1
|
Trier NH, Zivlaei N, Ostrowski SR, Sørensen E, Larsen M, Slibinskas R, Ciplys E, Frederiksen JL, Houen G. Virus-specific antibody responses in severe acute respiratory syndrome coronavirus 2-infected and vaccinated individuals. Immunol Lett 2025; 274:107004. [PMID: 40157431 DOI: 10.1016/j.imlet.2025.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can have a serious course with many complications, especially in immunocompromised individuals. In such persons, other latent virus infections may contribute to disease pathology, in particular viruses which infect immune cells such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV). METHODS In this study, serology-based assays were conducted to analyse antibody responses to SARS-CoV-2 spike protein (SP), EBV Epstein-Barr nuclear antigen (EBNA)-1 and CMV phosphoprotein (pp)52 in naturally SARS-CoV-2-infected individuals, non-infected healthy controls (HCs) and vaccinated healthy controls (VHCs) to identify an association between SARS-CoV-2 antibodies and EBV and CMV antibodies in order to determine whether latent EBV and CMV infected individuals are more prone to become infected with SARS-CoV-2. Moreover, SARS-CoV-2, EBV, and CMV antibody responses were characterized in serum from patients with relapsing-remitting multiple sclerosis (RRMS), a chronic inflammatory disease strongly associated with EBV infections, to determine whether the serologic virus antibody profile varies in immunocompromised RRMS individuals upon SARS-CoV-2 vaccinations compared to VHCs. RESULTS Significantly elevated SP IgG, IgM and IgA levels were identified in SARS-CoV-2-infected immunocompetent individuals when compared to non-infected HCs. However, no correlation was found to serum antibodies between SARS-CoV-2, EBV, and CMV in individuals infected with SARS-CoV-2 and in VHCs, suggesting that latent infections with neither EBV nor CMV associates to SARS-CoV-2 infection. Moreover, no significant difference in SP IgG, IgA and IgM levels was observed between vaccinated RRMS patients and VHCs, indicating that the immune system of immune deficient RRMS patients and VHCs respond identical to SARS-CoV-2 vaccinations. CONCLUSION Collectively, SARS-CoV-2 SP antibody levels reflect the vaccination and infection history and do not associate with EBV and CMV serostatus.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Nadia Zivlaei
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Margit Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55 5230 Odense M, Denmark.
| |
Collapse
|
2
|
Chang E, Kim JW, Jang CY, Kim JY, Kang SW, Bae S, Jung J, Kim MJ, Chong YP, Lee SO, Choi SH, Yun SC, Kim YS, Yang JS, Kim KC, Lee JY, Kim SH. Predicting persistent SARS-CoV-2 shedding in immunocompromised patients: a probability-based approach. Infect Dis (Lond) 2025; 57:407-416. [PMID: 39749573 DOI: 10.1080/23744235.2024.2446286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Although recommended isolation periods for Coronavirus disease 2019 (COVID-19) have been shortened as the pandemic has subsided, prolonged Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) shedding remains common in immunocompromised patients. This study estimated the probability of viral clearance in these patients based on elapsed days and specific risk factors. METHODS We prospectively enrolled immunocompromised patients with a confirmed COVID-19 diagnosis from January 2022 to May 2023 during the Omicron variant era. We collected weekly respiratory specimens for viral load measurement and culture. We identified significant predictors of viral culture negative conversion through univariate and multivariate analyses and estimated viral clearance probabilities using a Cox time-varying proportional hazard model. RESULTS Among 70 patients with serial 319 respiratory specimens with positive SARS-CoV-2 genomic polymerase chain reaction results that underwent cell culture, ∼69% (48) had haematologic malignancies and 31% (22) underwent solid organ transplants. B-cell depleting agents and viral copy number significantly influenced viral culture negative conversion. The probability of culture-negative conversion for immunocompromised patients not treated with B-cell-depleting agents increased over time, with over 90% achieving negative conversion by Day 84. Patients treated with B-cell depleting agents showed lower conversion rates. By Day 84, <90% of patients with cycle threshold values 23-28 [4.85-6.35 log copies/mL] achieved culture-negative conversion. The results indicate more prolonged shedding than in patients without B-cell depletion. CONCLUSION Estimating SARS-CoV-2 clearance probabilities based on specific risk factors can guide individualised isolation decisions for immunocompromised patients, tailoring policies to each patient's delayed viral clearance risk.
Collapse
Affiliation(s)
- Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jun-Won Kim
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Choi-Young Jang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Woon Kang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Cheol Yun
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Kyung-Chang Kim
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Franchini M, Maggi F, Focosi D. COVID-19 Vaccination in Patients with Hematological Malignances. Vaccines (Basel) 2025; 13:465. [PMID: 40432077 PMCID: PMC12115499 DOI: 10.3390/vaccines13050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Patients with hematologic malignancies (HM) represent a population particularly vulnerable to infections due to their cancer-related immune deficiency and the immunosuppressive treatment they are administered. Accordingly, a high hospitalization and mortality rate has been consistently reported in such a frail population during the first COVID-19 pandemic waves. After a brief description of the clinical impact of SARS-CoV-2 infection in patients with blood cancers, this narrative review is focused on the protective effect of COVID-19 vaccines in patients with HM. All in all, the results from the literature analysis indicate that booster shots in fully vaccinated HM patients are significantly able to increase seroconversion rates, which represent the best surrogate of vaccine efficacy. Despite these encouraging data, concerns still remain regarding the lower immune responses to COVID-19 vaccines, even to booster doses, in severely immunosuppressed HM patients, such as those receiving anti-CD20 monoclonal antibody therapies and hematopoietic stem cell transplants.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
4
|
Qiu S, Hadidchi R, Vichare A, Lu JY, Hou W, Henry S, Akalin E, Duong TQ. SARS-CoV-2 Infection Is Associated with an Accelerated eGFR Decline in Kidney Transplant Recipients up to Four Years Post Infection. Diagnostics (Basel) 2025; 15:1091. [PMID: 40361909 PMCID: PMC12072077 DOI: 10.3390/diagnostics15091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Although kidney transplant recipients (KTRs) who are immune-compromised have been shown to be at high risk of adverse acute COVID-19 outcomes (i.e., mortality and critical illness), the long-term outcomes of KTRs with a history of SARS-CoV-2 infection are unknown. We aimed to compare long-term outcomes of KTRs with and without exposure to SARS-CoV-2. Methods: This study retrospectively evaluated 1815 KTRs in the Montefiore Health System from 4 January 2001 to 31 January 2024. The final cohorts consisted of KTRs who survived COVID-19 (n = 510) and matched KTRs without COVID-19 (n = 510, controls). Outcomes were defined as all-cause mortality and changes in estimated glomerular filtration rate (eGFR) and urine protein to creatinine ratio (UPCR) from 30 days up to four years post index date. Kaplan-Meier survival analysis and Cox proportional modeling were performed for mortality. Generalized estimating equations were used to analyze changes in eGFR and UPCR across time. Results: There was no significant group difference in long-term all-cause mortality (adjusted hazard ratio = 0.66, [0.43, 1.01] p = 0.057). eGFR in controls and COVID-19 patients before infection similarly decreased -0.98 units/year [-1.50, -0.46]. By contrast, eGFR declined at a significantly greater rate (-1.80 units/year [-2.45, -1.15]) in KTRs after COVID-19 compared to KTRs without COVID-19. This association was only seen among male and not female KTRs. COVID-19 status was not significantly associated with rate of change in UPCR or acute kidney rejection rate. Conclusions: SARS-CoV-2 infection was associated with an accelerated decline in eGFR up to four years post infection, suggesting potential long-term implications for graft health. These findings underscore the importance of vigilant monitoring and management of kidney function post SARS-CoV-2 infection in this vulnerable population.
Collapse
Affiliation(s)
- Shawn Qiu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Roham Hadidchi
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Aditi Vichare
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Justin Y. Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Wei Hou
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Enver Akalin
- Department of Medicine (Nephrology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| |
Collapse
|
5
|
Mielke D, Li SS, Schuster DJ, Li X, Hu J, Karuna S, Seaton KE, Brackett C, Dunn B, Keyes T, Zalaquett A, Stanfield-Oakley S, Zhang L, Wesley MS, Eisel N, Yates NL, Shen X, Premkumar L, Germain RS, Sholukh AM, Cohen K, de Rosa S, Randhawa AK, Hural JA, Corey L, McElrath MJ, Tomaras GD, Hyrien O, Ferrari G. Distinct immune responses in people living with HIV following SARS-CoV-2 recovery. COMMUNICATIONS MEDICINE 2025; 5:132. [PMID: 40269243 PMCID: PMC12018938 DOI: 10.1038/s43856-025-00839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND SARS-CoV-2 infection results in greater disease severity among immunocompromised individuals compared to healthy individuals. However, there is conflicting information about the impact of chronic HIV infection on immune responses to SARS-CoV-2 infection and vaccination. METHOD We used a combination of machine learning approaches and network analysis to explore 56 immune markers and comprehensively profile humoral and cellular immunity in a cross-sectional observational cohort of people without HIV (PWOH; n = 216) and people living with HIV (PLWH; n = 43) who recovered from SARS-CoV-2 infection (13-131 days since SARS-COV-2 diagnosis) early in the pandemic. RESULTS PLWH recovered from symptomatic outpatient COVID-19 exhibit lower humoral and B cell responses to SARS-CoV-2 vs. PWOH but, surprisingly, both symptomatic outpatient and hospitalized PLWH have higher anti-endemic coronavirus antibody responses compared to PWOH counterparts and asymptomatic PLWH. The latter observation suggests that this was not strictly due to broadly elevated levels of anti-endemic coronavirus antibodies in PLWH. Moreover, correlation-based analysis reveals that while different compartments of the immune response to SARS-CoV-2 infection are positively correlated in PWOH recovered from symptomatic outpatient COVID-19, these correlations are weaker in PLWH. CONCLUSION Our analyses reveal significant differences in the coordinated immune responses elicited by infection in PLWH compared to PWOH.
Collapse
Affiliation(s)
- Dieter Mielke
- Center for Human Systems Immunology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
| | - Shuying Sue Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel J Schuster
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Xiaohong Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Caroline Brackett
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University, Durham, NC, USA
| | - Taylor Keyes
- Department of Surgery, Duke University, Durham, NC, USA
| | | | | | - Lu Zhang
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Martina S Wesley
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Nathan Eisel
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Nicole L Yates
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Xiaoying Shen
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Russell St Germain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anton M Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristen Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen de Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - April Kaur Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - John A Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - M Julianna McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guido Ferrari
- Center for Human Systems Immunology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Saha A, Ghosh Roy S, Dwivedi R, Tripathi P, Kumar K, Nambiar SM, Pathak R. Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern. Vaccines (Basel) 2025; 13:424. [PMID: 40333293 PMCID: PMC12031379 DOI: 10.3390/vaccines13040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccination has been instrumental in curbing the transmission of SARS-CoV-2 and mitigating the severity of clinical manifestations associated with COVID-19. Numerous COVID-19 vaccines have been developed to this effect, including BioNTech-Pfizer and Moderna's mRNA vaccines, as well as adenovirus vector-based vaccines such as Oxford-AstraZeneca. However, the emergence of new variants and subvariants of SARS-CoV-2, characterized by enhanced transmissibility and immune evasion, poses significant challenges to the efficacy of current vaccination strategies. In this review, we aim to comprehensively outline the landscape of emerging SARS-CoV-2 variants of concern (VOCs) and sub-lineages that have recently surfaced in the post-pandemic years. We assess the effectiveness of existing vaccines, including their booster doses, against these emerging variants and subvariants, such as BA.2-derived sub-lineages, XBB sub-lineages, and BA.2.86 (Pirola). Furthermore, we discuss the latest advancements in vaccine technology, including multivalent and pan-coronavirus approaches, along with the development of several next-generation coronavirus vaccines, such as exosome-based, virus-like particle (VLP), mucosal, and nanomaterial-based vaccines. Finally, we highlight the key challenges and critical areas for future research to address the evolving threat of SARS-CoV-2 subvariants and to develop strategies for combating the emergence of new viral threats, thereby improving preparedness for future pandemics.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
| | - Sounak Ghosh Roy
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD 20910, USA;
| | - Richa Dwivedi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Shashank Manohar Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
7
|
Iriyama C, Ichikawa T, Tamura T, Takahata M, Ishio T, Ibata M, Kawai R, Iwata M, Suzuki M, Adachi H, Nao N, Suzuki H, Kawai A, Kamiyama A, Suzuki T, Hirata Y, Iida S, Katano H, Ishii Y, Tsuji T, Oda Y, Tanaka S, Okazaki N, Katayama Y, Nakagawa S, Tsukamoto T, Doi Y, Fukuhara T, Murata T, Tomita A. Clinical and molecular landscape of prolonged SARS-CoV-2 infection with resistance to remdesivir in immunocompromised patients. PNAS NEXUS 2025; 4:pgaf085. [PMID: 40160532 PMCID: PMC11950820 DOI: 10.1093/pnasnexus/pgaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/15/2025] [Indexed: 04/02/2025]
Abstract
Patients with hematologic diseases have experienced coronavirus disease 2019 (COVID-19) with a prolonged, progressive course. Here, we present clinical, pathological, and virological analyses of three cases of prolonged COVID-19 among patients undergoing treatment for B-cell lymphoma. These patients had all been treated with anti-CD20 antibody and bendamustine. Despite various antiviral treatments, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels persisted for >4 weeks, and two of them succumbed to COVID-19. The autopsy showed bronchopneumonia, interstitial pneumonia, alveolar hemorrhage, and fibrosis. Overlapping cytomegalovirus, fungal and/or bacterial infections were also confirmed. Sequencing of SARS-CoV-2 showed accumulation of mutations and changes in variant allele frequencies over time. NSP12 mutations V792I and M794I appeared independently in two cases as COVID-19 progressed. In vitro drug susceptibility analysis and an animal experiment using recombinant SARS-CoV-2 demonstrated that each mutation, V792 and M794I, was independently responsible for remdesivir resistance and attenuated pathogenicity. E340A, E340D, and F342INS mutations in the spike protein were found in one case, which may account for the sotrovimab resistance. Analysis of autopsy specimens indicated heterogeneous distribution of these mutations. In summary, we demonstrated temporal and spatial diversity in SARS-CoV-2 that evolved resistance to various antiviral agents in malignant lymphoma patients under immunodeficient conditions caused by certain types of immunochemotherapies. Strategies may be necessary to prevent the acquisition of drug resistance and improve outcomes, such as the selection of appropriate treatment strategies for lymphoma considering patients' immune status and the institution of early intensive antiviral therapy.
Collapse
Affiliation(s)
- Chisako Iriyama
- Department of Hematology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Takaya Ichikawa
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Department of Hematology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Mutsumi Takahata
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Takashi Ishio
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Ryuji Kawai
- Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Mitsunaga Iwata
- Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Hirokazu Adachi
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, Nagoya 462-8576, Japan
| | - Naganori Nao
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | | | - Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Akifumi Kamiyama
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasushi Ishii
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Nanase Okazaki
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Yuko Katayama
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Shimpei Nakagawa
- Department of Pathology, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake 470-1192, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Takayuki Murata
- Center for Infectious Disease Research, Fujita Health University, Toyoake 470-1192, Japan
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
8
|
Hoffmann S, Schrezenmeier E, Desmarets M, Halleck F, Durrbach A, Peters L, Tremmel AT, Seidel A, Führer M, Bachmann F, Schrezenmeier J, Greiner J, Körper S, Hofmann H, Ludwig C, Vieweg C, Jahrsdörfer B, Budde K, Schmidt M, Münch J, Joher N, Daguindau E, Grüner B, Brunotte G, Vauchy C, Seifried E, Bradshaw D, Estcourt LJ, Roberts DJ, Toussirot E, Rijnders B, Tiberghien P, Schrezenmeier H. Early, very high-titre convalescent plasma therapy in clinically vulnerable individuals with mild COVID-19: an international, randomised, open-label trial. EBioMedicine 2025; 113:105613. [PMID: 40020259 PMCID: PMC11919330 DOI: 10.1016/j.ebiom.2025.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) is a treatment option for COVID-19. This study investigated the safety and efficacy of early, very high-titre CCP in immunocompromised individuals with mild COVID-19. METHODS This randomised, controlled, open-label trial assessed CCP in immunocompromised patients (n = 120) with mild COVID-19 in 10 clinical trial centres across Germany, France, and the Netherlands. Patients were randomised 1:1 to receive either standard of care (SoC) alone (SoC group) or SoC and 2 units of CCP. Most patients (89.7%) had received ≥3 SARS-CoV-2 vaccinations. The primary endpoint was hospitalisation for progressive COVID-19 symptoms or death by day 28 after randomisation, analysed on a modified intention-to-treat basis (117 patients). The safety analysis included the full analysis set. The trial is registered with EudraCT 2021-006621-22, and ClinicalTrials.gov, NCT05271929. FINDINGS Between April 11, 2022 and November 27, 2023, 120 patients were enrolled. Patients in the CCP group received a median of 559 ml CCP from convalescent, vaccinated donors with very high levels of SARS-CoV-2 antibodies (median 81,810 IU/ml) at a median 4 days after symptom onset. The primary outcome occurred in 5/58 patients (8.6%) in the SoC group and in 0/59 patients (0%) in the CCP group, difference -8.6% (95% confidence interval of difference -19% to -0.80%; p-value 0.027; Fisher's exact test). The course of SARS-CoV-2 antibodies in the patients demonstrated a passive transfer of antibodies by the CCP, in particular neutralising effects against new SARS-CoV-2 variants. Whole genome sequencing of SARS-CoV-2 in patients during follow-up showed significant intra-host viral evolution, but without differences between groups. CCP was well tolerated. INTERPRETATION Early administration of high-titre CCP can prevent hospitalisation or death in immunocompromised patients with mild COVID-19. FUNDING Support-e project (European Union's Horizon 2020 Programme), German Federal Ministry of Education and Research, ZonMw, the Netherlands Organisation for Health Research and Development.
Collapse
Affiliation(s)
- Simone Hoffmann
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maxime Desmarets
- Université Marie et Louis Pasteur, EFS, Inserm, RIGHT (UMR 1098), Besançon, France; CHU Besançon, Inserm, Centre d'Investigation Clinique (CIC 1431), Besançon, France
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antoine Durrbach
- Department of Nephrology, AP-HP Hôpital Henri Mondor, Créteil, Île-de-France, France; INSERM UMR1186, Universite Paris Saclay, France
| | - Lynn Peters
- Division of Infectious Diseases, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Marita Führer
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Friederike Bachmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Schrezenmeier
- Division of Haematology, Oncology, and Cancer Immunology, Medical Department, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jochen Greiner
- Department of Internal Medicine, Diakonie Hospital Stuttgart, Stuttgart, Germany
| | - Sixten Körper
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Henrike Hofmann
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Carolin Ludwig
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christiane Vieweg
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Nizar Joher
- Department of Nephrology, AP-HP Hôpital Henri Mondor, Créteil, Île-de-France, France
| | - Etienne Daguindau
- Université Marie et Louis Pasteur, EFS, Inserm, RIGHT (UMR 1098), Besançon, France; Haematology Department, CHU Besançon, Besançon, France
| | - Beate Grüner
- Division of Infectious Diseases, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Gaëlle Brunotte
- CHU Besançon, Inserm, Centre d'Investigation Clinique (CIC 1431), Besançon, France
| | - Charline Vauchy
- Université Marie et Louis Pasteur, EFS, Inserm, RIGHT (UMR 1098), Besançon, France; CHU Besançon, Inserm, Centre d'Investigation Clinique (CIC 1431), Besançon, France
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Daniel Bradshaw
- Virus Reference Department, UK Health Security Agency, London, UK
| | - Lise J Estcourt
- NHS Blood and Transplant, Oxford, Oxfordshire, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, Oxfordshire, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Eric Toussirot
- Université Marie et Louis Pasteur, EFS, Inserm, RIGHT (UMR 1098), Besançon, France; CHU Besançon, Inserm, Centre d'Investigation Clinique (CIC 1431), Besançon, France
| | - Bart Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pierre Tiberghien
- Université Marie et Louis Pasteur, EFS, Inserm, RIGHT (UMR 1098), Besançon, France; Etablissement Francais du Sang, La Plaine Saint-Denis, Île-de-France, France
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
| |
Collapse
|
9
|
Kimoto K, Kawasuji H, Yoshida Y, Yamada H, Yazawa S, Tani H, Koshiyama Y, Nabe Y, Kikuchi S, Nagaoka K, Morinaga Y, Yamamoto Y. Successful 30-Day Nirmatrelvir/Ritonavir Treatment of a Patient Who Developed Multi-relapsed COVID-19 After Receiving R-CHOP Against Follicular Lymphoma. Cureus 2025; 17:e79019. [PMID: 40099066 PMCID: PMC11911031 DOI: 10.7759/cureus.79019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
A 58-year-old male developed three coronavirus disease 2019 (COVID-19) relapses within three months after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemoimmunotherapy against relapsed follicular lymphoma. Five- and 10-day remdesivir courses failed to achieve viral clearance. A 30-day nirmatrelvir/ritonavir course provided symptom resolution and sustained reverse transcription and quantitative polymerase chain reaction (RT-qPCR) negativity. Genome analyses identified cultured live virus (day 59) and nasopharyngeal-swab viral RNA (days 74, 82, 95) as Omicron BA.5 sublineage BF.13. Normal immunoglobulin (Ig)G levels and high neutralizing activities against BA.5 were maintained throughout the infection's course. Extended nirmatrelvir/ritonavir antiviral treatment may be effective for patients administered anti-CD20 therapy who develop prolonged/relapsed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection despite possessing high neutralizing activities.
Collapse
Affiliation(s)
- Kou Kimoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Yoshihiro Yoshida
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Hiroshi Yamada
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Shunsuke Yazawa
- Department of Virology, Toyama Institute of Health, Imizu, JPN
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Imizu, JPN
| | - Yuki Koshiyama
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Yoshimi Nabe
- Department of Hematology, University of Toyama, Toyama, JPN
| | - Shohei Kikuchi
- Department of Hematology, University of Toyama, Toyama, JPN
| | - Kentaro Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JPN
| |
Collapse
|
10
|
Ling-Hu T, Simons LM, Rios-Guzman E, Carvalho AM, Agnes MFR, Alisoltanidehkordi A, Ozer EA, Lorenzo-Redondo R, Hultquist JF. The impact of remdesivir on SARS-CoV-2 evolution in vivo. JCI Insight 2025; 10:e182376. [PMID: 39836474 PMCID: PMC11949014 DOI: 10.1172/jci.insight.182376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The impact of remdesivir on SARS-CoV-2 diversity and evolution in vivo has remained unclear. In this single-center, retrospective cohort study, we assessed SARS-CoV-2 diversification and diversity over time in a cohort of hospitalized patients who did or did not receive remdesivir. Whole-genome sequencing was performed on 98 paired specimens collected from 49 patients before and after remdesivir administration. The genetic divergence between paired specimens was not significantly different in this cohort compared with that in a control group of patients who did not receive the drug. However, when we focused on minority variants, several positions showed preferential diversification after remdesivir treatment, some of which were associated with specific variants of concern. Most notably, remdesivir administration resulted in strong selection for a nonsynonymous mutation in nsp12, G671S, previously associated with enhanced viral fitness. This same mutation was found to be enriched in a second cohort of 143 inpatients with specimens collected after remdesivir administration compared with controls. Only one other mutation previously implicated in remdesivir resistance (nsp12:V792I) was found to be preferentially selected for after remdesivir administration. These data suggest that SARS-CoV-2 variants with enhanced replicative fitness may be selected for in the presence of antiviral therapy as an indirect means to overcome this selective pressure.
Collapse
Affiliation(s)
- Ted Ling-Hu
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Alexandre Machado Carvalho
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Maria Francesca R. Agnes
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Arghavan Alisoltanidehkordi
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, Illinois, USA
| |
Collapse
|
11
|
Abdulrasak M, Hootak S. Prolonged SARS-CoV-2 Viremia in an Immunocompromised Patient. J Med Cases 2025; 16:6-10. [PMID: 39759167 PMCID: PMC11699861 DOI: 10.14740/jmc5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/09/2024] [Indexed: 01/07/2025] Open
Abstract
Immunocompromised patients, especially those receiving B-cell depleting therapies, are at risk for developing atypical presentation with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with the potential for diagnostic delay and adverse outcomes if such delay occurs. A 66-year-old female with history of granulomatosis with polyangiitis (GPA) with previous pulmonary involvement, treated with rituximab and low-dose prednisolone, presented with prolonged fever and cough after having been treated at home for a mild SARS-CoV-2 infection in early July 2023. The patient had a prolonged course over several months with constitutional symptoms such as fever, cough and malaise. During the investigation, which encompassed a wide range of microbiological and immunological tests, the patient was initially thought to have a flare of GPA which she was treated for without appreciable improvement, then for multiple microbiological organisms without appropriate resolution of the patient's symptoms. The differential diagnosis of prolonged SARS-CoV-2 infection was reconsidered in October 2023, and then confirmed by the presence of SARS-CoV-2 viremia through polymerase chain reaction (PCR) testing of the blood. The patient received a prolonged course of antiviral therapy with complete clinical, virological and radiological resolution. Prolonged SARS-CoV-2 infection with viremia in immunocompromised individuals needs to be considered on the differential diagnosis list in such patients presenting with constitutional symptoms, with PCR testing of the blood as a simple and effective way to establish the diagnosis.
Collapse
Affiliation(s)
- Mohammed Abdulrasak
- Department of Clinical Sciences, Malmo, Lund University, Malmo, Sweden
- Department of Gastroenterology and Nutrition, Skane University Hospital, Malmo, Sweden
| | - Sohail Hootak
- Department of Clinical Sciences, Malmo, Lund University, Malmo, Sweden
- Department of Gastroenterology and Nutrition, Skane University Hospital, Malmo, Sweden
| |
Collapse
|
12
|
Lee R, Choi J, Lee E, Lee J, Kim J, Kang S, An HI, Kim SH, Kim SM, Jwa EK, Park GC, Namgoong JM, Song GW, Yoon YI, Tak E, Lee SG. Effects of combined immunosuppressant and hepatitis B virus antiviral use on COVID-19 vaccination in recipients of living donor liver transplantation. PeerJ 2024; 12:e18651. [PMID: 39655328 PMCID: PMC11627077 DOI: 10.7717/peerj.18651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Background & Aims The global pandemic caused by the highly contagious SARS-CoV-2 virus led to the emergency approval of COVID-19 vaccines to reduce rising morbidity and mortality. However, limited research exists on evaluating the impact of these vaccines on immunocompromised individuals, such as recipients of living donor liver transplantation, highlighting the need for further studies to better understand their effectiveness in this specific population. Methods From June 2021, we followed up on the effectiveness of the vaccine for patients taking immunosuppressive drugs after living-donor liver transplantation (LDLT). A total of 105 immunocompromised individuals participated, of which 50 patients with hepatitis B were taking antiviral drugs. Patients were assessed to analyze how the combination of immunosuppressive and antiviral drugs affected the efficacy of the BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 COVID-19 vaccines. Results Before and after the vaccinations, patients were monitored to establish differences between immunosuppressed patients and those additionally taking antiviral drugs. In immunocompromised patients taking antiviral drugs for hepatitis B, we confirmed that the effect of the COVID-19 vaccine was reduced when compared to immunocompromised patients. Interestingly, 23 patients (11 without and 12 additionally with hepatitis B drug administration) encountered breakthrough infections, and although there was a minor discrepancy in vaccine efficacy among the patients taking antiviral drugs for hepatitis B, it did not reach statistical significance. Conclusions Additional COVID-19 vaccination is recommended for patients taking immunosuppressive drugs and hepatitis B antiviral drugs after LDLT.
Collapse
Affiliation(s)
- Ryunjin Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Jiwan Choi
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Eunkyeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Jooyoung Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Jiye Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Seoon Kang
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| | - Sung-Min Kim
- Division of Hepatobiliary Surgery and Liver Transplantation, Seoul, Republic of South Korea
| | - Eun-Kyoung Jwa
- Division of Hepatobiliary Surgery and Liver Transplantation, Seoul, Republic of South Korea
| | - Gil-Chun Park
- Division of Hepatobiliary Surgery and Liver Transplantation, Seoul, Republic of South Korea
| | - Jung-Man Namgoong
- Division of Pediatric Surgery, Department of Surgery, Asan Medical Center, University Ulsan College of Medicine, Seoul, Republic of South Korea
| | - Gi-Won Song
- Division of Hepatobiliary Surgery and Liver Transplantation, Seoul, Republic of South Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Seoul, Republic of South Korea
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of South Korea
| | - Sung-Gyu Lee
- Division of Hepatobiliary Surgery and Liver Transplantation, Seoul, Republic of South Korea
| |
Collapse
|
13
|
Ravkin HD, Nesher L. Bridging the Gap: Delphi Consensus Statements for SARS-CoV-2 Vaccination in Immunocompromised Patients. Infect Dis Ther 2024; 13:2223-2225. [PMID: 39387988 PMCID: PMC11499500 DOI: 10.1007/s40121-024-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Hersh D Ravkin
- Internal Medicine Division, Soroka University Medical Center, Beersheba, Israel
| | - Lior Nesher
- Infectious Disease Institute, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, 1 Rager Street, 84101, Beersheba, Israel.
| |
Collapse
|
14
|
Fu R, Chen Y, Zhao J, Xie X. The signature of SARS-CoV-2-related genes predicts the immune therapeutic response and prognosis in breast cancer. BMC Med Genomics 2024; 17:260. [PMID: 39482662 PMCID: PMC11526603 DOI: 10.1186/s12920-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally contagious single-stranded RNA virus with a strong positive contagion. The COVID-19 pandemic refers to the swift worldwide dissemination of SARS-CoV-2 infection, which began in late 2019. The COVID-19 epidemic has disrupted many cancer treatments. A few reports indicate that the prevalence of SARS-CoV-2 has disrupted the treatment of breast cancer patients (BCs). However, the role of SARS-CoV-2 in the occurrence and prognosis of BC has not been elucidated. Here, we applied bioinformatics to construct a prognostic signature of SARS-CoV-2-related genes (SCRGs). Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to extract co-expressed genes of differentially expressed genes (DEGs) in breast cancer and SCRGs. Then, we utilized the least absolute shrinkage and selection operator (LASSO) algorithm and univariate regression analysis to screen out three hub genes (DCTPP1, CLIP4 and ANO6) and constructed a risk score model. We further analyzed tumor immune invasion, HLA-related genes, immune checkpoint inhibitors (ICIs), and sensitivity to anticancer drugs in different SARS-CoV-2 related risk subgroups. In addition, we have developed a nomination map to expand clinical applicability. The results of our study indicate that BCs with a high-risk score are linked to negative outcomes, lower immune scores, and reduced responsiveness to anticancer medications. This suggests that the SARS-CoV-2 related signature could be used to guide prognosis assessment and treatment decisions for BCs.
Collapse
Affiliation(s)
- Ruizhi Fu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiajing Zhao
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| |
Collapse
|
15
|
Lee JA, Han M, Ahn S, Lee Y, Yeom JS, Choi JY, Ku NS, Jeong SJ, Kim JH, Kim JS, Chung H, Cho H, Kim YR, Ahn JY. Long-Term Outcomes of COVID-19 and Risk Factors for Prolonged or Persistent COVID-19 in Lymphoma Patients: A Multicenter, Retrospective Cohort Study. J Korean Med Sci 2024; 39:e263. [PMID: 39468945 PMCID: PMC11519060 DOI: 10.3346/jkms.2024.39.e263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Patients with hematologic malignancies exhibit persistent severe acute respiratory syndrome coronavirus 2 positivity over long periods after coronavirus disease 2019 (COVID-19) diagnosis. However, the frequency of, risk factors for, and prognosis of prolonged COVID-19 in immunocompromised patients remain unclear. Therefore, we investigated the long-term outcomes of COVID-19 in lymphoma patients and identified the associated factors and impact of prolonged COVID-19 on mortality. METHODS A multicenter retrospective cohort study of 583 lymphoma patients was conducted in 3 tertiary hospitals in South Korea. Patients receiving lymphoma treatment who were quarantined after obtaining a diagnosis of COVID-19 by polymerase chain reaction (PCR) or antigen test from August 2021 to September 2022 were examined. RESULTS Overall, 115 patients (19.7%) were diagnosed with COVID-19. Among 77 patients with clinical data, 24 had prolonged COVID-19. Patients in the prolonged COVID-19 group showed higher rates of receiving rituximab maintenance therapy following bendamustine and rituximab (BR) treatment for follicular lymphoma. This group did not show significant differences in clinical presentation within 30 days of COVID-19 diagnosis; however, it showed higher rates of re-admission due to COVID-19 pneumonia compared with the non-prolonged COVID-19 group. BR treatment followed by rituximab maintenance therapy is one of the risk factors for persistent PCR positivity, delayed or persistent pneumonia, and COVID-19 related admission after quarantine period. Prolonged COVID-19 was an independent risk factor for 1-year mortality. CONCLUSION Prolonged COVID-19 was more frequent in lymphoma patients who received BR treatment followed by rituximab maintenance therapy and associated with unfavorable long-term outcomes and higher 1-year mortality.
Collapse
Affiliation(s)
- Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Han
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sangmin Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yongseop Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Ri Kim
- Division of Hematology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Lin YQ, Li N, Wu YL, Ma JB, Gao HN, Zhang X. Clinical Features and Prognosis of Patients with COVID-19 and B-Cell Non-Hodgkin Lymphoma. Infect Drug Resist 2024; 17:4501-4510. [PMID: 39435457 PMCID: PMC11492921 DOI: 10.2147/idr.s477107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose There is a lack of real-world data on the epidemiology, clinical manifestations, treatment effects, and prognosis of coronavirus disease 2019 (COVID-19) in patients with B-cell non-Hodgkin lymphoma (B-NHL). This study aimed to investigate the clinical features and prognostic factors of COVID-19 in patients with B-NHL. Patients and Methods This study included individuals diagnosed with B-NHL who were also diagnosed with COVID-19 and hospitalized. A retrospective analysis was conducted, and univariate and multivariate logistic regression were used to identify independent factors affecting the duration of the positive-to-negative transition of COVID-19 nucleic acid test results and prognoses. Receiver operating characteristic curves were used to assess diagnostic accuracy and determine the optimal threshold. Results Among 80 patients with COVID-19 and B-NHL, relapsed or refractory lymphoma and diffuse large B-cell lymphoma (DLBCL) accounted for 13.8% and 65% of cases, respectively. The mean age was 60.4 ± 13.0 years, and 50% of patients were women. The median duration of the positive-to-negative transition was 14 days (interquartile range [IQR], 17.2), and the median hospitalization duration was 12 days (IQR, 13). The rate of severe disease was 26.25%, and the 28-day mortality rate was 10.00%. Univariate and multivariate logistic regression analyses revealed that pathological classification of B-NHL, infection with COVID-19 within 3 months after the last dose of anti-CD20 monoclonal antibodies, and corticosteroid use were independent factors associated with a prolonged duration of the positive-to-negative transition. Compared with patients with DLBCL or FL and COVID-19, patients with B-NHL had longer nucleic acid test transition durations and higher rates of severe disease and mortality. Conclusion In patients with B-NHL, infection with COVID-19 within 3 months after treatment with anti-CD20 monoclonal antibodies prolonged the positive-to-negative transition of nucleic acid test results and increased the risks of severe disease and 28-day mortality. Treatment with corticosteroids further prolonged this transition.
Collapse
Affiliation(s)
- Ya-Qing Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Na Li
- Zhejiang Provincial General Hospital of the Chinese People’s Armed Police Force, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan-Li Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Jin-Bao Ma
- Department of Drug-Resistance Tuberculosis, Xi’an Chest Hospital, Xi’an, People’s Republic of China
| | - Hai-Nv Gao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
17
|
Boeckh M, Pergam SA, Limaye AP, Englund J, Corey L, Hill JA. How Immunocompromised Hosts Were Left Behind in the Quest to Control the COVID-19 Pandemic. Clin Infect Dis 2024; 79:1018-1023. [PMID: 38825885 PMCID: PMC11478583 DOI: 10.1093/cid/ciae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
The immunocompromised population was disproportionately affected by the severe acute respiratory syndrome coronavirus 2 pandemic. However, these individuals were largely excluded from clinical trials of vaccines, monoclonal antibodies, and small molecule antivirals. Although the community of scientists, clinical researchers, and funding agencies have proven that these therapeutics can be made and tested in record time, extending this progress to vulnerable and medically complex individuals from the start has been a missed opportunity. Here, we advocate that it is paramount to plan for future pandemics by investing in specific clinical trial infrastructure for the immunocompromised population to be prepared when the need arises.
Collapse
Affiliation(s)
- Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Ajit P Limaye
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Janet Englund
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Maria M, Maraolo AE, Cozzolino C, Sasset L, Ferrari A, Basso M, Vania E, Bonadiman N, Scaglione V, Cattelan AM. Does early combination vs. Monotherapy improve clinical outcomes of clinically extremely vulnerable patients with COVID-19? Results from a retrospective propensity-weighted analysis. Eur J Med Res 2024; 29:484. [PMID: 39367485 PMCID: PMC11451216 DOI: 10.1186/s40001-024-02062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The potential efficacy of early combination therapy, based on an antiviral plus a monoclonal antibody, for COVID-19 in severely immunocompromised patients is matter of debate. OBJECTIVES Our aim was to describe the impact on clinical outcomes of COVID-19 treatments in severely immunocompromised individuals, evaluating differences between a combination and a monotherapy. METHODS We included severely immunocompromised outpatients with mild-to-moderate COVID-19 who received an early treatment (either monotherapy with nirmatrelvir/ritonavir or remdesivir or the combination of an antiviral plus sotrovimab). We then assessed differences between the two treatment strategies on three main outcomes (30-day mortality, access to emergency department, hospitalization), separately and as a composite by using a propensity score weighted (PSW) approach. RESULTS Eighty one severely immunocompromised patients were included, 39 receiving early combination therapy and 42 receiving monotherapy. No significant difference was observed in the 30-day mortality rate and hospitalization rate between subjects in the two groups, while access to the emergency department following treatment administration was significantly higher in people who received a combination therapy. After applying the PSW, it was observed that combination therapy impacted favourably on the composite outcome, in a statistically significant fashion. In addition, PSW approach for mortality showed that age was the only significant factor influencing the death as stand-alone outcome. CONCLUSIONS Early combination therapy showed a favourable impact on a composite outcome (including mortality, hospitalizations and access to emergency department) in severely immunocompromised hosts who were all vaccinated. However, further studies are needed to support our results.
Collapse
Affiliation(s)
- Mazzitelli Maria
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy.
| | - Alberto Enrico Maraolo
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Claudia Cozzolino
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35131, Padua, Italy
| | - Lolita Sasset
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| | - Anna Ferrari
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| | - Monica Basso
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| | - Eleonora Vania
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| | - Nicola Bonadiman
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| | - Vincenzo Scaglione
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| | - Anna Maria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy
| |
Collapse
|
19
|
Zeng G, Liu J. Comment on: "Dexamethasone treatment for COVID-19 is related to increased mortality in hematologic malignancy patients: results from the EPICOVIDEHA registry". Haematologica 2024; 109:3455-3456. [PMID: 38779722 PMCID: PMC11443369 DOI: 10.3324/haematol.2024.285726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Guangting Zeng
- Department of Pharmacy, The First People's Hospital of Chenzhou, Xiangnan University, Chenzhou.
| | - Jing Liu
- Department of Pharmacy, The First People's Hospital of Chenzhou, Xiangnan University, Chenzhou
| |
Collapse
|
20
|
Hollist M, Hollist A, Au K, Betts C, Kirmani M, Kirmani M, Armour B, Udeh MC, Kirmani BF. Multiple Sclerosis and COVID-19: An Overview on Risk, Severity, and Association With Disease Modifying Therapies. Neurosci Insights 2024; 19:26331055241265668. [PMID: 39347459 PMCID: PMC11437550 DOI: 10.1177/26331055241265668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 10/01/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in December 2019, sparking a global health crisis. While initially recognized as a respiratory illness, it has become evident that Coronavirus disease 2019 (COVID-19) also affects the central nervous system. This comprehensive review focuses on the neurological manifestations of COVID-19 and its impact on patients with preexisting neurological disorders, particularly those with multiple sclerosis (MS) receiving disease-modifying therapies. Advancements in management, including vaccinations, antiviral therapy, and targeted prophylaxis, have led to a decline in the incidence and severity of COVID-19. Nevertheless, significant complications persist, particularly in patients with advanced MS, who are highly vulnerable to infectious agents like SARS-CoV-2. This review explores the evolving understanding of MS and its association with SARS-CoV-2, encompassing neuroinvasiveness, pathogenesis, disease severity, and outcomes. Research findings reveal substantial neurological implications for some MS patients with COVID-19, with a potential risk of disease relapse and severity. A notable proportion of MS patients experiencing COVID-19 may manifest new symptoms, experience exacerbation of existing symptoms, or encounter both simultaneously, underscoring the diverse neurological effects of the virus. While vaccination and therapeutics have mitigated the overall impact, specific subgroups, especially those on anti-CD20 therapy and with existing disability, remain at higher risk, necessitating ongoing vigilance and tailored care.
Collapse
Affiliation(s)
| | | | | | - Colton Betts
- Texas A&M University College of Medicine, College Station, TX, USA
| | - Maha Kirmani
- Texas A&M University College of Medicine, College Station, TX, USA
| | - Maaida Kirmani
- Neuroscience and Experimental Therapeutics, Texas A&M University, College Station, TX, USA
| | - Benjamin Armour
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Mercy C Udeh
- University of Tennessee Health Science Center College of Medicine—Chattanooga, Chattanooga, TN, USA
| | - Batool F Kirmani
- Texas A&M University College of Medicine, College Station, TX, USA
- Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| |
Collapse
|
21
|
Hu J, Xia H, Chen X, Xu X, Wu HL, Shen Y, Xu RA, Wu W. Effect of isavuconazole on the pharmacokinetics of sunitinib and its mechanism. BMC Cancer 2024; 24:1131. [PMID: 39261851 PMCID: PMC11389264 DOI: 10.1186/s12885-024-12904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sunitinib, a newly developed multi-targeted tyrosine kinase inhibitor (TKI), has become a common therapeutic option for managing advanced renal cell carcinoma (RCC). Examining the mechanism underlying the interaction between sunitinib and isavuconazole was the aim of this effort. METHODS The concentrations of sunitinib and its primary metabolite, N-desethyl sunitinib, were analyzed and quantified using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Our study evaluated the potential interaction between isavuconazole and sunitinib using rat liver microsomes (RLM), human liver microsomes (HLM), and in vivo rat models. For the in vivo study, two groups (n = 5) of Sprague-Dawley (SD) rats were randomly allocated to receive sunitinib either with or without co-administration of isavuconazole. Additionally, the effects of isavuconazole on the metabolic stability of sunitinib and N-desethyl sunitinib were studied in RLM in vitro. RESULTS Our findings demonstrated that in RLM, isavuconazole exhibited a mixed non-competitive and competitive inhibition mechanism, with an IC50 (half maximal inhibitory concentration) value of 1.33 µM. Meanwhile, in HLM, isavuconazole demonstrated a competitive inhibition mechanism, with an IC50 of 5.30 µM. In vivo studies showed that the presence of isavuconazole significantly increased the pharmacokinetic characteristics of sunitinib, with the AUC(0→t), AUC(0→∞), and Tmax rising to approximately 211.38%, 203.92%, and 288.89%, respectively, in contrast to the control group (5 mg/kg sunitinib alone). The pharmacokinetic characteristics of the metabolite N-desethyl sunitinib in the presence of isavuconazole remained largely unchanged compared to the control group. Furthermore, in vitro metabolic stability experiments revealed that isavuconazole inhibited the metabolic processing of both sunitinib and N-desethyl sunitinib. CONCLUSIONS Isavuconazole had a major impact on sunitinib metabolism, providing fundamental information for the precise therapeutic administration of sunitinib.
Collapse
Affiliation(s)
- Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua-Lu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenzhi Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
22
|
Yukishima T, Furuhashi K, Shimoyama K, Taki T, Azuma C, Yamazaki K, Furukawa S, Fukami S, Nagura O, Katahashi K, Yamashita K, Maekawa M, Ogawa N. Detailed tracking of antigen and antibody levels during coronavirus disease 2019 treatment in an immunosuppressed patient with anti-neutrophil cytoplasmic autoantibody-associated vasculitis. J Infect Chemother 2024; 30:922-927. [PMID: 38342142 DOI: 10.1016/j.jiac.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
A 67-year-old woman with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis was not vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was on multiple immunosuppressive drugs. She was hospitalized because of interstitial shadowing in the lungs and diagnosed with persistent coronavirus disease 2019 (COVID-19). Despite treatment with a recombinant monoclonal antibody and antivirals, her symptoms persisted and she lacked a specific antibody response. She tested negative for SARS-CoV-2 antigen after the second antiviral treatment, and a subsequent chest radiograph showed improvement. However, the antibody levels did not change. This case highlights the importance of careful monitoring of the SARS-CoV-2 antigen and antibody levels during COVID-19 treatment in patients with immunosuppression.
Collapse
Affiliation(s)
- Toshitaka Yukishima
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Kazuki Furuhashi
- Infection Control and Prevention Center, Hamamatsu University Hospital, Japan.
| | - Kumiko Shimoyama
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Takeru Taki
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Chika Azuma
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Kenji Yamazaki
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Shogo Furukawa
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Soma Fukami
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| | - Osanori Nagura
- Infection Control and Prevention Center, Hamamatsu University Hospital, Japan.
| | - Kazuto Katahashi
- Second Department of Surgery, Hamamatsu University School of Medicine, Japan.
| | - Keita Yamashita
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Japan.
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Japan.
| | - Noriyoshi Ogawa
- Division of Immunology and Rheumatology, Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.
| |
Collapse
|
23
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4 + and CD8 + T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. SCIENCE ADVANCES 2024; 10:eadp2636. [PMID: 39178263 PMCID: PMC11343035 DOI: 10.1126/sciadv.adp2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
SARS-CoV-2 infection induces the generation of virus-specific CD4+ and CD8+ effector and memory T cells. However, the contribution of T cells in controlling SARS-CoV-2 during infection is not well understood. Following infection of C57BL/6 mice, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract, and a vast proportion secrete the cytotoxic molecule granzyme B. Using depleting antibodies, we found that T cells within the lungs play a minimal role in viral control, and viral clearance occurs in the absence of both CD4+ and CD8+ T cells through 28 days postinfection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent, culturable virus replicating in the nasal epithelial layer through 28 days postinfection. Viral sequencing analysis revealed adapted mutations across the SARS-CoV-2 genome, including a large deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meenakshi Kar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Katherine E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eduardo Salinas
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Wei Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Shruti Sathish
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Swathi Shrihari
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jacob Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Amelia Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Robyn Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Janssen M, Leo A, Wolf C, Stenzinger M, Bartenschlager M, Brandt J, Sauer S, Schmitt M, Dreger P, Schlenk RF, Denkinger CM, Müller-Tidow C. Treatment of chronic COVID-19 with convalescent/postvaccination plasma in patients with hematologic malignancies. Int J Cancer 2024; 155:618-626. [PMID: 38721724 DOI: 10.1002/ijc.34988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/24/2024] [Accepted: 03/20/2024] [Indexed: 06/20/2024]
Abstract
Immunocompromised patients are at high risk to fail clearance of SARS-CoV-2. Prolonged COVID-19 constitutes a health risk and a management problem as cancer treatments often have to be disrupted. As SARS-CoV-2 evolves, new variants of concern have emerged that evade available monoclonal antibodies. Moreover, antiviral therapy promotes SARS-CoV-2 escape mutations, particularly in immunocompromised patients. These patients frequently suffer from prolonged infection. No successful treatment has been established for persistent COVID-19 infection. Here, we report on a series of 21 immunocompromised patients with COVID-19-most of them hematologic malignancies-treated with plasma obtained from recently convalescent or vaccinated donors or a combination thereof. Repeated dosing of SARS-CoV-2-antibody-containing plasma could clear SARS-CoV-2 infection in 16 out of 21 immunocompromised patients even if COVID-19-specific treatments failed to induce sustained viral clearance or to improve clinical course of SARS-CoV-2 infection. Ten patients were major responders defined as an increase delta(d)Ct of > = 5 after the first administration of convalescent and/or vaccinated plasma (C/VP). On average, SARS-CoV-2 PCR Ct values increased from a median value of 22.55 (IQR = 19.10-24.25) to a median value of 29.57 (IQR = 27.55-34.63; p = <.0001) in the major response subgroup. Furthermore, when treated a second time with C/VP, even 4 out of 5 of the initial nonresponders showed an increase in Ct-values from a median value of 23.13 (IQR = 17.75-28.05) to a median value of 32.79 (IQR = 31.75-33.75; p = .013). Our results suggest that C/VP could be a feasible treatment of COVID-19 infection in patients with hematologic malignancies who did not respond to antiviral treatment.
Collapse
Affiliation(s)
- Maike Janssen
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Leo
- Institute for Clinical Transfusion Medicine and Cell Therapy Heidelberg, Heidelberg, Germany
| | - Cornelia Wolf
- Institute for Clinical Transfusion Medicine and Cell Therapy Heidelberg, Heidelberg, Germany
| | - Miriam Stenzinger
- Institute for Clinical Transfusion Medicine and Cell Therapy Heidelberg, Heidelberg, Germany
| | - Marie Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Brandt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Sandra Sauer
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard F Schlenk
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- NCT-Trial Center, National Center of Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Claudia M Denkinger
- Division of Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
25
|
Wratil PR, Le Thi TG, Osterman A, Badell I, Huber M, Zhelyazkova A, Wichert SP, Litwin A, Hörmansdorfer S, Strobl F, Grote V, Jebrini T, Török HP, Hornung V, Choukér A, Koletzko B, Adorjan K, Koletzko S, Keppler OT. Dietary habits, traveling and the living situation potentially influence the susceptibility to SARS-CoV-2 infection: results from healthcare workers participating in the RisCoin Study. Infection 2024; 52:1425-1437. [PMID: 38436913 PMCID: PMC11289231 DOI: 10.1007/s15010-024-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE To explore occupational and non-occupational risk and protective factors for the coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs). METHODS Serum specimens and questionnaire data were obtained between October 7 and December 16, 2021 from COVID-19-vaccinated HCWs at a quaternary care hospital in Munich, Germany, and were analyzed in the RisCoin Study. RESULTS Of 3,696 participants evaluated, 6.6% have had COVID-19 at least once. Multivariate logistic regression analysis identified working in patient care occupations (7.3% had COVID-19, 95% CI 6.4-8.3, Pr = 0.0002), especially as nurses, to be a potential occupation-related COVID-19 risk factor. Non-occupational factors significantly associated with high rates of the disease were contacts to COVID-19 cases in the community (12.8% had COVID-19, 95% CI 10.3-15.8, Pr < 0.0001), being obese (9.9% had COVID-19, 95% CI 7.1-13.5, Pr = 0.0014), and frequent traveling abroad (9.4% had COVID-19, 95% CI 7.1-12.3, Pr = 0.0088). On the contrary, receiving the basic COVID-19 immunization early during the pandemic (5.9% had COVID-19, 95% CI 5.1-6.8, Pr < 0.0001), regular smoking (3.6% had COVID-19, 95% CI 2.1-6.0, Pr = 0.0088), living with the elderly (3.0% had COVID-19, 95% CI 1.0-8.0, Pr = 0.0475), and frequent consumption of ready-to-eat meals (2.6% had COVID-19, 95% CI 1.1-5.4, Pr = 0.0045) were non-occupational factors potentially protecting study participants against COVID-19. CONCLUSION The newly discovered associations between the living situation, traveling as well as dietary habits and altered COVID-19 risk can potentially help refine containment measures and, furthermore, contribute to new mechanistic insights that may aid the protection of risk groups and vulnerable individuals.
Collapse
Affiliation(s)
- Paul R Wratil
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Thu Giang Le Thi
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Irina Badell
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Melanie Huber
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Ana Zhelyazkova
- Institut für Notfallmedizin und Medizinmanagement (INM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Sven P Wichert
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Anna Litwin
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | | | - Frances Strobl
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Veit Grote
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Tarek Jebrini
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Helga P Török
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Alexander Choukér
- Department of Anesthesiology, Laboratory of Translational Research Stress and Immunity, LMU University Hospital, LMU Munich, Munich, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany.
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany.
- Center for International Health (CIH), LMU Munich, Munich, Germany.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany.
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland.
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Pettenkoferstr. 9a, 80336, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
26
|
Zuo W, He D, Liang C, Du S, Hua Z, Nie Q, Zhou X, Yang M, Tan H, Xu J, Yu Y, Zhan Y, Zhang Y, Gu X, Zhu W, Zhang H, Li H, Sun W, Sun M, Liu X, Liu L, Cao C, Li R, Li J, Zhang Y, Zhang Y, Guo J, Zhao L, Zhang CP, Liu H, Wang S, Xiao F, Wang Y, Wang Z, Li H, Cao B. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. THE LANCET. INFECTIOUS DISEASES 2024; 24:845-855. [PMID: 38663423 DOI: 10.1016/s1473-3099(24)00171-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoyang Liang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhan Hua
- Division of Gastrointestinal Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Qiangqiang Nie
- Department of General Surgery, Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Meng Yang
- Division of Breast and Thyroid Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Haidong Tan
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuliang Zhan
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ying Zhang
- Department of Anesthesiology and Operating Theatre, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaoying Gu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weijie Zhu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Hui Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Mingzhi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China
| | - Xiaolei Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Liguo Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuanzhen Cao
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuting Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ling Zhao
- Department of Pathology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuan-Peng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongyu Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyao Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Fei Xiao
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yeming Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China.
| | - Haibo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China.
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Changping Laboratory, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
27
|
Nel I, Ithayakumar A, Blumenthal N, Duneton C, Khourouj VGE, Viala J, Dollfus C, Baudouin V, Guilmin-Crepon S, Theodorou I, Carcelain G. Strategies to determine positive anti-SARS-CoV-2 memory T lymphocyte response during the evolution of an epidemic. J Immunol Methods 2024; 531:113712. [PMID: 38906414 DOI: 10.1016/j.jim.2024.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
During SARS-CoV-2 pandemic, the assessment of immune protection of people at risk of severe infection was an important goal. The appearance of VOCs (Variant of Concern) highlighted the limits of evaluating immune protection through the humoral response. While the humoral response partly loses its neutralizing activity, the anti-SARS-CoV-2 memory T cell response strongly cross protects against VOCs becoming an indispensable tool to assess immune protection. We compared two techniques available in laboratory to evaluate anti-SARS-CoV-2 memory T cell response in a cohort of infected or vaccinated patients with different levels of risk to develop a severe disease: the ELISpot assay and the T-Cell Lymphocyte Proliferation Assay respectively exploring IFNγ production and cell proliferation. We showed that the ELISpot assay detected more anti-Spike memory T cell response than the Lymphocyte Proliferation Assay. We next observed that the use of two different suppliers as antigenic source in the ELISpot assay did not affect the detection of anti-Spike memory T cell response. Finally, we explored a new approach for defining the positivity threshold, using unsupervised mixed Gaussian modeling, challenging the traditional ROC curve used by the supplier. That will be helpful in endemic situation where it could be difficult to recruit "negative" patients.
Collapse
Affiliation(s)
- Isabelle Nel
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France
| | | | | | - Charlotte Duneton
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France; Pediatric Nephrology Department, Robert-Debré Hospital, APHP, Paris, France
| | | | - Jérôme Viala
- Department of Pediatric Gastroenterology, Robert-Debré Hospital, APHP, Paris, France
| | - Catherine Dollfus
- Pediatric Hematology and Oncology Department, Trousseau Hospital, APHP, Paris, France
| | - Véronique Baudouin
- Pediatric Nephrology Department, Robert-Debré Hospital, APHP, Paris, France
| | - Sophie Guilmin-Crepon
- Clinical Epidemiology Unit, Inserm CIC-EC 1426, Robert-Debré Hospital, APHP, Paris, France
| | | | - Guislaine Carcelain
- Immunology Department, Robert-Debré Hospital, APHP, Paris, France; University Paris Cité, INSERM U976, France.
| |
Collapse
|
28
|
Meijer SE, Paran Y, Belkin A, Ben-Ami R, Maor Y, Nesher L, Hussein K, Rahav G, Brosh-Nissimov T. Persistent COVID-19 in immunocompromised patients-Israeli society of infectious diseases consensus statement on diagnosis and management. Clin Microbiol Infect 2024; 30:1012-1017. [PMID: 38642895 DOI: 10.1016/j.cmi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Immunocompromised patients with impaired humoral immunity are at risk for persistent COVID-19 (pCOVID), a protracted symptomatic disease with active viral replication. OBJECTIVES To establish a national consensus statement on the diagnosis, treatment, management, isolation, and prevention of pCOVID in adults. SOURCES We base our suggestions on the available literature, our own experience, and clinical reasoning. CONTENT Literature on the treatment of pCOVID is scarce and consists of few case reports and case series. The available studies provide low-quality evidence for monoclonal antibodies, convalescent plasma, antiviral drugs, and immunomodulators. Different combination therapies are described. Continuous viral replication and antiviral treatment may lead to the development of mutations that confer resistance to therapy. IMPLICATIONS To reduce the risk of resistance and improve outcomes, we suggest treating pCOVID with a combination of antibody-based therapy and two antiviral drugs for duration of 5-10 days. Immunomodulatory therapy can be added in patients with an inflammatory clinical picture. In cases of treatment failure or relapse, prolonged antiviral treatment can be considered. For the prevention of pCOVID, we suggest active and passive vaccination and early initiation of treatment for acute COVID-19. Additional research on pCOVID treatment is urgently needed.
Collapse
Affiliation(s)
- Suzy E Meijer
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Paran
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Belkin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sheba Medical Center, Tel Hashomer, Israel
| | - Ronen Ben-Ami
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin Maor
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Lior Nesher
- Infectious Disease Institute, Soroka University Medical Center, Beer Sheba, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| | | | - Galia Rahav
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sheba Medical Center, Tel Hashomer, Israel
| | - Tal Brosh-Nissimov
- Infectious Diseases Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| |
Collapse
|
29
|
Livieratos A, Gogos C, Akinosoglou K. SARS-CoV-2 Variants and Clinical Outcomes of Special Populations: A Scoping Review of the Literature. Viruses 2024; 16:1222. [PMID: 39205196 PMCID: PMC11359867 DOI: 10.3390/v16081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The ongoing COVID-19 pandemic has significantly impacted special populations, including immunocompromised individuals, people living with HIV (PLWHIV), pediatric patients, and those with chronic liver disease (CLD). This scoping review aims to map the clinical outcomes of these vulnerable groups when infected with various SARS-CoV-2 variants. The review identifies trends and patterns, noting that early variants, such as Alpha and Delta, are associated with more severe outcomes, including higher hospitalization and mortality rates. In contrast, the Omicron variant, despite its increased transmissibility, tends to cause milder clinical manifestations. The review highlights the necessity for ongoing surveillance and tailored healthcare interventions due to the heterogeneity of patient populations and the evolving nature of the virus. Continuous monitoring and adaptive healthcare strategies are essential to mitigate the impact of COVID-19 on these high-risk groups.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
30
|
Mouton W, Oriol G, Compagnon C, Saade C, Saker K, Franc P, Mokdad B, Fleurie A, Lacoux X, Daniel S, Berthier F, Barnel C, Pozzetto B, Fassier JB, Dubois V, Djebali S, Dubois M, Walzer T, Marvel J, Brengel-Pesce K, Trouillet-Assant S. Combining SARS-CoV-2 interferon-gamma release assay with humoral response assessment to define immune memory profiles. Eur J Immunol 2024; 54:e2451035. [PMID: 38627984 DOI: 10.1002/eji.202451035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVES In the post-SARS-CoV-2 pandemic era, "breakthrough infections" are still documented, due to variants of concerns (VoCs) emergence and waning humoral immunity. Despite widespread utilization, the definition of the anti-Spike (S) immunoglobulin-G (IgG) threshold to define protection has unveiled several limitations. Here, we explore the advantages of incorporating T-cell response assessment to enhance the definition of immune memory profile. METHODS SARS-CoV-2 interferon-gamma release assay test (IGRA) was performed on samples collected longitudinally from immunocompetent healthcare workers throughout their immunization by infection and/or vaccination, anti-receptor-binding domain IgG levels were assessed in parallel. The risk of symptomatic infection according to cellular/humoral immune capacities during Omicron BA.1 wave was then estimated. RESULTS Close to 40% of our samples were exclusively IGRA-positive, largely due to time elapsed since their last immunization. This suggests that individuals have sustained long-lasting cellular immunity, while they would have been classified as lacking protective immunity based solely on IgG threshold. Moreover, the Cox regression model highlighted that Omicron BA.1 circulation raises the risk of symptomatic infection while increased anti-receptor-binding domain IgG and IGRA levels tended to reduce it. CONCLUSION The discrepancy between humoral and cellular responses highlights the significance of assessing the overall adaptive immune response. This integrated approach allows the identification of vulnerable subjects and can be of interest to guide antiviral prophylaxis at an individual level.
Collapse
Affiliation(s)
- William Mouton
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Guy Oriol
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Christelle Compagnon
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Carla Saade
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Kahina Saker
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Priscille Franc
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Bouchra Mokdad
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Aurore Fleurie
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Xavier Lacoux
- R&D - Immunoassay, bioMerieux S.A., Marcy l'Etoile, France
| | - Soizic Daniel
- R&D - Immunoassay, bioMerieux S.A., Marcy l'Etoile, France
| | - Franck Berthier
- R&D - Life Sciences, bioMerieux S.A., Marcy l'Etoile, France
| | - Cécile Barnel
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Bruno Pozzetto
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
- Department of Infectious Agents and Hygiene, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Priest-en-Jarez, France
| | - Jean-Baptiste Fassier
- Department of Occupational Health and Medicine, Hospices Civils de Lyon, Lyon, France
- UMRESTTE (UMR T9405), Université Claude Bernard Lyon 1, Lyon, France
| | - Valérie Dubois
- Etablissement Français du Sang Auvergne Rhône Alpes, Laboratoire HLA de Lyon, Décines, France
| | - Sophia Djebali
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Maxence Dubois
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Thierry Walzer
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Jacqueline Marvel
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Sophie Trouillet-Assant
- CIRI - Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| |
Collapse
|
31
|
Patange AP, Desai JV, Pujari B, Marwah A, Dey A. Dynamic Assessment of Hematological Parameters as Predictive Biomarkers for Disease Severity and Prognosis in COVID-19 Patients: A Longitudinal Study. Cureus 2024; 16:e63593. [PMID: 39087175 PMCID: PMC11290381 DOI: 10.7759/cureus.63593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to substantial morbidity and mortality worldwide. Hematological abnormalities are common in COVID-19 patients and play a significant role in disease pathogenesis and prognosis. OBJECTIVE This study aimed to longitudinally monitor hematological parameters in COVID-19 patients and investigate their predictive value for disease severity and prognosis. METHODS A prospective longitudinal design was employed to enroll 121 adult patients diagnosed with COVID-19 based on positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test results. Baseline demographic and clinical data were collected, and hematological parameters, including complete blood count (CBC) indices, inflammatory markers, and coagulation profiles, were measured at predefined time points during hospitalization or outpatient visits. Follow-up assessments were conducted longitudinally to monitor the disease progression and clinical outcomes. RESULTS This study revealed dynamic changes in hematological parameters over the course of COVID-19. Hemoglobin levels showed a decrease from baseline (mean ± SD: 12.5 ± 1.8 g/dL) to the peak of illness (10.2 ± 2.0 g/dL), indicating the development of anemia during the acute phase of infection. White blood cell counts demonstrated an initial increase (8.9 ± 3.2 × 10^9/L) followed by a decline (5.4 ± 1.9 × 10^9/L) as the disease progressed, suggesting an early inflammatory response followed by immune suppression. The platelet counts fluctuated, with a decrease observed during the acute phase (190 ± 50 × 10^9/L) and subsequent recovery during convalescence (240 ± 60 × 10^9/L). Inflammatory markers, such as C-reactive protein and interleukin-6, were elevated, peaking at 120 and 150 pg/mL, respectively, indicating systemic inflammation. Coagulation profiles showed abnormalities suggestive of COVID-19-associated coagulopathy, including elevated D-dimer levels (mean ± SD: 3.5 ± 1.2 µg/mL) and prolonged prothrombin time (15.8 ± 2.5 seconds). Longitudinal analysis of hematological parameters revealed associations between disease severity and clinical outcomes, with certain abnormalities correlating with an increased risk of complications and a poor prognosis. CONCLUSION This study highlights the importance of monitoring hematological parameters in COVID-19 patients for risk stratification, prognostication, and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Aparna P Patange
- Department of Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Jabbar V Desai
- Department of Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Bhupal Pujari
- Department of Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Aparna Marwah
- Department of Management Studies, Bharati Vidyapeeth (Deemed to be University) Institute of Management and Research, New Delhi, IND
| | - Animesh Dey
- Department of Allied Health Sciences, Brainware University, Kolkota, IND
| |
Collapse
|
32
|
Kavikondala S, Haeussler K, Wang X, Spellman A, Bausch-Jurken MT, Sharma P, Amiri M, Krivelyova A, Vats S, Nassim M, Kumar N, Van de Velde N. Immunogenicity of mRNA-1273 and BNT162b2 in Immunocompromised Patients: Systematic Review and Meta-analysis Using GRADE. Infect Dis Ther 2024; 13:1419-1438. [PMID: 38802704 PMCID: PMC11219657 DOI: 10.1007/s40121-024-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Immunocompromised (IC) patients mount poor immune responses to vaccination. Higher-dose coronavirus disease 2019 (COVID-19) vaccines may offer increased immunogenicity. METHODS A pairwise meta-analysis of 98 studies reporting comparisons of mRNA-1273 (50 or 100 mcg/dose) and BNT162b2 (30 mcg/dose) in IC adults was performed. Outcomes were seroconversion, total and neutralizing antibody titers, and cellular immune responses. RESULTS mRNA-1273 was associated with a significantly higher seroconversion likelihood [relative risk, 1.11 (95% CI, 1.08, 1.14); P < 0.0001; I2 = 66.8%] and higher total antibody titers [relative increase, 50.45% (95% CI, 34.63%, 66.28%); P < 0.0001; I2 = 89.5%] versus BNT162b2. mRNA-1273 elicited higher but statistically nonsignificant relative increases in neutralizing antibody titers and cellular immune responses versus BNT162b2. CONCLUSION Higher-dose mRNA-1273 had increased immunogenicity versus BNT162b2 in IC patients.
Collapse
|
33
|
Lim SY, Kim JW, Kim JY, Kang SW, Jang CY, Chang E, Yang JS, Kim KC, Jang HC, Kim DS, Shin Y, Lee JY, Kim SH. The Association Between Antibody Responses and Prolonged Viable Severe Acute Respiratory Syndrome Coronavirus 2 Shedding in Immunocompromised Patients: A Prospective Cohort Study. J Infect Dis 2024; 229:1722-1727. [PMID: 38114088 DOI: 10.1093/infdis/jiad579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Immunocompromised patients with coronavirus disease 2019 were prospectively enrolled from March to November 2022 to understand the association between antibody responses and severe acute respiratory syndrome coronavirus 2 shedding. A total of 62 patients were analyzed, and the results indicated a faster decline in genomic and subgenomic viral RNA in patients with higher neutralizing and S1-specific immunoglobulin G (IgG) antibodies (both P < .001). Notably, high neutralizing antibody levels were associated with a significantly faster decrease in viable virus cultures (P = .04). Our observations suggest the role of neutralizing antibodies in prolonged virus shedding in immunocompromised patients, highlighting the potential benefits of enhancing their humoral immune response through vaccination or monoclonal antibody treatments.
Collapse
Affiliation(s)
- So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul
| | - Jun-Won Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Sung-Woon Kang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Choi-Young Jang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Jeong-Sun Yang
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Kyung-Chang Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Hee-Chang Jang
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Da Sol Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Younmin Shin
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Joo-Yeon Lee
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
- Office for Infection Control, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
34
|
Nachtigall I, Kwast S, Hohenstein S, König S, Dang PL, Leiner J, Giesen N, Schleenvoigt BT, Bonsignore M, Bollmann A, Kuhlen R, Jah F. Retrospective, Observational Analysis on the Impact of SARS-CoV-2 Variant Omicron in Hospitalized Immunocompromised Patients in a German Hospital Network-The VISAGE Study. Vaccines (Basel) 2024; 12:634. [PMID: 38932363 PMCID: PMC11209028 DOI: 10.3390/vaccines12060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Endemic SARS-CoV-2 infections still burden the healthcare system and represent a considerable threat to vulnerable patient cohorts, in particular immunocompromised (IC) patients. This study aimed to analyze the in-hospital outcome of IC patients with severe SARS-CoV-2 infection in Germany. METHODS This retrospective, observational study, analyzed administrative data from inpatient cases (n = 146,324) in 84 German Helios hospitals between 1 January 2022 and 31 December 2022 with regard to in-hospital outcome and health care burden in IC patients during the first 12 months of Omicron dominance. As the primary objective, in-hospital outcomes of patients with COVID-19-related severe acute respiratory infection (SARI) were analyzed by comparing patients with (n = 2037) and without IC diagnoses (n = 14,772). Secondary analyses were conducted on IC patients with (n = 2037) and without COVID-19-related SARI (n = 129,515). A severe in-hospital outcome as a composite endpoint was defined per the WHO definition if one of the following criteria were met: intensive care unit (ICU) treatment, mechanical ventilation (MV), or in-hospital death. RESULTS In total, 12% of COVID-related SARI cases were IC patients, accounting for 15% of ICU admissions, 15% of MV use, and 16% of deaths, resulting in a higher prevalence of severe in-hospital courses in IC patients developing COVID-19-related SARI compared to non-IC patients (Odds Ratio, OR = 1.4, p < 0.001), based on higher in-hospital mortality (OR = 1.4, p < 0.001), increased need for ICU treatment (OR = 1.3, p < 0.001) and mechanical ventilation (OR = 1.2, p < 0.001). Among IC patients, COVID-19-related SARI profoundly increased the risk for severe courses (OR = 4.0, p < 0.001). CONCLUSIONS Our findings highlight the vulnerability of IC patients to severe COVID-19. The persistently high prevalence of severe outcomes in these patients in the Omicron era emphasizes the necessity for continuous in-hospital risk assessment and monitoring of IC patients.
Collapse
Affiliation(s)
- Irit Nachtigall
- Department of Infectious Diseases and Infection Prevention, Helios Hospital Emil-von-Behring, 14165 Berlin, Germany;
- Medical School Berlin, Chair of Infectiology and Immunology, 14197 Berlin, Germany
| | - Stefan Kwast
- Helios Health Institute, Real World Evidence and Health Technology Assessment, 13125 Berlin, Germany; (S.H.); (S.K.); (J.L.)
| | - Sven Hohenstein
- Helios Health Institute, Real World Evidence and Health Technology Assessment, 13125 Berlin, Germany; (S.H.); (S.K.); (J.L.)
| | - Sebastian König
- Helios Health Institute, Real World Evidence and Health Technology Assessment, 13125 Berlin, Germany; (S.H.); (S.K.); (J.L.)
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, 04289 Leipzig, Germany
| | | | - Johannes Leiner
- Helios Health Institute, Real World Evidence and Health Technology Assessment, 13125 Berlin, Germany; (S.H.); (S.K.); (J.L.)
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, 04289 Leipzig, Germany
| | - Nicola Giesen
- Department of Hematology, Oncology and Palliative Care, Robert Bosch Hospital, 70376 Stuttgart, Germany
| | | | - Marzia Bonsignore
- Center for Clinical and Translational Research, Helios Universitätsklinikum Wuppertal, University of Witten/Herdecke, 42283 Wuppertal, Germany
| | - Andreas Bollmann
- Helios Health Institute, Real World Evidence and Health Technology Assessment, 13125 Berlin, Germany; (S.H.); (S.K.); (J.L.)
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, 04289 Leipzig, Germany
| | | | - Fungwe Jah
- Medical Affairs, AstraZeneca, 22763 Hamburg, Germany
| |
Collapse
|
35
|
Razonable RR. Protecting the vulnerable: addressing the COVID-19 care needs of people with compromised immunity. Front Immunol 2024; 15:1397040. [PMID: 38756784 PMCID: PMC11096526 DOI: 10.3389/fimmu.2024.1397040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
While the general population regained a certain level of normalcy with the end of the global health emergency, the risk of contracting COVID-19 with a severe outcome is still a major concern for people with compromised immunity. This paper reviews the impact of COVID-19 on people with immunocompromised status, identifies the gaps in the current management landscape, and proposes actions to address this unmet need. Observational studies have demonstrated that people with immune dysfunction have a higher risk of COVID-19-related hospitalization and death, despite vaccination, than the general population. More research is needed to define the optimal prevention and treatment strategies that are specific to people with immunocompromised status, including novel vaccination strategies, monoclonal antibodies that provide passive immunity and complement suboptimal vaccination responses, and improved and safer antiviral treatment for COVID-19. Preventive measures beyond vaccination alone are urgently needed to protect this vulnerable population.
Collapse
Affiliation(s)
- Raymund R. Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
36
|
Reemann L, Kneidinger N, Sczepanski B, Koczulla AR. COVID-19 in Lung Transplant Recipients: A Report on 10 Recent Cases. Viruses 2024; 16:709. [PMID: 38793590 PMCID: PMC11126037 DOI: 10.3390/v16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Due to immunosuppression, transplant recipients are at higher risk of infections with SARS-CoV-2 and worse clinical outcomes than immunocompetent hosts. Furthermore, lung transplant patients represent a special group among solid organ recipients, since pneumonia is the main manifestation of COVID-19. However, data on the course of disease and the changes in morbidity and mortality during the course of the pandemic are limited. In our pulmonary rehabilitation clinic, we treat patients shortly after lung transplant as well as long-term transplant patients. Over the last almost 4 years of pandemic, we witnessed several COVID-19 infections in lung transplant patients in our clinic as well as patients who acquired an infection beforehand. In this paper, we aim at retrospectively describing a series of recent COVID-19 cases in our clinic, looking at the clinical course of disease and outcomes in lung transplant patients.
Collapse
Affiliation(s)
- Lea Reemann
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany; (B.S.); (A.R.K.)
| | - Nikolaus Kneidinger
- Department of Medicine V, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Ludwig-Maximilians University (LMU) University Hospital, 81377 Munich, Germany;
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Bernd Sczepanski
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany; (B.S.); (A.R.K.)
| | - Andreas Rembert Koczulla
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany; (B.S.); (A.R.K.)
- Department of Pulmonary Rehabilitation, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University of Marburg, 35043 Marburg, Germany
- Teaching Hospital, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
37
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
38
|
Poulakou G, Royer PJ, Evgeniev N, Evanno G, Shneiker F, Marcelin AG, Vanhove B, Duvaux O, Marot S, Calvez V. Anti-SARS-CoV-2 glyco-humanized polyclonal antibody XAV-19: phase II/III randomized placebo-controlled trial shows acceleration to recovery for mild to moderate patients with COVID-19. Front Immunol 2024; 15:1330178. [PMID: 38694503 PMCID: PMC11061480 DOI: 10.3389/fimmu.2024.1330178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction XAV-19 is a glyco-humanized swine polyclonal antibody targeting SARS-CoV-2 with high neutralizing activity. The safety and clinical efficacy of XAV-19 were investigated in patients with mild to moderate COVID-19. Methods This phase II/III, multicentric, randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the safety and clinical efficacy of XAV-19 in patients with a seven-point WHO score of 2 to 4 at randomization, i.e., inpatients with COVID-19 requiring or not requiring low-flow oxygen therapy, and outpatients not requiring oxygen (EUROXAV trial, NCT04928430). Adult patients presenting in specialized or emergency units with confirmed COVID-19 and giving their consent to participate in the study were randomized to receive 150 mg of XAV-19 or placebo. The primary endpoint was the proportion of patients with aggravation within 8 days after treatment, defined as a worsening of the seven-point WHO score of at least one point between day 8 and day 1 (inclusion). The neutralization activity of XAV-19 against variants circulating during the trial was tested in parallel. Results From March 2021 to October 2022, 279 patients received either XAV-19 (N = 140) or placebo (N = 139). A slow enrollment and a low rate of events forced the termination of the premature trial. XAV-19 was well tolerated. Underpowered statistics did not allow the detection of any difference in the primary endpoint between the two groups or in stratified groups. Interestingly, analysis of the time to improvement (secondary endpoint) showed that XAV-19 significantly accelerated the recovery for patients with a WHO score of 2 or 3 (median at 7 days vs. 14 days, p = 0.0159), and even more for patients with a WHO score of 2 (4 days vs. 14 days, p = 0.0003). The neutralizing activity against Omicron and BA.2, BA.2.12.1, BA.4/5, and BQ.1.1 subvariants was shown. Discussion In this randomized placebo- controlled trial with premature termination, reduction of aggravation by XAV-19 at day 8 in patients with COVID-19 was not detectable. However, a significant reduction of the time to improvement for patients not requiring oxygen was observed. XAV-19 maintained a neutralizing activity against SARS-CoV-2 variants. Altogether, these data support a possible therapeutic interest for patients with mild to moderate COVID-19 requiring anti-SARS-CoV-2 neutralizing antibodies. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT04928430; https://www.clinicaltrialsregister.eu/about.html (EudraCT), identifier 2020-005979-12.
Collapse
Affiliation(s)
- Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolay Evgeniev
- Department of Medical Oncology, Complex Oncology Center, Russe, Bulgaria
| | | | | | - Anne-Geneviève Marcelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | | | | | - Stéphane Marot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Vincent Calvez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| |
Collapse
|
39
|
Zheng Z, Sun H, Hu X, Xuan Z, Fu M, Bai Y, Du Y, Liu B, Sui X, Zheng J, Shao C. Prevention and treatment strategies for kidney transplant recipients in the context of long-term existence of COVID-19. Front Med (Lausanne) 2024; 11:1287836. [PMID: 38633308 PMCID: PMC11021598 DOI: 10.3389/fmed.2024.1287836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The sudden outbreak of coronavirus disease 2019 (COVID-19) in early 2020 posed a massive threat to human life and caused an economic upheaval worldwide. Kidney transplant recipients (KTRs) became susceptible to infection during the COVID-19 pandemic owing to their use of immunosuppressants, resulting in increased hospitalization and mortality rates. Although the current epidemic situation is alleviated, the long-term existence of COVID-19 still seriously threatens the life and health of KTRs with low immunity. The Omicron variant, a highly infectious but less-pathogenic strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised concerns among transplant physicians regarding managing KTRs diagnosed with this variant. However, currently, there are no clear and unified guidelines for caring for KTRs infected with this variant. Therefore, we aimed to summarize the ongoing research on drugs that can treat Omicron variant infections in KTRs and explore the potential of adjusting immunotherapy strategies to enhance their responsiveness to vaccines. Herein, we discuss the situation of KTRs since the emergence of COVID-19 and focus on various prevention and treatment strategies for KTRs since the Omicron variant outbreak. We hope to assist physicians in managing KTRs in the presence of long-term COVID-19 variants.
Collapse
Affiliation(s)
- Zeyuan Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huimin Sun
- Central Laboratory, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoyan Hu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuodong Xuan
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Meiling Fu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Bai
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yifan Du
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Liu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiuyuan Sui
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Bertrand D, Laurent C, Lemoine M, Lebourg L, Hanoy M, Le Roy F, Nezam D, Pruteanu D, Grange S, De Nattes T, Lemée V, Guerrot D, Candon S. Evaluation of T Cell Response to SARS-CoV-2 in Kidney Transplant Recipients Receiving Monoclonal Antibody Prophylaxis and the Utility of a Bivalent mRNA Vaccine Booster Dose. Microorganisms 2024; 12:722. [PMID: 38674666 PMCID: PMC11052329 DOI: 10.3390/microorganisms12040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Monoclonal antibodies have been administered to kidney transplant recipients (KTRs) with a poor or non-responder status to SARS-CoV-2 vaccination. The cellular response to SARS-CoV-2 has been poorly studied in this context. We assessed the T cell response to SARS-CoV-2 in 97 patients on the day of the injection of tixagevimab/cilgavimab using an IFNγ enzyme-linked immunospot assay (ELISPOT). Among the 97 patients, 34 (35%) developed COVID-19 before the injection. Twenty-nine (85.3%) had an ELISPOT compatible with a SARS-CoV-2 infection. There was no difference between KTRs under belatacept or tacrolimus treatment. Sixty-three patients (64.9%) had no known COVID-19 prior to the ELISPOT, but nine (14.3%) had a positive ELISPOT. In 21 KTRs with a positive ELISPOT who received a booster dose of a bivalent mRNA vaccine, median antibody titers and spike-reactive T cells increased significantly in patients under tacrolimus but not belatacept. Our study emphasizes the potential usefulness of the exploration of immune cellular response to SARS-CoV-2 by ELISPOT. In KTRs with a positive ELISPOT and under CNI therapy, a booster dose of mRNA vaccine seems effective in inducing an immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Dominique Bertrand
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Charlotte Laurent
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Mathilde Lemoine
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Ludivine Lebourg
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Mélanie Hanoy
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Frank Le Roy
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Dorian Nezam
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Diana Pruteanu
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Steven Grange
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
| | - Tristan De Nattes
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
- INSERM U1234, University of Rouen Normandy, 76000 Rouen, France;
| | - Véronique Lemée
- Department of Virology, Rouen University Hospital, 76000 Rouen, France;
| | - Dominique Guerrot
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, 76000 Rouen, France; (C.L.); (M.L.); (L.L.); (M.H.); (F.L.R.); (D.N.); (D.P.); (S.G.); (T.D.N.); (D.G.)
- INSERM U1096, University of Rouen Normandy, 76000 Rouen, France
| | - Sophie Candon
- INSERM U1234, University of Rouen Normandy, 76000 Rouen, France;
- Department of Immunology and Biotherapies, Rouen University Hospital, 76000 Rouen, France
| |
Collapse
|
41
|
Destremau M, Chaussade H, Hemar V, Beguet M, Bellecave P, Blanchard E, Barret A, Laboure G, Vasco-Moynet C, Lacassin F, Morisse E, Aguilar C, Lafarge X, Lafon ME, Bonnet F, Issa N, Camou F. Convalescent plasma transfusion for immunocompromised viremic patients with COVID-19: A retrospective multicenter study. J Med Virol 2024; 96:e29603. [PMID: 38619025 DOI: 10.1002/jmv.29603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
This study aims to assess the safety, virological, and clinical outcomes of convalescent plasma transfusion (CPT) in immunocompromised patients hospitalized for coronavirus disease 2019 (COVID-19). We conducted a retrospective multicenter cohort study that included all immunosuppressed patients with COVID-19 and RNAemia from May 2020 to March 2023 treated with CPT. We included 81 patients with hematological malignancies (HM), transplants, or autoimmune diseases (69% treated with anti-CD20). Sixty patients (74%) were vaccinated, and 14 had pre-CPT serology >264 BAU/mL. The median delay between symptom onset and CPT was 23 days [13-31]. At D7 post-CPT, plasma PCR was negative in 43/64 patients (67.2%), and serology became positive in 25/30 patients (82%). Post-CPT positive serology was associated with RNAemia negativity (p < 0.001). The overall mortality rate at D28 was 26%, being higher in patients with non-B-cell HM (62%) than with B-cell HM (25%) or with no HM (11%) (p = 0.02). Patients receiving anti-CD20 without chemotherapy had the lowest mortality rate (8%). Positive RNAemia at D7 was associated with mortality at D28 in univariate analysis (HR: 3.05 [1.14-8.19]). Eight patients had adverse events, two of which were severe but transient. Our findings suggest that CPT can abolish RNAemia and ameliorate the clinical course in immunocompromised patients with COVID-19.
Collapse
Affiliation(s)
- Marjolaine Destremau
- CHU Bordeaux, Service de médecine interne et maladies infectieuses, Bordeaux, France
| | - Hélène Chaussade
- CHU Bordeaux, Service de médecine interne et maladies infectieuses, Bordeaux, France
| | - Victor Hemar
- CHU Bordeaux, Service de médecine interne et maladies infectieuses, Bordeaux, France
| | - Mathilde Beguet
- Etablissement français du sang Nouvelle Aquitaine, Bordeaux, France
| | | | | | - Amaury Barret
- CH Arcachon, Service de médecine interne, La Teste-de-Buch, France
| | | | | | - Flore Lacassin
- CH Mont-de-Marsan, Service de médecine interne, Mont-de-Marsan, France
| | | | - Claire Aguilar
- CH Périgueux, Service de maladies infectieuses, Périgueux, France
| | - Xavier Lafarge
- Etablissement français du sang Nouvelle Aquitaine, Bordeaux, France
- Université de Bordeaux, INSERM U1211 "Maladies Rares: Génétique et Métabolisme", Talence, France
| | | | - Fabrice Bonnet
- CHU Bordeaux, Service de médecine interne et maladies infectieuses, Bordeaux, France
- Université de Bordeaux, Bordeaux Population Health, INSERM U1219, Bordeaux, France
| | - Nahéma Issa
- CHU Bordeaux, Service de réanimation médicale, Bordeaux, France
| | - Fabrice Camou
- CHU Bordeaux, Service de réanimation médicale, Bordeaux, France
| |
Collapse
|
42
|
Huang L, Tong X, Cui J, Du X, Liao Y, Tan X, Ju Y, Zhong X, Zhou W, Xu X, Li Y. Recurrent and persistent fever after SARS-CoV-2 infection in patients with follicular lymphoma: A case series. Int J Infect Dis 2024; 141:106973. [PMID: 38395220 DOI: 10.1016/j.ijid.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Although persistent or recurrent COVID-19 infection is well described in some immunosuppressed patient cohort, to date, there have been no reports of this phenomenon in the context of repeatedly negative SARS-CoV-2 testing in the upper respiratory tract. We reported six patients with follicular lymphoma who developed recurrent symptomatic COVID-19 infection. They tested persistently negative for SARS-CoV-2 on pharyngeal swabs and ultimately confirmed by bronchoalveolar lavage fluid metagenomics next-generation sequencing. All six patients presented with lymphopenia and B-cell depletion, and five of them received the anti-cluster of differentiation 20 treatment in the last year. Persistent fever was the most common symptom and bilateral ground-glass opacities were the primary pattern on chest computed tomography. A relatively long course of unnecessary and ineffective antibacterial and/or antifungal treatments was administered until the definitive diagnosis. Persistent fever subsided rapidly with nirmatrelvir/ritonavir treatment. Our case highlighted that recurrent COVID-19 infection should be suspected in immunocompromised patients with persistent fever despite negative pharyngeal swabs, and urgent bronchoalveolar lavage fluid testing is necessary. Treatment with nirmatrelvir/ritonavir appeared to be very effective in these patients.
Collapse
Affiliation(s)
- Lixue Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Xunliang Tong
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Jia Cui
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoman Du
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoming Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Yang Ju
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Xuefeng Zhong
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Wei Zhou
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Xiaomao Xu
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Yanming Li
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
43
|
Zhang Z, Huang J, Wang L, Pan Z, Huang J, Jiang C, Zhang S, Li S, Hu X. COVID-19 in immunocompromised patients after hematopoietic stem cell transplantation: a pilot study. BLOOD SCIENCE 2024; 6:e00183. [PMID: 38283406 PMCID: PMC10817160 DOI: 10.1097/bs9.0000000000000183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients at early stage of immune reconstitution after hematopoietic stem cell transplantation (HSCT) are limited. In the present study, we retrospectively investigated the incidence and clinical features of SARS-CoV-2 infection in patients who underwent HSCT in 2022. Patients (allo-HSCT, n = 80; auto-HSCT, n = 37) were consecutively included in the study. The SARS-CoV-2 infection rate was 59.8%, and the median interval of HSCT to coronavirus disease 2019 (COVID-19) was 4.8 (range: 0.5-12) months. Most patients were categorized as mild (41.4%) or moderate (38.6%), and 20% as severe/critical. No deaths were attributable to COVID-19. Further analysis showed that lower circulating CD8+ T-cell counts and calcineurin inhibitor administration increased the risk of SARS-CoV-2 infection. Exposure to rituximab significantly increased the probability of severe or critical COVID-19 compared with that of mild/moderate illness (P < .001). In the multivariate analysis, rituximab use was associated with severe COVID-19. Additionally, COVID-19 had no significant effect on immune reconstitution. Furthermore, it was found that Epstein-Barr virus infection and rituximab administration possibly increase the risk of developing severe illness. Our study provides preliminary insights into the effect of SARS-CoV-2 on immune reconstitution and the outcomes of allo-HSCT recipients.
Collapse
Affiliation(s)
- Zilu Zhang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jingtao Huang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Luxiang Wang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Zengkai Pan
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jiayu Huang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Chuanhe Jiang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Su Li
- GoBroad Medical Institute of Hematology (Shanghai Center), Shanghai 201418, China
| | - Xiaoxia Hu
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Collaborative Innovation Center of Hematology, Shanghai JiaoTong University School of Medicine; Shanghai 200025, China
| |
Collapse
|
44
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586885. [PMID: 38585846 PMCID: PMC10996686 DOI: 10.1101/2024.03.27.586885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Current Address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sydnee T. Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
- Current Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M. Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F. Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
D’Abramo A, Vita S, Beccacece A, Navarra A, Pisapia R, Fusco FM, Matusali G, Girardi E, Maggi F, Goletti D, Nicastri E. B-cell-depleted patients with persistent SARS-CoV-2 infection: combination therapy or monotherapy? A real-world experience. Front Med (Lausanne) 2024; 11:1344267. [PMID: 38487021 PMCID: PMC10937561 DOI: 10.3389/fmed.2024.1344267] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The aim of the study was to describe a cohort of B-cell-depleted immunocompromised (IC) patients with prolonged or relapsing COVID-19 treated with monotherapy or combination therapy. Methods This is a multicenter observational retrospective study conducted on IC patients consecutively hospitalized with a prolonged or relapsing SARS-CoV-2 infection from November 2020 to January 2023. IC COVID-19 subjects were stratified according to the monotherapy or combination anti-SARS-CoV-2 therapy received. Results Eighty-eight patients were enrolled, 19 under monotherapy and 69 under combination therapy. The study population had a history of immunosuppression (median of 2 B-cells/mm3, IQR 1-24 cells), and residual hypogammaglobulinemia was observed in 55 patients. A reduced length of hospitalization and time to negative SARS-CoV-2 molecular nasopharyngeal swab (NPS) in the combination versus monotherapy group was observed. In the univariable and multivariable analyses, the percentage change in the rate of days to NPS negativity showed a significant reduction in patients receiving combination therapy compared to those receiving monotherapy. Conclusion In IC persistent COVID-19 patients, it is essential to explore new therapeutic strategies such as combination multi-target therapy (antiviral or double antiviral plus antibody-based therapies) to avoid persistent viral shedding and/or severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra D’Abramo
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Serena Vita
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Alessia Beccacece
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Assunta Navarra
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Raffaella Pisapia
- Infectious Diseases Unit, "D. Cotugno" Hospital, AORN dei Colli, Naples, Italy
| | | | - Giulia Matusali
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
46
|
Zuckerman NS, Bucris E, Keidar-Friedman D, Amsalem M, Brosh-Nissimov T. Nirmatrelvir Resistance-de Novo E166V/L50V Mutations in an Immunocompromised Patient Treated With Prolonged Nirmatrelvir/Ritonavir Monotherapy Leading to Clinical and Virological Treatment Failure-a Case Report. Clin Infect Dis 2024; 78:352-355. [PMID: 37596935 DOI: 10.1093/cid/ciad494] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Resistance of SARS-CoV-2 to antivirals was shown to develop in immunocompromised individuals receiving remdesivir. We describe an immunocompromised patient who was treated with repeated and prolonged courses of nirmatrelvir and developed de-novo E166V/L50F mutations in the Mpro region. These mutations were associated with clinical and virological treatment failure.
Collapse
Affiliation(s)
- Neta S Zuckerman
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel
| | - Efrat Bucris
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel
| | - Danielle Keidar-Friedman
- Microbiology Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- Emerging Infectious Diseases Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Muriel Amsalem
- Microbiology Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Tal Brosh-Nissimov
- Infectious Diseases Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| |
Collapse
|
47
|
Huang W, Liu P, Yan B, Zheng F, Yang Y, Xi X, Xia L, Shen Y. Impact of Tuberculosis on Disease Severity and Viral Shedding Duration in COVID-19 Patients. Viruses 2024; 16:260. [PMID: 38400036 PMCID: PMC10893069 DOI: 10.3390/v16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Accumulating evidence show a potential association between tuberculosis and COVID-19 disease severity. To further clarify the impact of tuberculosis on COVID-19 disease severity and viral shedding duration, a retrospective study was conducted on 223 COVID-19 patients, including 34 with tuberculosis and 189 without tuberculosis. Clinical information and viral load shedding time were collected. A higher percentage of severe/critical COVID-19 diagnosis and deaths was observed in patients with tuberculosis than in those without tuberculosis (8.8% vs. 3.2%, p = 0.142; 2.9% vs. 1.1%, p = 0.393), and COVID-19 patients with tuberculosis had longer viral shedding than those without tuberculosis (median: 15.0 days vs. 11.0 days; p = 0.0001). Having tuberculosis (HR = 2.21, 95% CI 1.37-3.00; p = 0.000), being of elderly age (HR = 1.02, 95% CI 1.01-1.03; p = 0.001) and being diagnosed with severe or critical COVID-19 (HR = 5.63, 95% CI 2.10-15.05; p = 0.001) were independent factors associated with prolonged virus time of SARS-CoV-2. COVID-19 patients with tuberculosis receiving anti-tuberculosis therapy time (ATT) for <2 months had a significantly longer virus shedding duration than those receiving ATT for ≥ 4 months (17.5 vs. 11.5 days, p = 0.012). Our results demonstrated that COVID-19 patients with tuberculosis tend to have more severe disease and a worse prognosis, and tuberculosis prolonged viral shedding, highlighting special attention and/or care required for COVID-19 patients with tuberculosis receiving ATT for <2 months.
Collapse
Affiliation(s)
- Wei Huang
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ping Liu
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Fang Zheng
- Department of Medical Affairs, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yang Yang
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiuhong Xi
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lu Xia
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yinzhong Shen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
48
|
Brosh-Nissimov T, Ma'aravi N, Leshin-Carmel D, Edel Y, Ben Barouch S, Segman Y, Cahan A, Barenboim E. Combination treatment of persistent COVID-19 in immunocompromised patients with remdesivir, nirmaltrevir/ritonavir and tixegavimab/cilgavimab. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:189-194. [PMID: 37805361 DOI: 10.1016/j.jmii.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 10/09/2023]
Abstract
We present a retrospective study on the treatment outcomes of severely immunocompromised patients with persistent COVID-19. The study analyzed data from 14 patients who received a combination of tixegavimab/cilgavimab and antiviral medications. Response was evaluated based on symptom improvement, PCR cycle-threshold values, and C-reactive protein levels. Eleven patients achieved complete clinical and virological resolution, while three showed partial responses. The study suggests a potential association between non-response and tixegavimab/cilgavimab neutralization. The findings underscore the need for tailored treatment approaches and further research on optimal strategies for managing persistent COVID-19, as well as the development of antivirals and variant-specific monoclonal antibodies.
Collapse
Affiliation(s)
- Tal Brosh-Nissimov
- Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel.
| | - Nir Ma'aravi
- Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | | | - Yonatan Edel
- Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| | - Sharon Ben Barouch
- Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| | - Yafit Segman
- Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| | - Amos Cahan
- Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Erez Barenboim
- Samson Assuta Ashdod University Hospital, Ashdod, Israel
| |
Collapse
|
49
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
50
|
Marcotte H, Cao Y, Zuo F, Simonelli L, Sammartino JC, Pedotti M, Sun R, Cassaniti I, Hagbom M, Piralla A, Yang J, Du L, Percivalle E, Bertoglio F, Schubert M, Abolhassani H, Sherina N, Guerra C, Borte S, Rezaei N, Kumagai-Braesch M, Xue Y, Su C, Yan Q, He P, Grönwall C, Klareskog L, Calzolai L, Cavalli A, Wang Q, Robbiani DF, Hust M, Shi Z, Feng L, Svensson L, Chen L, Bao L, Baldanti F, Xiao J, Qin C, Hammarström L, Yang X, Varani L, Xie XS, Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc Natl Acad Sci U S A 2024; 121:e2315354120. [PMID: 38194459 PMCID: PMC10801922 DOI: 10.1073/pnas.2315354120] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Yunlong Cao
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Maren Schubert
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Natalia Sherina
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig04129, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig04129, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran14194, Iran
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm14186, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
- Rheumatology Unit, Karolinska University Hospital, Stockholm17176, Sweden
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra21027, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 200032 Shanghai200032, People’s Republic of China
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Michael Hust
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Zhengli Shi
- State Key laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei430071, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm17177, Sweden
| | - Ling Chen
- Guangzhou Laboratory, Guangzhou510005, People’s Republic of China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia27100, Italy
| | - Junyu Xiao
- Changping Laboratory, Beijing102206, People’s Republic of China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Xiaoliang Sunney Xie
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| |
Collapse
|