1
|
Song HJ, Kim JE, Jin YJ, Roh YJ, Seol A, Kim TR, Park KH, Park ES, An BS, Yang SY, Seo S, Jo SM, Jung YS, Hwang DY. Complement C3-Deficiency-Induced Constipation in FVB/N-C3 em1Hlee/Korl Knockout Mice Was Significantly Relieved by Uridine and Liriope platyphylla L. Extracts. Int J Mol Sci 2023; 24:15757. [PMID: 37958740 PMCID: PMC10649790 DOI: 10.3390/ijms242115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Complement component 3 (C3) deficiency has recently been known as a cause of constipation, without studies on the therapeutic efficacy. To evaluate the therapeutic agents against C3-deficiency-induced constipation, improvements in the constipation-related parameters and the associated molecular mechanisms were examined in FVB/N-C3em1Hlee/Korl knockout (C3 KO) mice treated with uridine (Urd) and the aqueous extract of Liriope platyphylla L. (AEtLP) with laxative activity. The stool parameters and gastrointestinal (GI) transit were increased in Urd- and AEtLP-treated C3 KO mice compared with the vehicle (Veh)-treated C3 KO mice. Urd and AEtLP treatment improved the histological structure, junctional complexes of the intestinal epithelial barrier (IEB), mucin secretion ability, and water retention capacity. Also, an improvement in the composition of neuronal cells, the regulation of excitatory function mediated via the 5-hydroxytryptamine (5-HT) receptors and muscarinic acetylcholine receptors (mAChRs), and the regulation of the inhibitory function mediated via the neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) were detected in the enteric nervous system (ENS) of Urd- and AEtLP-treated C3 KO mice. Therefore, the results of the present study suggest that C3-deficiency-induced constipation can improve with treatment with Urd and AEtLP via the regulation of the mucin secretion ability, water retention capacity, and ENS function.
Collapse
Affiliation(s)
- Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Seung-Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Seong-Min Jo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| |
Collapse
|
2
|
Le TNH, Choi HJ, Jun HS. Ethanol Extract of Liriope platyphylla Root Attenuates Non-Alcoholic Fatty Liver Disease in High-Fat Diet-Induced Obese Mice via Regulation of Lipogenesis and Lipid Uptake. Nutrients 2021; 13:3338. [PMID: 34684339 PMCID: PMC8538311 DOI: 10.3390/nu13103338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder that causes excess lipid accumulation in the liver and is the leading cause of end-stage liver disease. Liriope platyphylla is a medicinal herb that has long been used to treat cough, obesity, and diabetes. However, the effect of Liriope platyphylla on NAFLD has not been studied. The aim of this study was to investigate the effect of Liriope platyphylla root ethanolic extract (LPE) on hepatic lipid accumulation in high-fat diet (HFD)-induced obese mice. Six-week-old C57BL/6 male mice were fed a HFD for 8 weeks and then treated with LPE (100 or 250 mg/kg/day) by oral gavage for another 8 weeks. Body weight gain and liver weight were significantly lower in the 250 mg/kg LPE-treated HFD group than in the vehicle-treated HFD group. Histological analysis of liver sections demonstrated that LPE treatment reduced lipid accumulation compared to the vehicle treatment. The serum total cholesterol, AST, and ALT levels significantly decreased in the LPE-treated HFD group compared to those in the vehicle-treated HFD group. The LPE significantly decreases the protein expression levels of SREBP1, ACC, p-ACC, FAS, and SCD1, which are involved in lipogenesis, and PPARγ, CD36/FAT, and FATP5, which are involved in fatty acid uptake, both in vivo and in vitro. Thus, LPE may attenuate HFD-induced NAFLD by decreasing lipid accumulation by inhibiting lipogenesis and fatty acid uptake.
Collapse
Affiliation(s)
- Trang Nu Huyen Le
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (T.N.H.L.); (H.-J.C.)
| | - Ho-Jung Choi
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (T.N.H.L.); (H.-J.C.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (T.N.H.L.); (H.-J.C.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon 21565, Korea
| |
Collapse
|
3
|
Mitigating Effects of Liriope platyphylla on Nicotine-Induced Behavioral Sensitization and Quality Control of Compounds. Brain Sci 2020; 10:brainsci10090654. [PMID: 32967122 PMCID: PMC7566016 DOI: 10.3390/brainsci10090654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/16/2022] Open
Abstract
In this study we investigated the mitigating effects of Liriope platyphylla Wang et Tang extract on behavioral sensitization and the quantification of its major compounds. The extract of L. platyphylla reduces the expression of tyrosine hydroxylase (TH) protein, which is increased by nicotine, back to normal levels, and increases the expression of dopamine transporter (DAT) protein, which is reduced by nicotine, back to normal levels in PC12 cells. In this study, rats received nicotine (0.4 mg/kg, subcutaneously) only for seven days and then received extract of L. platyphylla (200 or 400 mg/kg, oral) 1 h prior to nicotine administration for an additional seven days. The extract of L. platyphylla reduced locomotor activity compared to the nicotine control group in rats. The extract of L. platyphylla significantly attenuated the repeated nicotine-induced DAT protein expression in the nucleus accumbens (NAc), but there was no effect on increased TH protein expression in the dorsal striatum. These findings suggest that L. platyphylla extract has a mitigating effect on nicotine-induced behavioral sensitization by modulating DAT protein expression in the NAc. For quality control of L. plathyphylla, spicatoside A and D, which are saponin compounds, were quantified in the L. platyphylla extract. The amounts of spicatoside A and D in L. platyphylla extract obtained from ultra-high-performance liquid chromatography with tandem mass spectrometry were 0.148 and 0.272 mg/g, respectively. The identification of these compounds in L. platyphylla, which can be used for quality control, provides important information for the development of drugs to treat nicotine dependence.
Collapse
|
4
|
A Review of the Ephedra genus: Distribution, Ecology, Ethnobotany, Phytochemistry and Pharmacological Properties. Molecules 2020; 25:molecules25143283. [PMID: 32698308 PMCID: PMC7397145 DOI: 10.3390/molecules25143283] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, fever, headache, nasal congestion, and cough. The chemical constituents of Ephedra species have been of research interest for decades due to their contents of ephedrine-type alkaloids and its pharmacological properties. Other chemical constituents such as phenolic and amino acid derivatives also have resulted attractive and have provided evidence-based supporting of the ethnomedical uses of the Ephedra species. In recent years, research has been expanded to explore the endophytic fungal diversity associated to Ephedra species, as well as, the chemical constituents derived from these fungi and their pharmacological bioprospecting. Two additional aspects that illustrate the chemical diversity of Ephedra genus are the chemotaxonomy approaches and the use of ephedrine-type alkaloids as building blocks in organic synthesis. American Ephedra species, especially those that exist in Mexico, are considered to lack ephedrine type alkaloids. In this sense, the phytochemical study of Mexican Ephedra species is a promising area of research to corroborate their ephedrine-type alkaloids content and, in turn, discover new chemical compounds with potential biological activity. Therefore, the present review represents a key compilation of all the relevant information for the Ephedra genus, in particular the American species, the species distribution, their ecological interactions, its ethnobotany, its phytochemistry and their pharmacological activities and toxicities, in order to promote clear directions for future research.
Collapse
|
5
|
Chung IM, Hemapriya V, Kim SH, Ponnusamy K, Arunadevi N, Chitra S, Prabakaran M, Gopiraman M. Liriope platyphylla extract as a green inhibitor for mild steel corrosion in sulfuric acid medium. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1692001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ill-Min Chung
- Department of Crop Science, College of Sanghr Life Science, Konkuk University, Seoul, South Korea
| | - Venkatesan Hemapriya
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghr Life Science, Konkuk University, Seoul, South Korea
| | - Kanchana Ponnusamy
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Natarajan Arunadevi
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Subramanian Chitra
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India
| | - Mayakrishnan Prabakaran
- Department of Crop Science, College of Sanghr Life Science, Konkuk University, Seoul, South Korea
| | - Mayakrishnan Gopiraman
- Department of Crop Science, College of Sanghr Life Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
6
|
Kim JE, Yun WB, Lee ML, Choi JY, Park JJ, Kim HR, Song BR, Hong JT, Song HK, Hwang DY. Synergic Laxative Effects of an Herbal Mixture of Liriope platyphylla, Glycyrrhiza uralensis, and Cinnamomum cassia in Loperamide-Induced Constipation of Sprague Dawley Rats. J Med Food 2019; 22:294-304. [PMID: 30724689 DOI: 10.1089/jmf.2018.4234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Constipation is an acute or chronic illness attributed to various causes, ranging from lifestyle habits to side effects of a disease. To improve the laxative effects of some traditional medicines, herbal mixtures of Liriope platyphylla, Glycyrrhiza uralensis, and Cinnamomum cassia (LGC) were evaluated for their mechanism of action and therapeutic effects in loperamide (Lop)-induced constipated Sprague Dawley rats by examining alterations in excretion parameters, histological structure, mucin secretion, and related protein levels. Food intake and water consumption were constant for all animals. We observed that the Lop+LGC-treated group had significantly greater excretion of stool and urine than was observed in the Lop+Vehicle-treated group. Administration of LGC in the constipation model restored the intestinal transit ratio to normal levels, and increased the number of goblet cells, mucosal layer, and muscle thickness. Mucin secretion was greater in the Lop+LGC-treated group than in the Lop+Vehicle-treated group, and the expression of MUC2 and AQP8 genes were also increased. In addition, reverse transcription polymerase chain reaction and Western blot revealed an increase in the muscarinic acetylcholine receptors (mAChRs) in the Lop+LGC-treated group compared to the Lop+Vehicle-treated group. Furthermore, compared with the Lop+Vehicle-treated group, treatment with LGC reduced the phosphorylation of PKC and PI3K, and expression of Gα protein, but increased levels of IP3. Our results suggest that the traditional herbal mixture of LGC induces a potent laxative effect in Lop-induced constipation through mucosal tissue changes and mucin production. We also demonstrated that the laxative effect of LGC is closely related to the expression of mAChR and its downstream signals, suggesting the possibility of developing a constipation-laxative agent using LGC.
Collapse
Affiliation(s)
- Ji Eun Kim
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Woo Bin Yun
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Lim Lee
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jun Young Choi
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Ju Park
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hye Ryeong Kim
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Bo Ram Song
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Tae Hong
- 2 College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Hyun Keun Song
- 3 Biomedical Science Institute, Changwon National University, Changwon-si, Gyeongsangnam-do, Korea
| | - Dae Youn Hwang
- 1 Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
7
|
Shang ZP, Wang F, Zhang JY, Wang ZJ, Lu JQ, Wang HY, Li N. The genus Liriope: Phytochemistry and pharmacology. Chin J Nat Med 2018; 15:801-815. [PMID: 29329607 DOI: 10.1016/s1875-5364(18)30014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 10/18/2022]
Abstract
Liriope (Liliaceae) species have been used as folk medicines in Asian countries since ancient times. From Liriope plants (8 species), a total of 132 compounds (except polysaccharides) have been isolated and identified, including steroidal saponins, flavonoids, phenols, and eudesmane sesquiterpenoids. The crude extracts or monomeric compounds from this genus have been shown to exhibit anti-tumor, anti-diabetic, anti-inflammatory, and neuroprotective activities. The present review summarizes the results on phytochemical and biological studies on Liriope plants. The chemotaxonomy of this genus is also discussed.
Collapse
Affiliation(s)
- Zhan-Peng Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Fei Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jia-Yu Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zi-Jian Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian-Qiu Lu
- Library of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huai-You Wang
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhen 518057, China
| | - Ning Li
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhen 518057, China.
| |
Collapse
|
8
|
Sonochemical Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones. Catal Letters 2017. [DOI: 10.1007/s10562-017-2168-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
The lemon balm extract ALS-L1023 inhibits obesity and nonalcoholic fatty liver disease in female ovariectomized mice. Food Chem Toxicol 2017; 106:292-305. [DOI: 10.1016/j.fct.2017.05.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/30/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
10
|
Lim DW, Bose S, Wang JH, Choi HS, Kim YM, Chin YW, Jeon SH, Kim JE, Kim H. Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways. Sci Rep 2017; 7:45425. [PMID: 28358008 PMCID: PMC5371820 DOI: 10.1038/srep45425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Samjunghwan (SJH) is an herbal formula used in traditional Korean medicine. This prescription has long been used in treatment of aging and lifestyle diseases. The current study showed the effect and mechanisms of anti-hepatic steatosis action of modified SJH (mSJH) in vitro and in vivo. Treatment with mSJH resulted in significantly decreased intracellular lipid accumulation in steatosis-induced cells. Furthermore, mSJH triggered the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase as well as increased the expression of leptin at both protein and gene levels. In addition, C57BL6 mice fed high-fat diet (HFD) showed significant improvements in body, liver weights and fat weights; and serum, hepatic and fecal lipid parameters in response to the treatment with mSJH. Furthermore, mSJH showed favorable effects on the hepatic expression of several genes related to lipid metabolism. Betaine, one of constituents of mSJH exerted fundamental beneficial impact on FFAs-induced cells. However, the beneficial effects of mSJH were diminished upon blocking of leptin signaling by dexamethasone, suggesting the leptin signaling as a key component in mSJH-mediated modulation of lipid homeostasis. Our results suggest that mSJH exerts an anti-hepatic steatosis effect via activation of leptin and associated signaling cascades related to lipid metabolism.
Collapse
Affiliation(s)
- Dong-Woo Lim
- Department of Pathology, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Shambhunath Bose
- Applied Surface Technology Inc., 11th Floor, Bldg. A, Advance Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Jing-Hua Wang
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Song-Hee Jeon
- Research Institute of Biotechnology, Dongguk University, Goyang, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Hojun Kim
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
11
|
Yoon S, Kim J, Lee H, Lee H, Lim J, Yang H, Shin SS, Yoon M. The effects of herbal composition Gambigyeongsinhwan (4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty rats and HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:204-213. [PMID: 27845265 DOI: 10.1016/j.jep.2016.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 10/06/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic steatosis has risen rapidly in parallel with a dramatic increase in obesity. The aim of this study was to determine whether the herbal composition Gambigyeongsinhwan (4) (GGH(4)), composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata, regulates hepatic steatosis and inflammation. MATERIALS AND METHODS The effects of GGH(4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty (OLETF) rats and HepG2 cells were examined using Oil red O, hematoxylin and eosin, and toluidine blue staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. RESULTS Administration of GGH(4) to OLETF rats improved hepatic steatosis and lowered serum levels of alanine transaminase, total cholesterol, triglycerides, and free fatty acids. GGH(4) increased mRNA levels of fatty acid oxidation enzymes (ACOX, HD, CPT-1, and MCAD) and decreased mRNA levels of lipogenesis genes (FAS, ACC1, C/EBPα, and SREBP-1c) in the liver of OLETF rats. In addition, infiltration of inflammatory cells and expression of inflammatory cytokines (CD68, TNFα, and MCP-1) in liver tissue were reduced by GGH(4). Treatment of HepG2 cells with a mixture of oleic acid and palmitoleic acid induced significant lipid accumulation, but GGH(4) inhibited lipid accumulation by regulating the expression of hepatic fatty acid oxidation and lipogenic genes. GGH(4) also increased PPARα reporter gene expression. These effects of GGH(4) were similar to those of the PPARα activator fenofibrate, whereas the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on lipid accumulation in HepG2 cells. CONCLUSIONS These results suggest that GGH(4) inhibits obesity-induced hepatic steatosis and that this process may be mediated by regulation of the expression of PPARα target genes and lipogenic genes. GGH(4) also suppressed obesity-related hepatic inflammation. Thus, GGH(4) may be a promising drug for the treatment of obesity-related liver diseases.
Collapse
Affiliation(s)
- Seolah Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea
| | - Jeongjun Kim
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea
| | - Hyunghee Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea
| | - Haerim Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea
| | - Jonghoon Lim
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea
| | - Heejeong Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Soon Shik Shin
- Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea.
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea.
| |
Collapse
|
12
|
Zhao S, Kanno Y, Li W, Sasaki T, Zhang X, Wang J, Cheng M, Koike K, Nemoto K, Li H. Identification of Picrasidine C as a Subtype-Selective PPARα Agonist. JOURNAL OF NATURAL PRODUCTS 2016; 79:3127-3133. [PMID: 27958735 DOI: 10.1021/acs.jnatprod.6b00883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Picrasidine C (1), a dimeric β-carboline-type alkaloid isolated from the root of Picrasma quassioides, was identified to have PPARα agonistic activity by a mammalian one-hybrid assay from a compound library. Among the PPAR subtypes, 1 selectively activated PPARα in a concentration-dependent manner. Remarkably, 1 also promoted PPARα transcriptional activity by a peroxisome proliferator response element-driven luciferase reporter assay. Furthermore, 1 induced the expression of PPARα-regulated genes involved in lipid, glucose, and cholesterol metabolism, such as CPT-1, PPARα, PDK4, and ABCA1, which was abrogated by the PPARα antagonist MK-886, indicating that the effect of 1 was dependent on PPARα activation. This is the first report to demonstrate 1 to be a subtype-selective PPARα agonist with potential application in treating metabolic diseases, such as hyperlipidemia, atherosclerosis, and hypercholesterolemia.
Collapse
Affiliation(s)
- Shuai Zhao
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Tatsunori Sasaki
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Huicheng Li
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| |
Collapse
|
13
|
Kim MJ, Yoo YC, Sung NY, Lee J, Park SR, Shon EJ, Lee BD, Kim MR. Anti-Inflammatory Effects of Liriope platyphylla in LPS-Stimulated Macrophages and Endotoxemic Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1127-1143. [DOI: 10.1142/s0192415x16500634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, the anti-inflammatory and antisepticemic activities of a water extract of Liriope platyphylla (LP) were investigated. We first estimated the scavenging activity of DPPH and the hydroxyl radical and total phenolic contents of LP. Results indicated that LP, a rich source of phenolic compounds, showed a remarkable radical scavenging capacity. A MTT assay showed that LP treatment did not affect the toxicity against the RAW 264.7 macrophage cells, up to the concentration of 500[Formula: see text][Formula: see text]g/mL. Treatment of LP significantly attenuated the production of inflammatory mediators, such as nitric oxide (NO), interleukin-6 (IL-6), tumor-necrosis factor (TNF)-[Formula: see text] and prostaglandin (PG)E2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages cells. Moreover, LP contributed to the down-regulation of inducible NO synthase (iNOS) and TNF-[Formula: see text] mRNA expression, as well as cyclooxygenase-2 (COX-2) protein expression. A western blotting assay further showed that LP inhibited activation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-[Formula: see text]B. In an animal experiment using an LPS-induced septicemia model in C57BL/6 mice, oral administration of LP (40[Formula: see text]mg/kg body weight) markedly reduced the level of TNF-[Formula: see text] and IL-6 in serum and protected against LPS-induced lethal shock in mice. Taken together, the results of treatments of LP on inhibited LPS-induced inflammatory responses in both in vitro and in vivo models and indicate it may be a promising neutraceutical or medicinal agent to prevent or cure inflammation-related disease.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-632, Korea
| | - Nak-Yun Sung
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Korea
| | - Julim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-632, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-632, Korea
| | - Eun-Jung Shon
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Korea
| | - Bo Dam Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
14
|
Kim HJ, Park SY, Kim DG, Park SH, Lee H, Hwang DY, Jung MH, Ha KT, Kim BJ. Effects of the roots of Liriope Platyphylla Wang Et tang on gastrointestinal motility function. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:144-153. [PMID: 26969403 DOI: 10.1016/j.jep.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope platyphylla Wang et Tang continues to be used in Korea as a traditional medicine for the treatment of gastrointestinal (GI) disorders related to constipation and abnormal GI motility. AIM OF THE STUDY Because GI disorders, especially GI motility dysfunctions, are major lifelong problems, the authors investigated the effects of a water extract of the roots of L. platyphylla Wang et Tang (LPE) on the pacemaker potentials (PPTs) of interstitial cells of Cajal (ICCs) and on GI motility in male ICR mice. MATERIALS AND METHODS Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record PPTs generated by cultured ICCs in vitro. In vivo effects of LPE on GI motility were investigated by measuring intestinal transit rates (ITRs) of Evans blue in normal mice and in acetic acid (AA) and streptozotocin (STZ)-induced diabetic mouse models of GI motility dysfunction. RESULTS LPE dose-dependently depolarized PPTs in ICCs. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) did not block LPE-induced PPT depolarization. However, pretreatment with 4-DAMP (a muscarinic M3 receptor antagonist) blocked LPE-induced PPT depolarization. In addition, treatment with LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) also blocked LPE-induced PPT depolarization. Intracellular GDPβS inhibited LPE-induced PPT depolarization, and LPE-induced PPT depolarization was found to occur in a phospholipase C (PLC)- and a protein kinase C (PKC)-dependent manner. Pretreatment with Ca(2+)free solution or thapsigargin (a Ca(2+)-ATPase inhibitor in endoplasmic reticulum) abolished PPTs, and under these conditions, LPE did not depolarize ICC PPTs. In normal mice, ITRs were significantly and dose-dependently increased by LPE (0.01-1g/kg administered intragastrically (i.g.)). In addition, LPE (i.g.) significantly recovered GI motility dysfunctions in both animal models. CONCLUSION LPE dose-dependently depolarizes ICC PPTs through M3 receptors via external and internal Ca(2+)regulation and via G protein-, PI3K-, PLC- and PKC- dependent pathways in vitro. Also, in vivo, LPE increased ITRs in treatment naïve mice and our two mouse models of GI dysfunction. Therefore, this study shows that LPE offers a basis for the development of a prokinetic agent that prevents or alleviates GI motility dysfunctions.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Sun Young Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Dae Geon Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - So-Hae Park
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Heeseob Lee
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Youn Hwang
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Division of Applied Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.
| |
Collapse
|
15
|
Roh JS, Lee H, Woo S, Yoon M, Kim J, Park SD, Shin SS, Yoon M. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:287-294. [PMID: 26068433 DOI: 10.1016/j.jep.2015.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/20/2015] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. MATERIALS AND METHODS The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. RESULTS GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. CONCLUSIONS These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation.
Collapse
Affiliation(s)
- Jong Sung Roh
- Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea
| | - Hyunghee Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Sangee Woo
- Department of Biomedical Engineering, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Miso Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Jeongjun Kim
- Department of Biomedical Engineering, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Sun Dong Park
- Department of Formula Sciences, College of Oriental Medicine, Dongguk University, Goyang 410-773, Republic of Korea
| | - Soon Shik Shin
- Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea.
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 302-729, Republic of Korea.
| |
Collapse
|
16
|
Kim JE, Park SH, Kwak MH, Go J, Koh EK, Song SH, Sung JE, Lee HS, Hong JT, Hwang DY. Characterization of Changes in Global Genes Expression in the Distal Colon of Loperamide-Induced Constipation SD Rats in Response to the Laxative Effects of Liriope platyphylla. PLoS One 2015; 10:e0129664. [PMID: 26151867 PMCID: PMC4495015 DOI: 10.1371/journal.pone.0129664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
To characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects of aqueous extracts of Liriope platyphylla (AEtLP), including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, the total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays. The AEtLP treated rats showed an increase in the number of stools, mucosa thickness, flat luminal surface thickness, mucin secretion, and crypt number. Overall, compared to the controls, 581 genes were up-regulated and 216 genes were down-regulated by the constipation induced by loperamide in the constipated rats. After the AEtLP treatment, 67 genes were up-regulated and 421 genes were down-regulated. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 22 were recovered to the normal levels by the AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15, and Alpi, whereas the major genes in the recovered categories were Cyp2b2, Ace, G6pc, and Setbp1. On the other hand, after the AEtLP treatment, ten of these genes down-regulated by constipation were up-regulated significantly and five were recovered to the normal levels. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a8, whereas the major genes in the recovered categories were Tmem45a, Rerg and Rgc32. These results indicate that several gene functional groups and individual genes as constipation biomarkers respond to an AEtLP treatment in constipated model rats.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - So Hae Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 609–735, Korea
| | - Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Jun Go
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Eun Kyoung Koh
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Sung Hwa Song
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Ji Eun Sung
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Hee Seob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 609–735, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungju, 361–763, Korea
- * E-mail: (DYH); (JTH)
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
- * E-mail: (DYH); (JTH)
| |
Collapse
|
17
|
Kim JE, Lee YJ, Kwak MH, Ko J, Hong JT, Hwang DY. Aqueous extracts of Liriope platyphylla induced significant laxative effects on loperamide-induced constipation of SD rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:333. [PMID: 24274470 PMCID: PMC4222752 DOI: 10.1186/1472-6882-13-333] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022]
Abstract
Background Liriope platyphylla has long been reported as a therapeutic drug for treatment of various human chronic diseases including inflammation, diabetes, neurodegenerative disorders, obesity, and atopic dermatitis. To investigate the laxative effects of L. platyphylla, alterations in excretion parameters, histological structure, mucin secretion, and related protein levels were investigated in rats with loperamide (Lop)-induced constipation after treatment with aqueous extract of L. platyphylla (AEtLP). Methods Alterations on constipation phenotypes were measured in rats with Lop-induced constipation after treatment with AEtLP using excretion parameter analysis, histological analysis, RT-PCR, western blot and transmission electron microscope (TEM) analysis. Results The amounts of stool and urine excretion were significantly higher in the Lop + AEtLP-treated group than in the Lop + vehicle-treated group, whereas food intake and water consumption were maintained at constant levels. AEtLP treatment also induced an increase in villus length, crypt layer, and muscle thickness in the constipation model. Total mucin secretion was higher in the Lop + AEtLP-treated group than in the Lop + vehicle-treated group, although mucin secretion per crypt was very similar among all groups. Furthermore, RT-PCR and western blot revealed a dramatic reduction of key factors level on the muscarinic acetylcholine receptors (mAChRs) signaling pathway in the Lop + AEtLP-treated group relative to the Lop + vehicle-treated group. Especially, the accumulation of lipid droplets in enterocytes of crypts following Lop treatment was improved to the level of the No-treated group in response to AEtLP treatment. Conclusion These results suggest that AEtLP improves constipation induced by Lop treatment through an increase in crypt layer and stimulation of lipid droplet secretions. These data are the first to show that the laxative effects of AEtLP are closely related to the down-regulation of mAchRs and their downstream signals.
Collapse
|
18
|
Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:789067. [PMID: 24069055 PMCID: PMC3773429 DOI: 10.1155/2013/789067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022]
Abstract
This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermedia Schrenk, Atractylodes lancea DC., and Thea sinensis L.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies including in vivo assays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan.
Collapse
|
19
|
Kwak MH, Kim JE, Hwang IS, Lee YJ, An BS, Hong JT, Lee SH, Hwang DY. Quantitative evaluation of therapeutic effect of Liriope platyphylla on phthalic anhydride-induced atopic dermatitis in IL-4/Luc/CNS-1 Tg mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:880-889. [PMID: 23726789 DOI: 10.1016/j.jep.2013.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A variety of previous pharmacological studies have suggested that Liriope platyphylla may exert beneficial biological effects on inflammation, diabetes, neurodegenerative disorder, obesity, and atopic dermatitis (AD). AIM OF THE STUDY The therapeutic effect of aqueous extract of Liriope platyphylla (AEtLP) on AD was quantified using the luciferase report system in IL-4/Luc/CNS-1 transgenic (Tg) mice. MATERIALS AND METHODS Alteration of the luciferase signal was quantified in IL-4/Luc/CNS-1 Tg mice co-treated with phthalic anhydride (PA) and AEtLP for 2 weeks using the IVIS imaging system. Phenotypes of AD were assessed by ear thickness analysis, measurement of immune-related organ weights, ELISA, and histological and pathological analysis in Tg mice. RESULTS A strong luciferase signal was detected in the abdominal region of IL-4/Luc/CNS-1 Tg mice treated with only PA. However, this signal was significantly reduced in IL-4/Luc/CNS-1 Tg mice co-treated with PA+AEtLP in an AEtLP concentration-dependent manner. Especially, three organs, the thymus, pancreas, and submandibular lymph node (SL), showed a high signal response to PA treatment. Furthermore, to verify whether or not alteration of the luciferase signal is associated with AD, these disease response phenotypes were measured in the same group of mice. Common allergenic responses including increases in ear thickness, lymph node weight, IgE concentration, and infiltrated mast cells were detected in IL-4/Luc/CNS-1 Tg mice treated with PA. However, these responses were dramatically decreased by AEtLP treatment for 2 weeks. CONCLUSION These results indicate that the luciferase signal may successfully reflect the therapeutic effects of AEtLP in IL-4/Luc/CNS-1 Tg mice. Further, we suggest additional evidence that Liriope platyphylla may be considered as an effective therapeutic drug for the treatment of AD.
Collapse
Affiliation(s)
- Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
The effects of Gamijinhae-tang on elastase/lipopolysaccharide-induced lung inflammation in an animal model of acute lung injury. Altern Ther Health Med 2013; 13:176. [PMID: 23866260 PMCID: PMC3722031 DOI: 10.1186/1472-6882-13-176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 07/15/2013] [Indexed: 12/23/2022]
Abstract
Background Gamijinhae-tang (GJHT) has long been used in Korea to treat respiratory diseases. The therapeutic effect of GJHT is likely associated with its anti-inflammatory activity. However, the precise mechanisms underlying its effects are unknown. This study was conducted to evaluate the protective effects of GJHT in a porcine pancreatic elastase (PPE) and lipopolysaccharide(LPS) induced animal model of acute lung injury (ALI). Methods In this study, mice were intranasally exposed to PPE and LPS for 4 weeks to induce chronic obstructive pulmonary disease (COPD)-like lung inflammation. Two hours prior to PPE and LPS administration, the treatment group was administered GJHT extracts via an oral injection. The numbers of neutrophils, lymphocytes, macrophages and total cells in the bronchoalveolar lavage (BAL) fluid were counted, and pro-inflammatory cytokines were also measured. For histologic analysis, hematoxylin and eosin (H&E) stains and periodic acid-Schiff (PAS) stains were evaluated. Results After inducing ALI by treating mice with PPE and LPS for 4 weeks, the numbers of neutrophils, lymphocytes and total cells were significantly lower in the GJHT group than in the ALI group. In addition, the IL-1β and IL-6 levels were significantly decreased in the GJHT group. The histological results also demonstrated the attenuation effect of GJHT on PPE- and LPS-induced lung inflammation. Conclusions The results of this study indicate that GJHT has significantly reduces PPE- and LPS-induced lung inflammation. The remarkable protective effects of GJHT suggest its therapeutic potential in COPD treatment.
Collapse
|
21
|
Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models. Lab Anim Res 2013; 29:84-95. [PMID: 23825481 PMCID: PMC3696629 DOI: 10.5625/lar.2013.29.2.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/27/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from INS-1 cells. Regarding calcium levels, the maximum concentration of intracellular calcium in INS-1 cells was obtained by treatment with 100 µg/mL of RLP, whereas this level was reduced under conditions of 200 µg/mL of RLP. Further, RLP-treated INS-1 cells showed a higher level of intracellular calcium than that of L. platyphylla (LP), Korea White Ginseng (KWG), or Korea Red Ginseng (KRG)-treated cells. This RLP-induced increase in intracellular calcium was abrogated but not completely abolished upon treatment with 40 µM nifedipine in a dose-dependent manner. Furthermore, the insulin level was dramatically elevated upon co-treatment with high concentrations of glucose and RLP, whereas it was maintained at a low level in response to glucose and RLP co-treatment at low concentrations. In an animal experiment, the serum concentration of calcium increased or decreased upon RLP treatment according to glucose level compared to vehicle treatment. Therefore, these results suggest that insulin secretion induced by RLP treatment may be tightly correlated with calcium regulation, which suggests RLP is an excellent candidate for diabetes treatment.
Collapse
|
22
|
Effects of Red Liriope platyphylla on NGF secretion ability, NGF receptor signaling pathway and γ-secretase components in NSE/hAPPsw transgenic mice expressing Alzheimer's Disease. Lab Anim Res 2012; 28:155-63. [PMID: 23091515 PMCID: PMC3469843 DOI: 10.5625/lar.2012.28.3.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/13/2012] [Accepted: 08/31/2012] [Indexed: 11/21/2022] Open
Abstract
Liriope platyphylla (LP) has long been regarded as a curative herb for the treatment of diabetes, asthma, and neurodegenerative disorders. To examine the therapeutic effects of Red LP (RLP) manufactured by steaming process on neurodegenerative disorders, significant alteration of the key factors influencing Alzheimer's Disease (AD) was detected in NSE/hAPPsw transgenic (Tg) mice after RLP treatment. The concentration of nerve growth factor (NGF) in serum increased in RLP-treated NSE/hAPPsw Tg mice compared with vehicle-treated Tg mice. However, downstream effectors of the NGF receptor signaling pathway, including TrkA and p75NTR proteins, were suppressed in RLP-treated NSE/hAPPsw Tg mice. Especially, Tg mice showed decreased levels of TrkA, p75NTR, and RhoA expression. Production of Aβ-42 peptides was lower in RLP-treated NSE/hAPPsw Tg mice than in vehicle-treated Tg mice. Further, analysis of γ-secretase components showed that Aβ-42 peptide expression was downregulated. Of the four components, the expression of APH-1 and Nicastrin (NCT) decreased in RLP-treated NSE/hAPPsw Tg mice, whereas expression of PS-2 and Pen-2 was maintained or increased within the same group. Overall, these results suggest that RLP can help relieve neurodegenerative diseases, especially AD, through upregulation of NGF secretion ability, activation of NGF signaling pathway, downregulation of Aβ-42 peptide deposition, and alteration of γ-secretase components.
Collapse
|
23
|
Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res 2012; 28:181-91. [PMID: 23091518 PMCID: PMC3469846 DOI: 10.5625/lar.2012.28.3.181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 12/14/2022] Open
Abstract
Liriope platyphylla is a medical herb that has long been used in Korea and China to treat cough, sputum, neurodegenerative disorders, obesity, and diabetes. The aims of this study were to determine the antidiabetic and antiobesity effects of aqueous extract of L. platyphylla (AEtLP) through glucose and lipid regulation in both pre-diabetes and obesity stage of type II diabetes model. Two concentrations of AEtLP were orally administrated to OLETF (Otsuka Long-Evans Tokushima Fatty) rats once a day for 2 weeks, after which changes in glucose metabolism and fat accumulation were measured. Abdominal fat mass dramatically decreased in AEtLP-treated OLETF rats, whereas glucose concentration slightly decreased in all AEtLP-treated rats. However, compared to vehicle-treated OLETF rats, only AEtLP10 (10% concentration)-treated OLETF rats displayed significant induction of insulin production, whereas AEtLP5 (5% concentration)-treated OLETF rats showed a lower level of insulin. Although serum adiponectin level increased in only AEtLP5-treated rats, significant alteration of lipid concentration was detected in AEtLP5-treated OLETF rats. Expression of Glut-1 decreased in all AEtLP-treated rats, whereas Akt phosphorylation increased only in AEtLP10-treated OLETF rats. Furthermore, the pattern of Glut-3 expression was very similar with that of Glut-1 expression, which roughly corresponded with the phosphorylation of c-Jun N-teminal kinase (JNK) and p38 in the mitogen-activated protein kinase pathway. Therefore, these findings suggest that AEtLP should be considered as a therapeutic candidate during pre-diabetes and obesity stage capable of inducing insulin secretion from pancreatic β-cells, glucose uptake in liver cells, as well as a decrease in fat and lipid accumulation.
Collapse
|
24
|
Choi SI, Goo JS, Kim JE, Nam SH, Hwang IS, Lee HR, Lee YJ, Son HJ, Lee HS, Lee JS, Kim HJ, Hwang DY. Differential effects of the steaming time and frequency for manufactured red Liriope platyphylla on nerve growth factor secretion ability, nerve growth factor receptor signaling pathway and regulation of calcium concentration. Mol Med Rep 2012; 6:1160-70. [PMID: 22895564 DOI: 10.3892/mmr.2012.1024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/01/2012] [Indexed: 11/06/2022] Open
Abstract
The herb Liriope platyphylla (LP) has been considered to have curative properties for diabetes, asthma and neurodegenerative disorders. To examine the effects of steaming time and frequency of manufactured red LP (RLP) on the nerve growth factor (NGF) secretion ability and NGF receptor signaling pathway, the NGF concentration, cell differentiation, NGF signaling pathway and calcium concentration were analyzed in neuronal cells treated with several types of LPs manufactured under different conditions. The maximum NGF secretion was observed in B35 cells treated with 50 µg/ml LP extract steamed for 9 h (9-SLP) and with two repeated steps (3 h steaming and 24 h air-dried) carried out 7 times (7-SALP). No significant changes in viability were detected in any of the cells treated with the various LPs, with the exception of 0-SLP and 0-SALP. In addition, PC12 cell differentiation was induced by treatment with the NGF-containing conditional medium (CM) collected from the RLP-treated cells. The levels of TrkA and extracellular signal-regulated kinase (ERK) phosphorylation in the high affinity NGF receptor signaling pathway were significantly higher in the cells treated with 3-SLP or 1-SALP/3-SALP CM compared with those treated with the vehicle CM. In the low affinity NGF receptor pathway, the expression levels of most components were higher in the 9-, 15- and 24-SALP CM-treated cells compared with the vehicle CM-treated cells. However, this level was significantly altered in cells treated with 3-SALP CM. Furthermore, an examination of the RLP function on calcium regulation revealed that only the LP- or RLP-treated cells exhibited changes in intracellular and extracellular calcium levels. RLP induced a significant decrease in the intracellular calcium levels and an increase in the extracellular calcium levels. These results suggest the possibility that steaming-processed LP may aid in the relief of neurodegenerative diseases through the NGF secretion ability and NGF signaling pathway.
Collapse
Affiliation(s)
- Sun Il Choi
- College of Natural Resources and Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
LEE HYERYUN, KIM JIEUN, GOO JUNSEO, CHOI SUNIL, HWANG INSIK, LEE YOUNGJU, SON HONGJOO, LEE HEESEOB, LEE JONGSUP, HWANG DAEYOUN. Red Liriope platyphylla contains a large amount of polyphenolic compounds which stimulate insulin secretion and suppress fatty liver formation through the regulation of fatty acid oxidation in OLETF rats. Int J Mol Med 2012; 30:905-13. [DOI: 10.3892/ijmm.2012.1081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/03/2012] [Indexed: 11/05/2022] Open
|
26
|
Kim JE, Hwang IS, Goo JS, Nam SH, Choi SI, Lee HR, Lee YJ, Kim YH, Park SJ, Kim NS, Choi YH, Hwang DY. LP9M80-H Isolated from Liriope platyphylla Could Help Alleviate Diabetic Symptoms via the Regulation of Glucose and Lipid Concentration. ACTA ACUST UNITED AC 2012. [DOI: 10.5352/jls.2012.22.5.634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Kim CK, Kim M, Oh SD, Lee SM, Sun B, Choi GS, Kim SK, Bae H, Kang C, Min BI. Effects of Atractylodes macrocephala Koidzumi rhizome on 3T3-L1 adipogenesis and an animal model of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:396-402. [PMID: 21669278 DOI: 10.1016/j.jep.2011.05.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/06/2011] [Accepted: 05/30/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodes macrocephala Koidzumi (AMK) is an herbal medicine traditionally used for treatment of abdominal pain, gastrointestinal disease, obesity, and related complications. AIM OF THE STUDY We investigated the effects and molecular mechanism of AMK rhizome water extract on 3T3-L1 adipogenesis and an animal model of obesity. MATERIALS AND METHODS To study the effect of AMK on adipogenesis in vitro, differentiating 3T3-L1 cells were treated every two days with AMK at various concentrations (1-25μg/ml) for eight days. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the inhibitory mechanism of AMK on adipogenesis, phosphorylation levels of Akt and expression of perilipin, were analyzed by Western blotting. AMK was administered orally to high fat diet (HFD)-induced obese rats to confirm its effect in vivo. RESULTS AMK inhibited 3T3-L1 adipocyte differentiation in a dose-dependent manner without cellular toxicity. Phospho-Akt expression was highly decreased by AMK treatment, whereas there was no significant change in perilipin expression. AMK administration significantly reduced the body weight of rats fed a HFD. Plasma triglyceride levels were significantly lower in the AMK-treated HFD group than those in the HFD control group or normal diet (ND) group, although serum total, HDL- and LDL-cholesterol levels did not differ between the groups. CONCLUSION These results demonstrate an inhibitory effect of AMK on adipogenesis through reduction of an adipogenic factor, phospho-Akt. AMK had a beneficial effect, reducing body weight gain in a HFD-induced animal model of obesity.
Collapse
Affiliation(s)
- Chang Keun Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim JE, Nam SH, Choi SI, Hwang IS, Lee HR, Jang MJ, Lee CY, Soon HJ, Lee HS, Kim HS, Kang BC, Hong JT, Hwang DY. Aqueous Extracts of Liriope platyphylla Are Tightly-Regulated by Insulin Secretion from Pancreatic Islets and by Increased Glucose Uptake through Glucose Transporters Expressed in Liver Hepatocytes. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.3.348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway. Lab Anim Res 2011; 27:117-26. [PMID: 21826171 PMCID: PMC3146006 DOI: 10.5625/lar.2011.27.2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/21/2022] Open
Abstract
In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may contribute to the relief of diabetes symptoms and should be regarded as an excellent candidate for a diabetes treatment.
Collapse
|
30
|
Park CH, Jeong SJ, Lee HJ, Lee EO, Bae H, Lee MH, Kim SH, Jung HJ, Ahn KS, Kim SH. Traditional medicine Taeeumjowitangkagambang exerts antiobesity and hypolipidemic effects via antioxidant enzyme enhancement. Phytother Res 2011; 24:1700-9. [PMID: 21031632 DOI: 10.1002/ptr.3179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Taeeumjowitangkagambang (ETJKB) is a traditional Korean medicine that has been clinically used for obesity with little mechanistic understanding. The present study investigated antiobesity and hypolipidemic effects of ETJKB in high fat diet fed rats as well as a 3T3-L1 pre-adipocyte differentiation model. ETJKB significantly inhibited the lipidogenesis in 3T3-L1 adipocytes in a concentration-dependent manner as well as reduced the cellular adipokine leptin level. Daily oral gavage of ETJKB to rats fed a high fat diet significantly attenuated body weight gain and abdominal and epididymal fat weights. ETJKB treatment also reduced the levels of total cholesterol, low density lipoprotein (LDL) and triglyceride as well as increased high density lipoprotein (HDL) in serum compared with the untreated control. Similarly, the ETJKB treatment decreased the levels of total lipid, triglyceride and cholesterol in liver tissue in high fat diet fed rats. Interestingly, ETJKB significantly increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase in liver tissue, while decreasing the hydroxyl radical, thiobarbituric acid reactive substances (TBARS), carbonyl concentration. An improvement of antioxidant enzymes was associated with improved body weight control and healthier lipid profiles and therefore may play an important role in the antiobesity and hypolipidemic effects of ETJKB.
Collapse
Affiliation(s)
- Cheol-Hwan Park
- College of Oriental Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemungu, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim JH, Kim D, Kim J, Hwang JK. Euchresta horsfieldii Benn. activates peroxisome proliferator-activated receptor α and regulates expression of genes involved in fatty acid metabolism in human HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:244-247. [PMID: 20920566 DOI: 10.1016/j.jep.2010.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/05/2010] [Accepted: 09/09/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Euchresta horsfieldii Benn., an oriental medicinal plant, has been used for the traditional treatment of hyperlipidemia and has been reported to possess bioactive isoflavones; however, the molecular mechanism underlying its hypolipidemic effects remains unclear. In the present study, we investigated the effect of Euchresta horsfieldii on peroxisome proliferator-activated receptor α (PPARα) activation and fatty acid metabolism in HepG2 hepatocytes. MATERIALS AND METHODS The dried Euchresta horsfieldii fruits were extracted with 100% ethanol, and the ethanol evaporated to produce Euchresta horsfieldii extract (EHX). The effect of EHX on fatty acid metabolism was evaluated by PPARα transactivation assay, real-time reverse transcription-polymerase chain reaction, and Western blot analysis. RESULTS We demonstrated that EHX significantly increased PPARα activation in a dose-dependent manner. In human HepG2 hepatocytes, EHX increased mRNA levels of the following genes involved in fatty acid oxidation: carnitine palmitoyltransferase 1, liver form (CPT1L), acyl-CoA synthetase (ACS), medium-chain acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), acyl-CoA 1 (ACO1), acyl-CoA 2 (ACO2), and enoyl-CoA hydratase 1 (ECH1). EHX treatment also increased levels of proteins related to fatty acid oxidation, such as CPT1L, PPARα, and uncoupling protein 2 (UCP2). In contrast, sterol regulatory element binding protein 1 (SREBP1), a key lipogenic transcription factor, was downregulated. CONCLUSION Consistent with significant PPARα activation, EHX increased PPARα target genes expression and regulated protein expression for lipid metabolism. Taken together, these results indicate that Euchresta horsfieldii shows potential as a natural lipid-lowering agent.
Collapse
Affiliation(s)
- Jeong-Hwan Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Vermaak I, Viljoen AM, Hamman JH. Natural products in anti-obesity therapy. Nat Prod Rep 2011; 28:1493-533. [DOI: 10.1039/c1np00035g] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Kim BY, Cao LH, Park H, Jeong S. Reciprocal regulation of gene expression by Ephedra herba
in mouse brain. Phytother Res 2010; 24:531-7. [DOI: 10.1002/ptr.2976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Shin SS, Jung YS, Yoon KH, Choi S, Hong Y, Park D, Lee H, Seo BI, Lee HY, Yoon M. The Korean traditional medicine gyeongshingangjeehwan inhibits adipocyte hypertrophy and visceral adipose tissue accumulation by activating PPARalpha actions in rat white adipose tissues. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:47-54. [PMID: 19799979 DOI: 10.1016/j.jep.2009.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/16/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Gyeongshingangjeehwan (GGEx), which is a polyherbal drug composed of four medicinal plants, has traditionally been used as anti-obesity drug in Korean local clinics. Thus, we investigated the effects of GGEx on visceral adiposity and examined whether adipose peroxisome proliferator-activated receptor alpha (PPARalpha) activation is involved in this process. MATERIALS AND METHODS After Obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats and differentiated 3T3-L1 adipocytes were treated with GGEx, we studied the effects of GGEx on not only visceral white adipose tissue (WAT) mass and adipocyte size, but also the expression of adipocyte marker and PPARalpha target genes. RESULTS Administration of GGEx to obese rats for 8 weeks decreased visceral WAT weight by 30% and the size of adipocytes in mesenteric WAT by 31% without weight changes of other organs. Concomitantly, GGEx increased mRNA levels of PPARalpha target genes responsible for fatty acid beta-oxidation in mesenteric WAT whereas decreased mRNA expression of adipocyte markers, such as PPARgamma, aP2 and leptin. Serological studies demonstrated that plasma levels of free fatty acids and triglycerides as well as insulin and glucose were decreased following GGEx treatment. Consistent with the in vivo data, GGEx increased PPARalpha reporter gene activity and induced the mRNA expression of PPARalpha target genes involved in mitochondrial fatty acid beta-oxidation in 3T3-L1 cells. GGEx also inhibited triglyceride accumulation in these cells. CONCLUSION These results suggest that GGEx promotes the reductions in visceral fat mass and adipocyte size in obese animals, and that this event may be mediated by adipose PPARalpha activation.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The Symptoms of Atopic Dermatitis in NC/Nga Mice Were Significantly Relieved by the Water Extract ofLiriope platyphylla. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.4.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Hasani-Ranjbar S, Nayebi N, Larijani B, Abdollahi M. A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World J Gastroenterol 2009; 15:3073-85. [PMID: 19575486 PMCID: PMC2705729 DOI: 10.3748/wjg.15.3073] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/01/2009] [Accepted: 05/08/2009] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the efficacy and safety of effective herbal medicines in the management of obesity in humans and animals. PubMed, Scopus, Google Scholar, Web of Science, and IranMedex databases were searched up to December 30, 2008. The search terms were "obesity" and ("herbal medicine" or "plant", "plant medicinal" or "medicine traditional") without narrowing or limiting search elements. All of the human and animal studies on the effects of herbs with the key outcome of change in anthropometric measures such as body weight and waist-hip circumference, body fat, amount of food intake, and appetite were included. In vitro studies, reviews, and letters to editors were excluded. Of the publications identified in the initial database, 915 results were identified and reviewed, and a total of 77 studies were included (19 human and 58 animal studies). Studies with Cissus quadrangularis (CQ), Sambucus nigra, Asparagus officinalis, Garcinia atroviridis, ephedra and caffeine, Slimax (extract of several plants including Zingiber officinale and Bofutsushosan) showed a significant decrease in body weight. In 41 animal studies, significant weight loss or inhibition of weight gain was found. No significant adverse effects or mortality were observed except in studies with supplements containing ephedra, caffeine and Bofutsushosan. In conclusion, compounds containing ephedra, CQ, ginseng, bitter melon, and zingiber were found to be effective in the management of obesity. Attention to these natural compounds would open a new approach for novel therapeutic and more effective agents.
Collapse
|