1
|
Feng X, Luo X, Niu X, Wang S, Feng M, Jiang X, Chen W, Bai R. Discovery of small molecule ACC inhibitors: Potential treatment for excessive sebum secretion. Bioorg Chem 2025; 160:108438. [PMID: 40203719 DOI: 10.1016/j.bioorg.2025.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Overproduction of sebum can lead to various skin disorders, including acne and seborrheic dermatitis. Acetyl-CoA carboxylase is a key enzyme in the de novo synthesis of sebum. Consequently, inhibiting acetyl-CoA carboxylase is a feasible strategy to reduce sebum production, thereby providing therapeutic benefits for associated skin conditions. This review described the de novo synthesis of sebum and discusseed the various isoforms, functions and catalytic mechanisms of acetyl-CoA carboxylase. Additionally, it offered a comprehensive overview of the research advancements and structural-activity relationships of small molecule inhibitors of acetyl-CoA carboxylase over the past 15 years.
Collapse
Affiliation(s)
- Xilong Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaotian Niu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Shan Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Meiling Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
2
|
Kapitány A, Soltész L, Stercel V, Szabó L, Somogyi O, Janka EA, Nagy V, Póliska S, Gáspár K, Hendrik Z, Törőcsik D, Dajnoki Z, Szegedi A. Chronological maturation of the skin immune barrier is topographically different. Mucosal Immunol 2025; 18:730-741. [PMID: 40158778 DOI: 10.1016/j.mucimm.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Adult skin varies across regions, with differences in chemical, physical, microbiota, and immune barriers. However, data on topographical immune differences in other age groups are limited. This study aimed to explore the chronological maturation of the immune barrier in various skin regions. A TaqMan low-density array and immunohistochemical and immunofluorescence detection of various immune cells and mediators in sebaceous gland-rich (SGR) and gland-poor (GP) healthy skin were performed in children, adolescents, and adults. The maturation of SGR skin showed a general upward trend in the mRNA levels of most Th17-related molecules with a significant increase in IL-1B from childhood to adulthood, but with only a slight elevation between childhood and adolescence. In addition, T cell, Treg, dendritic cell (DC) counts, as well as the levels of several Th17-related proteins (IL-17, IL-10, IL-23, CCL20, S100A8, sfTSLP, LCN2), increased significantly with age. In GP skin, AHR mRNA levels decreased, while Th17-related protein levels increased, although only moderately. When comparing the two regions, SGR and GP skin were similar in childhood, with differences emerging in adolescence and becoming significant in adulthood, particularly in the IL-17 pathway, mainly produced by Th17 cells. Our results show a similarly directed maturation process in GP and SGR regions, with more pronounced development of the SGR skin immune barrier (with more immune cell infiltration and cytokine production) during and after the adolescence. This is likely to be related to the significant changes in the chemical and microbiota barriers of the SGR skin during adolescence, and may explain the high incidence of inflammatory skin diseases on the SGR skin of adolescents, highlighting the need for targeted skin care in this region.
Collapse
Affiliation(s)
- Anikó Kapitány
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; HUN-REN-DE Allergology Research Group, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Lilla Soltész
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Vivien Stercel
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Lilla Szabó
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Orsolya Somogyi
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Eszter Anna Janka
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; HUN-REN-DE Allergology Research Group, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Viktória Nagy
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Krisztián Gáspár
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; HUN-REN-DE Allergology Research Group, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Zoltán Hendrik
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Dániel Törőcsik
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; HUN-REN-DE Allergology Research Group, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Zsolt Dajnoki
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; HUN-REN-DE Allergology Research Group, 98. Nagyerdei Krt. Debrecen H-4032, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Center of Excellence, Faculty of Medicine, University of Debrecen, 98. Nagyerdei Krt. Debrecen H-4032, Hungary; HUN-REN-DE Allergology Research Group, 98. Nagyerdei Krt. Debrecen H-4032, Hungary.
| |
Collapse
|
3
|
Zhang F, Wang T, Wang W, Lv Y, Qu Y, Liu D, Sun X, Kong X, Wang C, Shi J. ZnO colludes with C. acnes in healing delay and Scar hyperplasia by barrier destruction. J Nanobiotechnology 2025; 23:404. [PMID: 40450290 DOI: 10.1186/s12951-025-03414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 06/03/2025] Open
Abstract
As an important component of sunscreen products for sensitive skin, the potential damage mechanism of ZnO nanoparticles on skin surface with barrier structure or function defect caused by Cutibacterium acnes (C. acnes) has not been elucidated, which poses a serious challenge for reasonable selection of sunscreen products for acne-infected skin. In this work, we demonstrated for the first time that C. acnes induced significant changes in the membrane permeability and intracellular pH of fibroblasts through lipase up-regulation and lipid peroxidation, promoting endocytosis and ionization of ZnO NPs. High amounts of Zn2 + further delayed acne wound healing and aggravated scar hyperplasia by intervening matrix metalloproteinase-9 (MMP-9) and TGF-β1/Smad pathway. MMP9 was confirmed to be the key target of ZnO in delaying acne wound healing by the wound regulatory effects of MMP9 agonist and MMP9 inhibitor. In summary, this work clarified the interaction mechanism between ZnO NPs and acne skins, providing guideline for the application of physical sunscreens for special skins.
Collapse
Affiliation(s)
- Fenglan Zhang
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266100, China
| | - Tianyi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266100, China
| | - Wenqiao Wang
- Department of Medicine, Qingdao University, Qingdao, 266071, China
| | - Yaqian Lv
- School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingshan Qu
- School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Danping Liu
- School of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyue Sun
- Talent Beauty Biotech (Qingdao) Co., Ltd, 330 Songling Road, Laoshan District, Qingdao, 266061, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, China.
| | - Changyuan Wang
- Department of Dermatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| | - Jinsheng Shi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
4
|
Wu X, Zhang Y, Yi F, Geng Z, Guo M, Ling X, Li J, Li L. Anti-inflammatory and barrier repair mechanisms of active components in Daemonorops draco Bl. for UVB-induced skin damage. Sci Rep 2025; 15:17124. [PMID: 40382359 DOI: 10.1038/s41598-025-01289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Daemonorops draco Bl. extract and its active ingredients can remove blood stasis and promote muscle and wound healing and are widely used in skin health and other fields. Modern pharmacological studies have demonstrated that this extract exerts excellent anti-inflammatory effects beneficial for skin barrier repair. However, the mechanism of action and monomeric components of D. draco remain unclear. Seven active monomers (XJ-1 ~ XJ-7) were extracted and purified from D. draco. The successful construction of the HaCaT inflammation model was achieved through the detection of IL-1β and TNF-α expressions in UVB-irradiated HaCaT cells. Based on this cellular model, (2 S)-5-methoxy-6-methylflavan-7-ol (XJ-2) was determined to be the best-screened monomer. The effects of XJ-2 on the production of reactive oxygen species (ROS) and Ca2+ in HaCaT cells were investigated using fluorescent probes and flow cytometry, respectively. The impact of XJ-2 on the expression of crucial proteins within the NF-κB pathway was examined via immunofluorescence and western blotting. The expression levels of downstream inflammatory factors, namely IL-1β and TNF-α, were detected through PCR. The effects of XJ-2 on the expression of skin barrier-related factors filaggrin (FLG), aquaporin 3 (AQP-3), and claudin1 (CLDN1) were investigated using PCR, immunofluorescence, and western blotting. Based on these findings, we comprehensively examined the mechanisms underlying the anti-inflammatory and barrier repair effects of XJ-2. XJ-2 primarily protected the internal structure and function of the cells by inhibiting the mass production of ROS and Ca2+ inflow. XJ-2 exerts anti-inflammatory effects by regulating the key proteins of the NF-κB/IKKα pathway and reducing the expression of inflammatory factors. XJ-2 repairs skin barrier damage by regulating multiple factors. Compound XJ-2 from D. draco exerts excellent anti-inflammatory and barrier repair effects, possesses great potential for the treatment of skin diseases, and can be used as a dermatological drug to repair skin barrier damage.
Collapse
Affiliation(s)
- Xingyi Wu
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ying Zhang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Fan Yi
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zaijun Geng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Miaomiao Guo
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiao Ling
- Beijing Lan Divine Technology Co. LTD, Culture Building, No. A59, Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Jun Li
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Li Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
5
|
Tyara Simbara A, Faridatul Habibah F, Hertadi R. Rhamnolipid-Modified PHB-Ectoine Nanoparticles for Multifunctional Skin Protection Against UVB, Irritation, and Bacteria. ACS OMEGA 2025; 10:12200-12213. [PMID: 40191376 PMCID: PMC11966311 DOI: 10.1021/acsomega.4c10583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Rhamnolipid, poly(R)-3-hydroxybutyrate (PHB), and ectoine are sustainable compounds produced by specific bacteria known for their protective benefits, including promoting skin health in applications, such as facial wash, sunscreens, and moisturizers. These compounds have been extensively studied due to their unique physicochemical properties and biocompatibility. Leveraging these beneficial properties, this study aimed to create a multifunctional protective formulation by synthesizing nanoparticles from PHB and ectoine, which are acknowledged for their anti-ultraviolet B (UVB) and anti-irritation properties. The covalent bonding of PHB and ectoine was achieved using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and the nanoparticles were produced through centrifugation. The synthesized nanoparticle (PHB-ectoine NPs) was physicochemically characterized and tested for anti-irritation and anti-UVB properties in vitro. The characterization revealed a homogeneous spherical shape with a distinct layered structure, primarily composed of carbon and oxygen. The PHB-ectoine NPs measured 527 ± 228 nm in size, had a zeta potential of -61.47 ± 0.64 mV, and exhibited notably higher anti-irritant and anti-UVB activities compared to PHB alone, by over 10 and 4 times, respectively. Furthermore, the addition of a rhamnolipid solution as a dispersant provided the nanofluid with antibacterial properties againstStaphylococcus aureus. These results indicate that the rhamnolipid-PHB-ectoine nanoformulation shows significant potential as a multifunctional skin protective agent with anti-irritation, anti-UVB, and antibacterial capabilities.
Collapse
Affiliation(s)
- Alma Tyara Simbara
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Fera Faridatul Habibah
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| |
Collapse
|
6
|
Wang Q, Chen S, Ma S, Jiao Y, Hong H, Wang S, Huang W, An Q, Song Y, Dang X, Zhang G, Ding H, Wang Y, Xia Z, Wang L, Lyu Y. Antimicrobial Resistance and Risk Factors of Canine Bacterial Skin Infections. Pathogens 2025; 14:309. [PMID: 40333053 PMCID: PMC12030357 DOI: 10.3390/pathogens14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Bacterial skin infections are common in dogs and often secondary to underlying conditions like allergies or ectoparasite infestations. Untreated primary causes can lead to recurrent infections and an increased risk of antimicrobial resistance, including methicillin-resistant Staphylococcus pseudintermedius (MRSP), posing a substantial clinical challenge. Here, we analyzed 896 canine bacterial skin infection samples collected from the China Agricultural University Veterinary Teaching Hospital between 2018 and 2022. Species identification was confirmed by MALDI-TOF and 16S rRNA gene sequencing. Of the 896 samples, 722 (80.6%) yielded 1123 bacterial isolates, with Staphylococcus pseudintermedius (n = 421), Pseudomonas aeruginosa (n = 108), and Escherichia coli (n = 73) being the most prevalent. Antimicrobial susceptibility was evaluated using the broth microdilution method according to CLSI guidelines. Notably, resistance to florfenicol in S. pseudintermedius increased from 9.1% in 2018 to 20.0% in 2022, while resistance to ceftriaxone in E. coli rose from 30.0% to 72.7% over the same period. Among 305 reviewed cases, pyoderma (47.5%, 145/305) was the most common infection type, predominantly associated with S. pseudintermedius (n = 114), followed by otitis (25.6%, 78/305) primarily linked to P. aeruginosa (n = 24). Mixed infections occurred in 35.4% (108/305) of cases, with S. pseudintermedius as the most frequently isolated species in both single and mixed infections. The multivariable logistic regression model revealed that MRSP infections were correlated with a history of invasion (p <0.001) and prolonged disease duration (six months to less than one year: p = 0.005; one year or longer: p < 0.001). Core-genome SNP analysis showed that eight dogs were infected with identical S. pseudintermedius strains, in which one dog exhibited a shift from gentamicin susceptibility to resistance within nine days. Conversely, three dogs were infected by distinct S. pseudintermedius strains at two time points. To effectively manage MRSP infections and chronic skin infections in dogs, rigorous disinfection protocols in veterinary hospitals, control of disease duration, prevention of recurrent infections, and continuous monitoring of antibiotic resistance patterns are essential.
Collapse
Affiliation(s)
- Qian Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
| | - Siyu Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.M.); (X.D.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Afairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Jiao
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| | - Huiyi Hong
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| | - Siying Wang
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| | - Wei Huang
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| | - Qi An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
| | - Yu Song
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
| | - Xukun Dang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.M.); (X.D.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Afairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gege Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
| | - Haiqin Ding
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.M.); (X.D.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Afairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.M.); (X.D.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Afairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanli Lyu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Q.W.); (S.C.); (Q.A.); (Y.S.); (G.Z.); (H.D.); (Z.X.)
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing 100193, China; (Y.J.); (H.H.); (S.W.); (W.H.)
| |
Collapse
|
7
|
Zhang H, Xia M, Li H, Zeng X, Jia H, Zhang W, Zhou J. Implication of Immunobiological Function of Melanocytes in Dermatology. Clin Rev Allergy Immunol 2025; 68:30. [PMID: 40097884 DOI: 10.1007/s12016-025-09040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Melanocytes are essential for regulating pigmentation and providing photoprotection in human skin. Originating from neural crest cells, these cells migrate to the basal layer of the epidermis and hair follicles during embryogenesis. Melanosomes, the specialized, membrane-bound organelles are essential for melanin synthesis. Beyond their role in pigmentation, melanocytes exhibit complex immune functions, expressing a variety of immune-related markers and receptors, such as pattern recognition receptors (PRRs), major histocompatibility complex class II (MHC-II) molecules, CD40, intercellular adhesion molecule 1 (ICAM-1), and programmed death-ligand 1 (PD-L1). These receptors allow melanocytes to detect environmental signals and engage in the innate immune response. Furthermore, melanocytes release various immunomodulatory substances, including proinflammatory cytokines, chemokines, and damage-associated molecular patterns (DAMPs), contributing to immune regulation. The immune functions of melanocytes are significantly influenced by external factors such as ultraviolet radiation (UVR), the microbiome, and oxidative stress. In different skin diseases, these immune functions may vary. For example, vitiligo, a common hypopigmentary disorder, is primarily driven by an autoimmune response targeting melanocytes, giving rise to depigmentation and the appearance of white patches. In contrast, melanoma, a form of skin cancer that arises from melanocytes, is closely linked to UV exposure. This review highlights the diverse immunobiological functions of melanocytes and their implications in dermatology.
Collapse
Affiliation(s)
- Hejuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Maomei Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Xuesi Zeng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Hong Jia
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Hyun J, Lee SY, An J, Lee YB, Bhang SH. Strengthening the cellular function of dermal fibroblasts and dermal papilla cells using nanovesicles extracted from stem cells using blue light-based photobiomodulation technology. Biomater Sci 2025; 13:1209-1221. [PMID: 39902823 DOI: 10.1039/d4bm01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Human dermal fibroblasts (hDFs) play a critical role in skin health by producing extracellular matrix (ECM) components essential for structural stability, while hair follicle dermal papilla cells (HFDPCs) are key to hair follicle growth and regeneration. However, factors such as UV radiation, oxidative stress, and aging impair the functions of hDFs and HFDPCs, leading to decrement in ECM production and skin maintenance and hair loss conditions like alopecia. Recent advances in nanovesicles (NVs) derived from human adipose-derived stem cells (hADSCs) have shown an innovative way in the regenerative medicine field, particularly with promise for enhancing the functionality of diverse cell types. NVs, filled with diverse bioactive molecules, are non-immunogenic, biologically stable, and capable of promoting cellular activities. To further enhance the therapeutic potential of NVs, photobiomodulation (PBM) using blue light has emerged as a promising application. Optimized blue light irradiation can induce moderate levels of reactive oxygen species production in hADSCs, activating signaling pathways that upregulate angiogenic and regenerative markers in hADSCs. In this study, blue light-irradiated NVs demonstrated superior efficacy in promoting hDF proliferation, ECM synthesis, and the functionality of HFDPCs, resulting in enhanced skin maintenance and hair follicle regeneration. This approach presents a safer and more efficient way for treating skin and hair disorders, highlighting the potential use of blue light-irradiated NVs as an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiseon An
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - You Bin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Li M, Wang J, Liu Q, Liu Y, Mi W, Li W, Li J. Beyond the dichotomy: understanding the overlap between atopic dermatitis and psoriasis. Front Immunol 2025; 16:1541776. [PMID: 39995673 PMCID: PMC11847814 DOI: 10.3389/fimmu.2025.1541776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Atopic dermatitis and psoriasis have traditionally been considered distinct inflammatory skin diseases with unique pathogenic mechanisms. However, accumulating evidence suggests significant overlap in their immunological pathways, metabolic features, and microbiome characteristics, challenging this conventional dichotomy. This review comprehensively examines the complex relationship between psoriasis and atopic dermatitis, with particular emphasis on their shared and distinct pathogenic mechanisms. We analyze the immunological networks, metabolic pathways, and microbial factors contributing to their development and progression. The review expands upon the disease spectrum hypothesis and discusses the nomenclature for conditions exhibiting features of both diseases. We critically evaluate the clinical and histopathological characteristics of concomitant psoriasis and atopic dermatitis, highlighting recent advances in molecular diagnostics for accurate disease differentiation. Importantly, we propose standardized diagnostic criteria for psoriasis dermatitis and examine current therapeutic strategies for managing overlapping conditions. Recent developments in targeted therapies and their implications for treatment selection are thoroughly discussed. By synthesizing current evidence and identifying knowledge gaps, this review provides insights into the complex interplay between psoriasis and atopic dermatitis, aiming to guide clinical decision-making and future research directions in this evolving field.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangyi Wang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Liu
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Youqing Liu
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyao Mi
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyi Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Jiao S, Deng L, Niu M, Yang J. Restorative effects of camellia oil on the skin-barrier function in a model of DNCB-induced atopic dermatitis. Eur J Histochem 2025; 69:4147. [PMID: 39836107 PMCID: PMC11788714 DOI: 10.4081/ejh.2025.4147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
This study aimed to evaluate the therapeutic efficacy of camellia oil on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice, as well as its effect on the expression of skin-barrier-related proteins. A mouse model of AD was created via topical application of DNCB; subsequently, the animals were randomly divided into four groups: the blank control (Control), model (Model), moisturizing cream (Moisturizer), and camellia oil (Camellia) groups. The Camellia group received camellia oil, whereas the Moisturizer group was treated with moisturizing cream, as a positive control. Skin lesions, ear and back tissue morphology, and the serum levels of IgE, IL-4, and IFN-γ were analyzed. Compared with the Control group, AD mice exhibited erythema, papules, dryness, peeling, and significantly higher serum IgE and IL-4 levels. Compared with the Model group, treatment with camellia oil and moisturizing cream considerably reduced skin inflammation, ear thickness, and scratching frequency. A histopathological analysis revealed that camellia oil reduced inflammatory-cell infiltration and edema in the AD-affected skin. Furthermore, camellia oil upregulated filaggrin (FLG), thus aiding in skin-barrier repair. These findings suggest that camellia oil significantly improves AD symptoms, enhances FLG expression, and restores the damaged skin barrier in AD mouse models.
Collapse
Affiliation(s)
| | - Lijun Deng
- Department of Dermatology, Wuzhong People’s Hospital, Suzhou, Jiangsu
| | - Mu Niu
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Yang
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
11
|
Uberoi A, Murga-Garrido SM, Bhanap P, Campbell AE, Knight SAB, Wei M, Chan A, Senay T, Tegegne S, White EK, Sutter CH, Mesaros C, Sutter TR, Grice EA. Commensal-derived tryptophan metabolites fortify the skin barrier: Insights from a 50-species gnotobiotic model of human skin microbiome. Cell Chem Biol 2025; 32:111-125.e6. [PMID: 39824155 PMCID: PMC11753614 DOI: 10.1016/j.chembiol.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood. Tryptophan metabolites are AHR ligands that can be products of microbial metabolism. To identify microbially regulated tryptophan metabolites in vivo, we established a gnotobiotic model colonized with fifty human skin commensals and performed targeted mass spectrometry on murine skin. Indole-related metabolites were enriched in colonized skin compared to germ-free skin. In reconstructed human epidermis and in murine models of atopic-like barrier damage, these metabolites improved barrier repair and function individually and as a cocktail. These results provide a framework for the identification of microbial metabolites that mediate specific host functions, which can guide the development of microbe-based therapies for skin disorders.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon A B Knight
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anya Chan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor Senay
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Tegegne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas R Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Chen YS, Chien AS, Li CC, Lin CC, Wu RJ. Effects of Commonly Used Vegetable Oils on Skin Barrier Function and Staphylococcus aureus Biofilm. J Oleo Sci 2025; 74:97-106. [PMID: 39756997 DOI: 10.5650/jos.ess24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Adding of vegetable oils to skincare products or the use of plant oils for oil care is a current trend. Therefore, the safety and functionality of vegetable oils are of great concern to consumers and cosmetics manufacturers. This study focused on three types of vegetable oils: sunflower oil (SO), andiroba oil (AO) and hydrogenated olive oil (HOO). We conducted a comprehensive evaluation of the oils, which encompassed their ability to protect mouse skin keratinocytes (XB-2) and mouse fibroblasts (NIH 3T3) from damage caused by the surfactant sodium lauryl sulfate (SLS), their influence on the levels of filaggrin and collagen, their potential to aid in wound healing, and their effectiveness in anti-Staphylococcus aureus biofilm formation. The results showed that SO, AO and HOO at a concentration of 1.5 × 10-4 % (v/v) have the ability to defend against SLS-induced cell damage, increase wound healing ability and the filaggrin and collagen content to XB-2 or NIH 3T3 cells. SO, AO and HOO at a concentration of 3.75 × 10-3 % also have the anti-biofilm ability. Among the oils, AO can inhibit S. aureus biofilm composed of either polysaccharides or proteins. Therefore, the tested vegetable oils and can be applied to the cosmetics field as ingredients to repair damaged skin and preserve skin barrier stability.
Collapse
Affiliation(s)
- Yi-Shyan Chen
- Department of Cosmetic Science, Providence University
| | - An-Sin Chien
- Department of Cosmetic Science, Providence University
| | - Chih-Ching Li
- Department of Applied Chemistry, Providence University
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital
| | | | - Ren-Jang Wu
- Department of Applied Chemistry, Providence University
| |
Collapse
|
13
|
Lee MT, Tan X, Le HH, Besler K, Thompson S, Harris-Tryon T, Johnson EL. Gut bacterial sphingolipid production modulates dysregulated skin lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.629238. [PMID: 39803564 PMCID: PMC11722302 DOI: 10.1101/2024.12.29.629238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood. Sphingolipid synthesis by prominent gut microbes has been shown to affect intestinal, hepatic and immune functions with the potential for sphingolipid-producing bacteria to affect skin biology through altering skin sphingolipid levels. To address this question, we used bioorthogonal chemistry to label lipids from the sphingolipid-producing bacteria Bacteroides thetaiotaomicron and trace these lipids to the skin epidermis. Exposing mice to B. thetaiotaomicron strains mutant in the ability to produce sphingolipids resulted in significantly lower transfer of gut microbiome-derived lipids to the skin, while also altering skin biology and altering expression of skin barrier genes. Measurement of skin ceramide levels, a class of sphingolipids involved in skin barrier function, determined that skin sphingolipid levels were altered in the presence of gut sphingolipid-producing bacteria. Together this work demonstrates that gut bacterial lipids can transfer to the skin and provides a compelling avenue for modulating sphingolipid-dominant compartments of the skin using sphingolipid-producing bacteria of the gut microbiome.
Collapse
Affiliation(s)
- Min-Ting Lee
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiaoqing Tan
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Henry H. Le
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kevin Besler
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Sharon Thompson
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth L. Johnson
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Barthe M, Clerbaux LA, Thénot JP, Braud VM, Osman-Ponchet H. Systematic characterization of the barrier function of diverse ex vivo models of damaged human skin. Front Med (Lausanne) 2024; 11:1481645. [PMID: 39717176 PMCID: PMC11664247 DOI: 10.3389/fmed.2024.1481645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Background The skin barrier plays a crucial role in protecting our body against external agents. Disruption of this barrier's function leads to increased susceptibility to infections and dermatological diseases. Damaged skin can be due to the use of detergents, sunburn or excessive scratching. In the context of the COVID-19 pandemic the recommended hygiene measures to prevent the spread of SARS-CoV-2, such as wearing masks, frequent handwashing, and the use of sanitizers, can also potentially alter the skin barrier. Objectives The purpose of the study was to characterize the barrier function of ex vivo models of damaged human skin. Methods Skin barrier damage was induced through different chemical and mechanical treatments, representative of the potential factors damaging human skin. The skin barrier function was evaluated in terms of permeability, dermal absorption capacity, stratum corneum thickness and gene expression of barrier markers. As inflammation is linked to skin barrier integrity, inflammatory markers were also analyzed. Results and discussion The different treatments applied to ex vivo skin models allow the simulation of diverse degrees of skin damage, making these models valuable for assessing the efficacy of topical products targeted at skin repair and for studying the effects of compromised skin barrier on viral penetration.
Collapse
Affiliation(s)
- Manon Barthe
- Laboratoires PKDERM, Grasse, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, INSERM U1323, Valbonne, France
| | - Laure-Alix Clerbaux
- Institut de Recherche Expérimentale et Clinique, UC Louvain, Brussels, Belgium
| | | | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, INSERM U1323, Valbonne, France
| | | |
Collapse
|
15
|
Jia YY, Atwood SX. Diversity of human skin three-dimensional organotypic cultures. Curr Opin Genet Dev 2024; 89:102275. [PMID: 39536613 DOI: 10.1016/j.gde.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recently, significant strides have been made in the development of high-fidelity skin organoids, encompassing techniques such as 3D bioprinting, skin-on-a-chip systems, and models derived from pluripotent stem cells (PSCs), replicating appendage structures and diverse skin cell types. Despite the emergence of these state-of-the-art skin engineering models, human organotypic cultures (OTCs), initially proposed in the 1970s, continue to reign as the predominant in vitro cultured three-dimensional skin model in the field of tissue engineering. This enduring prevalence is owed to their cost-effectiveness, straight forward setup, time efficiency, and faithful representation of native human skin. In this review, we systematically delineate recent advances in skin OTC models, aiming to inform future efforts to enhance in vitro skin model fidelity and reproducibility.
Collapse
Affiliation(s)
- Yunlong Y Jia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Dermatology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
17
|
Dajnoki Z, Kapitány A, Eyerich K, Eyerich S, Törőcsik D, Szegedi A. Topographical variations in the skin barrier and their role in disease pathogenesis. J Eur Acad Dermatol Venereol 2024. [PMID: 39607016 DOI: 10.1111/jdv.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
The skin barrier can be divided into at least four functional units: chemical, microbial, physical and immunological barriers. The chemical and microbial barriers have previously been shown to exhibit different characteristics in topographically distinct skin regions. There is increasing evidence that the physical and immunological barriers also show marked variability in different areas of the skin. Here, we review recent data on the topographical variations of skin barrier components, the contribution of these variations to the homeostatic function of the skin and their impact on the pathogenesis of specific immune-mediated skin diseases (such as atopic dermatitis and papulopustular rosacea). Recognition of these topographical barrier differences will improve our understanding of skin homeostasis and disease pathogenesis and provide a basis for body site-specific targeted therapies.
Collapse
Affiliation(s)
- Z Dajnoki
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - A Kapitány
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - K Eyerich
- Department of Dermatology and Venerology, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - D Törőcsik
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - A Szegedi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| |
Collapse
|
18
|
Zhu J, Zhang K, Zhang Y, Zhou C, Cui Z, Li W, Wang Y, Qin J. Antioxidant hydrogel from poly(aspartic acid) and carboxymethylcellulose with quercetin loading as burn wound dressing. Int J Biol Macromol 2024; 282:137323. [PMID: 39521215 DOI: 10.1016/j.ijbiomac.2024.137323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Susceptibility to infection and excessive accumulation of reactive oxygen species (ROS) are the greatest obstacles for burn wound healing. In this research, the 5-aminosalicylic acid (ASA) grafted poly(aspartic hydrazide) (PASH) was synthesized by successive ploysuccinimide (PSI) ring opening reaction and reacted with oxidized carboxymethyl cellulose (DCMC) to fabricate biodegradable hydrogel through Schiff-base cross-linking. Moreover, the hydrogel was loaded with quercetin (QT) to enhance its anti-inflammatory performance. The ASA moiety endowed the hydrogel with the free radical scavenging ability and mussel inspired tissue adhesion to maintain the healing bioenvironment of the wound. The loading of QT gave the hydrogel more phenolic hydroxy group and further enhanced the antioxidant capacity of the hydrogel. The in vitro experiment revealed the grafted ASA moiety and the loaded QT greatly enhanced the ROS elimination property and antibacterial property. Moreover, the QT loaded hydrogel accelerated the burn wound repairing rate in the in vivo mice model. Based on above result, the PASH/DCMC could act as a new platform for QT loading to promote the burn wound repairing.
Collapse
Affiliation(s)
- Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Kaiyue Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
19
|
Yu S, Li Z, Zhang X, Zhang Q, Zhang L, Zhao L, Liu P, Guo J, Chen J, Zhang C, Liu X, Yu M, Jin D, Wang X, Li G, Cao Y, Ren F, Wang R. Skin Rejuvenation in Aged Mice by Fecal Transplantation Microbiota from Young Mice Feces. ENGINEERING 2024; 42:26-38. [DOI: 10.1016/j.eng.2024.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
20
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. J Invest Dermatol 2024; 144:2488-2500.e4. [PMID: 38642800 DOI: 10.1016/j.jid.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 04/22/2024]
Abstract
Three-dimensional human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in preclinical investigative dermatology and regulatory toxicology. In this study, we investigated the utility of electrical impedance spectroscopy (EIS) for noninvasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for 7 consecutive days did not impact epidermal morphology, and readouts showed comparable trends with HEEs measured only once. We determined 2 frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9-engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR, or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to proinflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a noninvasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects, and repair.
Collapse
Affiliation(s)
| | - Felicitas Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | | | - Hanna Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jos P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Karimi N, Ahmadi V. Aquaporin Channels in Skin Physiology and Aging Pathophysiology: Investigating Their Role in Skin Function and the Hallmarks of Aging. BIOLOGY 2024; 13:862. [PMID: 39596817 PMCID: PMC11592281 DOI: 10.3390/biology13110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
This study examines the critical role of aquaporins (AQPs) in skin physiology and aging pathophysiology. The skin plays a vital role in maintaining homeostasis by acting as a protective barrier against external pathogens and excessive water loss, while also contributing to the appearance and self-esteem of individuals. Key physiological features, such as elasticity and repair capability, are essential for its proper function. However, with aging, these characteristics deteriorate, reducing the skin's ability to tolerate environmental stressors which contribute to external aging as well as internal aging processes, which negatively affect barrier function, immune response, and overall well-being. AQPs, primarily known for facilitating water transport, are significant for normal skin functions, including hydration and the movement of molecules like glycerol and hydrogen peroxide, which influence various cellular processes and functions. In this context, we categorized aquaporin dysfunction into several hallmarks of aging, including mitochondrial dysfunction, cellular senescence, stem cell depletion, impaired macroautophagy, dysbiosis, and inflamm-aging. Eight aquaporins (AQP1, 3, 5, 7, 8, 9, 10, and 11) are expressed in various skin cells, regulating essential processes such as cell migration, proliferation, differentiation, and also immune response. Dysregulation or altered expression of these proteins can enhance skin aging and related pathologies by activating these hallmarks. This study provides valuable insights into the potential of targeting aquaporins to mitigate skin aging and improve skin physiologic functions.
Collapse
Affiliation(s)
- Nazli Karimi
- Physiology Department, Medical Faculty, Hacettepe University, Ankara 06800, Turkey
| | - Vahid Ahmadi
- Dermatology Department, Beytepe Murat Erdi Eker State Hospital, Ankara 06800, Turkey
| |
Collapse
|
22
|
Liu Y, Chen Y, Batzorig U, Li J, Fernández-Méndez C, Mahapatra S, Li F, Sam S, Dokoshi T, Hong SP, Nakatsuji T, Gallo RL, Sen GL. The transcription regulators ZNF750 and LSD1/KDM1A dampen inflammation on the skin's surface by silencing pattern recognition receptors. Immunity 2024; 57:2296-2309.e5. [PMID: 39353440 PMCID: PMC11464168 DOI: 10.1016/j.immuni.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses. ZNF750, a transcription factor expressed only in differentiated keratinocytes, recruited the histone demethylase KDM1A/LSD1 to silence genes coding for PRRs (TLR3, IFIH1/MDA5, and DDX58/RIG1). Loss of ZNF750 or KDM1A in human keratinocytes or mice resulted in sustained and excessive inflammation resembling psoriatic skin, which could be restored to homeostatic conditions upon silencing of TLR3. Our findings explain how the skin's surface prevents excessive inflammation through ZNF750- and KDM1A-mediated suppression of PRRs.
Collapse
Affiliation(s)
- Ye Liu
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Uyanga Batzorig
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Institute of Precision Medicine, Department of Burns, Department of Dermatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Celia Fernández-Méndez
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Samiksha Mahapatra
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Fengwu Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Shebin Sam
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Seung-Phil Hong
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA; Department of Dermatology, Yonsei University, Wonju College of Medicine, Wonju, Republic of Korea
| | - Teruaki Nakatsuji
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Richard L Gallo
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, Division of Epithelial Biology, University of California, San Diego, La Jolla, CA 92093-0869, USA.
| |
Collapse
|
23
|
Schneider E, Amar Y, Butter K, Steiger K, Musiol S, Garcia-Käufer M, Hölge IM, Schnautz B, Gschwendtner S, Ghirardo A, Gminski R, Eberlein B, Esser von Bieren J, Biedermann T, Haak S, Ohlmeyer M, Schmidt-Weber CB, Eyerich S, Alessandrini F. Pinewood VOC emissions protect from oxazolone-induced inflammation and dysbiosis in a mouse model of atopic dermatitis. ENVIRONMENT INTERNATIONAL 2024; 192:109035. [PMID: 39342822 DOI: 10.1016/j.envint.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Pinewood, increasingly used in construction and interior fittings, emits high amounts of volatile organic compounds (VOCs), which tend to accumulate in indoor air. Whether indoor VOCs affect the development of atopic dermatitis (AD) is a matter of debate. We aimed to evaluate the effects of pinewood VOCs on the development of AD-like inflammatory phenotype and linked microbiome alterations, both hallmarks of AD. An oxazolone-induced mouse model of AD was exposed to three different VOC concentrations emitted by pinewood plates throughout the experiment. The disease course and associated immunological and microbiological changes were evaluated. To validate and translate our results to humans, human keratinocytes were exposed to a synthetic pinewood VOCs mixture in an AD environment. Pinewood emitted mainly terpenes, which at a total concentration of 5 mg/m3 significantly improved oxazolone-induced key AD parameters, such as serum total IgE, transepidermal water loss, barrier gene alteration, inflammation, and dysbiosis. Notably, exposure to pinewood VOCs restored the loss of microbial richness and inhibit Staphylococci expansion characteristic of the oxazolone-induced mouse AD model. Most beneficial effects of pinewood VOCs were dose-dependent. In fact, lower (<3 mg/m3) or higher (>10 mg/m3) pinewood VOC levels maintained only limited beneficial effects, such as preserving the microbiome richness or impeding Staphylococci expansion, respectively. In the human in-vitro model, exposure of keratinocytes grown in an AD environment to a pinewood VOCs mixture reduced the release of inflammatory markers. In conclusion, our results indicate that airborne phytochemicals emitted from pinewood have beneficial effects on an AD-like phenotype and associated dysbiosis. These investigations highlight the effects of terpenes as environmental compounds in the prevention and/or control of atopic skin disease.
Collapse
Affiliation(s)
- Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yacine Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Katja Butter
- Thünen Institute of Wood Research, Hamburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Garcia-Käufer
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Marie Hölge
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Julia Esser von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Haak
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
24
|
Liu J, Yu J, Chen H, Zou Y, Wang Y, Zhou C, Tong L, Wang P, Liu T, Liang J, Sun Y, Zhang X, Fan Y. Porous gradient hydrogel promotes skin regeneration by angiogenesis. J Colloid Interface Sci 2024; 671:312-324. [PMID: 38815368 DOI: 10.1016/j.jcis.2024.05.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
The skin has a multilayered structure, and deep-seated injuries are exposed to external microbial invasion and in vivo microenvironmental destabilization. Here, a bilayer bionic skin scaffold (Bilayer SF) was developed based on methacrylated sericin protein to mimic the skin's multilayered structure and corresponding functions. The outer layer (SF@TA), which mimics the epidermal layer, was endowed with the function of resisting external bacterial and microbial invasion using a small pore structure and bio-crosslinking with tannic acid (TA). The inner layer (SF@DA@Gel), which mimics the dermal layer, was used to promote cellular growth using a large pore structure and introducing dopamine (DA) to regulate the wound microenvironment. This Bilayer SF showed good mechanical properties and structural stability, satisfactory antioxidant and promote cell proliferation and migration abilities. In vitro studies confirmed the antimicrobial properties of the outer layer and the pro-angiogenic ability of the inner layer. In vivo animal studies demonstrated that the bilayer scaffolds promoted collagen deposition, neovascularization, and marginal hair follicle formation, which might be a promising new bionic skin scaffold.
Collapse
Affiliation(s)
- Jingyi Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Jingwen Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Huiling Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Chen Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Tangjinhai Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
25
|
Li J, Fang X, Cui D, Ma Z, Yang J, Niu Y, Liu H, Xiang P. Mechanistic insights into cadmium exacerbating 2-Ethylhexyl diphenyl phosphate-induced human keratinocyte toxicity: Oxidative damage, cell apoptosis, and tight junction disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116858. [PMID: 39137464 DOI: 10.1016/j.ecoenv.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Xianlei Fang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ziya Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Youya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
26
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
27
|
You R, Duan J, Zhou Y, Yu J, Zou P, Wei Y, Chai K, Zeng Z, Xiao Y, Yuan L, Xiao R. The causal effects of inflammatory and autoimmune skin diseases on thyroid diseases: evidence from Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1388047. [PMID: 39286278 PMCID: PMC11402664 DOI: 10.3389/fendo.2024.1388047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Background To clarify the controversy between inflammatory or autoimmune skin diseases and thyroid diseases, we performed two-sample Mendelian randomization (MR) analyses. Participants Genetic data on factors associated with atopic dermatitis (AD, n=40,835), seborrheic dermatitis (SD, n=339,277), acne (n=363,927), rosacea (n=299,421), urticaria (n=374,758), psoriasis (n=373,338), psoriasis vulgaris (n=369,830), systemic lupus erythematosus (SLE, n=14,267), vitiligo (n=353,348), alopecia areata (AA, n=361,822), pemphigus (n=375,929), bullous pemphigoid (BP, n=376,274), systemic sclerosis (SSc, n=376,864), localized scleroderma (LS, n=353,449), hypothyroidism (n=314,995 or n=337,159), and hyperthyroidism (n=281,683 or n=337,159) were derived from genome-wide association summary statistics of European ancestry. Main measures The inverse variance weighted method was employed to obtain the causal estimates of inflammatory or autoimmune skin diseases on the risk of thyroid diseases, complemented by MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Key results AD, SLE, SD, and psoriasis vulgaris were associated with an increased risk of hypothyroidism, whereas BP was associated with a lower risk of hypothyroidism (all with p < 0.05). The multivariable MR analyses showed that AD (OR = 1.053; 95%CI: 1.015-1.092; p = 0.006), SLE (OR = 1.093; 95%CI: 1.059-1.127; p < 0.001), and SD (OR = 1.006; 95%CI: 1.002-1.010; p = 0.006) independently and predominately contributed to the genetic causal effect on hypothyroidism after adjusting for smoking. The results showed no causal effects of inflammatory or autoimmune skin diseases on hyperthyroidism. Conclusion The findings showed a causal effect of AD, SLE, SD on hypothyroidism, but further investigations should be conducted to explore the pathogenic mechanisms underlying these relationships.
Collapse
Affiliation(s)
- Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiayue Duan
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Puyu Zou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Wei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ke Chai
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingqing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. A comparison of several separation processes for eggshell membrane powder as a natural biomaterial for skin regeneration. Skin Res Technol 2024; 30:e70038. [PMID: 39256190 PMCID: PMC11387111 DOI: 10.1111/srt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.
Collapse
Affiliation(s)
- Samaneh Esmaeili
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue EngineeringSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
29
|
De Donato DP, Effner R, Nordengrün M, Lechner A, Darisipudi MN, Volz T, Hagl B, Bröker BM, Renner ED. Staphylococcus aureus Serine protease-like protein A (SplA) induces IL-8 by keratinocytes and synergizes with IL-17A. Cytokine 2024; 180:156634. [PMID: 38810500 DOI: 10.1016/j.cyto.2024.156634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Serine protease-like (Spl) proteins produced by Staphylococcus (S.) aureus have been associated with allergic inflammation. However, effects of Spls on the epidermal immune response have not been investigated. OBJECTIVES To assess the epidermal immune response to SplA, SplD and SplE dependent on differentiation of keratinocytes and a Th2 or Th17 cytokine milieu. METHODS Human keratinocytes of healthy controls and a STAT3-hyper-IgE syndrome (STAT3-HIES) patient were cultured in different calcium concentrations in the presence of Spls and Th2 or Th17 cytokines. Keratinocyte-specific IL-8 production and concomitant migration of neutrophils were assessed. RESULTS SplE and more significantly SplA, induced IL-8 in keratinocytes. Suprabasal-like keratinocytes showed a higher Spl-mediated IL-8 production and neutrophil migration compared to basal-like keratinocytes. Th17 cytokines amplified Spl-mediated IL-8 production, which correlated with neutrophil recruitment. Neutrophil recruitment by keratinocytes of the STAT3-HIES patient was similar to healthy control cells. CONCLUSION S. aureus-specific Spl proteases synergized with IL-17A on human keratinocytes with respect to IL-8 release and neutrophil migration, highlighting the importance of keratinocytes and Th17 immunity in barrier function.
Collapse
Affiliation(s)
- D P De Donato
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Vascular Surgery, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - R Effner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M Nordengrün
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - A Lechner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M N Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - T Volz
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - B Hagl
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - B M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - E D Renner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany; Department of Pediatrics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
30
|
Choa R, Harris JC, Yang E, Yokoyama Y, Okumura M, Kim M, To J, Lou M, Nelson A, Kambayashi T. Thymic stromal lymphopoietin induces IL-4/IL-13 from T cells to promote sebum secretion and adipose loss. J Allergy Clin Immunol 2024; 154:480-491. [PMID: 38157943 PMCID: PMC11211244 DOI: 10.1016/j.jaci.2023.11.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.
Collapse
Affiliation(s)
- Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - MinJu Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Meng Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Amanda Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pa
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
31
|
Ren G, Zhang Y, Liu J, Cheng W, Wu D, Han M, Zeng Y, Zhao X, Hu L, Zeng M, Gurram RK, Hu X, Zhou B, Hou Z, Zhu J, Jin W, Zhong C. Decreased GATA3 levels cause changed mouse cutaneous innate lymphoid cell fate, facilitating hair follicle recycling. Dev Cell 2024; 59:1809-1823.e6. [PMID: 38723629 PMCID: PMC11265981 DOI: 10.1016/j.devcel.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024]
Abstract
In mice, skin-resident type 2 innate lymphoid cells (ILC2s) exhibit some ILC3-like characteristics. However, the underlying mechanism remains elusive. Here, we observed lower expression of the ILC2 master regulator GATA3 specifically in cutaneous ILC2s (cILC2s) compared with canonical ILC2s, in line with its functionally divergent role in transcriptional control in cILC2s. Decreased levels of GATA3 enabled the expansion of RORγt fate-mapped (RORγtfm+) cILC2s after postnatal days, displaying certain similarities to ILC3s. Single-cell trajectory analysis showed a sequential promotion of the RORγtfm+ cILC2 divergency by RORγt and GATA3. Notably, during hair follicle recycling, these RORγtfm+ cILC2s accumulated around the hair follicle dermal papilla (DP) region to facilitate the process. Mechanistically, we found that GATA3-mediated integrin α3β1 upregulation on RORγtfm+ cILC2s was required for their positioning around the DP. Overall, our study demonstrates a distinct regulatory role of GATA3 in cILC2s, particularly in promoting the divergence of RORγtfm+ cILC2s to facilitate hair follicle recycling.
Collapse
Affiliation(s)
- Guanqun Ren
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yime Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jiamin Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenwen Cheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Di Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mengwei Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yanyu Zeng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xingyu Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Luni Hu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Min Zeng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China; Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Xiaole Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Zhou
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Researches on Major Immunology-Related Diseases, Peking University, Beijing 100191, China.
| |
Collapse
|
32
|
Ozdemir C, Kucuksezer UC, Ogulur I, Pat Y, Yazici D, Ardicli S, Akdis M, Nadeau K, Akdis CA. Lifestyle Changes and Industrialization in the Development of Allergic Diseases. Curr Allergy Asthma Rep 2024; 24:331-345. [PMID: 38884832 PMCID: PMC11233349 DOI: 10.1007/s11882-024-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW Modernization and Westernization in industrialized and developing nations is associated with a substantial increase in chronic noncommunicable diseases. This transformation has far-reaching effects on lifestyles, impacting areas such as economics, politics, social life, and culture, all of which, in turn, have diverse influences on public health. Loss of contact with nature, alternations in the microbiota, processed food consumption, exposure to environmental pollutants including chemicals, increased stress and decreased physical activity jointly result in increases in the frequency of inflammatory disorders including allergies and many autoimmune and neuropsychiatric diseases. This review aims to investigate the relationship between Western lifestyle and inflammatory disorders. RECENT FINDINGS Several hypotheses have been put forth trying to explain the observed increases in these diseases, such as 'Hygiene Hypothesis', 'Old Friends', and 'Biodiversity and Dysbiosis'. The recently introduced 'Epithelial Barrier Theory' incorporates these former hypotheses and suggests that toxic substances in cleaning agents, laundry and dishwasher detergents, shampoos, toothpastes, as well as microplastic, packaged food and air pollution damage the epithelium of our skin, lungs and gastrointestinal system. Epithelial barrier disruption leads to decreased biodiversity of the microbiome and the development of opportunistic pathogen colonization, which upon interaction with the immune system, initiates local and systemic inflammation. Gaining a deeper comprehension of the interplay between the environment, microbiome and the immune system provides the data to assist with legally regulating the usage of toxic substances, to enable nontoxic alternatives and to mitigate these environmental challenges essential for fostering a harmonious and healthy global environment.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Türkiye
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Türkiye
| | - Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
33
|
Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol 2024; 154:31-41. [PMID: 38761999 DOI: 10.1016/j.jaci.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; Dermatology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
34
|
Jiao Q, Zhi L, You B, Wang G, Wu N, Jia Y. Skin homeostasis: Mechanism and influencing factors. J Cosmet Dermatol 2024; 23:1518-1526. [PMID: 38409936 DOI: 10.1111/jocd.16155] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body, not only resisting the invasion of harmful substances, but also preventing the loss of moisture and nutrients. Maintaining skin homeostasis is a prerequisite for the proper functioning of the body. Any damage to the skin can lead to a decrease in local homeostasis, such as ultraviolet radiation, seasonal changes, and air pollution, which can damage the skin tissue and affect the function of the skin barrier. OBJECTIVE This article reviews the maintenance mechanism and influencing factors of skin homeostasis and the symptoms of homeostasis imbalance. METHODS We searched for articles published between 1990 and 2022 in English and Chinese using PubMed, Web of Science, CNKI, and other databases in the subject area of dermatology, using the following search terms in various combinations: "skin homeostasis," "skin barrier," and "unstable skin." Based on our results, we further refined our search criteria to include a series of common skin problems caused by the destruction of skin homeostasis and its treatments. Limitations include the lack of research on dermatological and cosmetic problems triggered by the disruption of skin homeostasis. RESULTS This study describes the neuroendocrine-immune system, skin barrier structure, and skin metabolic system that maintain skin homeostasis. In addition, we discuss several common symptoms that occur when skin homeostasis is out of balance, such as dryness, redness, acne, sensitivity, and aging, and explain the mechanism of these symptoms. CONCLUSION This article provides an update and review for students and practitioners, and provides a theoretical basis for the development of skin care products for the maintenance and repair of skin homeostasis.
Collapse
Affiliation(s)
- Qian Jiao
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Leilei Zhi
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Bing You
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | | | - Nan Wu
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Yan Jia
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
35
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. Cell Rep 2024; 43:114022. [PMID: 38568806 PMCID: PMC11866565 DOI: 10.1016/j.celrep.2024.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J Maciag
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA.
| |
Collapse
|
36
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Murga-Garrido SM, Ting-Chun Pan J, Bhanap P, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Rep 2024; 43:114029. [PMID: 38573852 PMCID: PMC11102039 DOI: 10.1016/j.celrep.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.
Collapse
Affiliation(s)
- Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruktawit Goshu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele Harman
- Transgenic Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Abdi A, Oroojzadeh P, Valivand N, Sambrani R, Lotfi H. Immunological aspects of probiotics for improving skin diseases: Influence on the Gut-Brain-Skin Axis. Biochem Biophys Res Commun 2024; 702:149632. [PMID: 38340656 DOI: 10.1016/j.bbrc.2024.149632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The interplay between gut microbiota and human health, both mental and physical, is well-documented. This connection extends to the gut-brain-skin axis, linking gut microbiota to skin health. Recent studies have underscored the potential of probiotics and prebiotics to modulate gut microbiota, supported by in vivo and clinical investigations. In this comprehensive review, we explore the immunological implications of probiotics in influencing the gut-skin axis for the treatment and prevention of skin conditions, including psoriasis, acne, diabetic ulcers, atopic dermatitis, and skin cancer. Our analysis reveals that probiotics exert their effects by modulating cytokine production, whether administered orally or topically. Probiotics bolster skin defenses through the production of antimicrobial peptides and the induction of keratinocyte differentiation and regeneration. Yet, many questions surrounding probiotics remain unanswered, necessitating further exploration of their mechanisms of action in the context of skin diseases.
Collapse
Affiliation(s)
- Ali Abdi
- Medical Immunology, Aziz Sancar Institute of Experimental Medicine, İstanbul University, Istanbul, Turkey
| | - Parvin Oroojzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roshanak Sambrani
- Clinical Research Development Unit of Razi Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
38
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
39
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585587. [PMID: 38562885 PMCID: PMC10983962 DOI: 10.1101/2024.03.18.585587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
3 D human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in pre-clinical investigative dermatology and regulatory toxicology. Here, we investigated the utility of electrical impedance spectroscopy (EIS) for non-invasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for seven consecutive days did not impact epidermal morphology and readouts showed comparable trends to HEEs measured only once. We determined two frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9 engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to pro-inflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a non-invasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects and repair.
Collapse
Affiliation(s)
| | - F Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - L D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | - D Rodijk-Olthuis
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - H Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - P A M Jansen
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | - M G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - J P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
40
|
Zhang M, Liu T, Yang J. Skin neuropathy and immunomodulation in diseases. FUNDAMENTAL RESEARCH 2024; 4:218-225. [PMID: 38933512 PMCID: PMC11197692 DOI: 10.1016/j.fmre.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Skin is a vital barrier tissue of the body. Immune responses in the skin must be precisely controlled, which would otherwise cause severe disease conditions such as psoriasis, atopic dermatitis, or pathogenic infection. Research evidence has increasingly demonstrated the essential roles of neural innervations, i.e., sensory and sympathetic signals, in modulating skin immunity. Notably, neuropathic changes of such neural structures have been observed in skin disease conditions, implicating their direct involvement in various pathological processes. An in-depth understanding of the mechanism underlying skin neuropathy and its immunomodulatory effects could help reveal novel entry points for therapeutic interventions. Here, we summarize the neuroimmune interactions between neuropathic events and skin immunity, highlighting the current knowledge and future perspectives of this emerging research frontier.
Collapse
Affiliation(s)
- Manze Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tingting Liu
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jing Yang
- IDG/McGovern Institute for Brain Research, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
41
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
42
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
43
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
44
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Zhou P, Li Y, Zhang S, Chen DX, Gao R, Qin P, Yang C, Li Q. KRT17 From Keratinocytes With High Glucose Stimulation Inhibit Dermal Fibroblasts Migration Through Integrin α11. J Endocr Soc 2024; 8:bvad176. [PMID: 38205163 PMCID: PMC10776312 DOI: 10.1210/jendso/bvad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Indexed: 01/12/2024] Open
Abstract
Objective To investigate the effects of overexpressed keratin 17 (KRT17) on the biology of human dermal fibroblasts (HDFs) and to explore the mechanism of KRT17 in diabetic wound healing. Methods KRT17 expression was tested in diabetic keratinocytes, animal models, and patient skin tissues (Huazhong University of Science and Technology Ethics Committee, [2022] No. 3110). Subsequently, HDFs were stimulated with different concentrations of KRT17 in vitro. Changes in the proliferation and migration of HDFs were observed. Then, identification of KRT17-induced changes in dermal fibroblast of RNA sequencing-based transcriptome analysis was performed. Results KRT17 expression was upregulated under pathological conditions. In vitro stimulation of HDFs with different concentrations of KRT17 inhibited cell migration. RNA-seq data showed that enriched GO terms were extracellular matrix components and their regulation. KEGG analysis revealed that the highest number of enriched genes was PI3K-Akt, in which integrin alpha-11 (ITGA11) mRNA, a key molecule that regulates cell migration, was significantly downregulated. Decreased ITGA11 expression was observed after stimulation of HDFs with KRT17 in vitro. Conclusion Increased expression of KRT17 in diabetic pathological surroundings inhibits fibroblast migration by downregulating the expression of ITGA11. Thus, KRT17 may be a molecular target for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shan Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dian-Xi Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ruikang Gao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
46
|
An H, Gu Z, Huang Z, Huo T, Xu Y, Dong Y, Wen Y. Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids Surf B Biointerfaces 2024; 233:113636. [PMID: 37979482 DOI: 10.1016/j.colsurfb.2023.113636] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The management and treatment of wounds are complex and pose a substantial financial burden to the patient. However, the complex environment of wounds leads to inadequate drug absorption to achieve the desired therapeutic effect. As a novel technological platform, microneedles are widely used in drug delivery because of their multiple drug loading, multistage drug release, and multiple designs of topology. This study systematically summarizes and analyzes the manufacturing methods and limitations of different microneedles, as well as the latest research advances in pain management, drug delivery, and healing promotion, and presents the challenges and opportunities for clinical applications. On this basis, the development of microneedles in external wound repair and management is envisioned, and it is hoped that this study can provide guidelines for the design of microneedle systems in different application contexts, including the selection of materials, preparation methods, and structural design, to achieve better healing and regeneration results.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Huo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081 China.
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
47
|
Lin X, Fu T, Lei Y, Xu J, Wang S, He F, Xie Z, Zhang L. An injectable and light curable hyaluronic acid composite gel with anti-biofilm, anti-inflammatory and pro-healing characteristics for accelerating infected wound healing. Int J Biol Macromol 2023; 253:127190. [PMID: 37802452 DOI: 10.1016/j.ijbiomac.2023.127190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Bacterial biofilm formation and drug resistance are common issues associated with wound healing. Antimicrobial peptides (AMPs) are a new class of antimicrobial agents with the potential to solve these global health issues. New injectable adhesive antibacterial hydrogels have excellent prospects of becoming the next innovative wound-healing dressings. In this study, the hyaluronic acid was connected to the antibacterial peptide Plantaricin 149 (Pln149), obtaining HAD@AMP. HAD@AMP performed well in efficient antimicrobial activity, good histocompatibility, low drug resistance, low bacterial biofilm formation, and fast wound healing process which are essential for rapid healing of infected wound. During the hydrogel degradation process, Pln149 was released to inhibit bacterial communication and reduce bacterial biofilm formation. Meanwhile, HAD@AMP could up-regulate anti-inflammatory and pro-angiogenic factors, and down-regulate inflammatory factors to promote the healing of infected wounds, which provide a new idea for skin healing strategies.
Collapse
Affiliation(s)
- Xiaolong Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Tao Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Yuqing Lei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Sa Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
48
|
Matsuno A, Sumida H, Nakanishi H, Ikeyama Y, Ishii T, Omori I, Saito H, Iwasawa O, Sugimori A, Yoshizaki A, Katoh H, Ishikawa S, Sato S. Keratinocyte proline-rich protein modulates immune and epidermal response in imiquimod-induced psoriatic skin inflammation. Exp Dermatol 2023; 32:2121-2130. [PMID: 37926955 DOI: 10.1111/exd.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Psoriasis is a persistent inflammatory skin disease thought to arise as a result of the infiltration of inflammatory cells and activation of keratinocytes. Recent advances in basic research and clinical experience revealed that the interleukin (IL)-23/IL-17 axis has been identified as a major immune pathway in psoriasis. However, it remains unclear how keratinocyte factors contribute to the pathology of psoriasis. Keratinocyte proline-rich protein (KPRP) is a proline-rich insoluble protein, which is present in the epidermis and is likely to be involved in the skin barrier function. Here, to investigate the potential roles of KPRP in psoriatic skin inflammation, Kprp-modified mice were applied in the imiquimod (IMQ)-induced skin inflammation model, which develops psoriasis-like epidermal hyperplasia and cutaneous inflammation features. Then, heterozygous knockout (Kprp+/- ) but not homozygous knockout (Kprp-/- ) mice displayed attenuated skin erythema compared to control wild-type mice. In addition, RNA sequencing, quantitative PCR and/or histological analysis detected changes in the expression of several molecules related to psoriatic inflammation or keratinocyte differentiation in Kprp+/- mice, but not Kprp-/- mice. Further analysis exhibited reduced IL-17-producing γδlow T cells and amplified epidermal hyperplasia in Kprp+/- mice, which were implied to be related to decreased expression of β-defensins and increased expression of LPAR1 (Lysophosphatidic acid receptor 1), respectively. Thus, our results imply that KPRP has the potential as a therapeutic target in psoriatic skin inflammation.
Collapse
Affiliation(s)
- Ai Matsuno
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
- SLE Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirofumi Nakanishi
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Yoshifumi Ikeyama
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Tsuyoshi Ishii
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Issei Omori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hinako Saito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Okuto Iwasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Sugimori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023; 14:2156185. [PMID: 36599840 PMCID: PMC9815227 DOI: 10.1080/21505594.2022.2156185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,CONTACT Keping Sun
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China,Jiang Feng
| |
Collapse
|
50
|
Zheng Y, Ling Z, Li Z, Zhao P, Wen X, Qu F, Yu H, Chang H. A Rapidly Dissolvable Microneedle Patch with Tip-Accumulated Antigens for Efficient Transdermal Vaccination. Macromol Biosci 2023; 23:e2300253. [PMID: 37552862 DOI: 10.1002/mabi.202300253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Dissolvable microneedles (DMNs) are an attractive alternative for vaccine delivery due to their user-friendly, skin-targeted, and minimally invasive features. However, vaccine waste and inaccurate dosage remain significant issues faced by DMNs, as the skin's elasticity makes it difficult to insert MNs completely. Here, a simple and reliable fabrication method are introduced based on two-casting micromolding with centrifugal drying to create a rapidly DMN patch made of hyaluronic acid. Ovalbumin (OVA), as the model antigens, is concentrated in the tip parts of the DMNs (60% of the needle height) to prevent antigen waste caused by skin elasticity. The time and temperature of the initial centrifugal drying significantly affect antigen distribution within the needle tips, with lower temperature facilitating antigen accumulation. The resulting DMN patch is able to penetrate the skin with enough mechanical strength and quickly release antigens into the skin tissue within 3 min. The in vivo study demonstrates that immunization of OVA with DMNs outperforms conventional vaccination routes, including subcutaneous and intramuscular injections, in eliciting both humoral and cellular immunity. This biocompatible DMN patch offers a promising and effective strategy for efficient and safe vaccination.
Collapse
Affiliation(s)
- Yanting Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhixin Ling
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhiming Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haining Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hao Chang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|