1
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2025; 72:527-554. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Qin S, Na J, Yang Q, Tang J, Deng Y, Zhong L. Advances in dendritic cell-based therapeutic tumor vaccines. Mol Immunol 2025; 181:113-128. [PMID: 40120558 DOI: 10.1016/j.molimm.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Dendritic cell-based therapeutic tumor vaccines are an active immunotherapy that has been commonly tried in the clinic,traditional treatment modalities for malignant tumors, such as surgery, radiotherapy and chemotherapy, have the disadvantages of high recurrence rates and side effects. The dendritic cell vaccination destroys cells from tumors by means of the patient's own system of immunity, a very promising treatment. However, due to the suppression of the tumor immune microenvironment, the difficulty of screening for optimal specific antigens, and the high technical difficulty of vaccine production. Most tumor vaccines currently available in the clinic have failed to produce significant clinical therapeutic effects. In this review, the fundamentals of therapeutic dendritic cells vaccine therapy are briefly outlined, with a focus on the progress of therapeutic Dendritic cells vaccine research in the clinic and the initiatives undertaken to enhance dendritic cell vaccinations' anti-tumor effectiveness. It is believed that through the continuous exploration of novel therapeutic strategies, therapeutic dendritic cells vaccines can play a greater role in improving tumor treatment for tumor patients.
Collapse
Affiliation(s)
- Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
3
|
Ahvati H, Roudi R, Sobhani N, Safari F. CD47 as a potent target in cancer immunotherapy: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189294. [PMID: 40057140 DOI: 10.1016/j.bbcan.2025.189294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Cancer is the second-highest cause of death worldwide. Accordingly, finding new cancer treatments is of great interest to researchers. The current platforms to fight cancer such as chemotherapy, radiotherapy, and surgery are limited in efficacy, especially in the metastatic setting. In this war against cancer, the immune system is a powerful ally, but tumor cells often outsmart it through alternative pathways. Cluster of differentiation 47 (CD47), a protein that normally prevents healthy cells from being attacked by immune cells, is often overexpressed on cancer cells. This makes CD47 a prime target for immunotherapy. Blocking of CD47 has the potential to unleash the immune system's cell populations-such as myeloid cells, macrophages, and T cells-to allow the immune system to discover and destroy cancer cells more successfully. In this review, we aimed to provide the latest information and findings about the roles of CD47 in the regulation of various cellular pathways and, thus, the importance of CD47 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
5
|
Zhou Y, Wei Y, Tian X, Wei X. Cancer vaccines: current status and future directions. J Hematol Oncol 2025; 18:18. [PMID: 39962549 PMCID: PMC11834487 DOI: 10.1186/s13045-025-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer continues to be a major global health burden, with high morbidity and mortality. Building on the success of immune checkpoint inhibitors and adoptive cellular therapy, cancer vaccines have garnered significant interest, but their clinical success remains modest. Benefiting from advancements in technology, many meticulously designed cancer vaccines have shown promise, warranting further investigations to reach their full potential. Cancer vaccines hold unique benefits, particularly for patients resistant to other therapies, and they offer the ability to initiate broad and durable T cell responses. In this review, we highlight the antigen selection for cancer vaccines, introduce the immune responses induced by vaccines, and propose strategies to enhance vaccine immunogenicity. Furthermore, we summarize key features and notable clinical advances of various vaccine platforms. Lastly, we delve into the mechanisms of tumor resistance and explore the potential benefits of combining cancer vaccines with standard treatments and other immunomodulatory approaches to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yingqiong Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Abbaszadeh M, Naseri B, Taghizadeh-Teymorloei M, Mardi A, Javan MR, Masoumi J, Ghorbaninezhad F, Hatami‐Sadr A, Tural Ş, Baradaran B, Sadeghi MR. Overview of dendritic cells subsets and their involvement in immune-related pathological disease. BIOIMPACTS : BI 2025; 15:30671. [PMID: 40256217 PMCID: PMC12008504 DOI: 10.34172/bi.30671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 04/22/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) in linking innate and adaptive immune responses. In addition to presenting antigens to T cells, DCs must also provide co-stimulatory signals along with cytokines for T cells to induce an appropriate cellular immune response. Tolerance is also established and maintained by DCs under homeostatic circumstances. There is remarkable phenotypic heterogeneity in DCs, each with different functional flexibility and specific expression of various markers. The three primary categories of DCs comprise conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). Langerhans cells (LCs) are another type of DCs, which are found in the skin's epidermal layer. DCs may be positioned or triggered inappropriately as a result of dysregulation of DC. This phenomenon can cause an imbalance in immune responses and even immune-related pathological disorders, i.e., autoimmune diseases and malignancies. Herein, by reviewing the ontogeny, biology, characteristics, and function of DCs subsets in immune system, we discuss the contribution of these cells in the mentioned immune-related disorders.
Collapse
Affiliation(s)
- Mohsen Abbaszadeh
- Molecular Medicine Department, Faculty of advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh-Teymorloei
- Molecular Medicine Department, Faculty of advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Şengül Tural
- Mayis University, Faculty of Medicine, Department of Medical Biology, Samsun, Turkey
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Molecular Medicine Department, Faculty of advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Warner van Dijk FA, Bertram KM, O’Neil TR, Li Y, Buffa DJ, Harman AN, Cunningham AL, Nasr N. Recent Advances in Our Understanding of Human Inflammatory Dendritic Cells in Human Immunodeficiency Virus Infection. Viruses 2025; 17:105. [PMID: 39861894 PMCID: PMC11768623 DOI: 10.3390/v17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed. Dendritic cells (DCs), as potent antigen-presenting cells, are among the first to capture HIV upon its entry into the mucosa, and they subsequently transport the virus to CD4 T cells, the primary HIV target cells. This increased HIV susceptibility in inflamed tissue likely stems from a disrupted epithelial barrier integrity, phenotypic changes in resident DCs and an influx of inflammatory HIV target cells, including DCs and CD4 T cells. Gaining insight into how HIV interacts with specific inflammatory DC subsets could inform the development of new therapeutic strategies to block HIV transmission. However, little is known about the early stages of HIV capture and transmission in inflammatory environments. Here, we review the currently characterised inflammatory-tissue DCs and their interactions with HIV.
Collapse
Affiliation(s)
- Freja A. Warner van Dijk
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Yuchen Li
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Daniel J. Buffa
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
8
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre C, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle‐Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2025; 55:e2250325. [PMID: 39668411 PMCID: PMC11739683 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of ImmunologyJena University HospitalFriedrich‐Schiller‐UniversityJenaGermany
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
| | - Lukas Heger
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
- Department of Transfusion Medicine and HemostaseologyUniversity Hospital ErlangenErlangenGermany
| | - William W Agace
- LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Immunology SectionLund UniversityLundSweden
| | - Joyce Bakker
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Tanja D. de Gruijl
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Regine J. Dress
- Institute of Systems ImmunologyHamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Marieke F. Fransen
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Department of Pulmonary DiseasesAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- SingHealth Duke‐NUS Academic Medical CentreTranslational Immunology InstituteSingaporeSingapore
- INSERM U1015, Gustave Roussy Cancer CampusVillejuifFrance
| | - Oded Heyman
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Yael Horev
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Vinitha Kandiah
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Paz Kles
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Ruth Lubin
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Gabriel Mizraji
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Anastasia Prokopi
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Or Saar
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Sieghart Sopper
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Martina M Sykora
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Elisa C. Toffoli
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Christoph H. Tripp
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Kim van Pul
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Rieneke van de Ven
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
- Department of Otolaryngology, Head and Neck SurgeryAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Asaf Wilensky
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Simon Yona
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Claudia Zelle‐Rieser
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
9
|
Song S, Sun Y, Yu J. Causal relationship between 731 immune cells and the risk of diabetic nephropathy: a two‑sample bidirectional Mendelian randomization study. Ren Fail 2024; 46:2387208. [PMID: 39091101 PMCID: PMC11299454 DOI: 10.1080/0886022x.2024.2387208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Previous observational studies have indicated associations between various immune cells and diabetic nephropathy (DN). However, the causality remains unclear. We aimed to further evaluate the causal association between immune cells and DN using bidirectional two-sample Mendelian randomization (MR) analysis. METHOD The DN data were retrieved from the IEU OpenGWAS Project database, while the data for 731 immune cells were sourced from GWAS summary statistics by Orru ̀ et al. The investigation into the causal relationship between immune cells and DN employed the inverse variance weighted (IVW), weighted median (WME), and MR-Egger methods. The stability and reliability of the findings underwent evaluation through Cochran's Q test, MR-Egger intercept's P-value, MR-PRESSO, and Leave-One-Out (LOO) method. RESULT The IVW estimates suggested a positive causal effect of CD25 on IgD-CD38dim B cell, CD25 on naive-mature B cell, CD127 on granulocyte, SSC-A on HLA DR + Natural Killer, HLA DR on plasmacytoid Dendritic Cell, and HLA DR on Dendritic Cell on DN. Conversely, the abundance of Myeloid Dendritic Cell, CD62L- Dendritic Cell %Dendritic Cell, CD86+ myeloid Dendritic Cell %Dendritic Cell, CD14- CD16-, CX3CR1 on CD14- CD16-, and SSC-A on CD4+ T cell had negative causal effects on DN. However, after correcting the P value for significant causality results using the FDR method, it was concluded that only Myeloid Dendritic Cells had a causal relationship with DN (FDR-p = 0.041), while the other immune cells showed no significant association with DN, so their relationship was suggestive. The results were stable with no observed horizontal pleiotropy and heterogeneity. Reverse MR analysis indicated no causal relationship between DN and the increased risk of positively identified immune cells. CONCLUSION This study provides an initial insight into the genetic perspective of the causal relationship between immune cells and DN. It establishes a crucial theoretical foundation for future endeavors in precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Siyuan Song
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| | - Yuqing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
10
|
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines (Basel) 2024; 12:1294. [PMID: 39591196 PMCID: PMC11598974 DOI: 10.3390/vaccines12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Dendritic cells (DCs) are present in almost all tissues, where they act as sentinels involved in innate recognition and the initiation of adaptive immune responses. The DC family consists of several cell lineages that are heterogenous in their development, phenotype, and function. Within these DC lineages, further subdivisions exist, resulting in smaller, less characterized subpopulations, each with its unique immunomodulatory capabilities. Given the interest in utilizing DC for experimental studies and for vaccination purposes, it becomes increasingly crucial to thoroughly classify and characterize these diverse DC subpopulations. This understanding is vital for comprehending their relative contribution to the initiation, regulation, and propagation of immune responses. To facilitate such investigation, we here provide an easy and ready-to-use multicolor flow cytometry staining panel for the analysis of conventional DC, plasmacytoid DC, and monocyte-derived DC populations isolated from mouse spleens. This adaptable panel can be easily customized for the analysis of other tissue-specific DC populations, providing a valuable tool for DC research.
Collapse
Affiliation(s)
- Ronald A. Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
11
|
Rana H, Truong NR, Sirimanne DR, Cunningham AL. Breaching the Barrier: Investigating Initial Herpes Simplex Viral Infection and Spread in Human Skin and Mucosa. Viruses 2024; 16:1790. [PMID: 39599904 PMCID: PMC11599041 DOI: 10.3390/v16111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Herpes simplex virus (HSV) is sexually transmitted via the anogenital mucosa where it initially infects epidermal keratinocytes and mononuclear phagocytes (MNPs). It then spreads to the dorsal root ganglion via sensory nerve endings, to remain latent for life with periodic reactivation. Currently, there is no cure or vaccine. Initial or recurrent HSV infection can produce serious complications and mediate acquisition of HIV. This review outlines the initial events after the HSV infection of human anogenital mucosa to determine the optimal window to target the virus before it becomes latent. After infection, HSV spreads rapidly within the mid-layers of epidermal keratinocytes in the explanted human inner foreskin. Infected cells produce chemokines, which modulate nectin-1 distribution on the surface of adjacent keratinocytes, facilitating viral spread. Epidermal Langerhans cells and dendritic cells become infected with HSV followed by a "viral relay" to dermal MNPs, which then present viral antigen to T cells in the dermis or lymph nodes. These data indicate the need for interruption of spread within 24 h by diffusible vaccine-induced mediators such as antiviral cytokines from resident immune cells or antibodies. Intradermal/mucosal vaccines would need to target the relevant dermal MNPs to induce HSV-specific CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dona R. Sirimanne
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (H.R.); (N.R.T.); (D.R.S.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Lubin R, Patel AA, Mackerodt J, Zhang Y, Gvili R, Mulder K, Dutertre CA, Jalali P, Glanville JR, Hazan I, Sridharan N, Rivkin G, Akarca A, Marafioti T, Gilroy DW, Kandel L, Mildner A, Wilensky A, Asquith B, Ginhoux F, Macallan D, Yona S. The lifespan and kinetics of human dendritic cell subsets and their precursors in health and inflammation. J Exp Med 2024; 221:e20220867. [PMID: 39417994 PMCID: PMC11488382 DOI: 10.1084/jem.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dendritic cells (DC) are specialized mononuclear phagocytes that link innate and adaptive immunity. They comprise two principal subsets: plasmacytoid DC (pDC) and conventional DC (cDC). Understanding the generation, differentiation, and migration of cDC is critical for immune homeostasis. Through human in vivo deuterium-glucose labeling, we observed the rapid appearance of AXL+ Siglec6+ DC (ASDC) in the bloodstream. ASDC circulate for ∼2.16 days, while cDC1 and DC2 circulate for ∼1.32 and ∼2.20 days, respectively, upon release from the bone marrow. Interestingly, DC3, a cDC subset that shares several similarities with monocytes, exhibits a labeling profile closely resembling that of DC2. In a human in vivo model of cutaneous inflammation, ASDC were recruited to the inflammatory site, displaying a distinctive effector signature. Taken together, these results quantify the ephemeral circulating lifespan of human cDC and propose functions of cDC and their precursors that are rapidly recruited to sites of inflammation.
Collapse
Affiliation(s)
- Ruth Lubin
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit A. Patel
- Division of Medicine, University College London, London, UK
| | - Jonas Mackerodt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Rotem Gvili
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Idit Hazan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Nikhila Sridharan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gurion Rivkin
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | - Leonid Kandel
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Derek Macallan
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
- St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
13
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
14
|
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. J Nanobiotechnology 2024; 22:663. [PMID: 39465376 PMCID: PMC11520105 DOI: 10.1186/s12951-024-02913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Targeted immunotherapies make substantial strides in clinical cancer care due to their ability to counteract the tumor's capacity to suppress immune responses. Advances in biomimetic technology with minimally immunogenic and highly targeted, are addressing issues of targeted drug delivery and disrupting the tumor's immunosuppressive environment to trigger immune activation. Specifically, the use of dendritic cell (DC) membranes to coat nanoparticles ensures targeted delivery due to DC's unique ability to activate naive T cells, spotlighting their role in immunotherapy aimed at disrupting the tumor microenvironment. The potential of DC's biomimetic membrane to mediate immune activation and target tumors is gaining momentum, enhancing the effectiveness of cancer treatments in conjunction with other immune responses. This review delves into the methodologies behind crafting DC membranes and the fusion of dendritic and tumor cell membranes for encapsulating therapeutic nanoparticles. It explores their applications and recent advancements in combating cancer, offering an all-encompassing perspective on DC biomimetic nanosystems, immunotherapy driven by antigen presentation, and the collaborative efforts of drug delivery in chemotherapy and photodynamic therapies. Current evidence shows promise in augmenting combined therapeutic approaches for cancer treatment and holds translational potential for various cancer treatments in a clinical setting.
Collapse
Affiliation(s)
- Huiyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Yiming Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China.
| |
Collapse
|
15
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Hosseini I, Fleisher B, Getz J, Decalf J, Kwong M, Ovacik M, Bainbridge TW, Moussion C, Rao GK, Gadkar K, Kamath AV, Ramanujan S. A Minimal PBPK/PD Model with Expansion-Enhanced Target-Mediated Drug Disposition to Support a First-in-Human Clinical Study Design for a FLT3L-Fc Molecule. Pharmaceutics 2024; 16:660. [PMID: 38794321 PMCID: PMC11125320 DOI: 10.3390/pharmaceutics16050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
FLT3L-Fc is a half-life extended, effectorless Fc-fusion of the native human FLT3-ligand. In cynomolgus monkeys, treatment with FLT3L-Fc leads to a complex pharmacokinetic/pharmacodynamic (PK/PD) relationship, with observed nonlinear PK and expansion of different immune cell types across different dose levels. A minimal physiologically based PK/PD model with expansion-enhanced target-mediated drug disposition (TMDD) was developed to integrate the molecule's mechanism of action, as well as the complex preclinical and clinical PK/PD data, to support the preclinical-to-clinical translation of FLT3L-Fc. In addition to the preclinical PK data of FLT3L-Fc in cynomolgus monkeys, clinical PK and PD data from other FLT3-agonist molecules (GS-3583 and CDX-301) were used to inform the model and project the expansion profiles of conventional DC1s (cDC1s) and total DCs in peripheral blood. This work constitutes an essential part of our model-informed drug development (MIDD) strategy for clinical development of FLT3L-Fc by projecting PK/PD in healthy volunteers, determining the first-in-human (FIH) dose, and informing the efficacious dose in clinical settings. Model-generated results were incorporated in regulatory filings to support the rationale for the FIH dose selection.
Collapse
|
18
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Gao S, Zuo W, Kang C, Zou Z, Zhang K, Qiu J, Shang X, Li J, Zhang Y, Zuo Q, Zhao Y, Jin M. Saccharomyces cerevisiae oral immunization in mice using multi-antigen of the African swine fever virus elicits a robust immune response. Front Immunol 2024; 15:1373656. [PMID: 38742108 PMCID: PMC11089227 DOI: 10.3389/fimmu.2024.1373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.
Collapse
Affiliation(s)
- Shuo Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenfeng Zuo
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Zhong Zou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Kaiqi Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Qiu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xiaomin Shang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Jingjing Li
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Yuanfeng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Qi Zuo
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Ye JH, Chen YL, Ogg G. CD1a and skin T cells: a pathway for therapeutic intervention. Clin Exp Dermatol 2024; 49:450-458. [PMID: 38173286 PMCID: PMC11037390 DOI: 10.1093/ced/llad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.
Collapse
Affiliation(s)
- John H Ye
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
22
|
Pinto AT, Lukacs-Kornek V. The role of dendritic cells in MASH: friends or foes? Front Immunol 2024; 15:1379225. [PMID: 38650949 PMCID: PMC11033439 DOI: 10.3389/fimmu.2024.1379225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that connect innate and adaptive immunity. Hepatic DCs are less activated and contribute to maintain the tolerogenic environment of the liver under steady state. Several studies indicated DCs in metabolic dysfunction-associated steatohepatitis (MASH), representing a substantial burden on healthcare systems due to its association with liver-related morbidity and mortality. Studies highlighted the potential disease-promoting role of liver DCs in the development of MASH while other experimental systems suggested their protective role. This review discusses this controversy and the current understanding of how DCs affect the pathogenesis of MASH.
Collapse
Affiliation(s)
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
23
|
Rosa Duque JS, Cheng SMS, Cohen CA, Leung D, Wang X, Mu X, Chung Y, Lau TM, Wang M, Zhang W, Zhang Y, Wong HHW, Tsang LCH, Chaothai S, Kwan TC, Li JKC, Chan KCK, Luk LLH, Ho JCH, Li WY, Lee AMT, Lam JHY, Chan SM, Wong WHS, Tam IYS, Mori M, Valkenburg SA, Peiris M, Tu W, Lau YL. Superior antibody and membrane protein-specific T-cell responses to CoronaVac by intradermal versus intramuscular routes in adolescents. World J Pediatr 2024; 20:353-370. [PMID: 38085470 PMCID: PMC11052846 DOI: 10.1007/s12519-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 04/29/2024]
Abstract
BACKGROUND Optimising the immunogenicity of COVID-19 vaccines to improve their protection against disease is necessary. Fractional dosing by intradermal (ID) administration has been shown to be equally immunogenic as intramuscular (IM) administration for several vaccines, but the immunogenicity of ID inactivated whole severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the full dose is unknown. This study (NCT04800133) investigated the superiority of antibody and T-cell responses of full-dose CoronaVac by ID over IM administration in adolescents. METHODS Participants aged 11-17 years received two doses of IM or ID vaccine, followed by the 3rd dose 13-42 days later. Humoral and cellular immunogenicity outcomes were measured post-dose 2 (IM-CC versus ID-CC) and post-dose 3 (IM-CCC versus ID-CCC). Doses 2 and 3 were administered to 173 and 104 adolescents, respectively. RESULTS Spike protein (S) immunoglobulin G (IgG), S-receptor-binding domain (RBD) IgG, S IgG Fcγ receptor IIIa (FcγRIIIa)-binding, SNM [sum of individual (S), nucleocapsid protein (N), and membrane protein (M) peptide pool]-specific interleukin-2 (IL-2)+CD4+, SNM-specific IL-2+CD8+, S-specific IL-2+CD8+, N-specific IL-2+CD4+, N-specific IL-2+CD8+ and M-specific IL-2+CD4+ responses fulfilled the superior and non-inferior criteria for ID-CC compared to IM-CC, whereas IgG avidity was inferior. For ID-CCC, S-RBD IgG, surrogate virus neutralisation test, 90% plaque reduction neutralisation titre (PRNT90), PRNT50, S IgG avidity, S IgG FcγRIIIa-binding, M-specific IL-2+CD4+, interferon-γ+CD8+ and IL-2+CD8+ responses were superior and non-inferior to IM-CCC. The estimated vaccine efficacies were 49%, 52%, 66% and 79% for IM-CC, ID-CC, IM-CCC and ID-CCC, respectively. The ID groups reported more local, mild adverse reactions. CONCLUSION This is the first study to demonstrate superior antibody and M-specific T-cell responses by ID inactivated SARS-CoV-2 vaccination and serves as the basis for future research to improve the immunogenicity of inactivated vaccines.
Collapse
Affiliation(s)
- Jaime S Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Carolyn A Cohen
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuet Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsun Ming Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Manni Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Howard H W Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo C H Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Tsz Chun Kwan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - John K C Li
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Karl C K Chan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo L H Luk
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Jenson C H Ho
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wing Yan Li
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Amos M T Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer H Y Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wilfred H S Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Issan Y S Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Sophie A Valkenburg
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection, and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Center for Immunology and Infection C2i, Hong Kong, China.
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
26
|
Tong AJ, Leylek R, Herzner AM, Rigas D, Wichner S, Blanchette C, Tahtinen S, Kemball CC, Mellman I, Haley B, Freund EC, Delamarre L. Nucleotide modifications enable rational design of TLR7-selective ligands by blocking RNase cleavage. J Exp Med 2024; 221:e20230341. [PMID: 38095631 PMCID: PMC10720541 DOI: 10.1084/jem.20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Toll-like receptors 7 (TLR7) and 8 (TLR8) each sense single-stranded RNA (ssRNA), but their activation results in different immune activation profiles. Attempts to selectively target either TLR7 or TLR8 have been hindered by their high degree of homology. However, recent studies revealed that TLR7 and TLR8 bind different ligands resulting from the processing of ssRNA by endolysosomal RNases. We demonstrate that by introducing precise 2' sugar-modified bases into oligoribonucleotides (ORNs) containing known TLR7 and TLR8 binding motifs, we could prevent RNase-mediated degradation into the monomeric uridine required for TLR8 activation while preserving TLR7 activation. Furthermore, a novel, optimized protocol for CRISPR-Cas9 knockout in primary human plasmacytoid dendritic cells showed that TLR7 activation is dependent on RNase processing of ORNs and revealed a previously undescribed role for RNase 6 in degrading ORNs into TLR ligands. Finally, 2' sugar-modified ORNs demonstrated robust innate immune activation in mice. Altogether, we identified a strategy for creating tunable TLR7-selective agonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ira Mellman
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
27
|
Fan Q, Yan R, Li Y, Lu L, Liu J, Li S, Fu T, Xue Y, Liu J, Li Z. Exploring Immune Cell Diversity in the Lacrimal Glands of Healthy Mice: A Single-Cell RNA-Sequencing Atlas. Int J Mol Sci 2024; 25:1208. [PMID: 38279208 PMCID: PMC10816500 DOI: 10.3390/ijms25021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.
Collapse
Affiliation(s)
- Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yan Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jiangman Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
28
|
Shapir Itai Y, Barboy O, Salomon R, Bercovich A, Xie K, Winter E, Shami T, Porat Z, Erez N, Tanay A, Amit I, Dahan R. Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell 2024; 187:375-389.e18. [PMID: 38242085 DOI: 10.1016/j.cell.2023.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
Immune checkpoint inhibition treatment using aPD-1 monoclonal antibodies is a promising cancer immunotherapy approach. However, its effect on tumor immunity is narrow, as most patients do not respond to the treatment or suffer from recurrence. We show that the crosstalk between conventional type I dendritic cells (cDC1) and T cells is essential for an effective aPD-1-mediated anti-tumor response. Accordingly, we developed a bispecific DC-T cell engager (BiCE), a reagent that facilitates physical interactions between PD-1+ T cells and cDC1. BiCE treatment promotes the formation of active dendritic/T cell crosstalk in the tumor and tumor-draining lymph nodes. In vivo, single-cell and physical interacting cell analysis demonstrates the distinct and superior immune reprogramming of the tumors and tumor-draining lymph nodes treated with BiCE as compared to conventional aPD-1 treatment. By bridging immune cells, BiCE potentiates cell circuits and communication pathways needed for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Yuval Shapir Itai
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ran Salomon
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eitan Winter
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Shami
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
29
|
Wu RC, Luke JJ. Uncovering the Potential of CD40 Agonism to Enhance Immune Checkpoint Blockade. Clin Cancer Res 2024; 30:9-11. [PMID: 37870487 PMCID: PMC10842335 DOI: 10.1158/1078-0432.ccr-23-2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
In this CCR Translations, we discuss the therapeutic potential of CD40 agonism, which stimulates antigen-presenting cells (APC) to activate effector T and NK cells. CD40 agonism may lead to development of an interferon-activated, T cell-inflamed tumor microenvironment and has the potential to facilitate long-term response with immune checkpoint blockade. See related article by Weiss et al., p. 74.
Collapse
Affiliation(s)
- Richard C. Wu
- The Ohio State University James Cancer Center and Division of Medical Oncology
| | - Jason J. Luke
- UPMC Hillman Cancer Center and the University of Pittsburgh Dept. of Medicine
| |
Collapse
|
30
|
Bar-On L, Dekel H, Aftalion M, Chitlaru T, Erez N. Essential role for Batf3-dependent dendritic cells in regulating CD8 T-cell response during SARS-CoV-2 infection. PLoS One 2023; 18:e0294176. [PMID: 38150441 PMCID: PMC10752548 DOI: 10.1371/journal.pone.0294176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/29/2023] Open
Abstract
SARS-CoV-2 infection elicits robust CD8 T-cell responses, yet the identity of the mechanisms playing dominant roles in initiating the virus-specific CD8 T-cell responses are largely unknown. In the present study, we interrogate the contribution of the cDC1 subset to SARS-CoV-2-specific CD8 T-cell immunity. For this purpose, we used a novel murine line which combines the SARS-CoV-2 susceptible K18-hACE2 transgenic and the Batf3 deficient mice which lack the cDC1 subset. We demonstrate that in the absence of cDC1, viral-specific CD8 T-cell responses were severely impaired both in the draining lymph node as well as in the lungs, during the effector phase of SARS-CoV-2 infection. Furthermore, SARS-CoV-2 specific memory CD8 T-cells in the lungs and spleens were also significantly impacted, whereas humoral responses, as well as CD4 T-cells were not affected. Additionally, we demonstrate that the absence of cDC1 subset, and the consequent impaired CD8 T-cell responses, resulted in significant increase in SARS-CoV-2 viral load in the lungs. The conclusions of the study were further independently corroborated in an additional COVID-19 murine model consisting infection with a mouse-adapted SARS-CoV-2 virus. These results underscore a specific role for Batf3-dependent DC in regulating SARS-CoV-2 specific CD8 T-cell responses and may contribute to future vaccine design and immunization strategies.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Hani Dekel
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
31
|
Régnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, Gautier EL, Guermonprez P, Manoury B, Podsypanina K, Darrasse-Jèze G. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4:101256. [PMID: 38118422 PMCID: PMC10772324 DOI: 10.1016/j.xcrm.2023.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 12/22/2023]
Abstract
FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Collapse
Affiliation(s)
- Paul Régnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, DMU3ID, Paris, France
| | - Mathias Vetillard
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Adèle Bansard
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France
| | | | - Xinyue Li
- Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Nicolas Cagnard
- Structure Fédérative de Recherche Necker, Université Paris Descartes, Paris, France
| | - Emmanuel L Gautier
- Inserm, UMR_S1166, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664, Paris, France
| | - Guillaume Darrasse-Jèze
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
32
|
Heger L, Dudziak D, Amon L, Hatscher L, Kaszubowski T, Lehmann CHK. Guidelines for DC preparation and flow cytometric analysis of human lymphohematopoietic tissues. Eur J Immunol 2023; 53:e2249917. [PMID: 36563130 DOI: 10.1002/eji.202249917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single cell suspensions from human lymphohematopoietic tissues including blood, spleen, thymus, and tonsils with a focus on the subsequent analysis of DC via flow cytometry, as well as flow cytometric cell sorting of primary human DC. Further, prepared single cell suspensions as well as cell sorter-purified DC can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), D-91054, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
| |
Collapse
|
33
|
Song J, Wang M, Zhou L, Tian P, Sun Z, Sun J, Wang X, Zhuang G, Jiang D, Wu Y, Zhang G. A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. J Nanobiotechnology 2023; 21:424. [PMID: 37964304 PMCID: PMC10647103 DOI: 10.1186/s12951-023-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.
Collapse
Affiliation(s)
- Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - ZhuoYa Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuannian Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
35
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
37
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
38
|
Lubin R, Gvili R, Hazan I, Yona S. Human Dendritic Cell Enrichment and Their Activation of T Cells. Curr Protoc 2023; 3:e873. [PMID: 37610279 DOI: 10.1002/cpz1.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Dendritic cells (DCs) enable the immune system to mount and modulate precisely targeted responses to various threats across the organism by bridging innate and adaptive immunity. Historically, DCs have been classified as conventional (cDC) and plasmacytoid (pDC). More recently, cDCs were acknowledged as a heterogenous population composed of several subsets. Examining the functional diversity of cDCs in healthy homeostasis and pathology requires a robust experimental pipeline, beginning with an efficient enrichment protocol in preparation for cell sorting. Unfortunately, several commercial DC enrichment kits were developed before the discovery of the more recently described DC populations. Here, we detail two approaches to enrich human blood DCs or certain DC subsets and an in vitro protocol to examine DC stimulation of naïve T cells. The methods employed here overcome many hurdles encountered while enriching human DC subsets. Basic Protocol 1 describes a method that will enrich pDC, Axl Siglec6-DC (AS-DC), cDC1, DC2, DC3, monocytes, and human HLA+ cells by crosslinking unwanted cells to erythrocytes. Basic Protocol 2 describes the enrichment of pDC, AS-DC, cDC1, and DC2 but not DC3 via a highly efficient negative magnetic selection that is valuable in circumstances where DC3 is not required. Finally, Basic Protocol 3 describes a conventional protocol to perform a Mixed leucocyte Reaction (MLR) following the isolation of these DC subsets. These methods detail the advantages and pitfalls when isolating a heterogeneous population of cells. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Human peripheral mononuclear phagocyte enrichment Basic Protocol 2: DC enrichment of pDC, cDC1, AS-DC, and DC2 but not DC3 Basic Protocol 3: Basic mixed lymphocyte reaction protocol with sorted human DC subsets.
Collapse
Affiliation(s)
- Ruth Lubin
- Institute of Biomedical and Oral Research, The Hebrew University, Jerusalem, Israel
| | - Rotem Gvili
- Institute of Biomedical and Oral Research, The Hebrew University, Jerusalem, Israel
| | - Idit Hazan
- Institute of Biomedical and Oral Research, The Hebrew University, Jerusalem, Israel
| | - Simon Yona
- Institute of Biomedical and Oral Research, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
39
|
Lang M, Krump C, Meshcheryakova A, Tam-Amersdorfer C, Schwarzenberger E, Passegger C, Connolly S, Mechtcheriakova D, Strobl H. Microenvironmental and cell intrinsic factors governing human cDC2 differentiation and monocyte reprogramming. Front Immunol 2023; 14:1216352. [PMID: 37539048 PMCID: PMC10395083 DOI: 10.3389/fimmu.2023.1216352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
cDC2s occur abundantly in peripheral tissues and arise from circulating blood cDC2s. However, the factors governing cDC2 differentiation in tissues, especially under inflammatory conditions, remained poorly defined. We here found that psoriatic cDC2s express the efferocytosis receptor Axl and exhibit a bone morphogenetic protein (BMP) and p38MAPK signaling signature. BMP7, strongly expressed within the lesional psoriatic epidermis, cooperates with canonical TGF-β1 signaling for inducing Axl+cDC2s from blood cDC2s in vitro. Moreover, downstream induced p38MAPK promotes Axl+cDC2s at the expense of Axl+CD207+ Langerhans cell differentiation from blood cDC2s. BMP7 supplementation allowed to model cDC2 generation and their further differentiation into LCs from CD34+ hematopoietic progenitor cells in defined serum-free medium. Additionally, p38MAPK promoted the generation of another cDC2 subset lacking Axl but expressing the non-classical NFkB transcription factor RelB in vitro. Such RelB+cDC2s occurred predominantly at dermal sites in the inflamed skin. Finally, we found that cDC2s can be induced to acquire high levels of the monocyte lineage identity factor kruppel-like-factor-4 (KLF4) along with monocyte-derived DC and macrophage phenotypic characteristics in vitro. In conclusion, inflammatory and psoriatic epidermal signals instruct blood cDC2s to acquire phenotypic characteristics of several tissue-resident cell subsets.
Collapse
Affiliation(s)
- Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anastasia Meshcheryakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Elke Schwarzenberger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sally Connolly
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Mechtcheriakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
40
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
41
|
Viscidi RP, Rowley T, Bossis I. Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming. Int J Mol Sci 2023; 24:9851. [PMID: 37372999 DOI: 10.3390/ijms24129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in protective immunity and the role of a subset of dendritic cells that are capable of cross-priming for the induction of TRM cells. However, efficient vaccine technologies that operate through cross-priming and induce robust CD8+ T cell responses are lacking. We developed a platform technology by genetically engineering the bovine papillomavirus L1 major capsid protein to insert a polyglutamic acid/cysteine motif in place of wild-type amino acids in the HI loop. Virus-like particles (VLPs) are formed by self-assembly in insect cells infected with a recombinant baculovirus. Polyarginine/cysteine-tagged antigens are linked to the VLP by a reversible disulfide bond. The VLP possesses self-adjuvanting properties due to the immunostimulatory activity of papillomavirus VLPs. Polyionic VLP vaccines induce robust CD8+ T cell responses in peripheral blood and tumor tissues. A prostate cancer polyionic VLP vaccine was more efficacious than other vaccines and immunotherapies for the treatment of prostate cancer in a physiologically relevant murine model and successfully treated more advanced diseases than the less efficacious technologies. The immunogenicity of polyionic VLP vaccines is dependent on particle size, reversible linkage of the antigen to the VLP, and an interferon type 1 and Toll-like receptor (TLR)3/7-dependent mechanism.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ioannis Bossis
- Department of Animal Production, School of Agricultural Sciences, Forestry & Natural Resources, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
42
|
Lajiness JD, Cook-Mills JM. Catching Our Breath: Updates on the Role of Dendritic Cell Subsets in Asthma. Adv Biol (Weinh) 2023; 7:e2200296. [PMID: 36755197 PMCID: PMC10293089 DOI: 10.1002/adbi.202200296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Dendritic cells (DCs), as potent antigen presenting cells, are known to play a central role in the pathophysiology of asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Furthermore, asthma is increasingly recognized as a heterogeneous disease with potentially diverse underlying mechanisms. The goal of this review is to summarize the role of DCs and the various subsets therein in the pathophysiology of asthma and highlight some of the crucial animal models shaping the field today. Potential future avenues of investigation to address existing gaps in knowledge are discussed.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, 1030 West Michigan Street, Suite C 4600, Indianapolis, IN, 46202-5201, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Department of Microbiology and Immunology, Pediatric Pulmonary, Asthma, and Allergy Basic Research Program, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-202A, Indianapolis, IN, 46202, USA
| |
Collapse
|
43
|
Beaujean M, Uijen RF, Langereis JD, Boccara D, Dam D, Soria A, Veldhuis G, Adam L, Bonduelle O, van der Wel NN, Luirink J, Pedruzzi E, Wissink J, de Jonge MI, Combadière B. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model. Vaccine 2023; 41:2270-2279. [PMID: 36870875 DOI: 10.1016/j.vaccine.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-muTM) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin.
Collapse
Affiliation(s)
- Manon Beaujean
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Rienke F Uijen
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Boccara
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Hôpital Saint Louis, Reconstructive and Cosmetic and Burn, Paris, France
| | - Denise Dam
- U-Needle B.V., Enschede, the Netherlands
| | - Angèle Soria
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, Paris HUEP, APHP, Paris, France
| | | | - Lucille Adam
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan, 1085, 1081 HV Amsterdam, the Netherlands
| | - Eric Pedruzzi
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | | | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Behazine Combadière
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| |
Collapse
|
44
|
Chimbetete T, Buck C, Choshi P, Selim R, Pedretti S, Divito SJ, Phillips EJ, Lehloenya R, Peter J. HIV-Associated Immune Dysregulation in the Skin: A Crucible for Exaggerated Inflammation and Hypersensitivity. J Invest Dermatol 2023; 143:362-373. [PMID: 36549954 PMCID: PMC9974923 DOI: 10.1016/j.jid.2022.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Skin diseases are hallmarks of progressive HIV-related immunosuppression, with severe noninfectious inflammatory and hypersensitivity conditions as common as opportunistic infections. Conditions such as papular pruritic eruption are AIDS defining, whereas delayed immune-mediated adverse reactions, mostly cutaneous, occur up to 100-fold more during HIV infection. The skin, constantly in contact with the external environment, has a complex immunity. A dense, tightly junctioned barrier with basal keratinocytes and epidermal Langerhans cells with antimicrobial, innate-activating, and antigen-presenting functions form the frontline. Resident dermal dendritic, mast, macrophage, and innate lymphoid cells play pivotal roles in directing and polarizing appropriate adaptive immune responses and directing effector immune cell trafficking. Sustained viral replication leads to progressive declines in CD4 T cells, whereas Langerhans and dermal dendritic cells serve as viral reservoirs and points of first viral contact in the mucosa. Cutaneous cytokine responses and diminished lymphoid populations create a crucible for exaggerated inflammation and hypersensitivity. However, beyond histopathological description, these manifestations are poorly characterized. This review details normal skin immunology, changes associated with progressive HIV-related immunosuppression, and the characteristic conditions of immune dysregulation increased with HIV. We highlight the main research gaps and several novel tissue-directed strategies to define mechanisms that will provide targeted approaches to prevention or treatment.
Collapse
Affiliation(s)
- Tafadzwa Chimbetete
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Chloe Buck
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Phuti Choshi
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Rose Selim
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherrie Jill Divito
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Rannakoe Lehloenya
- Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa.
| |
Collapse
|
45
|
Huang XZ, Pang MJ, Li JY, Chen HY, Sun JX, Song YX, Ni HJ, Ye SY, Bai S, Li TH, Wang XY, Lu JY, Yang JJ, Sun X, Mills JC, Miao ZF, Wang ZN. Single-cell sequencing of ascites fluid illustrates heterogeneity and therapy-induced evolution during gastric cancer peritoneal metastasis. Nat Commun 2023; 14:822. [PMID: 36788228 PMCID: PMC9929081 DOI: 10.1038/s41467-023-36310-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.
Collapse
Affiliation(s)
- Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jia-Yi Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Han-Yu Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hong-Jie Ni
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shi-Yu Ye
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shi Bai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Teng-Hui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jing-Yuan Lu
- Eight-year system, Institute of innovation, China Medical University, Shenyang, Liaoning province, Shenyang, Liaoning, China
| | - Jin-Jia Yang
- Eight-year system, Institute of innovation, China Medical University, Shenyang, Liaoning province, Shenyang, Liaoning, China
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, Liaoning, China
| | - Jason C Mills
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA. .,Department of Pathology & Immunology, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China. .,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China. .,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China. .,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China. .,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
46
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
47
|
Sakref C, Bendriss-Vermare N, Valladeau-Guilemond J. Phenotypes and Functions of Human Dendritic Cell Subsets in the Tumor Microenvironment. Methods Mol Biol 2023; 2618:17-35. [PMID: 36905506 DOI: 10.1007/978-1-0716-2938-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) play a key role in the antitumor immunity, as they are at the interface of innate and adaptive immunity. This important task can only be performed thanks to the broad range of mechanisms that DCs can perform to activate other immune cells. As DCs are well known for their outstanding capacity to prime and activate T cells through antigen presentation, DCs were intensively investigated during the past decades. Numerous studies have identified new DC subsets, leading to a large variety of subsets commonly separated into cDC1, cDC2, pDCs, mature DCs, Langerhans cells, monocyte-derived DCs, Axl-DCs, and several other subsets. Here, we review the specific phenotypes, functions, and localization within the tumor microenvironment (TME) of human DC subsets thanks to flow cytometry and immunofluorescence but also with the help of high-output technologies such as single-cell RNA sequencing and imaging mass cytometry (IMC).
Collapse
Affiliation(s)
- Candice Sakref
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
- LabEx DEVweCAN, Lyon, France.
| |
Collapse
|
48
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
49
|
Elahi Z, Angel PW, Butcher SK, Rajab N, Choi J, Deng Y, Mintern JD, Radford K, Wells CA. The Human Dendritic Cell Atlas: An Integrated Transcriptional Tool to Study Human Dendritic Cell Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2352–2361. [PMID: 36427009 PMCID: PMC9719841 DOI: 10.4049/jimmunol.2200366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are functionally diverse and are present in most adult tissues, but deep understanding of human DC biology is hampered by relatively small numbers of these in circulation and their short lifespan in human tissues. We built a transcriptional atlas of human DCs by combining samples from 14 expression profiling studies derived from 10 laboratories. We identified significant gene expression variation of DC subset-defining markers across tissue type and upon viral or bacterial stimulation. We further highlight critical gaps between in vitro-derived DC subsets and their in vivo counterparts and provide evidence that monocytes or cord blood progenitor in vitro-differentiated DCs fail to capture the repertoire of primary DC subsets or behaviors. In constructing a reference DC atlas, we provide an important resource for the community wishing to identify and annotate tissue-specific DC subsets from single-cell datasets, or benchmark new in vitro models of DC biology.
Collapse
Affiliation(s)
- Zahra Elahi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W. Angel
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Suzanne K. Butcher
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Rajab
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jarny Choi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yidi Deng
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D. Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Kristen Radford
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Christine A. Wells
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Qiao DR, Shan GY, Wang S, Cheng JY, Yan WQ, Li HJ. The mononuclear phagocyte system in hepatocellular carcinoma. World J Gastroenterol 2022; 28:6345-6355. [PMID: 36533105 PMCID: PMC9753057 DOI: 10.3748/wjg.v28.i45.6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
The mononuclear phagocyte system (MPS) consists of monocytes, dendritic cells and macrophages, which play vital roles in innate immune defense against cancer. Hepatocellular carcinoma (HCC) is a complex disease that is affected or initiated by many factors, including chronic hepatitis B virus infection, hepatitis C virus infection, metabolic disorders or alcohol consumption. Liver function, tumor stage and the performance status of patients affect HCC clinical outcomes. Studies have shown that targeted treatment of tumor microenvironment disorders may improve the efficacy of HCC treatments. Cytokines derived from the innate immune response can regulate T-cell differentiation, thereby shaping adaptive immunity, which is associated with the prognosis of HCC. Therefore, it is important to elucidate the function of the MPS in the progression of HCC. In this review, we outline the impact of HCC on the MPS. We illustrate how HCC reshapes MPS cell phenotype remodeling and the production of associated cytokines and characterize the function and impairment of the MPS in HCC.
Collapse
Affiliation(s)
- Duan-Rui Qiao
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Shuai Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Department of Students Affairs, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wei-Qun Yan
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|