1
|
Cossette BJ, Shen L, Bermudez A, Freire Haddad H, Shetty S, Sylvers J, Yuan F, Ke Y, Collier JH. Differential Sensitivity to Interepitope Spacing in Mast Cells and B Cells Enables Design of Hypoallergenic Allergen Vaccine Immunogens. ACS NANO 2025. [PMID: 40253609 DOI: 10.1021/acsnano.4c14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Therapeutic allergen vaccine immunogens can trigger IgE-mediated mast cell activation, resulting in allergic reactions. Here, we report on a mode of hypoallergenic immunogen design that enables immunization against IgE-reactive peptide B cell epitopes by optimizing the distance between epitopes. Using DNA-based model immunogens, we show that mast cells and B cells exhibit idiosyncratic sensitivity to interepitope spacing, with mast cell activation being dampened by high interepitope spacing while B cells remain responsive to identical immunogen configurations. To exploit this finding, we construct hypoallergenic immunogens based on supramolecular peptide nanofibers with ultralow epitope density that, when used as an allergen vaccine, raise protective allergen-neutralizing IgG antibody responses. This study provides a proof-of-concept for a mode of hypoallergenic immunogen design based on nanoscale control of the distances between IgE-reactive epitopes, which may enable allergen vaccination against IgE-reactive epitope targets in the absence of allergic reactogenicity.
Collapse
Affiliation(s)
- Benjamin J Cossette
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Luyao Shen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia 30322, United States
| | - Andrés Bermudez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Helena Freire Haddad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Justin Sylvers
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
2
|
Zeng J, Zou J, Yi H, He J, Zhao J, Zhu S, Li B, Dudu OE, Zhang L, Gong P. Localization and antigenicity reduction of immunodominant conformational IgE epitopes on αs1-casein. Int J Biol Macromol 2025; 285:138278. [PMID: 39631588 DOI: 10.1016/j.ijbiomac.2024.138278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
αs1-Casein (αs1-CN) is the major allergen in cow milk; however, the understanding of its conformational epitopes remains limited due to the absence of a well-defined three-dimensional structure, which has impeded efforts to effectively reduce its antigenicity. This study employed molecular dynamics simulations (MD), ELISA, cell assays and peptidomes analysis to investigate the critical conformational epitopes of αs1-Casein. MD and immunological analyses identified a dominant conformational epitope encompassing the regions S55-E75 & Y154-T174 & F179-W199, which exhibited strong binding affinity to IgE and triggered the releasing of β-hexosaminidase, histamine and IL-6 in KU812 cells, thereby inducing allergic responses. Notably, the segments Y154-T174 and F179-W199 were particularly impactful. Furthermore, the presence of helical structures within the epitopes enhanced their binding to IgE to a certain extent. Peptidomes analysis further revealed that papain efficiently disrupted the key epitope (Y154-T174) by selectively cleaving the hotspot amino acid residues (Y154 and Y165), thereby significantly reducing the antigenicity of αs1-CN, decreasing IgE and IgG binding to 7.28 % and 10.39 %, respectively. These findings enhance the understanding of αs1-CN's antigenic epitopes and provides a theoretical and technical foundation for the targeted reduction of its antigenicity.
Collapse
Affiliation(s)
- Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Junzhe Zou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | | | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
3
|
Ralchev N, Bradyanova S, Kerekov N, Tchorbanov A, Mihaylova N. Suppression of Pathological Allergen-Specific B Cells by Protein-Engineered Molecules in a Mouse Model of Chronic House Dust Mite Allergy. Int J Mol Sci 2024; 25:13661. [PMID: 39769423 PMCID: PMC11728213 DOI: 10.3390/ijms252413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Der p1 is one of the major allergens causing house dust mite (HDM) allergy. Pathological Der p1-specific B cells play a key role in allergic inflammation as producers of allergen-specific antibodies. Crosslinking the inhibitory FcγRIIb with the B cell receptor triggers a high-affinity suppressive signal in B cells. Selective elimination of allergen-specific cells could potentially be achieved by administering chimeric molecules that combine, through protein engineering, the FcγRIIb-targeting monoclonal 2.4G2 antibody with the epitope-carrying Dp52-71 peptides from Der p1. We tested this hypothesis, in a chronic mouse model of HDM allergy induced in BalB/c mice, using FACS and ELISA assays, along with histopathological and correlational analyses. Dp52-71chimera treatment of HDM-challenged mice led to a decrease in serum anti-HDM IgG1 antibodies, a reduction in BALF β-hexosaminidase levels, a lowered number of SiglecFhigh CD11clow eosinophils, and an improved lung PAS score. Furthermore, we observed overexpression of FcγRIIb on the surface of CD19 cells in the lungs of HDM-challenged animals, which negatively correlated with the levels of lung alveolar macrophages, neutrophils, and BALF IL-13. Taken together, these results suggest that the use of FcγRIIb overexpression, combined with the expansion of chimeric protein technology to include more epitopes, could improve the outcome of inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Nikolina Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.R.); (S.B.); (N.K.); (A.T.)
| |
Collapse
|
4
|
Watanabe Y, Okafuji I, Tamai S, Hosokawa N, Ohbayashi T, Kato S, Ito K, Kawano M, Ohshima Y. Epitope profiling of cow's milk allergen-specific antibodies with determining IgE content in epitopes-ALL, a 14-epitopes mixture. J Immunol Methods 2024; 535:113773. [PMID: 39489375 DOI: 10.1016/j.jim.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Allergen-specific antibodies (Abs), IgE, and IgG4 increase during the early phase of oral immunotherapy (OIT) of allergen food in patients; subsequently, IgE levels decrease and specific IgG4 levels increase after successful OIT treatment. The detailed profile of these Abs during OIT remains largely unclear. We developed a diagnostic tool to assess the OIT efficacy and extent of responsiveness based on a profiling method by identifying epitopes recognized by the Ab classes of IgE or IgG4. A peptide microarray followed by microplate analysis using synthetic peptides was used to identify 14 epitopes widely recognized by IgE and/or IgG4 in the serum samples of patients with OIT among the amino acid sequences of five major cow's milk allergens. The set of defined 14 epitopes clarified different epitope profiles of allergen-specific IgE and IgG4 in each patient's serum samples. Moreover, the total signal of Abs recognizing all 14 epitopes was equal to the sum of all individual epitope-specific Abs. It was further observed that the quantitative value of IgE concentrations of 14 epitopes-ALL correlated with the ImmunoCAP IgE value. These findings strongly imply that the quantity of IgE and IgG4 recognizing epitopes-ALL may easily be used to measure allergy severity. To investigate this potential, we developed an immunochromatographic method that can detect IgE and IgG4 levels in patient samples. This study clearly demonstrated the usefulness of the defined 14 epitopes and their mixture, "epitopes-ALL," and that the simple and reliable methods of immunochromatography and microplate analyses demonstrating the epitope profile of allergen-specific Abs are applicable for diagnostic use at multiple disease stages and the OIT-treatment course in patients with cow's milk allergy.
Collapse
Affiliation(s)
- Yoshihiro Watanabe
- IgG4-related Immunology, Graduate School of Medicine, Medical Science, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan.
| | - Ikuo Okafuji
- Pediatrics, Kobe City Medical Center General Hospital 2-1-1 Minatoshima Minami-cho, Chuo-ku, Kobe 650-0047, Japan
| | - Satoko Tamai
- IgG4-related Immunology, Graduate School of Medicine, Medical Science, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Natsuko Hosokawa
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Takako Ohbayashi
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Shigeki Kato
- Prima Meat Packers Group, Tsukuba Food Evaluation Center Co., Ltd.635 Naka Mukaihara, Tsuchiura 300-0841, Ibaraki, Japan
| | - Kiyoaki Ito
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Mitsuhiro Kawano
- Rheumatology, Kanazawa University Hospital 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Yusei Ohshima
- Pediatrics, University of Fukui Hospital 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
5
|
Chen JS, Lee D, Gowthaman U. T follicular helper cells in food allergy. Curr Opin Immunol 2024; 91:102461. [PMID: 39276414 DOI: 10.1016/j.coi.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
T follicular helper (Tfh) cells help direct the production of antibodies by B cells. In addition to promoting antibody responses to vaccination and infection, Tfh cells have been found to mediate antibody production to food antigens. Work over the past decade has delineated the specific phenotypes of Tfh cells that induce antibodies to food while also clarifying the divergent Tfh cell requirement for different food-specific antibody isotypes. Furthermore, Tfh and antibody responses to food can occur at multiple barrier sites - namely, skin, airway, and gut. Depending on the context of food antigen exposure, the immune response to food at these sites can be protective, as in the case of tolerance or immunotherapy, or pathogenic, as in the case of allergy. This review will highlight recent advances in our understanding of how Tfh cells promote antibodies to food as well as future avenues for continued discovery.
Collapse
Affiliation(s)
- Jennifer S Chen
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA, USA
| | - Donguk Lee
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Uthaman Gowthaman
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Knol EF, van Neerven RJJ. IgE versus IgG and IgA: Differential roles of allergen-specific antibodies in sensitization, tolerization, and treatment of allergies. Immunol Rev 2024; 328:314-333. [PMID: 39285523 PMCID: PMC11659938 DOI: 10.1111/imr.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The prevalence of asthma, rhinitis, and food allergies has increased dramatically over the last few decades. This increase originally started in western countries, but is now also evident in many other regions of the world. Given the fact that the increase is so quick, the noted increase cannot be linked to a genetic effect, and many environmental factors have been identified that are associated with increased or reduced prevalence of allergies, like changing dietary habits, increased urbanization, pollution, exposure to microorganisms and LPS, and the farming environment and raw milk consumption. Although the key role of allergen-specific IgE in allergies is well known, the role of allergen-specific IgG and IgA antibodies is less well defined. This review will provide an overview of the functions of allergen-specific IgE in allergy, the role of allergen-specific antibodies (IgG (4) and IgA) in allergen immunotherapy (AIT), the possibility to use allergen-specific antibodies for treatment of ongoing allergies, and the potential role of allergen-specific antibodies in tolerance induction to allergens in a preventive setting. In the last, more speculative, section we will present novel hypotheses on the potential role of allergen-specific non-IgE antibodies in allergies by directing antigen presentation, Th2 development, and innate immune training.
Collapse
Affiliation(s)
- E. F. Knol
- Department of Dermatology/AllergologyUMC UtrechtUtrechtthe Netherlands
| | - R. J. J. van Neerven
- Cell Biology and ImmunologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
7
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S. Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, NY
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
8
|
Sakurai R, Iwata H, Gotoh M, Ogino H, Takeuchi I, Makino K, Itoh F, Saitoh A. Application of PLGA-PEG-PLGA Nanoparticles to Percutaneous Immunotherapy for Food Allergy. Molecules 2024; 29:4123. [PMID: 39274971 PMCID: PMC11397245 DOI: 10.3390/molecules29174123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024] Open
Abstract
Compared with oral or injection administration, percutaneous immunotherapy presents a promising treatment modality for food allergies, providing low invasiveness and safety. This study investigated the efficacy of percutaneous immunotherapy using hen egg lysozyme (HEL)-loaded PLGA-PEG-PLGA nanoparticles (NPs), as an antigen model protein derived from egg white, compared with that of HEL-loaded chitosan hydroxypropyltrimonium chloride (CS)-modified PLGA NPs used in previous research. The intradermal retention of HEL in excised mouse skin was measured using Franz cells, which revealed a 2.1-fold higher retention with PLGA-PEG-PLGA NPs than that with CS-modified PLGA NPs. Observation of skin penetration pathways using fluorescein-4-isothiocyanate (FITC)-labeled HEL demonstrated successful delivery of HEL deep into the hair follicles with PLGA-PEG-PLGA NPs. These findings suggest that after NPs delivery into the skin, PEG prevents protein adhesion and NPs aggregation, facilitating stable delivery deep into the skin. Subsequently, in vivo percutaneous administration experiments in mice, with concurrent iontophoresis, demonstrated a significant increase in serum IgG1 antibody production with PLGA-PEG-PLGA NPs compared with that with CS-PLGA NPs after eight weeks of administration. Furthermore, serum IgE production in each NP administration group significantly decreased compared with that by subcutaneous administration of HEL solution. These results suggest that the combination of PLGA-PEG-PLGA NPs and iontophoresis is an effective percutaneous immunotherapy for food allergies.
Collapse
Affiliation(s)
- Ryuse Sakurai
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Hanae Iwata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Masaki Gotoh
- Modality Research Group, BioPharma Research Institute, Kaneka Corporation Inc., 1-8 Miyamae-cho, Takasago-cho, Takasago-shi 676-8688, Hyogo, Japan
| | - Hiroyuki Ogino
- Modality Research Group, BioPharma Research Institute, Kaneka Corporation Inc., 1-8 Miyamae-cho, Takasago-cho, Takasago-shi 676-8688, Hyogo, Japan
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Fumio Itoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Gastroenterology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku 216-8511, Kawasaki, Japan
| | - Akiyoshi Saitoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
9
|
Lin DL, Magnaye KM, Porsche CE, Levan SR, Rackaityte E, Özçam M, Lynch SV. 12,13-diHOME Promotes Inflammatory Macrophages and Epigenetically Modifies Their Capacity to Respond to Microbes and Allergens. J Immunol Res 2024; 2024:2506586. [PMID: 38974097 PMCID: PMC11227377 DOI: 10.1155/2024/2506586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024] Open
Abstract
Elevated infant fecal concentrations of the bacterial-derived lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) increase the risk for childhood atopy and asthma. However, the mechanisms by which this lipid contributes to disease development are largely unknown. We hypothesized that macrophages, which are key to both antimicrobial and antigen responses, are functionally and epigenetically modified by 12,13-diHOME leading to short- and long-term dysfunction with consequences for both antimicrobial and antigenic responses. Macrophages exposed to 12,13-diHOME are skewed toward inflammatory IL-1β highCD206low cells, a phenomenon that is further amplified in the presence of common microbial-, aero-, and food-allergens. These IL-1β highCD206low macrophages also exhibit reduced bacterial phagocytic capacity. In primary immune cell coculture assays involving peanut allergen stimulation, 12,13-diHOME promotes both IL-1β and IL-6 production, memory B cell expansion, and increased IgE production. Exposure to 12,13-diHOME also induces macrophage chromatin remodeling, specifically diminishing access to interferon-stimulated response elements resulting in reduced interferon-regulated gene expression upon bacterial lipopolysaccharide stimulation. Thus 12,13-diHOME reprograms macrophage effector function, B-cell interactions and promotes epigenetic modifications that exacerbate inflammatory response to allergens and mutes antimicrobial response along the interferon axis. These observations offer plausible mechanisms by which this lipid promotes early-life pathogenic microbiome development and innate immune dysfunction associated with childhood allergic sensitization.
Collapse
Affiliation(s)
- Din L. Lin
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| | - Kevin M. Magnaye
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| | - Cara E. Porsche
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| | - Sophia R. Levan
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| | - Elze Rackaityte
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| | - Mustafa Özçam
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| | - Susan V. Lynch
- Division of GastroenterologyDepartment of MedicineUniversity of California, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Bai T, Wang Z, Shao H, Zhang X, Lorenz A, Meng X, Wu Y, Chen H, Li X. Novel Perspective on the Regulation of Offspring Food Allergy by Maternal Diet and Nutrients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10679-10691. [PMID: 38695770 DOI: 10.1021/acs.jafc.3c09108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There has been a dramatic surge in the prevalence of food allergy (FA) that cannot be explained solely by genetics, identifying mechanisms of sensitization that are driven by environmental factors has become increasingly important. Diet, gut microbiota, and their metabolites have been shown to play an important role in the development of FA. In this review, we discuss the latest epidemiological evidence on the impact of two major dietary patterns and key nutrients in early life on the risk of offspring developing FA. The Western diet typically includes high sugar and high fat, which may affect the immune system of offspring and increase susceptibility to FA. In contrast, the Mediterranean diet is rich in fiber, which may reduce the risk of FA in offspring. Furthermore, we explore the potential mechanisms by which maternal dietary nutrients during a window of opportunity (pregnancy, birth, and lactation) influences the susceptibility of offspring to FA through multi-interface crosstalk. Finally, we discuss the limitations and gaps in the available evidence regarding the relationship between maternal dietary nutrients and the risk of FA in offspring. This review provides novel perspective on the regulation of offspring FA by maternal diet and nutrients.
Collapse
Affiliation(s)
- Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Agla Lorenz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg 5020, Austria
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
12
|
Cossette BJ, Shetty S, Issah LA, Collier JH. Self-Assembling Allergen Vaccine Platform Raises Therapeutic Allergen-Specific IgG Responses without Induction of Systemic Allergic Responses. ACS Biomater Sci Eng 2024; 10:1819-1829. [PMID: 38366973 PMCID: PMC11382287 DOI: 10.1021/acsbiomaterials.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Allergen immunotherapies are often successful at desensitizing allergic patients but can require life-long dosing and suffer from frequent adverse events including instances of systemic anaphylaxis, leading to poor patient compliance and high cost. Allergen vaccines, in turn, can generate more durable immunological allergen desensitization with far fewer doses. However, like immunotherapies, allergen vaccines are often highly reactogenic in allergic patients, hampering their use in therapeutic settings. In this work, we utilize a peptide-based self-assembling nanofiber platform to design allergen vaccines against allergen B-cell epitopes that do not elicit systemic anaphylaxis when administered subcutaneously to allergic mice. We show that, in contrast to protein vaccines, nanofiber vaccines prevent leakage of allergen material into the vascular compartment, a feature that likely underpins their reduced systemic reactogenicity. Further, we show that our allergen vaccine platform elicits therapeutic IgG antibody responses capable of desensitizing allergic mice to allergen-induced Type I hypersensitivity reactions. Finally, we have demonstrated a proof-of-concept for the therapeutic potential of nanofiber-based peanut allergen vaccines directed against peanut allergen-derived epitopes.
Collapse
Affiliation(s)
| | - Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luqman A. Issah
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Kim CK, Callaway Z, Park JS, Pawankar R, Fujisawa T. Biomarkers in allergen immunotherapy: Focus on eosinophilic inflammation. Asia Pac Allergy 2024; 14:32-38. [PMID: 38482456 PMCID: PMC10932480 DOI: 10.5415/apallergy.0000000000000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/20/2023] [Indexed: 11/02/2024] Open
Abstract
Asthma and allergic rhinitis (AR) are 2 of the most common chronic inflammatory disorders and they appear to be on the rise. Current pharmacotherapy effectively controls symptoms but does not alter the underlying pathophysiology. Allergen immunotherapy (AIT) is an evidence-based therapy for asthma and AR and has been recognized as the only therapeutic method that actually modifies the allergic disease process. There is a lack of objective markers that accurately and reliably reflect the therapeutic benefits of AIT. A biomarker indicating patients that would benefit most from AIT would be invaluable. Eosinophilic inflammation is a cardinal feature of many allergic diseases. Biomarkers that accurately reflect this inflammation are needed to better diagnose, treat, and monitor patients with allergic disorders. This review examines the current literature regarding AIT's effects on eosinophilic inflammation and biomarkers that may be used to determine the extent of these effects.
Collapse
Affiliation(s)
- Chang-Keun Kim
- Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Zak Callaway
- Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, Korea
- Science Division, Mahidol University International College, Nakhon Pathom, Thailand
| | - Jin-Sung Park
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| |
Collapse
|
14
|
Surzenko N, Bastidas J, Reid RW, Curaba J, Zhang W, Bostan H, Wilson M, Dominique A, Roberson J, Ignacio G, Komarnytsky S, Sanders A, Lambirth K, Brouwer CR, El-Khodor BF. Functional recovery following traumatic brain injury in rats is enhanced by oral supplementation with bovine thymus extract. FASEB J 2024; 38:e23460. [PMID: 38315443 DOI: 10.1096/fj.202301859r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules. In a rat model of controlled cortical impact (CCI), we determined that animals supplemented with a nuclear fraction of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. We further show that bovine thymus-derived extracts contain antigens found in neural tissues and that supplementation of rats with thymus extracts induces production of serum IgG antibodies against neuronal and glial antigens, which may explain the enhanced animal recovery following CCI through possible oral tolerance mechanism. Collectively, our data demonstrate, for the first time, the potency of a nutritional supplement containing nuclear fraction of bovine thymus in enhancing the functional recovery from TBI.
Collapse
Affiliation(s)
- Natalia Surzenko
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | | | - Robert W Reid
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Julien Curaba
- Eremid Genomic Services, LLC, Kannapolis, North Carolina, USA
| | - Wei Zhang
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Hamed Bostan
- Eremid Genomic Services, LLC, Kannapolis, North Carolina, USA
| | - Mickey Wilson
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Ashley Dominique
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Julia Roberson
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Glicerio Ignacio
- David H. Murdock Research Institute, Kannapolis, North Carolina, USA
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Alexa Sanders
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Kevin Lambirth
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Cory R Brouwer
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Bassem F El-Khodor
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| |
Collapse
|
15
|
Cao S, Maulloo CD, Raczy MM, Sabados M, Slezak AJ, Nguyen M, Solanki A, Wallace RP, Shim HN, Wilson DS, Hubbell JA. Glycosylation-modified antigens as a tolerance-inducing vaccine platform prevent anaphylaxis in a pre-clinical model of food allergy. Cell Rep Med 2024; 5:101346. [PMID: 38128531 PMCID: PMC10829738 DOI: 10.1016/j.xcrm.2023.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified β-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | - Chitavi D Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Johnson-Weaver BT. Preclinical evaluation of alternatives to oral immunotherapy for food allergies. FRONTIERS IN ALLERGY 2023; 4:1275373. [PMID: 37859977 PMCID: PMC10584324 DOI: 10.3389/falgy.2023.1275373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
The increasing food allergy incidence has led to significant interest in developing therapies for allergic diseases. Oral allergen-specific immunotherapy (OIT) is a recently FDA-approved therapeutic to treat peanut allergies. OIT utilizes daily allergen dosing to reduce allergic reactions to peanuts. However, there is diminished enthusiasm for daily OIT, potentially due to the strict regimen required to induce desensitization and the risks of severe adverse events. Thus, there remains a need for safe and effective food allergy treatments that are well-received by allergic individuals. Preclinical research studies investigate methods to induce allergen desensitization in animals and support clinical studies that address the limitations of current food allergy OIT. Because allergic reactions are triggered by allergen doses above an individual's activation threshold, immunotherapy regimens that induce allergen desensitization with lower allergen doses or without the requirement of daily administrations may expand the use of food allergy immunotherapy. Administering allergen immunotherapy by alternative routes is a strategy to induce desensitization using lower allergen doses than OIT. Several animal models have evaluated oral, sublingual, epicutaneous, and intranasal immunotherapy routes to treat food allergies. Each immunotherapy route may require different allergen doses, formulations, and treatment schedules to induce desensitization. This article will discuss scientific findings from food allergy immunotherapy animal studies that utilize various immunotherapy routes to induce allergen desensitization to support future clinical studies that enhance the safety and efficacy of allergen immunotherapy to treat food allergies.
Collapse
|
17
|
Morinaga T, Yamamoto T, Sugimoto Y. A mouse model of food allergy permitting skin and nasal symptoms. Adv Med Sci 2023; 68:372-378. [PMID: 37797366 DOI: 10.1016/j.advms.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Developing experimental animal models that show clinical symptoms and methods for quantitative and objective evaluation are important for understanding food allergies. Therefore, this study aimed to develop an ovalbumin (OVA)-induced mouse model of food allergy and a useful method to evaluate the symptoms of food allergy. MATERIAL/METHODS Mice were sensitized via intraperitoneal injection of OVA. Subsequently, local sensitization was performed once weekly by oral administration of OVA. Itching and nasal symptoms were observed after oral administration of the antigen. First, we examined the dose-dependency of the antigen. Symptoms were checked weekly. In order to confirm food allergy symptoms, the effect of histamine H1 receptor antagonist was examined. Finally, we measured antigen-specific IgE antibody levels in the serum. RESULTS Scratching behavior, sneezing and nasal rubbing were increased. Both itching and rhinitis symptoms increased steadily, after which, the number of symptoms remained almost constant. No difference was observed between the results of 3- and 5-week-old mice. Cetirizine inhibited these symptoms in a dose-dependent manner. In addition, antigen-specific IgE antibodies were produced in both 3- and 5-week-old mice. CONCLUSIONS This method may be useful for evaluating the symptoms of skin and rhinitis that could not be assessed in the conventional food allergy model and could be induced with a low dose of antigen. In particular, the developed method, which measures the number of itching and nasal symptoms, may enable quantitative, objective, and noninvasive evaluation of food allergy severity.
Collapse
Affiliation(s)
- Takafumi Morinaga
- Laboratory of Inflammatory Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takuya Yamamoto
- Laboratory of Inflammatory Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yukio Sugimoto
- Laboratory of Inflammatory Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan.
| |
Collapse
|
18
|
Kanagaratham C, Derakhshan T, El Ansari YS, Furiness KN, Hollers E, Keldsen M, Oettgen HC, Dwyer DF. IgG:FcγRIIb signals block effector programs of IgE:FcεRI-activated mast cells but spare survival pathways. J Allergy Clin Immunol 2023; 152:453-468. [PMID: 37030590 PMCID: PMC10524869 DOI: 10.1016/j.jaci.2023.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND IgE-induced mast cell (MC) degranulation can be inhibited by IgG antibodies, signaling via FcγRIIb, but the effects of IgG on IgE-induced MC transcription are unknown. OBJECTIVE We sought to assess inhibitory IgG:FcγRIIb effects on MC responses to IgE using complementary transcriptomic and functional approaches. METHODS RNA sequencing was performed on bone marrow-derived MCs from wild-type and FcγRIIb-deficient mice to identify genes activated following IgE receptor crosslinking that were further modulated in the presence of antigen-specific IgG in an FcγRIIb-dependent fashion. Parallel analyses of signaling pathways and allergic responses in vivo were performed to assess the impact of these changes in gene expression. RESULTS Rapid changes in the transcription of 879 genes occurred in MCs activated by IgE, peaking at 1 hour. Surprisingly, only 12% of these were altered by IgG signaling via FcγRIIb, including numerous transcripts involved in orchestrating type 2 responses linked to spleen tyrosine kinase signaling. Consistent with this finding, IgG suppressed IgE-induced phospho-intermediates in the spleen tyrosine kinase signaling pathway. In vivo studies confirmed that the IgG-mediated suppression of both systemic anaphylaxis and MC-driven tissue recruitment of inflammatory cells following allergen challenge was dependent on FcγRIIb. In contrast, genes in the STAT5a cell survival pathway were unaltered by IgG, and STAT5a phosphorylation increased after IgE-induced MC activation but was unaffected by IgG. CONCLUSIONS Our findings indicate that inhibitory IgG:FcγRIIb signals block an IgE-induced proallergic program but spare a prosurvival program.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Tahereh Derakhshan
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Yasmeen S El Ansari
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | | | - Eleanor Hollers
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass
| | - Mats Keldsen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
19
|
Oettgen HC. Mast cells in food allergy: Inducing immediate reactions and shaping long-term immunity. J Allergy Clin Immunol 2023; 151:21-25. [PMID: 36328809 DOI: 10.1016/j.jaci.2022.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Mast cells are distributed throughout the gastrointestinal tract and function as the main effector cells of IgE-mediated allergic reactions to foods. Allergen-induced cross-linking of IgE antibodies bound to high-affinity IgE receptors, FcεRI, on the surface of mast cells triggers their activation, resulting in the release of mediators of immediate hypersensitivity. These mediators rapidly induce both local gastrointestinal and systemic physiological responses including anaphylaxis. Emerging evidence has revealed that, in addition to inciting immediate reactions, mast cells are key regulators of adaptive immunity to foods. In the gastrointestinal mucosa they provide the priming cytokines that initiate and, over time, consolidate adaptive TH2 responses to ingested allergens as well as TNF and chemokines that orchestrate the recruitment of tissue-infiltrating leukocytes that drive type 2 tissue inflammation. Patients with atopic dermatitis have increased intestinal mast cell numbers and are at a greater risk for food allergy. Recent studies have uncovered a skin-gut axis in which epicutaneous allergen exposure drives intestinal mast cell expansion. The activating effects of IgE antibodies in mast cells are countered by food-specific IgG antibodies that signal via the inhibitory IgG receptor, FcγR2b, suppressing both immediate allergic reactions to foods and the type 2 immune adjuvant activity of mast cells.
Collapse
Affiliation(s)
- Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
20
|
Kazmi W, Berin MC. Oral tolerance and oral immunotherapy for food allergy: Evidence for common mechanisms? Cell Immunol 2023; 383:104650. [PMID: 36543052 DOI: 10.1016/j.cellimm.2022.104650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Food allergies affect up to 10% of the US population, can be life-threatening, and have a significant negative impact on quality of life. Delayed dietary introduction of foods in childhood can hinder the induction of oral tolerance, an active regulatory response to foods that prevents the development of food allergy. Some children outgrow their food allergies naturally, while many others have persistent, lifelong food allergy for which there are few therapeutic options. Oral immunotherapy (OIT) is a therapeutic approach of giving increasing amounts of food to attempt to desensitize the allergic individual. In this review, we focus on the immune mechanisms common to oral tolerance and response to oral immunotherapy, with the objective of determining whether true tolerance can be achieved after food allergy has been established.
Collapse
Affiliation(s)
- Wajiha Kazmi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
22
|
El Ansari YS, Kanagaratham C, Burton OT, Santos JV, Hollister BMA, Lewis OL, Renz H, Oettgen HC. Allergen-Specific IgA Antibodies Block IgE-Mediated Activation of Mast Cells and Basophils. Front Immunol 2022; 13:881655. [PMID: 35865546 PMCID: PMC9294179 DOI: 10.3389/fimmu.2022.881655] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells and basophils have long been implicated in the pathogenesis of IgE-mediated hypersensitivity reactions. They express the high-affinity IgE receptor, FcϵRI, on their surface. Antigen-induced crosslinking of IgE antibodies bound to that receptor triggers a signaling cascade that results in activation, leading to the release of an array of preformed vasoactive mediators and rapidly synthesized lipids, as well as the de novo production of inflammatory cytokines. In addition to bearing activating receptors like FcεRI, these effector cells of allergy express inhibitory ones including FcγR2b, an IgG Fc receptor with a cytosolic inhibitory motif that activates protein tyrosine phosphatases that suppress IgE-mediated activation. We and others have shown that food allergen-specific IgG antibodies strongly induced during the course of oral immunotherapy (OIT), signal via FcγR2b to suppress IgE-mediated mast cell and basophil activation triggered by food allergen challenge. However, the potential inhibitory effects of IgA antibodies, which are also produced in response to OIT and are present at high levels at mucosal sites, including the intestine where food allergens are encountered, have not been well studied. Here we uncover an inhibitory function for IgA. We observe that IgA binds mouse bone marrow-derived mast cells (BMMCs) and peritoneal mast cells. Binding to BMMCs is dependent on calcium and sialic acid. We also found that IgA antibodies inhibit IgE-mediated mast cell degranulation in an allergen-specific fashion. Antigen-specific IgA inhibits IgE-mediated mast cell activation early in the signaling cascade, suppressing the phosphorylation of Syk, the proximal protein kinase mediating FcεRI signaling, and suppresses mast cell production of cytokines. Furthermore, using basophils from a peanut allergic donor we found that IgA binds to basophils and that activation by exposure to peanuts is effectively suppressed by IgA. We conclude that IgA serves as a regulator of mast cell and basophil degranulation, suggesting a physiologic role for IgA in the maintenance of immune homeostasis at mucosal sites.
Collapse
Affiliation(s)
- Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Oliver T. Burton
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Jenna V. Santos
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | | | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- *Correspondence: Hans C. Oettgen,
| |
Collapse
|
23
|
Hsiao KC, Ponsonby AL, Ashley S, Lee CYY, Jindal L, Tang MLK. Longitudinal antibody responses to peanut following probiotic and peanut oral immunotherapy (PPOIT) in children with peanut allergy. Clin Exp Allergy 2022; 52:735-746. [PMID: 35403286 DOI: 10.1111/cea.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Probiotic and Peanut Oral Immunotherapy (PPOIT) is effective at inducing sustained unresponsiveness (SU) at end-of-treatment and this effect persists up to four years post-treatment, referred to as persistent SU. We sought to evaluate (i) how PPOIT altered peanut-specific humoral immune indices, and (ii) how such longitudinal indices relate to persistent SU. METHODS Longitudinal serum/plasma levels of whole peanut- and peanut component- (Ara-h1, -h2, -h3, -h8, -h9) specific-IgE (sIgE) and specific-IgG4 (sIgG4) antibodies were measured by ImmunoCAP and salivary peanut-specific-IgA (sIgA) by ELISA in children (n=62) enrolled in the PPOIT-001 randomised trial from baseline (T0) to 4-years post-treatment (T5). Multivariate regression analyses of log-transformed values were used for point-in-time between group comparisons. Generalised estimating equations (GEE) were used for longitudinal comparisons between groups. RESULTS PPOIT was associated with changes in sIgE and sIgG4 over time. sIgE levels were significantly reduced post-treatment [T5, PPOIT v.s. Placebo ratio of geometric mean (GM): Ara-h1 0.07, p=0.008; Ara-h2 0.08, p=0.007; Ara-h3 0.15, p=0.021]. sIgG4 levels were significantly increased by end-of-treatment (T1, PPOIT v.s. Placebo ratio of GM: Ara-h1 3.77, p=0.011; Ara-h2 17.97, p<0.001; Ara-h3 10.42, p<0.001) but levels in PPOIT group decreased once treatment was stopped and returned to levels comparable with Placebo group by T5. Similarly, salivary peanut sIgA increased during treatment, as early as 4 months of treatment (PPOIT v.s. Placebo, ratio of GM: 2.04, p=0.014), then reduced post-treatment. CONCLUSION PPOIT was associated with broad reduction in peanut specific humoral responses which may mediate the clinical effects of SU that persists to 4-years post-treatment.
Collapse
Affiliation(s)
- Kuang-Chih Hsiao
- Department of Immunology, Starship Children's Hospital, Auckland, New Zealand
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
- Allergy Immunology Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Anne-Louise Ponsonby
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarah Ashley
- Allergy Immunology Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | | | | | - Mimi L K Tang
- Allergy Immunology Research, Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
24
|
Wu M, Wang X, Sun L, Chen Z. Associations between food-specific IgG and health outcomes in an asymptomatic physical examination cohort. Nutr Metab (Lond) 2022; 19:22. [PMID: 35305694 PMCID: PMC8933923 DOI: 10.1186/s12986-022-00657-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Although the association of food-specific IgG with the development and progression of specific diseases was shown by many studies, it is also present in the population without clinical symptoms. However, the association between food-specific IgG and physical examination outcomes in healthy people has not been studied yet. Methods An asymptomatic physical examination cohort (APEC) was selected according to the inclusion and exclusion criteria, the physical examination data were compared between IgG positive and IgG negative groups, and their odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable logistic regression. Results The data of 28,292 subjects were included in the analysis. The overall IgG positive rate was up to 52.30%, mostly with mild to moderate IgG positivity. The multivariable Logistic regression showed the prevalence of hypertriglyceridemia, abnormal fasting blood glucose and overweight was lower in the IgG (+) positive group (OR 0.87, 95% CI 0.83–0.92; OR 0.93, 95% CI 0.87–0.99; OR 0.92, 95% CI 0.87–0.96) but there was a higher prevalence of thyroid disease (OR 1.09, 95% CI 1.04–1.15). Conclusion Food-specific IgG positivity was widespread in the APEC and was associated with lower prevalence of hypertriglyceridemia, abnormal fasting blood glucose and overweight. The underlying physiological mechanism merits further study.
Collapse
Affiliation(s)
- Mingxia Wu
- Health Management Center, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaofang Wang
- Health Management Center, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li Sun
- Health Management Center, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zongtao Chen
- Health Management Center, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
25
|
Hazebrouck S, Canon N, Dreskin SC. The Effector Function of Allergens. FRONTIERS IN ALLERGY 2022; 3:818732. [PMID: 35386644 PMCID: PMC8974742 DOI: 10.3389/falgy.2022.818732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 01/29/2023] Open
Abstract
Allergens are antigens that generate an IgE response (sensitization) in susceptible individuals. The allergenicity of an allergen can be thought of in terms of its ability to sensitize as well as its ability to cross-link IgE/IgE receptor complexes on mast cells and basophils leading to release of preformed and newly formed mediators (effector activity). The identity of the allergens responsible for sensitization may be different from those that elicit an allergic response. Effector activity is determined by (1) the amount of specific IgE (sIgE) and in some circumstances the ratio of sIgE to total IgE, (2) the number of high affinity receptors for IgE (FcεR1) on the cell surface, (3) the affinity of binding of sIgE for its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can bind to allergen and either block binding of sIgE and/or activate low affinity IgG receptors that activate intracellular inhibitory pathways. This review will discuss these important immunologic and physical properties that contribute to the effector activity of allergens.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Nicole Canon
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Stephen C. Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
26
|
Nikolov G, Todordova Y, Emilova R, Hristova D, Nikolova M, Petrunov B. Allergen-Specific IgE and IgG4 as Biomarkers for Immunologic Changes during Subcutaneous Allergen Immunotherapy. Antibodies (Basel) 2021; 10:antib10040049. [PMID: 34940001 PMCID: PMC8698535 DOI: 10.3390/antib10040049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Biomarkers of efficacy for subcutaneous immunotherapy (SCIT) on allergic rhinitis have not been evaluated in details. The present study aims to assess the relevance of measuring of sIgE, sIgG4 and IgE/IgG4 ratio during SCIT in patients with allergic rhinitis; (2) Methods: 20 patients, 13 men and 7 women aged 19 to 58 years, with clinically manifested seasonal and perennial allergic rhinitis were studied. At the initiation and in the end of the three-year course of SCIT serum allergen-specific IgE and IgG4 were measured with ImmunoCAP system. The sIgE/sIgG4 ratio was calculated as a biomarker for immunologic effectiveness; (3) Results: There was a significant increase of sIgG4 antibodies (p < 0.05), while at the end of SCIT for the sIgE levels no significant changes were seen (p > 0.05). Moreover, 90% of patients showed a decrease of the IgE/IgG4 ratio; (4) Conclusions: In most of treated patients with AR, SCIT with Bulgarian allergen products leads to clear immunological changes. After a 3-year of SCIT there is a significant increase in allergen specific IgG4 levels and both decrease of sIgE and IgE/IgG4 ratio. sIgE, sIgG4 and IgE/IgG4 ratio can be used as a substantial biomarker for predicting immunological effectiveness of SCIT.
Collapse
|
27
|
Shamji MH, Valenta R, Jardetzky T, Verhasselt V, Durham SR, Würtzen PA, van Neerven RJ. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021; 76:3627-3641. [PMID: 33999439 PMCID: PMC8601105 DOI: 10.1111/all.14908] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Immunoglobulin E (IgE)‐mediated allergy is the most common hypersensitivity disease affecting more than 30% of the population. Exposure to even minute quantities of allergens can lead to the production of IgE antibodies in atopic individuals. This is termed allergic sensitization, which occurs mainly in early childhood. Allergen‐specific IgE then binds to the high (FcεRI) and low‐affinity receptors (FcεRII, also called CD23) for IgE on effector cells and antigen‐presenting cells. Subsequent and repeated allergen exposure increases allergen‐specific IgE levels and, by receptor cross‐linking, triggers immediate release of inflammatory mediators from mast cells and basophils whereas IgE‐facilitated allergen presentation perpetuates T cell–mediated allergic inflammation. Due to engagement of receptors which are highly selective for IgE, even tiny amounts of allergens can induce massive inflammation. Naturally occurring allergen‐specific IgG and IgA antibodies usually recognize different epitopes on allergens compared with IgE and do not efficiently interfere with allergen‐induced inflammation. However, IgG and IgA antibodies to these important IgE epitopes can be induced by allergen‐specific immunotherapy or by passive immunization. These will lead to competition with IgE for binding with the allergen and prevent allergic responses. Similarly, anti‐IgE treatment does the same by preventing IgE from binding to its receptor on mast cells and basophils. Here, we review the complex interplay of allergen‐specific IgE, IgG and IgA and the corresponding cell receptors in allergic diseases and its relevance for diagnosis, treatment and prevention of allergy.
Collapse
Affiliation(s)
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
- Laboratory of Immunopathology Department of Clinical Immunology and Allergology Sechenov First Moscow State Medical University Moscow Russia
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
| | | | - Valerie Verhasselt
- School of Molecular Sciences University of Western Australia Perth WA Australia
| | | | | | - R.J. Joost van Neerven
- Wageningen University & Research Wageningen The Netherlands
- FrieslandCampina Amersfoort The Netherlands
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW B cells are known in food allergy pathogenesis for their production of IgE but their roles in the development of tolerance to foods are not well understood. Further understanding of B-cell biology in the context of food allergy is essential for the creation of effective prevention strategies and therapies. RECENT FINDINGS The majority of allergen-specific IgE in humans appears to arise from antigen-experienced B cells that have already undergone class switch recombination to other antibody isotypes, such as IgG1, and can also be produced by cells class switching to IgE locally in the gastrointestinal tract. Allergen-specific IgG4 can have protective effects in individuals and is associated with tolerance. Regulatory B cells, which can produce allergen-specific IgG4, are reduced in food-allergic individuals and may also be an important component of tolerance. Therapeutic approaches that block the generation and action of IgE and that enhance tolerizing immune responses are being evaluated for the treatment of food allergy. SUMMARY B cells play several roles in the development of food allergy versus tolerance. Their functions may translate into the care of food allergy as biomarkers or therapeutic targets and can be employed in other atopic diseases to better understand their pathogenesis and create new avenues for treatment.
Collapse
Affiliation(s)
- Chioma Udemgba
- Allergy and Clinical Immunology Fellowship Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Adora Lin
- Center for Cancer and Immunology Research, Children’s National Research Institute, Washington, DC
| |
Collapse
|
29
|
Ukleja-Sokołowska N, Lis K, Żbikowska-Gotz M, Adamczak R, Bartuzi Z. IgE, IgG, TSLP, Il 25 and IL 33 in symptomatic and asymptomatic patients sensitized to shrimp allergens. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.2005545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Natalia Ukleja-Sokołowska
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Magdalena Żbikowska-Gotz
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Rafał Adamczak
- Department of Obstetrics and Gynecology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
30
|
Zheng P, Liu X, Lin L, Wu H, Zhao X, Sun B. Efficacy of mite allergen immunotherapy in allergic rhinitis and the immune synergistic effect on cross-allergens. Immunotherapy 2021; 14:217-233. [PMID: 34845913 DOI: 10.2217/imt-2020-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To compare the efficacy of single- and double-species mite allergen immunotherapy. Materials and methods: An open, pseudo-randomized, controlled study was conducted (n = 125 allergic rhinitis patients). The primary end point involved the visual analogue scale. Secondary end points included a basophil activation test and serum specific IgE and IgG4 assays. Results: Visual analogue scale analysis indicated considerable reductions in both groups. Both treatments improved quality of life and induced sIgG4 antibody production. Basophil activation and serum IgE inhibition were not evident in either treatment. Neither treatment displayed an early stage immune synergistic effect on cross-allergens. Conclusions: Both treatments were effective against allergic rhinitis, and statistical differences were not observed. Future studies may require long-term, large-scale research.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoqing Liu
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Lili Lin
- Department of Otolaryngology Head & Neck Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Huiqin Wu
- Department of Otolaryngology Head & Neck Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Xiaoming Zhao
- Department of Otolaryngology Head & Neck Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Baoqing Sun
- Department of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
31
|
Pulik K, Ruszczyński M, Krenke R. Oral immunotherapy in children with a food allergy-Where do we stand? - Review. Clin Exp Pharmacol Physiol 2021; 49:191-201. [PMID: 34716938 DOI: 10.1111/1440-1681.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The number of hospitalisations due to an anaphylactic reaction to food is continuously increasing. Therefore, there is an urgent need to seek effective therapy. Currently, the only way to treat food allergies is to avoid allergens and to administer intramuscular adrenaline if an accidental allergen intake occurs. The only causal therapeutic strategy is specific oral immunotherapy. An increasing amount of data confirms this therapy's effectiveness and safety, but the results remain inconclusive due to the lack of long-term follow-up. In this state-of-the-art review, we briefly summarise the latest placebo-controlled randomised controlled trials on oral immunotherapy (OIT) to treat food allergy. During the paper's review, we asked the following questions: does the therapy permanently increase the amount of allergen consumed without symptoms? Does it significantly increase or decrease the occurrence of severe systemic reactions - requiring the administration of adrenaline or hospitalisation? Many authors describe outcomes such as an increase in the amount of allergen that can be safely ingested; however, significant clinical benefits such as decreased hospitalisations or anaphylaxis incidence are rarely included in the results. To date, there is no unified protocol of therapy, which makes comparisons between studies difficult because of significant differences in types, doses, and routes of administration of the allergen, timeline for up-dosing and maintenance, duration of the therapy, and primary outcomes of OIT.
Collapse
Affiliation(s)
- Kaja Pulik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Marek Ruszczyński
- II Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Chen G, Shrock EL, Li MZ, Spergel JM, Nadeau KC, Pongracic JA, Umetsu DT, Rachid R, MacGinnitie AJ, Phipatanakul W, Schneider L, Oettgen HC, Elledge SJ. High-resolution epitope mapping by AllerScan reveals relationships between IgE and IgG repertoires during peanut oral immunotherapy. CELL REPORTS MEDICINE 2021; 2:100410. [PMID: 34755130 PMCID: PMC8563412 DOI: 10.1016/j.xcrm.2021.100410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 10/24/2022]
Abstract
Peanut allergy can result in life-threatening reactions and is a major public health concern. Oral immunotherapy (OIT) induces desensitization to food allergens through administration of increasing amounts of allergen. To dissect peanut-specific immunoglobulin E (IgE) and IgG responses in subjects undergoing OIT, we have developed AllerScan, a method that leverages phage-display and next-generation sequencing to identify the epitope targets of peanut-specific antibodies. We observe a striking diversification and boosting of the peanut-specific IgG repertoire after OIT and a reduction in pre-existing IgE levels against individual epitopes. High-resolution epitope mapping reveals shared recognition of public epitopes in Ara h 1, 2, 3, and 7. In individual subjects, OIT-induced IgG specificities overlap extensively with IgE and exhibit strikingly similar antibody footprints, suggesting related clonal lineages or convergent evolution of peanut-specific IgE and IgG B cells. Individual differences in epitope recognition identified via AllerScan could inform safer and more effective personalized immunotherapy.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02115, USA
| | - Ellen L Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02115, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Jacqueline A Pongracic
- Division of Pediatric Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Dale T Umetsu
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rima Rachid
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J MacGinnitie
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wanda Phipatanakul
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lynda Schneider
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hans C Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
33
|
McKendry RT, Kwok M, Hemmings O, James LK, Santos AF. Allergen-specific IgG show distinct patterns in persistent and transient food allergy. Pediatr Allergy Immunol 2021; 32:1508-1518. [PMID: 34057765 DOI: 10.1111/pai.13567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immediate food-allergic reactions are IgE-mediated, but many individuals with detectable allergen-specific IgE do not react to the food. Allergen-specific IgG may interfere with allergen-IgE interaction and/or through intracellular inhibitory signalling to suppress mast cell and basophil response to food allergens. We aimed to understand the role of allergen-specific IgG in food allergy and natural tolerance. METHODS IgG and IgG isotypes specific to peanut, cow's milk and egg were measured using ImmunoCAP and ELISA respectively in samples of children with suspected food allergies. Expression of IgE and IgG and their receptors and expression of activation markers following allergen stimulation were measured on basophils and mast cells by flow cytometry, with and without blockade of FcγRIIα or FcγRIIβ receptors. RESULTS The levels of peanut-specific IgG, IgG1, IgG2, IgG3 and IgG4 in ELISA were higher in peanut-allergic than in non-peanut-allergic children. No difference in allergen-specific IgG isotypes was observed between allergic and non-allergic children to milk or egg, except for milk-specific IgG4 that was higher in non-cow's milk-allergic than in cow's milk-allergic children. Basophils and LAD2 cells expressed IgG receptors, but IgG and IgA were not detected on the surface of either cell type and blocking FcγRIIα or FcγRIIβ did not modify basophil or mast cell activation in response to allergen in allergic or tolerant children. CONCLUSION Allergen-specific IgG patterns were distinct in persistent (peanut) versus transient (milk and egg) food allergies. We found no evidence that FcγRIIα or FcγRIIβ receptors affect allergen-induced activation of mast cells and basophils in food allergy or natural tolerance.
Collapse
Affiliation(s)
- Richard T McKendry
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Matthew Kwok
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Oliver Hemmings
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, UK
| | - Alexandra F Santos
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Children's Allergy Service, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
34
|
Ramsey N, Berin MC. Pathogenesis of IgE-mediated food allergy and implications for future immunotherapeutics. Pediatr Allergy Immunol 2021; 32:1416-1425. [PMID: 33715245 PMCID: PMC9096874 DOI: 10.1111/pai.13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the immune basis of food allergy has grown rapidly in parallel with the development of new immune-targeted interventions for the treatment of food allergy. Local tissue factors, including the composition of skin and gastrointestinal microbiota and production of Th2-inducing cytokines (TSLP, IL-33, and IL-25) from barrier sites, have been shown not only to contribute to the development of food allergy, but also to act as effective targets for treatment in mice. Ongoing clinical trials are testing the targeting of these factors in human disease. There is a growing understanding of the contribution of IL-13 to the induction of high-affinity IgE and the need for continual T-cell help in the maintenance of long-lived IgE. This provides a strong rationale to test biologics targeting both IL-4 and IL-13 in the treatment of established food allergy. Various forms of allergen immunotherapy for food allergy have clearly shown that low specific IgE and elevated specific IgG4 are predictive of sustained treatment effect. Treatments that mimic that immune response, for example, lowering IgE, with monoclonal antibodies such as omalizumab, or administering allergen-specific IgG, are in various stages of investigation. As we gain more opportunities to use immune-modifying treatments for the treatment of food allergy, studies of the immune and clinical response to those interventions will continue to rapidly advance our understanding of the immune basis of food allergy and tolerance.
Collapse
Affiliation(s)
- Nicole Ramsey
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Utilization of basophil activation in the diagnosis and monitoring of food allergy has gained increasing recognition. An ex-vivo functional assay, basophil activation reflects clinical reactivity, thereby providing clinically relevant insights. Moreover, as a biomarker of reactivity and tolerance, basophil activation testing (BAT) may provide a useful tool for management of food allergies. Despite its utility, significant limitations of BAT have prevented widespread use. Addressing these limitations will increase the future application and adoption of BAT in food allergy. RECENT FINDINGS A number of clinical trials in the past few years have demonstrated the use of BAT in the diagnosis and treatment of food allergy. Specifically, BAT has been found to be a biomarker of tolerance. SUMMARY Basophil activation testing is an effective biomarker for diagnosis and monitoring of food allergy.
Collapse
Affiliation(s)
- Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sarita U. Patil
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
- Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
36
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
38
|
Noel JC, Berin MC. Role of innate immunity and myeloid cells in susceptibility to allergic disease. Ann N Y Acad Sci 2021; 1499:42-53. [PMID: 34159612 DOI: 10.1111/nyas.14654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Allergic diseases, including asthma, food allergy, eczema, and allergic rhinitis, are common diseases increasing in prevalence. Allergy, a failure of immune tolerance to innocuous environmental allergens, is characterized by allergen-specific immune responses, including IgE antibodies and T helper and T follicular helper cells producing type 2 cytokines. Despite the central role of adaptive immunity in pathophysiology of allergy, there is a growing body of evidence indicating an important role for the innate immune system in allergic disease. In this review, we focus on epithelial-mononuclear phagocyte communication in the control of allergy and tolerance. We discuss studies on early life environmental exposures and allergy susceptibility, and the evidence for innate training of mononuclear phagocytes as the mechanistic link between exposure and health or disease.
Collapse
Affiliation(s)
- Justine C Noel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Cecilia Berin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
39
|
Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. Allergy 2021; 76:1707-1717. [PMID: 33274454 DOI: 10.1111/all.14684] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
An increasing number of people suffer from IgE-mediated food allergies. The immunological mechanisms that cause IgE-mediated food allergy have been extensively studied. B cells play a key role in the development of IgE-mediated food allergies through the production of allergen-specific antibodies. While this particular function of B cells has been known for many years, we still do not fully understand the mechanisms that regulate the induction and maintenance of allergen-specific IgE production. It is still not fully understood where in the body IgE class switch recombination of food allergen-specific B cells occurs, and what processes are involved in the immunological memory of allergen-specific IgE responses. B cells can also contribute to the regulation of allergen-specific immune responses through other mechanisms such as antigen presentation and cytokine production. Recent technological advances have enabled highly detailed analysis of small subsets of B cells down to the single-cell level. In this review, we provide an overview of the current knowledge on the biology of B cells in relation to IgE-mediated food allergies.
Collapse
Affiliation(s)
| | - Monique Daanje
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
- Department of Pathology Stanford University School of Medicine Stanford CA USA
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
40
|
Duan S, Arlian BM, Nycholat CM, Wei Y, Tateno H, Smith SA, Macauley MS, Zhu Z, Bochner BS, Paulson JC. Nanoparticles Displaying Allergen and Siglec-8 Ligands Suppress IgE-FcεRI-Mediated Anaphylaxis and Desensitize Mast Cells to Subsequent Antigen Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2290-2300. [PMID: 33911007 PMCID: PMC8113104 DOI: 10.4049/jimmunol.1901212] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Siglec-8 is an inhibitory receptor expressed on eosinophils and mast cells. In this study, we took advantage of a novel Siglec-8 transgenic mouse model to assess the impact of modulating IgE-dependent mast cell degranulation and anaphylaxis using a liposomal platform to display an allergen with or without a synthetic glycan ligand for Siglec-8 (Sig8L). The hypothesis is that recruitment of Siglec-8 to the IgE-FcεRI receptor complex will inhibit allergen-induced mast cell degranulation. Codisplay of both allergen and Sig8L on liposomes profoundly suppresses IgE-mediated degranulation of mouse bone marrow-derived mast cells or rat basophilic leukemia cells expressing Siglec-8. In contrast, liposomes displaying only Sig8L have no significant suppression of antigenic liposome-induced degranulation, demonstrating that the inhibitory activity by Siglec-8 occurs only when Ag and Sig8L are on the same particle. In mouse models of anaphylaxis, display of Sig8L on antigenic liposomes completely suppresses IgE-mediated anaphylaxis in transgenic mice with mast cells expressing Siglec-8 but has no protection in mice that do not express Siglec-8. Furthermore, mice protected from anaphylaxis remain desensitized to subsequent allergen challenge because of loss of Ag-specific IgE from the cell surface and accelerated clearance of IgE from the blood. Thus, although expression of human Siglec-8 on murine mast cells does not by itself modulate IgE-FcεRI-mediated cell activation, the enforced recruitment of Siglec-8 to the FcεRI receptor by Sig8L-decorated antigenic liposomes results in inhibition of degranulation and desensitization to subsequent Ag exposure.
Collapse
MESH Headings
- Allergens/administration & dosage
- Anaphylaxis/drug therapy
- Anaphylaxis/genetics
- Anaphylaxis/immunology
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line, Tumor
- Desensitization, Immunologic/methods
- Disease Models, Animal
- Drug Delivery Systems/methods
- Humans
- Immunoglobulin E/metabolism
- Lectins/genetics
- Lectins/metabolism
- Ligands
- Liposomes
- Mast Cells/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nanoparticles/chemistry
- Polysaccharides/administration & dosage
- Polysaccharides/metabolism
- Rats
- Receptors, IgE/genetics
- Receptors, IgE/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Shiteng Duan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yadong Wei
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hiroaki Tateno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Scott A Smith
- Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| | - Matthew S Macauley
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Zhou Zhu
- Department of Pediatrics, Brown University Alpert Medical School, Providence, RI
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
41
|
Barshow SM, Kulis MD, Burks AW, Kim EH. Mechanisms of oral immunotherapy. Clin Exp Allergy 2021; 51:527-535. [PMID: 33417257 PMCID: PMC9362513 DOI: 10.1111/cea.13824] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 10/19/2023]
Abstract
Food allergy presents a significant global health concern with up to 10% of the population affected in developed nations and a steadily increasing prevalence. In many cases, particularly with peanut, tree nut and shellfish, food allergy is a lifelong and potentially life-threatening diagnosis. While no 'cure' for IgE-mediated food allergy exists, oral immunotherapy (OIT) is a promising treatment modality with the peanut OIT drug Palforzia (Aimmune Therapeutics) the only treatment for food allergy that is currently approved by the United States Food and Drug Administration. OIT primarily induces a state of desensitization with only a minority of subjects achieving sustained unresponsiveness, a state of limited clinical remission that appears to be immunologically distinct from natural tolerance. Early humoural changes during OIT include an initial increase in allergen-specific IgE, which eventually decreases to below baseline levels as OIT progresses, and a gradual increase in allergen-specific IgA and IgG4 that continues throughout the course of OIT. Basophil hyporesponsiveness and decreased skin prick test wheal size are observed within the first year of OIT, and persistence after completion of therapy has been associated with sustained unresponsiveness. In the T-cell compartment, there is an initial expansion followed by a decline in the number and activity of T helper 2 (TH 2) cells, the latter of which may be dependent on an expansion of IL-10-producing cells, including regulatory T-cells. Our understanding of the immunomodulatory effects of OIT continues to evolve, with new technologies such as single-cell transcriptional profiling and antibody epitope analysis allowing for more detailed study of T-cell and B-cell responses to OIT. In this review, we present evidence to illustrate what is currently known about the immunologic changes induced by OIT, explore potential mechanisms and emphasize knowledge gaps where future research is needed.
Collapse
Affiliation(s)
- Suzanne M Barshow
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Michael D Kulis
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - A Wesley Burks
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Edwin H Kim
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Michelet M, Balbino B, Guilleminault L, Reber LL. IgE in the pathophysiology and therapy of food allergy. Eur J Immunol 2021; 51:531-543. [PMID: 33527384 DOI: 10.1002/eji.202048833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Food allergy is becoming a major public health issue, with no regulatory approved therapy to date. Food allergy symptoms range from skin rash and gastrointestinal symptoms to anaphylaxis, a potentially fatal systemic allergic shock reaction. IgE antibodies are thought to contribute importantly to key features of food allergy and anaphylaxis, and measurement of allergen-specific IgE is fundamental in diagnosing food allergy. This review will discuss recent advances in the regulation of IgE production and IgE repertoires in food allergy. We will describe the current understanding of the role of IgE and its high-affinity receptor FcεRI in food allergy and anaphylaxis, by reviewing insights gained from analyses of mouse models. Finally, we will review data derived from clinical studies of the effect of anti-IgE therapeutic monoclonal antibodies (mAbs) in food allergy, and recent insight on the efficiency and mechanisms through which these mAbs block IgE effector functions.
Collapse
Affiliation(s)
- Marine Michelet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Pediatric Pneumo-allergology Department, Children's Hospital, University Hospital Centre of Toulouse, Toulouse, France
| | - Bianca Balbino
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| | - Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Department of Respiratory Medicine and Allergic Diseases, University Hospital Centre of Toulouse, Toulouse, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| |
Collapse
|
43
|
Berin MC. Advances in understanding immune mechanisms of food protein-induced enterocolitis syndrome. Ann Allergy Asthma Immunol 2021; 126:478-481. [PMID: 33548465 DOI: 10.1016/j.anai.2021.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This review provides an overview of our current understanding of the mechanisms of food protein-induced enterocolitis syndrome (FPIES). DATA SOURCES To capture recent articles published since our previous comprehensive review on the pathophysiology of FPIES, we performed a literature search through PubMed database, using the search terms FPIES and food protein-induced enterocolitis syndrome from 2016 to the current year. STUDY SELECTIONS Studies in English containing biomarker or immune data were reviewed and summarized. RESULTS Studies of peripheral blood fail to exhibit evidence of antigen-specific humoral or cellular immunity underlying clinical reactivity to foods in FPIES. However, growing evidence suggests a robust systemic innate immune activation occurring during FPIES reactions and the activation of neuroendocrine pathways. CONCLUSION FPIES reactions are associated with marked activation of innate immune and neuroendocrine pathways; however, the mechanism underlying the specific recognition of foods remains elusive.
Collapse
Affiliation(s)
- M Cecilia Berin
- Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
44
|
Takasato Y, Kurashima Y, Kiuchi M, Hirahara K, Murasaki S, Arai F, Izawa K, Kaitani A, Shimada K, Saito Y, Toyoshima S, Nakamura M, Fujisawa K, Okayama Y, Kunisawa J, Kubo M, Takemura N, Uematsu S, Akira S, Kitaura J, Takahashi T, Nakayama T, Kiyono H. Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal Immunol 2021; 14:640-651. [PMID: 33299086 PMCID: PMC8075951 DOI: 10.1038/s41385-020-00358-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Oral immunotherapy (OIT) is an effective approach to controlling food allergy. Although the detailed molecular and cellular mechanisms of OIT are unknown currently, they must be understood to advance the treatment of allergic diseases in general. To elucidate the mechanisms of OIT, especially during the immunological transition from desensitization to allergy regulation, we generated a clinical OIT murine model and used it to examine immunological events of OIT. We found that in mice that completed OIT successfully, desensitized mast cells (MCs) showed functionally beneficial alterations, such as increased induction of regulatory cytokines and enhanced expansion of regulatory T cells. Importantly, these regulatory-T-cell-mediated inhibitions of allergic responses were dramatically decreased in mice lacking OIT-induced desensitized MC. Collectively, these findings show that the desensitization process modulates the activation of MCs, leading directly to enhanced induction of regulatory-T-cell expansion and promotion of clinical allergic unresponsiveness. Our results suggest that efficiently inducing regulatory MCs is a novel strategy for the treatment of allergic disease.
Collapse
Affiliation(s)
- Yoshihiro Takasato
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.26091.3c0000 0004 1936 9959Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582 Japan
| | - Yosuke Kurashima
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.136304.30000 0004 0370 1101Department of Innovative Medicine and Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan ,grid.266100.30000 0001 2107 4242Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA 92093-0956 USA ,grid.136304.30000 0004 0370 1101Institute for Global Prominent Research, Chiba University, Chiba, 260-8670 Japan ,grid.482562.fLaboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085 Japan
| | - Masahiro Kiuchi
- grid.136304.30000 0004 0370 1101Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | - Kiyoshi Hirahara
- grid.136304.30000 0004 0370 1101Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | - Sayuri Murasaki
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan
| | - Fujimi Arai
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan
| | - Kumi Izawa
- grid.258269.20000 0004 1762 2738Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421 Japan
| | - Ayako Kaitani
- grid.258269.20000 0004 1762 2738Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421 Japan
| | - Kaoru Shimada
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan
| | - Yukari Saito
- grid.136304.30000 0004 0370 1101Department of Innovative Medicine and Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | - Shota Toyoshima
- grid.260969.20000 0001 2149 8846Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, Center for Medical Education, Nihon University School of Medicine, Tokyo, 173-8610 Japan
| | - Miho Nakamura
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Kumiko Fujisawa
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yoshimichi Okayama
- grid.260969.20000 0001 2149 8846Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, Center for Medical Education, Nihon University School of Medicine, Tokyo, 173-8610 Japan
| | - Jun Kunisawa
- grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan ,grid.482562.fLaboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085 Japan
| | - Masato Kubo
- grid.509459.40000 0004 0472 0267Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan ,grid.143643.70000 0001 0660 6861Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, 278-0022 Japan
| | - Naoki Takemura
- grid.136304.30000 0004 0370 1101Department of Innovative Medicine and Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Satoshi Uematsu
- grid.136304.30000 0004 0370 1101Department of Innovative Medicine and Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639 Japan ,grid.261445.00000 0001 1009 6411Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Shizuo Akira
- grid.136593.b0000 0004 0373 3971Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| | - Jiro Kitaura
- grid.258269.20000 0004 1762 2738Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421 Japan
| | - Takao Takahashi
- grid.26091.3c0000 0004 1936 9959Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582 Japan
| | - Toshinori Nakayama
- grid.136304.30000 0004 0370 1101Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| | - Hiroshi Kiyono
- grid.26999.3d0000 0001 2151 536XDepartment of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.26091.3c0000 0004 1936 9959Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582 Japan ,grid.266100.30000 0001 2107 4242Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California, San Diego, CA 92093-0956 USA ,grid.136304.30000 0004 0370 1101Institute for Global Prominent Research, Chiba University, Chiba, 260-8670 Japan ,grid.136304.30000 0004 0370 1101Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670 Japan
| |
Collapse
|
45
|
Strategies for Mast Cell Inhibition in Food Allergy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:719-731. [PMID: 33380934 PMCID: PMC7757070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells are tissue resident allergic effector cells that drive IgE-mediated food allergies. There are several steps leading to mast cell activation in the context of allergic disease that can be targeted to prevent mast cell activation and degranulation. These include blocking IgE-FcεRI crosslinking and type 2 cytokine receptor activation; modulating cell-surface neural chemical receptors; stabilizing mast cell membranes to prevent co-localization of activating receptors; impeding intracellular signaling; and engaging cell surface inhibitory receptors. This review highlights several ITIM-containing inhibitory mast cell surface receptors that could serve as pharmaceutical targets to prevent mast cell activation and degranulation in the context of food allergy. When activated, these ITIM-containing inhibitory receptors recruit the phosphatases SHP-1, SHP-2, and/or SHIP to dephosphorylate the tyrosine kinases responsible for activation signals downstream of the IgE-FcεRI complex. We describe several members of the Ig and Ig-like inhibitory receptor and C-type lectin inhibitory receptor superfamilies. Fundamental studies exploring the behavior of these receptors within the context of experimental food allergy models are needed. A deeper understanding of how these receptors modulate mast cell-driven food allergic responses will shape future strategies to harness these inhibitory receptors to treat food allergy.
Collapse
|
46
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
48
|
Mao RF, Chen YY, Zhang J, Chang X, Wang YF. Type 1 diabetes mellitus and its oral tolerance therapy. World J Diabetes 2020; 11:400-415. [PMID: 33133388 PMCID: PMC7582116 DOI: 10.4239/wjd.v11.i10.400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a T cell-mediated autoimmune disease, type 1 diabetes mellitus (T1DM) is marked by insulin defect resulting from the destruction of pancreatic β-cells. The understanding of various aspects of T1DM, such as its epidemiology, pathobiology, pathogenesis, clinical manifestations, and complications, has been greatly promoted by valuable research performed during the past decades. However, these findings have not been translated into an effective treatment. The ideal treatment should safely repair the destroyed immune balance in a long-lasting manner, preventing or stopping the destruction of β-cells. As a type of immune hypo-responsiveness to the orally administrated antigen, oral tolerance may be induced by enhancement of regulatory T cells (Tregs) or by anergy/deletion of T cells, depending on the dosage of orally administrated antigen. Acting as an antigen-specific immunotherapy, oral tolerance therapy for T1DM has been mainly performed using animal models and some clinical trials have been completed or are still ongoing. Based on the review of the proposed mechanism of the development of T1DM and oral tolerance, we give a current overview of oral tolerance therapy for T1DM conducted in both animal models and clinical trials.
Collapse
Affiliation(s)
- Rui-Feng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ying-Ying Chen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Xin Chang
- Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Ye-Fu Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| |
Collapse
|
49
|
Patil SU, Bunyavanich S, Cecilia Berin M. Emerging Food Allergy Biomarkers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:2516-2524. [PMID: 32888527 PMCID: PMC7479640 DOI: 10.1016/j.jaip.2020.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The management of food allergy is complicated by the lack of highly predictive biomarkers for diagnosis and prediction of disease course. The measurement of food-specific IgE is a useful tool together with clinical history but is an imprecise predictor of clinical reactivity. The gold standard for diagnosis and clinical research is a double-blind placebo-controlled food challenge. Improvement in our understanding of immune mechanisms of disease, development of high-throughput technologies, and advances in bioinformatics have yielded a number of promising new biomarkers of food allergy. In this review, we will discuss advances in immunoglobulin measurements, the utility of the basophil activation test, T-cell profiling, and the use of -omic technologies (transcriptome, epigenome, microbiome, and metabolome) as biomarker tools in food allergy.
Collapse
Affiliation(s)
- Sarita U. Patil
- Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Supinda Bunyavanich
- Jaffe Food Allergy Institute, Department of Pediatrics; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - M. Cecilia Berin
- Jaffe Food Allergy Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
50
|
Tulaeva I, Kratzer B, Campana R, Curin M, van Hage M, Karsonova A, Riabova K, Karaulov A, Khaitov M, Pickl WF, Valenta R. Preventive Allergen-Specific Vaccination Against Allergy: Mission Possible? Front Immunol 2020; 11:1368. [PMID: 32733455 PMCID: PMC7358538 DOI: 10.3389/fimmu.2020.01368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccines for infectious diseases have improved the life of the human species in a tremendous manner. The principle of vaccination is to establish de novo adaptive immune response consisting of antibody and T cell responses against pathogens which should defend the vaccinated person against future challenge with the culprit pathogen. The situation is completely different for immunoglobulin E (IgE)-associated allergy, an immunologically-mediated hypersensitivity which is already characterized by increased IgE antibody levels and T cell responses against per se innocuous antigens (i.e., allergens). Thus, allergic patients suffer from a deviated hyper-immunity against allergens leading to inflammation upon allergen contact. Paradoxically, vaccination with allergens, termed allergen-specific immunotherapy (AIT), induces a counter immune response based on the production of high levels of allergen-specific IgG antibodies and alterations of the adaptive cellular response, which reduce allergen-induced symptoms of allergic inflammation. AIT was even shown to prevent the progression of mild to severe forms of allergy. Consequently, AIT can be considered as a form of therapeutic vaccination. In this article we describe a strategy and possible road map for the use of an AIT approach for prophylactic vaccination against allergy which is based on new molecular allergy vaccines. This road map includes the use of AIT for secondary preventive vaccination to stop the progression of clinically silent allergic sensitization toward symptomatic allergy and ultimately the prevention of allergic sensitization by maternal vaccination and/or early primary preventive vaccination of children. Prophylactic allergy vaccination with molecular allergy vaccines may allow halting the allergy epidemics affecting almost 30% of the population as it has been achieved for vaccination against infectious diseases.
Collapse
Affiliation(s)
- Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|