require MyD88. Thus, the inflammatory response previously described in the late-term fetus and newborn depends on MyD88 (and, by extension, TLRs), with signaling in both the dam and offspring contributing. Unexpectedly, naturally-occuring neuronal cell death in the newborn is modulated primarily by maternal MyD88 gene status.
Collapse
Affiliation(s)
- Jennifer M Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Kharli Major
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Michael Shipley
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
25
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
26
|
Farahmandi F, Parhizgar P, Mozafari Komesh Tape P, Bizhannia F, Rohani FS, Bizhanzadeh M, Mostafavi Alhosseini ZS, Hosseinzade M, Farsi Y, Nasiri MJ. Implications and Mechanisms of Antiviral Effects of Lactic Acid Bacteria: A Systematic Review. Int J Microbiol 2023; 2023:9298363. [PMID: 38144900 PMCID: PMC10748726 DOI: 10.1155/2023/9298363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background Lactic acid bacteria (LAB) are among the most important strains of probiotics. Some are normal flora of human mucous membranes in the gastrointestinal system, skin, urinary tract, and genitalia. There is evidence suggesting that LAB has an antiviral effect on viral infections. However, these studies are still controversial; a systematic review was conducted to evaluate the antiviral effects of LAB on viral infections. Methods The systematic search was conducted until the end of December 17, 2022, using international databases such as Scopus, Web of Science, and Medline (via PubMed). The keywords of our search were lactic acid bacteria, Lactobacillales, Lactobacillus (as well as its species), probiotics, antiviral, inhibitory effect, and virus. Results Of 15.408 potentially relevant articles obtained, 45 eligible in-vivo human studies were selected for inclusion in the study from databases, registers, and citation searching. We conducted a systematic review of the antiviral effects of the LAB based on the included articles. The most commonly investigated lactobacillus specie were Lactobacillus rhamnosus GG and Lactobacillus casei. Conclusion Our study indicates that 40 of the selected 45 of the included articles support the positive effect of LAB on viral infections, although some studies showed no significant positive effect of LABs on some viral infections.
Collapse
Affiliation(s)
- Fargol Farahmandi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parynaz Parhizgar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parya Mozafari Komesh Tape
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bizhannia
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Sadat Rohani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Bizhanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maede Hosseinzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Liu Z, Sun H, Xu S, Wang H, Zhang Z, Wei Y, Kou Y, Wang Y. Dietary ingredient change induces a transient MyD88-dependent mucosal enteric glial cell response and promotes obesity. Nutr Neurosci 2023; 26:1183-1193. [PMID: 36342063 DOI: 10.1080/1028415x.2022.2142129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Consumption of a modern Western-type high-fat low-fiber diet increases the risk of obesity. However, how a host responds to such a diet, especially during the early period of dietary transition from a previous low-fat and fiber-rich diet, remains poorly explored. METHODS Wild-type C57BL/6 mice were fed a normal chow diet or a high-fat diet. Enteric glial cell (EGC) activation was detected through quantitative real-time PCR (qRT-PCR), immunoblotting and immunohistology analysis. Fluorocitrate or genetic deletion of glial fibrillary acidic protein (GFAP)-positive glial-intrinsic myeloid differentiation factor 88 (Myd88) was used to inhibit EGC activation, and the effect of a high-fat diet on obesity was further investigated. The role of MYD88-dependent sensing of commensal products in adipocyte was observed to analyze the effect of obesity. RESULTS A dietary shift from a normal chow diet to a high-fat diet in mice induced a transient early-phase emergence of a GFAP-positive EGC network in the lamina propria of the ileum, accompanied with an increase in glial-derived neurotrophic factor production. Inhibition of glial cell activity blocked this response. GFAP-positive glial Myd88 knockout mice gained less body weight after high-fat diet (HFD) feeding than littermate controls. In contrast, adipocyte deletion of Myd88 in mice had no effect on weight gain but instead exacerbated glucose intolerance. Furthermore, short-term fluorocitrate intervention during HFD feeding attenuated body weight gain. CONCLUSIONS Our findings indicate that EGCs are early responders to intestinal ecosystem changes and the GFAP-positive glial Myd88 signaling participates in regulating obesity.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hongxiang Sun
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Shihong Xu
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hanying Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhiwei Zhang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yanxia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yanbo Kou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
28
|
Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, Shiers S, Dubreuil D, Vega-Mendoza D, Rolland C, Deraison C, Voisin T, Bagood MD, Wesemann L, Frey AM, Palumbo JS, Wainger BJ, Gallo RL, Leyva-Castillo JM, Vergnolle N, Price TJ, Ramachandran R, Horswill AR, Chiu IM. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell 2023; 186:5375-5393.e25. [PMID: 37995657 PMCID: PMC10669764 DOI: 10.1016/j.cell.2023.10.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Flavia Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimbria J Blake
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Muhammad Saad Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel Dubreuil
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle D Bagood
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucia Wesemann
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Abigail M Frey
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Balasubramanian I, Bandyopadhyay S, Flores J, Bianchi‐Smak J, Lin X, Liu H, Sun S, Golovchenko NB, Liu Y, Wang D, Patel R, Joseph I, Suntornsaratoon P, Vargas J, Green PHR, Bhagat G, Lagana SM, Ying W, Zhang Y, Wang Z, Li WV, Singh S, Zhou Z, Kollias G, Farr LA, Moonah SN, Yu S, Wei Z, Bonder EM, Zhang L, Kiela PR, Edelblum KL, Ferraris R, Liu T, Gao N. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression. EMBO J 2023; 42:e113975. [PMID: 37718683 PMCID: PMC10620768 DOI: 10.15252/embj.2023113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
Collapse
Affiliation(s)
| | | | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Haoran Liu
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Shengxiang Sun
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | | | - Yue Liu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Dahui Wang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Radha Patel
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Justin Vargas
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Peter HR Green
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Stephen M Lagana
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Wang Ying
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Yi Zhang
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Zhihan Wang
- Department of StatisticsRutgers UniversityNew BrunswickNJUSA
| | - Wei Vivian Li
- Department of Biostatistics and EpidemiologyRutgers UniversityNew BrunswickNJUSA
| | - Sukhwinder Singh
- Department of PathologyRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJUSA
| | - George Kollias
- Biomedical Sciences Research Centre, “Alexander Fleming”VariGreece
| | - Laura A Farr
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shannon N Moonah
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shiyan Yu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Zhi Wei
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Lanjing Zhang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Department of PathologyPenn Medicine Princeton Medical CenterPlainsboroNJUSA
| | - Pawel R Kiela
- Departments of Pediatrics and Immunology, and Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research CenterThe University of Arizona Health SciencesTucsonAZUSA
| | - Karen L Edelblum
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ta‐Chiang Liu
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
30
|
Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep 2023; 42:113153. [PMID: 37742185 PMCID: PMC10697505 DOI: 10.1016/j.celrep.2023.113153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.
Collapse
Affiliation(s)
- Andrea M Kemter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert T Patry
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
31
|
Brooks JF, Riggs J, Mueller JL, Mathenge R, Wholey WY, Meyer AR, Yoda ST, Vykunta VS, Nielsen HV, Cheng W, Zikherman J. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. Nat Immunol 2023; 24:1762-1777. [PMID: 37653247 PMCID: PMC10950062 DOI: 10.1038/s41590-023-01597-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Multivalent viral epitopes induce rapid, robust and T cell-independent humoral immune responses, but the biochemical basis for such potency remains incompletely understood. We take advantage of a set of liposomes of viral size engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme. Particulate Ag induces potent 'all-or-none' B cell responses that are density dependent but affinity independent. Unlike soluble Ag, particulate Ag induces signal amplification downstream of the B cell receptor by selectively evading LYN-dependent inhibitory pathways and maximally activates NF-κB in a manner that mimics T cell help. Such signaling induces MYC expression and enables even low doses of particulate Ag to trigger robust B cell proliferation in vivo in the absence of adjuvant. We uncover a molecular basis for highly sensitive B cell responses to viral Ag display that is independent of encapsulated nucleic acids and is not merely accounted for by avidity and B cell receptor cross-linking.
Collapse
Affiliation(s)
- Jeremy F Brooks
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Julianne Riggs
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - James L Mueller
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Raisa Mathenge
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander R Meyer
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vivasvan S Vykunta
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hailyn V Nielsen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Tung CC, Rathore APS, St. John AL. Conventional and non-conventional antigen presentation by mast cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad016. [PMID: 38567067 PMCID: PMC10917180 DOI: 10.1093/discim/kyad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
Collapse
Affiliation(s)
- Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
33
|
Chan NR, Hwang B, Waworuntu RL, Tran AJ, Ratner BD, Bryers JD. Novel HALO® image analysis to determine cell phenotype in porous precision-templated scaffolds. J Biomed Mater Res A 2023; 111:1459-1467. [PMID: 37029696 PMCID: PMC10524297 DOI: 10.1002/jbm.a.37547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Image analysis platforms have gained increasing popularity in the last decade for the ability to automate and conduct high-throughput, multiplex, and quantitative analyses of a broad range of pathological tissues. However, imaging tissues with unique morphology or tissues containing implanted biomaterial scaffolds remain a challenge. Using HALO®, an image analysis platform specialized in quantitative tissue analysis, we have developed a novel method to determine multiple cell phenotypes in porous precision-templated scaffolds (PTS). PTS with uniform spherical pores between 30 and 40 μm in diameter have previously exhibited a specific immunomodulation of macrophages toward a pro-healing phenotype and an overall diminished foreign body response (FBR) compared to PTS with larger or smaller pore sizes. However, signaling pathways orchestrating this pro-healing in 40 μm PTS remain unclear. Here, we use HALO® to phenotype PTS resident cells and found a decrease in pro-inflammatory CD86 and an increase in pro-healing CD206 expression in 40 μm PTS compared to 100 μm PTS. To understand the mechanisms that drive these outcomes, we investigated the role of myeloid-differentiation-primary-response gene 88 (MyD88) in regulating the pro-healing phenomenon observed only in 40 μm PTS. When subcutaneously implanted in MyD88KO mice, 40 μm PTS reduced the expression of CD206, and the scaffold resident cells displayed an average larger nuclear size compared to 40 μm PTS implanted in mice expressing MyD88. Overall, this study demonstrates a novel image analysis method for phenotyping cells within PTS and identifies MyD88 as a critical mediator in the pore-size-dependent regenerative healing and host immune response to PTS.
Collapse
Affiliation(s)
- Nathan R. Chan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Billanna Hwang
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | | | - An J. Tran
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | - Buddy D. Ratner
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - James D. Bryers
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Beilinson HA, Sevilleja A, Spring J, Benavides F, Beilinson V, Neokosmidis N, Golovkina T. A single dominant locus restricts retrovirus replication in YBR/Ei mice. J Virol 2023; 97:e0068523. [PMID: 37578238 PMCID: PMC10506465 DOI: 10.1128/jvi.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Differential responses to viral infections are influenced by the genetic makeup of the host. Studies of resistance to retroviruses in human populations are complicated due to the inability to conduct proof-of-principle studies. Inbred mouse lines, which have a range of susceptible phenotypes to retroviruses, are an ideal tool to identify and characterize mechanisms of resistance and define their genetic underpinnings. YBR/Ei mice become infected with Mouse Mammary Tumor Virus, a mucosally transmitted murine retrovirus, but eliminate the virus from their pedigrees. Virus elimination correlates with a lack of virus-specific neonatal oral tolerance, which is a major mechanism for blocking the anti-virus response in susceptible mice. Virus control is unrelated to virus-neutralizing antibodies, cytotoxic CD8+ T cells, NK cells, and NK T cells, which are the best characterized mechanisms of resistance to retroviruses. We identified a single, dominant locus that controls the resistance mechanism, which we provisionally named attenuation of virus titers (Avt) and mapped to the distal region of chromosome 18. IMPORTANCE Elucidation of the mechanism that mediates resistance to retroviruses is of fundamental importance to human health, as it will ultimately lead to knowledge of the genetic differences among individuals in susceptibility to microbial infections.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Amanda Sevilleja
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Smith M, Meliopoulos V, Tan S, Bub T, Brigleb PH, Sharp B, Crawford JC, Prater MS, Pruett-Miller SM, Schultz-Cherry S. The β6 Integrin Negatively Regulates TLR7-Mediated Epithelial Immunity via Autophagy During Influenza A Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555098. [PMID: 37693589 PMCID: PMC10491108 DOI: 10.1101/2023.08.28.555098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic β6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how β6 regulates epithelial immunity remains undefined. Here, we identify the role of β6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the β6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced β6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of β6-induced autophagy in influencing epithelial immune responses during influenza virus infection.
Collapse
|
36
|
Wang Y, Wang M, Chen J, Li Y, Kuang Z, Dende C, Raj P, Quinn G, Hu Z, Srinivasan T, Hassell B, Ruhn K, Behrendt CL, Liang T, Dou X, Song Z, Hooper LV. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science 2023; 381:851-857. [PMID: 37616368 PMCID: PMC10688608 DOI: 10.1126/science.ade0522] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
The intestinal microbiota regulates mammalian lipid absorption, metabolism, and storage. We report that the microbiota reprograms intestinal lipid metabolism in mice by repressing the expression of long noncoding RNA (lncRNA) Snhg9 (small nucleolar RNA host gene 9) in small intestinal epithelial cells. Snhg9 suppressed the activity of peroxisome proliferator-activated receptor γ (PPARγ)-a central regulator of lipid metabolism-by dissociating the PPARγ inhibitor sirtuin 1 from cell cycle and apoptosis protein 2 (CCAR2). Forced expression of Snhg9 in the intestinal epithelium of conventional mice impaired lipid absorption, reduced body fat, and protected against diet-induced obesity. The microbiota repressed Snhg9 expression through an immune relay encompassing myeloid cells and group 3 innate lymphoid cells. Our findings thus identify an unanticipated role for a lncRNA in microbial control of host metabolism.
Collapse
Affiliation(s)
- Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Jiaxin Chen
- Department of Breast Surgery and Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zheng Kuang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zehan Hu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelly Ruhn
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Cassie L. Behrendt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhangfa Song
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Lora V. Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
37
|
McKiel LA, Ballantyne LL, Negri GL, Woodhouse KA, Fitzpatrick LE. MyD88-dependent Toll-like receptor 2 signaling modulates macrophage activation on lysate-adsorbed Teflon™ AF surfaces in an in vitro biomaterial host response model. Front Immunol 2023; 14:1232586. [PMID: 37691934 PMCID: PMC10491479 DOI: 10.3389/fimmu.2023.1232586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
The adsorbed protein layer on an implanted biomaterial surface is known to mediate downstream cell-material interactions that drive the host response. While the adsorption of plasma-derived proteins has been studied extensively, the adsorption of damage-associated molecular patterns (DAMPs) derived from damaged cells and matrix surrounding the implant remains poorly understood. Previously, our group developed a DAMP-adsorption model in which 3T3 fibroblast lysates were used as a complex source of cell-derived DAMPs and we demonstrated that biomaterials with adsorbed lysate potently activated RAW-Blue macrophages via Toll-like receptor 2 (TLR2). In the present study, we characterized the response of mouse bone marrow derived macrophages (BMDM) from wildtype (WT), TLR2-/- and MyD88-/- mice on Teflon™ AF surfaces pre-adsorbed with 10% plasma or lysate-spiked plasma (10% w/w total protein from 3T3 fibroblast lysate) for 24 hours. WT BMDM cultured on adsorbates derived from 10% lysate in plasma had significantly higher gene and protein expression of IL-1β, IL-6, TNF-α, IL-10, RANTES/CCL5 and CXCL1/KC, compared to 10% plasma-adsorbed surfaces. Furthermore, the upregulation of pro-inflammatory cytokine and chemokine expression in the 10% lysate in plasma condition was attenuated in TLR2-/- and MyD88-/- BMDM. Proteomic analysis of the adsorbed protein layers showed that even this relatively small addition of lysate-derived proteins within plasma (10% w/w) caused a significant change to the adsorbed protein profile. The 10% plasma condition had fibrinogen, albumin, apolipoproteins, complement, and fibronectin among the top 25 most abundant proteins. While proteins layers generated from 10% lysate in plasma retained fibrinogen and fibronectin among the top 25 proteins, there was a disproportionate increase in intracellular proteins, including histones, tubulins, actins, and vimentin. Furthermore, we identified 7 DAMPs or DAMP-related proteins enriched in the 10% plasma condition (fibrinogen, apolipoproteins), compared to 39 DAMPs enriched in the 10% lysate in plasma condition, including high mobility group box 1 and histones. Together, these findings indicate that DAMPs and other intracellular proteins readily adsorb to biomaterial surfaces in competition with plasma proteins, and that adsorbed DAMPs induce an inflammatory response in adherent macrophages that is mediated by the MyD88-dependent TLR2 signaling pathway.
Collapse
Affiliation(s)
- Laura A. McKiel
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Laurel L. Ballantyne
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
| | | | - Kimberly A. Woodhouse
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Lindsay E. Fitzpatrick
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
38
|
Holloway KN, Douglas JC, Rafferty TM, Kane CJM, Drew PD. Ethanol Induces Neuroinflammation in a Chronic Plus Binge Mouse Model of Alcohol Use Disorder via TLR4 and MyD88-Dependent Signaling. Cells 2023; 12:2109. [PMID: 37626919 PMCID: PMC10453365 DOI: 10.3390/cells12162109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Ethanol induces neuroinflammation, which is believed to contribute to the pathogenesis of alcohol use disorder (AUD). Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) expressed on both immune cells, including microglia and astrocytes, and non-immune cells in the central nervous system (CNS). Studies have shown that alcohol activates TLR4 signaling, resulting in the induction of pro-inflammatory cytokines and chemokines in the CNS. However, the effect of alcohol on signaling pathways downstream of TLR4, such as MyD88 and TRIF (TICAM) signaling, has not been evaluated extensively. In the current study, we treated male wild-type, TLR4-, MyD88-, and TRIF-deficient mice using a chronic plus binge mouse model of AUD. Evaluation of mRNA expression by qRT-PCR revealed that ethanol increased IL-1β, TNF-α, CCL2, COX2, FosB, and JunB in the cerebellum in wild-type and TRIF-deficient mice, while ethanol generally did not increase the expression of these molecules in TLR4- and MyD88-deficient mice. Furthermore, IRF3, IRF7, and IFN-β1, which are associated with the TRIF-dependent signaling cascade, were largely unaffected by alcohol. Collectively, these results suggest that the TLR4 and downstream MyD88-dependent signaling pathways are essential in ethanol-induced neuroinflammation in this mouse model of AUD.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
39
|
Bayer AL, Smolgovsky S, Ngwenyama N, Hernández-Martínez A, Kaur K, Sulka K, Amrute J, Aronovitz M, Lavine K, Sharma S, Alcaide P. T-Cell MyD88 Is a Novel Regulator of Cardiac Fibrosis Through Modulation of T-Cell Activation. Circ Res 2023; 133:412-429. [PMID: 37492941 PMCID: PMC10529989 DOI: 10.1161/circresaha.123.323030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Cardiac inflammation in heart failure is characterized by the presence of damage-associated molecular patterns, myeloid cells, and T cells. Cardiac damage-associated molecular patterns provide continuous proinflammatory signals to myeloid cells through TLRs (toll-like receptors) that converge onto the adaptor protein MyD88 (myeloid differentiation response 88). These induce activation into efficient antigen-presenting cells that activate T cells through their TCR (T-cell receptor). T-cell activation results in cardiotropism, cardiac fibroblast transformation, and maladaptive cardiac remodeling. T cells rely on TCR signaling for effector function and survival, and while they express MyD88 and damage-associated molecular pattern receptors, their role in T-cell activation and cardiac inflammation is unknown. METHODS We performed transverse aortic constriction in mice lacking MyD88 in T cells and analyzed remodeling, systolic function, survival, and T-cell activation. We profiled wild type versus Myd88-/- mouse T cells at the transcript and protein level and performed several functional assays. RESULTS Analysis of single-cell RNA-sequencing data sets revealed that MyD88 is expressed in mouse and human cardiac T cells. MyD88 deletion in T cells resulted in increased levels of cardiac T-cell infiltration and fibrosis in response to transverse aortic constriction. We discovered that TCR-activated Myd88-/- T cells had increased proinflammatory signaling at the transcript and protein level compared with wild type, resulting in increased T-cell effector functions such as adhesion, migration across endothelial cells, and activation of cardiac fibroblast. Mechanistically, we found that MyD88 modulates T-cell activation and survival through TCR-dependent rather than TLR-dependent signaling. CONCLUSIONS Our results outline a novel intrinsic role for MyD88 in limiting T-cell activation that is central to tune down cardiac inflammation during cardiac adaptation to stress.
Collapse
Affiliation(s)
| | | | | | | | - Kuljeet Kaur
- Department of Immunology, Tufts University, Boston MA
| | | | - Junedh Amrute
- Department of Medicine, Washington University School of Medicine, Saint Louis MO
| | | | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, Saint Louis MO
| | - Shruti Sharma
- Department of Immunology, Tufts University, Boston MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston MA
| |
Collapse
|
40
|
Torow N, Li R, Hitch TCA, Mingels C, Al Bounny S, van Best N, Stange EL, Simons B, Maié T, Rüttger L, Gubbi NMKP, Abbott DA, Benabid A, Gadermayr M, Runge S, Treichel N, Merhof D, Rosshart SP, Jehmlich N, Hand TW, von Bergen M, Heymann F, Pabst O, Clavel T, Tacke F, Lelouard H, Costa IG, Hornef MW. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer's patch. Immunity 2023; 56:1220-1238.e7. [PMID: 37130522 PMCID: PMC10262694 DOI: 10.1016/j.immuni.2023.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Ronghui Li
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Charles Adrian Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Clemens Mingels
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Shahed Al Bounny
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany; Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht 6200, the Netherlands
| | - Eva-Lena Stange
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Britta Simons
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lennart Rüttger
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | | | - Darryl Adelaide Abbott
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Adam Benabid
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Michael Gadermayr
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Solveig Runge
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nicole Treichel
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen 52056, Germany
| | - Stephan Patrick Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany; Department of Medicine II, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany
| | - Timothy Wesley Hand
- Pediatrics Department, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Molecular Systems Biology, Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv), Leipzig 04103, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig 04103, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Hospital, Berlin 13353, Germany
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | - Ivan Gesteira Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Walter Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
41
|
Medler TR, Blair TC, Alice AF, Dowdell AK, Piening BD, Crittenden MR, Gough MJ. Myeloid MyD88 restricts CD8 + T cell response to radiation therapy in pancreatic cancer. Sci Rep 2023; 13:8634. [PMID: 37244938 PMCID: PMC10224952 DOI: 10.1038/s41598-023-35834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Tiffany C Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Brian D Piening
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA.
| |
Collapse
|
42
|
Velasco WV, Khosravi N, Castro-Pando S, Torres-Garza N, Grimaldo MT, Krishna A, Clowers MJ, Umer M, Tariq Amir S, Del Bosque D, Daliri S, De La Garza MM, Ramos-Castaneda M, Evans SE, Moghaddam SJ. Toll-like receptors 2, 4, and 9 modulate promoting effect of COPD-like airway inflammation on K-ras-driven lung cancer through activation of the MyD88/NF-ĸB pathway in the airway epithelium. Front Immunol 2023; 14:1118721. [PMID: 37283745 PMCID: PMC10240392 DOI: 10.3389/fimmu.2023.1118721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Toll-like receptors (TLRs) are an extensive group of proteins involved in host defense processes that express themselves upon the increased production of endogenous damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) due to the constant contact that airway epithelium may have with pathogenic foreign antigens. We have previously shown that COPD-like airway inflammation induced by exposure to an aerosolized lysate of nontypeable Haemophilus influenzae (NTHi) promotes tumorigenesis in a K-ras mutant mouse model of lung cancer, CCSPCre/LSL-K-rasG12D (CC-LR) mouse. Methods In the present study, we have dissected the role of TLRs in this process by knocking out TLR2, 4, and 9 and analyzing how these deletions affect the promoting effect of COPD-like airway inflammation on K-ras-driven lung adenocarcinoma. Results We found that knockout of TLR 2, 4, or 9 results in a lower tumor burden, reduced angiogenesis, and tumor cell proliferation, accompanied by increased tumor cell apoptosis and reprogramming of the tumor microenvironment to one that is antitumorigenic. Additionally, knocking out of downstream signaling pathways, MyD88/NF-κB in the airway epithelial cells further recapitulated this initial finding. Discussion Our study expands the current knowledge of the roles that TLR signaling plays in lung cancer, which we hope, can pave the way for more reliable and efficacious prevention and treatment modalities for lung cancer.
Collapse
Affiliation(s)
- Walter V. Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nasim Khosravi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susana Castro-Pando
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nelly Torres-Garza
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Maria T. Grimaldo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Avantika Krishna
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Misha Umer
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sabah Tariq Amir
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diana Del Bosque
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Soudabeh Daliri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Miguelina De La Garza
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
43
|
Xiao C, Huang Y, Cui X, Wei Q, Ji Q, Liu Y, Fei S, Pan Y, Xu X, Pan H, Bao G. Adjuvant Efficacy of the ECMS-Oil on Immune Responses against Bordetella bronchiseptica in Mice through the TLR2/MyD88/NF-κB Pathway. J Immunol Res 2023. [DOI: 10.1155/2023/1011659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Bordetella infection can be efficiently prevented through vaccination. The current study investigated the effects of an extract of Cochinchina momordica seed (ECMS) combined with oil on the immune responses to the inactivated Bordetella vaccine in mice. Serum IgG and IgG1 level was significantly increased in ECMS-oil group compared to any other group (
) 2 weeks after immunization, while groups ECMS200 μg/400 μg-oil had a markedly higher level of serum IgG2b and IgG3 than any other groups (
). Moreover, lipopolysaccharide/ConA-stimulated proliferation of splenocytes was significantly enhanced in ECMS 400 μg-oil immunized mice in comparison with mice in any other group (
). RT-PCR assay revealed that while ECMS800 μg-oil group had significantly higher levels of serum IL-4, IL-10, Toll-like receptor (TLR)2, and IL-1 beta than any other group (
), the levels of serum IL-2, IL-4, and IL-10 were markedly increased in ECMS 400 μg-oil group as compared to any other groups (
). Blood analysis showed that ECMS800 μg-oil and oil groups had a significantly higher number of immunocytes than any other groups (
). There were significant differences in the number of IgG+, IgG2b+, and IgA+ cells in the lung between ECMS800 μg-oil group and any other groups (
). Western blot analysis demonstrated that stimulation with ECMS 25 μg/mL or 50 ng/mL led to a significant increase in the expression of TLR2, MyD88, and NF-κB in Raw264.7 cells (
). Compared with any other group, the expression of MyD88 was markedly increased in the cells stimulated with ECMS 50 ng/mL, as indicated by the RT-PCR analysis (
). Overall, we observed that ECMS-oil efficiently enhanced the humoral or cellular immune responses against Bordetella and suggested that the mechanism of adjuvant activity of ECMS-oil might involve TLR2/MyD88/NF-κB signaling pathway.
Collapse
|
44
|
Kiaf B, Bode K, Schuster C, Kissler S. Gata3 is detrimental to regulatory T cell function in autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533297. [PMID: 36993342 PMCID: PMC10055278 DOI: 10.1101/2023.03.18.533297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Regulatory T cells (Tregs) protect against autoimmunity. In type 1 diabetes (T1D), Tregs slow the progression of beta cell autoimmunity within pancreatic islets. Increasing the potency or frequency of Tregs can prevent diabetes, as evidenced by studies in the nonobese diabetic (NOD) mouse model for T1D. We report herein that a significant proportion of islets Tregs in NOD mice express Gata3. The expression of Gata3 was correlated with the presence of IL-33, a cytokine known to induce and expand Gata3+ Tregs. Despite significantly increasing the frequency of Tregs in the pancreas, exogenous IL-33 was not protective. Based on these data, we hypothesized that Gata3 is deleterious to Treg function in autoimmune diabetes. To test this notion, we generated NOD mice with a Treg-specific deletion of Gata3. We found that deleting Gata3 in Tregs strongly protected against diabetes. Disease protection was associated with a shift of islet Tregs toward a suppressive CXCR3+Foxp3+ population. Our results suggest that islet Gata3+ Tregs are maladaptive and that this Treg subpopulation compromises the regulation of islet autoimmunity, contributing to diabetes onset.
Collapse
Affiliation(s)
- Badr Kiaf
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Kevin Bode
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Cornelia Schuster
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
- Diabetes Program, Harvard Stem Cell Institute, Cambridge MA 02138
| |
Collapse
|
45
|
Hsieh Y, Tsai T, Huang S, Heng J, Huang Y, Tsai P, Tu C, Chao T, Tsai Y, Chang P, Lee C, Yu G, Chang S, Dzhagalov IL, Hsu C. IFN-stimulated metabolite transporter ENT3 facilitates viral genome release. EMBO Rep 2023; 24:e55286. [PMID: 36652307 PMCID: PMC9986816 DOI: 10.15252/embr.202255286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.
Collapse
Affiliation(s)
- Yu‐Ting Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tsung‐Lin Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Shen‐Yan Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jian‐Wen Heng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu‐Chia Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Pei‐Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Chun Tu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | | | - Ya‐Min Tsai
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chien‐Kuo Lee
- Graduate Institute of Immunology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Guann‐Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoliTaiwan
| | - Sui‐Yuan Chang
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ivan L. Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| |
Collapse
|
46
|
Brooks JF, Riggs J, Mueller JL, Mathenge R, Wholey WY, Yoda ST, Vykunta VS, Cheng W, Zikherman J. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528761. [PMID: 36824873 PMCID: PMC9949087 DOI: 10.1101/2023.02.15.528761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although it has long been appreciated that multivalent antigens - and particularly viral epitope display - produce extremely rapid, robust, and T-independent humoral immune responses, the biochemical basis for such potency has been incompletely understood. Here we take advantage of a set of neutral liposomes of viral size that are engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme at precisely varied density. We show that particulate Ag display by liposomes induces highly potent B cell responses that are dose-and density-dependent but affinity-independent. Titrating dose of particulate, but not soluble, Ag reveals bimodal Erk phosphorylation and cytosolic calcium increases. Particulate Ag induces signal amplification downstream of the B cell receptor (BCR) by selectively evading LYN-dependent inhibitory pathways, but in vitro potency is independent of CD19. Importantly, Ag display on viral-sized particles signals independently of MYD88 and IRAK1/4, but activates NF- κ B robustly in a manner that mimics T cell help. Together, such biased signaling by particulate Ag promotes MYC expression and reduces the threshold required for B cell proliferation relative to soluble Ag. These findings uncover a molecular basis for highly sensitive B cell response to viral Ag display and remarkable potency of virus-like particle vaccines that is not merely accounted for by avidity and BCR cross-linking, and is independent of the contribution of B cell nucleic acid-sensing machinery.
Collapse
|
47
|
Microbiota-dependent presence of murine enteric glial cells requires myeloid differentiation primary response protein 88 signaling. J Biosci 2023. [DOI: 10.1007/s12038-023-00325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
48
|
Gopalakrishnan A, Richard K, Wahid R, Harley R, Sztein MB, Hawkins LD, Vogel SN. E6020, a TLR4 Agonist Adjuvant, Enhances Both Antibody Titers and Isotype Switching in Response to Immunization with Hapten-Protein Antigens and Is Diminished in Mice with TLR4 Signaling Insufficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1950-1959. [PMID: 36426935 PMCID: PMC9643654 DOI: 10.4049/jimmunol.2200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 12/30/2022]
Abstract
The mechanisms by which TLR4-based adjuvants enhance immunogenicity are not fully understood. We have taken advantage of a novel knock-in mouse strain that homozygously expresses two single-nucleotide polymorphisms (SNPs) that are homologous to human TLR4 (rs4986790 and rs4986791) and have been associated with LPS hyporesponsiveness in vivo and in vitro. TLR4-SNP (coexpressing mutations D298G/N397I in TLR4) mice that recapitulate the human phenotype were compared with wild-type (WT) mice for their hapten-specific Ab responses after immunization with hapten 4-hydroxy-3-nitrophenyl acetyl (NP) NP-Ficoll or NP-OVA in the absence or presence of a water-soluble TLR4 analog adjuvant, E6020. IgM and IgG anti-NP responses were comparable in WT and TLR4-SNP mice after immunization with either NP-Ficoll or NP-OVA only. E6020 significantly yet transiently improved the IgM and IgG anti-NP responses of both WT and TLR4-SNP mice to NP-Ficoll (T-independent), with modestly enhanced Ab production in WT mice. In contrast, T-dependent (NP-OVA), adjuvant-enhanced responses showed sustained elevation of NP-specific Ab titers in WT mice, intermediate responses in TLR4-SNP mice, and negligible enhancement in TLR4-/- mice. E6020-enhanced early humoral responses in WT and TLR4-SNP mice to NP-OVA favored an IgG1 response. After a second immunization, however, the immune responses of TLR4-SNP mice remained IgG1 dominant, whereas WT mice reimmunized with NP-OVA and E6020 exhibited increased anti-NP IgG2c titers and a sustained increase in the IgG1 and IgG2c production by splenocytes. These findings indicate that E6020 increases and sustains Ab titers and promotes isotype class switching, as evidenced by reduced titers and IgG1-dominant immune responses in mice with TLR4 insufficiency.
Collapse
Affiliation(s)
- Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| | - Regina Harley
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Luda KM, Da Silva C, Ahmadi F, Mowat AM, Ohno H, Kotarsky K, Agace WW. Identification and characterization of murine glycoprotein 2-expressing intestinal dendritic cells. Scand J Immunol 2022; 96:e13219. [PMID: 37807915 PMCID: PMC9786990 DOI: 10.1111/sji.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
The intestinal lamina propria (LP) contains distinct subsets of classical dendritic cells (cDC), each playing key non-redundant roles in intestinal immune homeostasis. Here, we show that glycoprotein 2 (GP2), a GPI-anchored protein and receptor for bacterial type-I fimbriae, is selectively expressed by CD103+CD11b+ cDC in the murine small intestine (SI). GP2 expression was induced on CD103+CD11b+ cDC within the SI-LP and was regulated by IRF4, TGFβR1- and retinoic acid signalling. Mice selectively lacking Gp2 on CD103+CD11b+ cDC (huLang-Cre.gp2fl/fl mice) had normal numbers and proportions of innate and adaptive immune cells in the SI-LP suggesting that GP2 expression by CD103+CD11b+ cDC is not required for intestinal immune homoeostasis.
Collapse
Affiliation(s)
- Katarzyna M Luda
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Clement Da Silva
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fatemeh Ahmadi
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Allan Mcl Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Knut Kotarsky
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - William W Agace
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Mucosal Immunology Laboratory, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
50
|
Spindler MP, Siu S, Mogno I, Li Z, Yang C, Mehandru S, Britton GJ, Faith JJ. Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host Microbe 2022; 30:1481-1498.e5. [PMID: 36099923 PMCID: PMC9588646 DOI: 10.1016/j.chom.2022.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
The potential of commensal bacteria to modulate host immunity remains largely uncharacterized, largely due to the vast number of strains that comprise the human gut microbiota. We have developed a screening platform to measure the innate immune responses of myeloid cells to 277 bacterial strains isolated from the gut microbiota of healthy individuals and those with inflammatory bowel diseases. The innate immune responses to gut-derived bacteria are as strong as those toward pathogenic bacteria, and they vary from phylum to strain. Myeloid cells differentially rely upon innate receptors TLR2 or TLR4 to sense taxa, with differential sensing of Bacteroidetes and Proteobacteria that predict in vivo functions. These innate immune responses can be modeled using combinations of up to 8 Toll-like receptor (TLR) agonists. Furthermore, the immunogenicity of strains is stable over time and following fecal microbiota transplantation into new human recipients. Collectively, this high-throughput approach provides an insight into how commensal microorganisms shape innate immune phenotypes.
Collapse
Affiliation(s)
- Matthew P Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sophia Siu
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhihua Li
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chao Yang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|