1
|
Li B, Elsten-Brown J, Li M, Zhu E, Li Z, Chen Y, Kang E, Ma F, Chiang J, Li YR, Zhu Y, Huang J, Fung A, Scarborough Q, Cadd R, Zhou JJ, Chin AI, Pellegrini M, Yang L. Serotonin transporter inhibits antitumor immunity through regulating the intratumoral serotonin axis. Cell 2025:S0092-8674(25)00502-1. [PMID: 40403728 DOI: 10.1016/j.cell.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/10/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Identifying additional immune checkpoints hindering antitumor T cell responses is key to the development of next-generation cancer immunotherapies. Here, we report the induction of serotonin transporter (SERT), a regulator of serotonin levels and physiological functions in the brain and peripheral tissues, in tumor-infiltrating CD8 T cells. Inhibition of SERT using selective serotonin reuptake inhibitors (SSRIs), the most widely prescribed antidepressants, significantly suppressed tumor growth and enhanced T cell antitumor immunity in various mouse syngeneic and human xenograft tumor models. Importantly, SSRI treatment exhibited significant therapeutic synergy with programmed cell death protein 1 (PD-1) blockade, and clinical data correlation studies negatively associated intratumoral SERT expression with patient survival in a range of cancers. Mechanistically, SERT functions as a negative-feedback regulator inhibiting CD8 T cell reactivities by depleting intratumoral T cell-autocrine serotonin. These findings highlight the significance of the intratumoral serotonin axis and identify SERT as an immune checkpoint, positioning SSRIs as promising candidates for cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - James Elsten-Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elliot Kang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Chiang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Audrey Fung
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Quentin Scarborough
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robin Cadd
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Goodman-Luskin Microbiome Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Yu J, Yang H, Wang J, Huang Z, Chen S, Zhao H, Wang J, Wang Z. Comprehensive analysis of histophysiology, transcriptomics and metabolomics in goslings exposed to gossypol acetate: unraveling hepatotoxic mechanisms. Front Vet Sci 2025; 12:1527284. [PMID: 39906302 PMCID: PMC11792171 DOI: 10.3389/fvets.2025.1527284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Cottonseed meal is a promising alternative to soybean meal in poultry feed, but concerns over free gossypol limit its use. Although the general toxicity of free gossypol is well-known, its specific effects on the liver-the primary site where it accumulates-are less thoroughly studied, particularly at the molecular level. This study investigated the hepatotoxic effects of gossypol acetate (GA) on goslings through a comprehensive analysis combining morphology, transcriptomics, and metabolomics. Forty-eight 7-day-old male goslings with similar body weight (BW) were randomly assigned to two groups: a control group, receiving a saline solution (0.9%, 2.5 mL/kg BW), and a GA-treated group, administered GA at 50 mg/kg BW orally for 14 days. Histological analysis revealed signs of liver damage, including granular degeneration, hepatocyte enlargement, necrosis, and mitochondrial injury. Transcriptomic analysis identified 1,137 differentially expressed genes, with 702 upregulated and 435 downregulated. Key affected pathways included carbon metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, propanoate metabolism, TCA cycle, fatty acid degradation, primary bile acid biosynthesis, tryptophan metabolism, cysteine and methionine metabolism, focal adhesion, and the PPAR signaling pathway. Metabolomic analysis revealed 109 differential metabolites, 82 upregulated and 27 downregulated, implicating disruptions in linoleic acid metabolism, arachidonic acid metabolism, cAMP signaling, and serotonergic synapse pathways. Overall, GA-induced hepatotoxicity involves impaired energy production, disrupted lipid metabolism, and abnormal liver focal adhesion, leading to liver cell dysfunction. These findings highlight the vulnerability of mitochondria and critical metabolic pathways, providing insights into the molecular mechanisms of GA toxicity and guiding future studies on mitigating GA-induced liver damage in goslings.
Collapse
Affiliation(s)
- Jun Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jian Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zixin Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongchang Zhao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jun Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
4
|
Isaksson C, Ziegler AK, Powell D, Gudmundsson A, Andersson MN, Rissler J. Transcriptome analysis of avian livers reveals different molecular changes to three urban pollutants: Soot, artificial light at night and noise. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124461. [PMID: 38964643 DOI: 10.1016/j.envpol.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.
Collapse
Affiliation(s)
- C Isaksson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - A-K Ziegler
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - D Powell
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - A Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| | - M N Andersson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - J Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
5
|
Zhu CP, Liu SQ, Wang KQ, Xiong HL, Aristu-Zabalza P, Boyer-Díaz Z, Feng JF, Song SH, Luo C, Chen WS, Zhang X, Dong WH, Gracia-Sancho J, Xie WF. Targeting 5-Hydroxytryptamine Receptor 1A in the Portal Vein to Decrease Portal Hypertension. Gastroenterology 2024; 167:993-1007. [PMID: 38906512 DOI: 10.1053/j.gastro.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND & AIMS Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Rats
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Cyclic AMP/metabolism
- Disease Models, Animal
- Hypertension, Portal/metabolism
- Hypertension, Portal/genetics
- Hypertension, Portal/physiopathology
- Hypertension, Portal/etiology
- Ligation
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Piperazines/pharmacology
- Portal Pressure/drug effects
- Portal Vein/metabolism
- Pyridines/pharmacology
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Serotonin/metabolism
- Serotonin/pharmacology
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Serotonin 5-HT1 Receptor Antagonists/pharmacology
- Signal Transduction
- Thioacetamide/toxicity
Collapse
Affiliation(s)
- Chang-Peng Zhu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hai-Lin Xiong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peio Aristu-Zabalza
- Liver Vascular Biology Research Group, IDIBAPS-Hospital Clínic de Barcelona, CIBEREHD, Barcelona, Spain
| | - Zoe Boyer-Díaz
- Liver Vascular Biology Research Group, IDIBAPS-Hospital Clínic de Barcelona, CIBEREHD, Barcelona, Spain
| | - Ji-Feng Feng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shao-Hua Song
- Organ Transplantation Center, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, Chinese Academy of Sciences Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei-Hua Dong
- Department of Interventional Radiology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS-Hospital Clínic de Barcelona, CIBEREHD, Barcelona, Spain; Department for Biomedical Research, Hepatology, University of Berne, Berne, Switzerland.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
6
|
Ye Y, Xia C, Hu H, Tang S, Huan H. Metabolomics reveals altered metabolites in cirrhotic patients with severe portal hypertension in Tibetan population. Front Med (Lausanne) 2024; 11:1404442. [PMID: 39015788 PMCID: PMC11250582 DOI: 10.3389/fmed.2024.1404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Portal hypertension (PHT) presents a challenging issue of liver cirrhosis. This study aims to identify novel biomarkers for severe PHT (SPHT) and explore the pathophysiological mechanisms underlying PHT progression. Methods Twenty-three Tibetan cirrhotic patients who underwent hepatic venous pressure gradient (HVPG) measurement were included. Eleven patients had an HVPG between 5 mmHg and 15 mmHg (MPHT), while 12 had an HVPG ≥16 mmHg (SPHT). Peripheral sera were analyzed using liquid chromatograph-mass spectrometer for metabolomic assessment. An additional 14 patients were recruited for validation of metabolites. Results Seven hundred forty-five metabolites were detected and significant differences in metabolomics between MPHT and SPHT patients were observed. Employing a threshold of p < 0.05 and a variable importance in projection score >1, 153 differential metabolites were identified. A significant number of these metabolites were lipids and lipid-like molecules. Pisumionoside and N-decanoylglycine (N-DG) exhibited the highest area under the curve (AUC) values (0.947 and 0.9091, respectively). Additional differential metabolites with AUC >0.8 included 6-(4-ethyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid, sphinganine 1-phosphate, 4-hydroxytriazolam, 4,5-dihydroorotic acid, 6-hydroxy-1H-indole-3-acetamide, 7alpha-(thiomethyl)spironolactone, 6-deoxohomodolichosterone, glutaminylisoleucine, taurocholic acid 3-sulfate, and Phe Ser. Enzyme-linked immunosorbent assay further confirmed elevated levels of sphinganine 1-phosphate, N-DG, and serotonin in SPHT patients. Significant disruptions in linoleic acid, amino acid, sphingolipid metabolisms, and the citrate cycle were observed in SPHT patients. Conclusion Pisumionoside and N-DG are identified as promising biomarkers for SPHT. The progression of PHT may be associated with disturbances in lipid, linoleic acid, and amino acid metabolisms, as well as alterations in the citrate cycle.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Hong Hu
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Huan
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
7
|
Hurtado K, Scholpa NE, Schnellmann JG, Schnellmann RG. Serotonin regulation of mitochondria in kidney diseases. Pharmacol Res 2024; 203:107154. [PMID: 38521286 PMCID: PMC11823281 DOI: 10.1016/j.phrs.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Serotonin, while conventionally recognized as a neurotransmitter in the CNS, has recently gained attention for its role in the kidney. Specifically, serotonin is not only synthesized in the kidney, but it also regulates glomerular function, vascular resistance, and mitochondrial homeostasis. Because of serotonin's importance to mitochondrial health, this review is focused on the role of serotonin and its receptors in mitochondrial function in the context of acute kidney injury, chronic kidney disease, and diabetic kidney disease, all of which are characterized by mitochondrial dysfunction and none of which has approved pharmacological treatments. Evidence indicates that activation of certain serotonin receptors can stimulate mitochondrial biogenesis (MB) and restore mitochondrial homeostasis, resulting in improved renal function. Serotonin receptor agonists that induce MB are therefore of interest as potential therapeutic strategies for renal injury and disease. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is associated with many human renal diseases such as acute kidney injury, chronic kidney disease, and diabetic kidney disease, which are associated with increased morbidity and mortality. Unfortunately, none of these pathologies has an FDA-approved pharmacological intervention, underscoring the urgency of identifying new therapeutics for such disorders. Studies show that induction of mitochondrial biogenesis via serotonin (5-hydroxytryptamine, 5-HT) receptors reduces kidney injury markers, restores mitochondrial and renal function after kidney injury, and decreases mortality, suggesting that targeting 5-HT receptors may be a promising therapeutic avenue for mitochondrial dysfunction in kidney diseases. While numerous reviews describe the importance of mitochondria and mitochondrial quality control mechanisms in kidney disease, the relevance of 5-HT receptor-mediated mitochondrial metabolic modulation in the kidney has yet to be thoroughly explored.
Collapse
Affiliation(s)
- Kevin Hurtado
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States
| | | | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
8
|
Baciu C, Ghosh S, Naimimohasses S, Rahmani A, Pasini E, Naghibzadeh M, Azhie A, Bhat M. Harnessing Metabolites as Serum Biomarkers for Liver Graft Pathology Prediction Using Machine Learning. Metabolites 2024; 14:254. [PMID: 38786731 PMCID: PMC11122840 DOI: 10.3390/metabo14050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Graft injury affects over 50% of liver transplant (LT) recipients, but non-invasive biomarkers to diagnose and guide treatment are currently limited. We aimed to develop a biomarker of graft injury by integrating serum metabolomic profiles with clinical variables. Serum from 55 LT recipients with biopsy confirmed metabolic dysfunction-associated steatohepatitis (MASH), T-cell mediated rejection (TCMR) and biliary complications was collected and processed using a combination of LC-MS/MS assay. The metabolomic profiles were integrated with clinical information using a multi-class Machine Learning (ML) classifier. The model's efficacy was assessed through the Out-of-Bag (OOB) error estimate evaluation. Our ML model yielded an overall accuracy of 79.66% with an OOB estimate of the error rate at 19.75%. The model exhibited a maximum ability to distinguish MASH, with an OOB error estimate of 7.4% compared to 22.2% for biliary and 29.6% for TCMR. The metabolites serine and serotonin emerged as the topmost predictors. When predicting binary outcomes using three models: Biliary (biliary vs. rest), MASH (MASH vs. rest) and TCMR (TCMR vs. rest); the AUCs were 0.882, 0.972 and 0.896, respectively. Our ML tool integrating serum metabolites with clinical variables shows promise as a non-invasive, multi-class serum biomarker of graft pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2C4, Canada; (C.B.); (S.G.); (S.N.); (A.R.); (E.P.); (M.N.); (A.A.)
| |
Collapse
|
9
|
Gračan R, Blažević SA, Brižić M, Hranilovic D. Beyond the Brain: Perinatal Exposure of Rats to Serotonin Enhancers Induces Long-Term Changes in the Jejunum and Liver. Biomedicines 2024; 12:357. [PMID: 38397959 PMCID: PMC10887406 DOI: 10.3390/biomedicines12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5HT) homeostasis is essential for many physiological processes in the central nervous system and peripheral tissues. Hyperserotonemia, a measurable sign of 5HT homeostasis disruption, can be caused by 5HT-directed treatment of psychiatric and gastrointestinal diseases. Its impact on the long-term balance and function of 5HT in the peripheral compartment remains unresolved and requires further research due to possible effects on human health. We explored the effects of perinatal 5HT imbalance on the peripheral organs responsible for serotonin metabolism-the jejunum, a synthesis site, and the liver, a catabolism site-in adult rats. Hyperserotonemia was induced by subchronic treatment with serotonin precursor 5-hydroxytryptophan (5HTP) or serotonin degradation inhibitor tranylcypromine (TCP). The jejunum and liver were collected on postnatal day 70 and analyzed histomorphometrically. Relative mRNA levels of 5HT-regulating proteins were determined using qRT-PCR. Compared to controls, 5HTP- and TCP-treated rats had a reduced number of 5HT-producing cells and expression of the 5HT-synthesising enzyme in the jejunum, and an increased expression of 5HT-transporter accompanied by karyomegaly in hepatocytes, with these differences being more pronounced in the TCP-treated animals. Here, we report that perinatal 5HT disbalance induced long-term cellular and molecular changes in organs regulating 5HT-metabolism, which may have a negative impact on 5HT availability and function in the periphery. Our rat model demonstrates a link between the developmental abnormalities of serotonin homeostasis and 5HT-related changes in adult life and may be suitable for exploring the neurobiological substrates of vulnerability to behavioral and metabolic disorders, as well as for modeling the adverse effects of the prenatal exposure to 5HT enhancers in the human population.
Collapse
Affiliation(s)
- Romana Gračan
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sofia Ana Blažević
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| | - Matea Brižić
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| | - Dubravka Hranilovic
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.B.); (D.H.)
| |
Collapse
|
10
|
Yu J, Zhu P, Shi L, Gao N, Li Y, Shu C, Xu Y, Yu Y, He J, Guo D, Zhang X, Wang X, Shao S, Dong W, Wang Y, Zhang W, Zhang W, Chen WH, Chen X, Liu Z, Yang X, Zhang B. Bifidobacterium longum promotes postoperative liver function recovery in patients with hepatocellular carcinoma. Cell Host Microbe 2024; 32:131-144.e6. [PMID: 38091982 DOI: 10.1016/j.chom.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/02/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024]
Abstract
Timely liver function recovery (LFR) is crucial for postoperative hepatocellular carcinoma (HCC) patients. Here, we established the significance of LFR on patient long-term survival through retrospective and prospective cohorts and identified a key gut microbe, Bifidobacterium longum, depleted in patients with delayed recovery. Fecal microbiota transfer from HCC patients with delayed recovery to mice similarly impacted recovery time post hepatectomy. However, oral gavage of B. longum improved liver function and repair in these mice. In a clinical trial of HCC patients, orally administering a probiotic bacteria cocktail containing B. longum reduced the rates of delayed recovery, shortened hospital stays, and improved overall 1-year survival. These benefits, attributed to diminished liver inflammation, reduced liver fibrosis, and hepatocyte proliferation, were associated with changes in key metabolic pathways, including 5-hydroxytryptamine, secondary bile acids, and short-chain fatty acids. Our findings propose that gut microbiota modulation can enhance LFR, thereby improving postoperative outcomes for HCC patients.
Collapse
Affiliation(s)
- Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linlin Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Shu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Yu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Junqing He
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dingming Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoman Zhang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiangfeng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sirui Shao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuwei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhi Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zhu Z, Chen X, Chen S, Hu C, Guo R, Wu Y, Liu Z, Shu X, Jiang M. Examination of the mechanism of Piezo ion channel in 5-HT synthesis in the enterochromaffin cell and its association with gut motility. Front Endocrinol (Lausanne) 2023; 14:1193556. [PMID: 38027192 PMCID: PMC10652390 DOI: 10.3389/fendo.2023.1193556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
In the gastrointestinal tract, serotonin (5-hydroxytryptamine, 5-HT) is an important monoamine that regulates intestinal dynamics. QGP-1 cells are human-derived enterochromaffin cells that secrete 5-HT and functionally express Piezo ion channels associated with cellular mechanosensation. Piezo ion channels can be blocked by Grammostola spatulata mechanotoxin 4 (GsMTx4), a spider venom peptide that inhibits cationic mechanosensitive channels. The primary aim of this study was to explore the effects of GsMTx4 on 5-HT secretion in QGP-1 cells in vitro. We investigated the transcript and protein levels of the Piezo1/2 ion channel, tryptophan hydroxylase 1 (TPH1), and mitogen-activated protein kinase signaling pathways. In addition, we observed that GsMTx4 affected mouse intestinal motility in vivo. Furthermore, GsMTx4 blocked the response of QGP-1 cells to ultrasound, a mechanical stimulus.The prolonged presence of GsMTx4 increased the 5-HT levels in the QGP-1 cell culture system, whereas Piezo1/2 expression decreased, and TPH1 expression increased. This effect was accompanied by the increased phosphorylation of the p38 protein. GsMTx4 increased the entire intestinal passage time of carmine without altering intestinal inflammation. Taken together, inhibition of Piezo1/2 can mediate an increase in 5-HT, which is associated with TPH1, a key enzyme for 5-HT synthesis. It is also accompanied by the activation of the p38 signaling pathway. Inhibitors of Piezo1/2 can modulate 5-HT secretion and influence intestinal motility.
Collapse
Affiliation(s)
- Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiaolong Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Shuang Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Yuhao Wu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Ziyu Liu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
13
|
Liu Z, Ling Y, Peng Y, Han S, Ren Y, Jing Y, Fan W, Su Y, Mu C, Zhu W. Regulation of serotonin production by specific microbes from piglet gut. J Anim Sci Biotechnol 2023; 14:111. [PMID: 37542282 PMCID: PMC10403853 DOI: 10.1186/s40104-023-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells. RESULTS Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3. CONCLUSIONS Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yidan Ling
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Peng
- Hubei CAT Biological Technology Co., Ltd., Wuhan, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yujia Jing
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
14
|
Adam T, Abdelsamea M, Abd-Elsalam S, Elserougy H, Wasfy EA. Serum serotonin level as a predictor of presence of gastroesophageal varices in patients with liver cirrhosis. TANTA MEDICAL JOURNAL 2023; 51:27. [DOI: 10.4103/tmj.tmj_1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
[Role of hyperglycemia-induced 5-hydroxytryptamine degradation of hepatic stellate cells in hepatic inflammation and fibrosis induced by type 2 diabetes mellitus]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 36533346 PMCID: PMC9761804 DOI: 10.19723/j.issn.1671-167x.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the role of 5-hydroxytryptamine (5-HT) in type 2 diabetes mellitus (T2DM)-related hepatic inflammation and fibrosis. METHODS Male C57BL/6J mice were used to establish T2DM model by high-fat diet feeding combined with intraperitoneal injection of streptozotocin. Then, the mice with hyperglycemia were still fed with high-fat diet for nine weeks, and treated with or without 5-HT2A receptor (5-HT2AR) antagonist sarpogrelate hydrochloride (SH) and 5-HT synthesis inhibitor carbidopa (CDP) (alone or in combination). To observe the role of 5-HT in the myofibroblastization of hepa-tic stellate cells (HSCs), human HSCs LX-2 were exposed to high glucose, and were treated with or without SH, CDP or monoamine oxidase A (MAO-A) inhibitor clorgiline (CGL). Hematoxylin & eosin and Masson staining were used to detect the pathological lesions of liver tissue section, immunohistochemistry and Western blot were used to analyze protein expression, biochemical indicators were measured by ELISA or enzyme kits, and levels of intracellular reactive oxygen species (ROS) were detected by fluorescent probe. RESULTS There were up-regulated expressions of 5-HT2AR, 5-HT synthases and MAO-A, and elevated levels of 5-HT in the liver of the T2DM mice. In addition to reduction of the hepatic 5-HT levels and MAO-A expression, treatment with SH and CDP could effectively ameliorate liver lesions in the T2DM mice, both of which could ameliorate hepatic injury and steatosis, significantly inhibit the increase of hepatic ROS (H2O2) levels to alleviate oxidative stress, and markedly suppress the production of transforming growth factor β1 (TGF-β1) and the development of inflammation and fibrosis in liver. More importantly, there was a synergistic effect between SH and CDP. Studies on LX-2 cells showed that high glucose could induce up-regulation of 5-HT2AR, 5-HT synthases and MAO-A expression, increase intracellular 5-HT level, increase the production of ROS, and lead to myofibroblastization of LX-2, resulting in the increase of TGF-β1 synthesis and production of inflammatory and fibrosis factors. The effects of high glucose could be significantly inhibited by 5-HT2AR antagonist SH or be markedly abolished by mitochondrial 5-HT degradation inhibitor CGL. In addition, SH significantly suppressed the up-regulation of 5-HT synthases and MAO-A induced by high glucose in LX-2. CONCLUSION Hyperglycemia-induced myofibroblastization and TGF-β1 production of HSCs, which leads to hepatic inflammation and fibrosis in T2DM mice, is probably due to the up-regulation of 5-HT2AR expression and increase of 5-HT synthesis and degradation, resulting in the increase of ROS production in mitochondria. Among them, 5-HT2AR is involved in the regulation of 5-HT synthases and MAO-A expression.
Collapse
|
16
|
Li M, Zhu J, Liu X, Dong Z, Tang J, Zhang C, Jiao J, Chen J, Yin F, Qiu S, Zhang F, Gao S, Wang Z, Tao X, Yue X, Sun L, Chen W. Chaihu-Guizhi-Ganjiang Decoction is more efficacious in treating irritable bowel syndrome than Dicetel according to metabolomics analysis. Chin Med 2022; 17:139. [PMID: 36517857 PMCID: PMC9749322 DOI: 10.1186/s13020-022-00695-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chaihu-Guizhi-Ganjiang Decoction (CGGD) is a traditional Chinese medicine (TCM) prescription used to treat viral influenza. There is evidence that CGGD can be used to treat irritable bowel syndrome (IBS) but the potential mechanism of action and metabolites produced upon CGGD treatment remains elusive. METHODS Patients with IBS were treated with pinaverium bromide (Dicetel™) and then CGGD after a washout period of 1 week. Both treatments lasted for 30 days. The efficacy and changes of metabolites in plasma after the two treatments were compared. Plasma samples were acquired before and after each treatment, and untargeted metabolics analysis was performed. RESULTS Efficacy was measured according to the Rome IV criteria and TCM theory. Our results indicated that CGGD showed significantly better efficacy than Dicetel in the treatment of IBS utilizing each criterion. CGGD exerted greater effects on plasma metabolism than Dicetel. Dicetel treatment led to increased tryptophan metabolism (increased levels of 5-Hydroxyindoleacetaldehyde) and increased protein metabolism (increased levels of L-arginine). CGGD treatment significantly (p < 0.05) increased carnitine metabolism, with elevated levels of L-carnitine and acylcarnitine in plasma. Such changes in these metabolites could exert effects against IBS by improving gastrointestinal motility and suppressing pain, depression, and inflammation. CONCLUSIONS CGGD appeared to be more efficacious than Dicetel for treating patients with IBS. The findings provide a sound support for the underlying biomolecular mechanism of CGGD in the prevention and treatment of IBS.
Collapse
Affiliation(s)
- Mingming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jiawei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jigui Tang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Cian Zhang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jianpeng Jiao
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jiani Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fenghao Yin
- Department of Pharmacy, 905 Hospital of People's Liberation Army Navy, Shanghai, 200050, China
| | - Shi Qiu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Zhang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Wansheng Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
17
|
Ferrell JM, Dilts M, Stahl Z, Boehme S, Pokhrel S, Wang X, Chiang JY. Altered serotonin metabolism in Takeda G protein-coupled receptor 5 knockout mice protects against diet-induced hepatic fibrosis. LIVER RESEARCH 2022; 6:214-226. [PMID: 39957909 PMCID: PMC11791863 DOI: 10.1016/j.livres.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Background and aims Diet-induced obesity and metabolic syndrome can trigger the progression of fatty liver disease to non-alcoholic steatohepatitis and fibrosis, which is a major public health concern. Bile acids regulate metabolic homeostasis and inflammation in the liver and gut via the activation of nuclear farnesoid X receptor (Fxr) and the membrane receptor Takeda G protein-coupled receptor 5 (Tgr5). Tgr5 is highly expressed in the gut and skeletal muscle, and in cholangiocytes and Kupffer cells of the liver. Tgr5 is implicated in the mediation of liver and gut inflammation, as well as the maintenance of energy homeostasis. Here, we used a high fat, high fructose, and high sucrose (HFS) diet to determine how bile acid signaling through Tgr5 may regulate metabolism during the progression from fatty liver to non-alcoholic steatohepatitis and fibrosis. Materials and methods Female C57BL/6J control wild type (WT) and Tgr5 knockout (Tgr5 -/-) mice were fed HFS (high fat (40% kcal), high fructose, and 20% sucrose water) diet for 20 weeks. Metabolic phenotypes were characterized through examination of bile acid synthesis pathways, lipid and cholesterol metabolism pathways, and fibrosis and inflammation pathways. Results Tgr5 -/- mice were more glucose intolerant when fed HFS diet, despite gaining the same amount of weight as WT mice. Tgr5 -/- mice accumulated significantly more hepatic cholesterol and triglycerides on HFS diet compared to WT mice, and gene expression of lipogenic genes was significantly upregulated. Hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) gene expression was consistently elevated in Tgr5 -/- mice, while oxysterol 7alpha-hydroxylase (Cyp7b1), sterol 27-hydroxylase (Cyp27a1), Fxr, and small heterodimer partner (Shp) were downregulated by HFS diet. Surprisingly, hepatic inflammation and fibrosis were also significantly reduced in Tgr5 -/- mice fed HFS diet, which may be due to altered serotonin signaling in the liver. Conclusions Tgr5 -/- mice may be protected from high fat, high sugar-induced hepatic inflammation and injury due to altered serotonin metabolism.
Collapse
Affiliation(s)
- Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew Dilts
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Zachary Stahl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Sabita Pokhrel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John Y.L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
18
|
Jia Z, Song R, Xu Y, Liu X, Zhang X. Astaxanthin absorption modulated antioxidant enzyme activity and targeted specific metabolic pathways in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7003-7016. [PMID: 35689476 DOI: 10.1002/jsfa.12062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Saponification contributed to an increase in the in vitro antioxidant activity of astaxanthin (Asta) extracts derived from Penaeus sinensis (Solenocera crassicornis) by-products. However, the influence of non-saponification (N-Asta) and saponification Asta (S-Asta) absorption on antioxidant activity in vivo was limited. The antioxidant properties of N-Asta and S-Asta were therefore compared in Sprague Dawley male rats after 6 h and 12 of absorption using biochemistry assays combined with an untargeted metabonomics strategy. RESULTS Non-saponified Asta and S-Asta showed similar digestive properties in a stimulated gastrointestinal tract. Increased glutathione content and decreased malondialdehyde content were measured in the liver tissues of N-Asta and S-Asta treated rats after 12 h of absorption. Absorption of N-Asta increased liver total superoxide dismutase, glutathione peroxidase, and catalase activity. Treatment with S-Asta up-regulated NAD(P)H: quinine oxidoreductase-1, and heme oxygenase-1 expression was associated with the nuclear erythroid 2-related factor 2/antioxidant responsive element pathway at the end of 12 h absorption. With partial least square-discriminant analysis and metabolite heatmap profiles, the S-Asta group was clearly separated from the N-Asta group. The S-Asta treatment also demonstrated stronger influences on plasma metabolites than the N-Asta treatment. Both N-Asta and S-Asta absorption showed critical roles in the regulation of specific metabolites, and 15 potential biomarkers were identified in eight key pathways to separate these experimental groups after 12 h of absorption. However, an increased serotonin level was only detected in the S-Asta group after 12 h absorption. CONCLUSION Absorption of N-Asta and S-Asta induced different antioxidant effects in normal rats, which were associated with metabolite changes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
19
|
Byrne CJ, Kelly AK, Keogh K, Kenny DA. Enhancing early life nutrition alters the hepatic transcriptome of Angus × Holstein-Friesian heifer calves. Animal 2022; 16:100577. [PMID: 35810502 DOI: 10.1016/j.animal.2022.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Early life nutrition has a major influence on subsequent lifetime performance in cattle. The aim of this experiment was to investigate the effect of plane of nutrition from 3 to 21 weeks of age on the liver transcriptome. Holstein-Friesian × Angus heifer calves with a mean (±SD) age and BW of 19 (±5) days and 51.2 (±7.8) kg, respectively, were assigned to either a high-energy diet to support a mean average daily gain (ADG) of 1.2 kg/day (HI; n = 15) or a moderate diet (MOD; n = 15) to support a mean ADG of 0.5 kg/day. At 145 ± 3 days of age, all calves were euthanised, liver tissue samples collected and flash-frozen in liquid nitrogen. Following RNA sequence analysis, the total number of differentially expressed genes (DEGs) (at false discovery rate (FDR) > 0.05) was 537; 308 upregulated and 229 downregulated in HI compared to MOD. The number of DEGs mapped to IPA (at FDR > 0.05) was 460; 264 upregulated and 196 downregulated. There was greater expression of genes associated with cellular development and metabolism in heifers on the HI compared to the MOD diet. The genes (fold change) of the somatotrophic axis; IGF1 (3.7), IGFALS (2.6) and GHR (1.5) were upregulated in the HI compared to MOD diet. The cytokine receptor genes, IL17RB (1.7) and IL20RA (3.3), were upregulated in the HI heifers, which were detected in a network interacting with metabolically regulated genes. The potential enhanced cell-to-cell communication evident from DEGs would increase the calves' ability to combat health challenges. The findings of this study indicate that enhancing the early life plane of nutrition in heifer calves results in the upregulation of genes that are associated with increased metabolic activity and thus metabolic capacity. Moreover, the interaction between metabolic and immune communication genes indicates that enhanced nutrition has the potential to improve the immune response in the liver which will play a central role in ensuring optimal lifetime performance.
Collapse
Affiliation(s)
- C J Byrne
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath C15 PW93, Ireland
| | - A K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 D04 F6X4, Ireland
| | - K Keogh
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath C15 PW93, Ireland
| | - D A Kenny
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath C15 PW93, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 D04 F6X4, Ireland.
| |
Collapse
|
20
|
Owaki T, Kamimura K, Ko M, Nagayama I, Nagoya T, Shibata O, Oda C, Morita S, Kimura A, Sato T, Setsu T, Sakamaki A, Kamimura H, Yokoo T, Terai S. Involvement of the liver-gut peripheral neural axis in nonalcoholic fatty liver disease pathologies via hepatic HTR2A. Dis Model Mech 2022; 15:dmm049612. [PMID: 35765850 PMCID: PMC9346519 DOI: 10.1242/dmm.049612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Serotonin (5-HT) is one of the key bioamines of nonalcoholic fatty liver disease (NAFLD). Its mechanism of action in autonomic neural signal pathways remains unexplained; hence, we evaluated the involvement of 5-HT and related signaling pathways via autonomic nerves in NAFLD. Diet-induced NAFLD animal models were developed using wild-type and melanocortin 4 receptor (MC4R) knockout (MC4RKO) mice, and the effects of the autonomic neural axis on NAFLD physiology, 5-HT and its receptors (HTRs), and lipid metabolism-related genes were assessed by applying hepatic nerve blockade. Hepatic neural blockade retarded the progression of NAFLD by reducing 5-HT in the small intestine, hepatic HTR2A and hepatic lipogenic gene expression, and treatment with an HTR2A antagonist reproduced these effects. The effects were milder in MC4RKO mice, and brain 5-HT and HTR2C expression did not correlate with peripheral neural blockade. Our study demonstrates that the autonomic liver-gut neural axis is involved in the etiology of diet-induced NAFLD and that 5-HT and HTR2A are key factors, implying that the modulation of the axis and use of HTR2A antagonists are potentially novel therapeutic strategies for NAFLD treatment. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Itsuo Nagayama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
21
|
Asuaje Pfeifer M, Liebmann M, Beuerle T, Grupe K, Scherneck S. Role of Serotonin (5-HT) in GDM Prediction Considering Islet and Liver Interplay in Prediabetic Mice during Gestation. Int J Mol Sci 2022; 23:ijms23126434. [PMID: 35742878 PMCID: PMC9224346 DOI: 10.3390/ijms23126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
Gestational diabetes (GDM) is characterized by a glucose tolerance disorder. This may first appear during pregnancy or pre-exist before conception as a form of prediabetes, but there are few data on the pathogenesis of the latter subtype. Female New Zealand obese (NZO) mice serve as a model for this subpopulation of GDM. It was recently shown that GDM is associated with elevated urinary serotonin (5-hydroxytryptamine, 5-HT) levels, but the role of the biogenic amine in subpopulations with prediabetes remains unclear. 5-HT is synthesized in different tissues, including the islets of Langerhans during pregnancy. Furthermore, 5-HT receptors (HTRs) are expressed in tissues important for the regulation of glucose homeostasis, such as liver and pancreas. Interestingly, NZO mice showed elevated plasma and islet 5-HT concentrations as well as impaired glucose-stimulated 5-HT secretion. Incubation of isolated primary NZO islets with 5-HT revealed an inhibitory effect on insulin and glucagon secretion. In primary NZO hepatocytes, 5-HT aggravated hepatic glucose production (HGP), decreased glucose uptake (HGU), glycogen content, and modulated AKT activation as well as cyclic adenosine monophosphate (cAMP) increase, indicating 5-HT downstream modulation. Treatment with an HTR2B antagonist reduced this 5-HT-mediated deterioration of the metabolic state. With its strong effect on glucose metabolism, these data indicate that 5-HT is already a potential indicator of GDM before conception in mice.
Collapse
Affiliation(s)
- Melissa Asuaje Pfeifer
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Moritz Liebmann
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany;
| | - Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany; (M.A.P.); (M.L.); (K.G.)
- Correspondence: ; Tel.: +49-531-391-8440
| |
Collapse
|
22
|
Jorgensen A, Köhler-Forsberg K, Henriksen T, Weimann A, Brandslund I, Ellervik C, Poulsen HE, Knudsen GM, Frokjaer VG, Jorgensen MB. Systemic DNA and RNA damage from oxidation after serotonergic treatment of unipolar depression. Transl Psychiatry 2022; 12:204. [PMID: 35577781 PMCID: PMC9110351 DOI: 10.1038/s41398-022-01969-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Previous studies have indicated that antidepressants that inhibit the serotonin transporter reduces oxidative stress. DNA and RNA damage from oxidation is involved in aging and a range of age-related pathophysiological processes. Here, we studied the urinary excretion of markers of DNA and RNA damage from oxidation, 8-oxodG and 8-oxoGuo, respectively, in the NeuroPharm cohort of 100 drug-free patients with unipolar depression and in 856 non-psychiatric community controls. Patients were subsequently treated for 8 weeks with escitalopram in flexible doses of 5-20 mg; seven of these switched to duloxetine by week 4, as allowed by the protocol. At week 8, 82 patients were followed up clinically and with measurements of 8-oxodG/8-oxoGuo. Contextual data were collected in patients, including markers of cortisol excretion and low-grade inflammation. The intervention was associated with a substantial reduction in both 8-oxodG/8-oxoGuo excretion (25% and 10%, respectively). The change was not significantly correlated to measures of clinical improvement. Both markers were strongly and negatively correlated to cortisol, as measured by the area under the curve for the full-day salivary cortisol excretion. Surprisingly, patients had similar levels of 8-oxodG excretion and lower levels of 8-oxoGuo excretion at baseline compared to the controls. We conclude that intervention with serotonin reuptake inhibitors in unipolar depression is associated with a reduction in systemic DNA and RNA damage from oxidation. To our knowledge, this to date the largest intervention study to characterize this phenomenon, and the first to include a marker of RNA oxidation.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark. .,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. .,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kristin Köhler-Forsberg
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Trine Henriksen
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Allan Weimann
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Ivan Brandslund
- grid.459623.f0000 0004 0587 0347Department of Clinical Immunology and Biochemistry, Lillebælt Hospital, Vejle, Denmark ,grid.10825.3e0000 0001 0728 0170Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christina Ellervik
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.38142.3c000000041936754XHarvard Medical School, Boston, USA
| | - Henrik E. Poulsen
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark ,grid.4973.90000 0004 0646 7373Department of Cardiology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Endocrinology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B. Jorgensen
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
24
|
Chen Y, Chen J, Guo D, Yang P, Chen S, Zhao C, Xu C, Zhang Q, Lin C, Zhong S, Zhang S. Tryptophan Metabolites as Biomarkers for Esophageal Cancer Susceptibility, Metastasis, and Prognosis. Front Oncol 2022; 12:800291. [PMID: 35296014 PMCID: PMC8918692 DOI: 10.3389/fonc.2022.800291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Perturbation of tryptophan (TRP) metabolism contributes to the immune escape of cancer; however, the explored TRP metabolites are limited, and their efficacy in clarifying the susceptibility and progression of esophageal cancer (EC) remains ambiguous. Our study sought to evaluate the effects of the TRP metabolic profile on the clinical outcomes of EC using a Chinese population cohort; and to develop a risk prediction model targeting TRP metabolism. METHOD A total of 456 healthy individuals as control subjects and 393 patients with EC who were followed up for one year as case subjects were enrolled. Quantification of the plasma concentrations of TRP and its metabolites was performed using HPLC-MS/MS. The logistic regression model was applied to evaluate the effects of the clinical characteristics and plasma metabolites of the subjects on susceptibility and tumor metastasis events, whereas Cox regression analysis was performed to assess the overall survival (OS) of the patients. RESULTS Levels of creatinine and liver enzymes were substantially correlated with multiple metabolites/metabolite ratios in TRP metabolism, suggesting that hepatic and renal function would exert effects on TRP metabolism. Age- and sex-matched case-control subjects were selected using propensity score matching. Plasma exposure to 5-HT was found to be elevated 3.94-fold in case subjects (N = 166) compared to control subjects (N = 203), achieving an AUC of 0.811 for predicting susceptibility event. Subsequent correlation analysis indicated that a higher plasma exposure to 5-HIAA significantly increased the risk of lymph node metastasis (OR: 2.16, p = 0.0114). Furthermore, it was figured out that OS was significantly shorter for patients with elevated XA/KYN ratio (HR: 1.99, p = 0.0016), in which medium and high levels of XA/KYN versus low level had a significantly lower OS (HR: 0.48, p = 0.0080 and HR: 0.42, p = 0.0031, respectively). CONCLUSION This study provides a pivotal basis for targeting endogenous TRP metabolism as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianliang Chen
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Dainian Guo
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Peixuan Yang
- Health Management Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuang Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China;Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Chengkuan Zhao
- Department of Pharmacology, Shantou Chaonan Minsheng Hospital, Shantou, China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Qiuzhen Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Chaoxian Lin
- Department of Pharmacology, Shantou Chaonan Minsheng Hospital, Shantou, China
| | - Shilong Zhong
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Frias-Soler RC, Kelsey NA, Villarín Pildaín L, Wink M, Bairlein F. Transcriptome signature changes in the liver of a migratory passerine. Genomics 2022; 114:110283. [PMID: 35143886 DOI: 10.1016/j.ygeno.2022.110283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
The liver plays a principal role in avian migration. Here, we characterised the liver transcriptome of a long-distance migrant, the Northern Wheatear (Oenanthe oenanthe), sampled at different migratory stages, looking for molecular processes linked with adaptations to migration. The analysis of the differentially expressed genes suggested changes in the periods of the circadian rhythm, variation in the proportion of cells in G1/S cell-cycle stages and the putative polyploidization of this cell population. This may explain the dramatic increment in the liver's metabolic capacities towards migration. Additionally, genes involved in anti-oxidative stress, detoxification and innate immune responses, lipid metabolism, inflammation and angiogenesis were regulated. Lipophagy and lipid catabolism were active at all migratory stages and increased towards the fattening and fat periods, explaining the relevance of lipolysis in controlling steatosis and maintaining liver health. Our study clears the way for future functional studies regarding long-distance avian migration.
Collapse
Affiliation(s)
- Roberto Carlos Frias-Soler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Natalie A Kelsey
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Lilian Villarín Pildaín
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany.
| |
Collapse
|
26
|
Zhang Y, Liang X, Guan J, Jin J, Zhang Y, Xu F, Fu J. Carbon tetrachloride induced mitochondrial division, respiratory chain damage, abnormal intracellular [H+] and apoptosis are due to the activation of 5-HT degradation system in hepatocytes. Toxicol Appl Pharmacol 2022; 439:115929. [DOI: 10.1016/j.taap.2022.115929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
|
27
|
Song R, Xu Y, Jia Z, Liu X, Zhang X. Integration of intestinal microbiota and metabonomics to elucidate different alleviation impacts of non-saponification and saponification astaxanthin pre-treatment on paracetamol-induced oxidative stress in rats. Food Funct 2022; 13:1860-1880. [PMID: 35084415 DOI: 10.1039/d1fo02972j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal microbiota and metabonomics were integrated to investigate the efficiency of non-saponification or saponification astaxanthin (N-Asta or S-Asta) derived from Penaeus sinensis by-products on alleviating paracetamol (PCM)-induced oxidative stress. Pre-treatment with N-Asta or S-Asta for 14 days restored the cellular morphology of the intestine and increased glutathione (GSH) levels under PCM overdose in rats. However, S-Asta displayed higher adsorption than that of N-Asta. PCM overdose reduced the richness and diversity of intestinal microbiota in the model group. Comparably, N-Asta or S-Asta pre-treatment increased the Actinobacteria abundance. Increased phyla Bacteroidetes and Verrucomicrobia were only found in the S-Asta-pre-treated group. At the genus level, N-Asta pre-treatment increased Lactobacillus and Parasutterella abundance, whereas S-Asta pre-treatment elevated Bacteroidales_S24-7_group_norank and Ruminococcaceae_uncultured. Compared to the control and model groups, remarkable increases of fecal short-chain fatty acids were detected in both N-Asta and S-Asta pre-treatment groups, suggesting the contribution of N-Asta and S-Asta adsorption to SCFA-producing bacteria enrichment. Furthermore, the genera of Ruminococcaceae_uncultured, Ruminiclostridium_9, Ruminococcaceae_unclassified and Ruminococcus_1 showed high correlations with propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid increases in the S-Asta pre-treated group. Seventeen plasma biomarker metabolites in more than 10 metabolic pathways were responsible for the difference between the N-Asta and S-Asta pre-treated groups. Metabolites GSH, retinol, all-trans-Retinoic acid and taurine related to antioxidant activities were significantly accumulated in the S-Asta pre-treated group, while increasing taurocholic acid levels associated with the anti-inflammatory activity was found in the N-Asta-pre-treated group. Therefore, N-Asta and S-Asta could have potential applications in counterbalancing intestinal flora and metabolite disturbances by overdose chemical induction.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
28
|
Kim KH, Lee KA. Metabolic Rewiring by Human Placenta-Derived Mesenchymal Stem Cell Therapy Promotes Rejuvenation in Aged Female Rats. Int J Mol Sci 2022; 23:ijms23010566. [PMID: 35008991 PMCID: PMC8745533 DOI: 10.3390/ijms23010566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023] Open
Abstract
Aging is a degenerative process involving cell function deterioration, leading to altered metabolic pathways, increased metabolite diversity, and dysregulated metabolism. Previously, we reported that human placenta-derived mesenchymal stem cells (hPD-MSCs) have therapeutic effects on ovarian aging. This study aimed to identify hPD-MSC therapy-induced responses at the metabolite and protein levels and serum biomarker(s) of aging and/or rejuvenation. We observed weight loss after hPD-MSC therapy. Importantly, insulin-like growth factor-I (IGF-I), known prolongs healthy life spans, were markedly elevated in serum. Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF/MS) analysis identified 176 metabolites, among which the levels of 3-hydroxybutyric acid, glycocholic acid, and taurine, which are associated with health and longevity, were enhanced after hPD-MSC stimulation. Furthermore, after hPD-MSC therapy, the levels of vitamin B6 and its metabolite pyridoxal 5′-phosphate were markedly increased in the serum and liver, respectively. Interestingly, hPD-MSC therapy promoted serotonin production due to increased vitamin B6 metabolism rates. Increased liver serotonin levels after multiple-injection therapy altered the expression of mRNAs and proteins associated with hepatocyte proliferation and mitochondrial biogenesis. Changes in metabolites in circulation after hPD-MSC therapy can be used to identify biomarker(s) of aging and/or rejuvenation. In addition, serotonin is a valuable therapeutic target for reversing aging-associated liver degeneration.
Collapse
|
29
|
Trézéguet V, Fatrouni H, Merched AJ. Immuno-Metabolic Modulation of Liver Oncogenesis by the Tryptophan Metabolism. Cells 2021; 10:cells10123469. [PMID: 34943977 PMCID: PMC8700200 DOI: 10.3390/cells10123469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023] Open
Abstract
Metabolic rewiring in tumor cells is a major hallmark of oncogenesis. Some of the oncometabolites drive suppressive and tolerogenic signals from the immune system, which becomes complicit to the advent and the survival of neoplasia. Tryptophan (TRP) catabolism through the kynurenine (KYN) pathway was reported to play immunosuppressive actions across many types of cancer. Extensive debate of whether the culprit of immunosuppression was the depletion of TRP or rather KYN accumulation in the tumor microenvironment has been ongoing for years. Results from clinical trials assessing the benefit of inhibiting key limiting enzymes of this pathway such as indoleamine 2,3-dioxygenase (IDO1) or tryptophan 2,3-dioxygenase (TDO2) failed to meet the expectations. Bearing in mind the complexity of the tumoral terrain and the existence of different cancers with IDO1/TDO2 expressing and non-expressing tumoral cells, here we present a comprehensive analysis of the TRP global metabolic hub and the driving potential of the process of oncogenesis with the main focus on liver cancers.
Collapse
|
30
|
Park J, Jeong W, Yun C, Kim H, Oh CM. Serotonergic Regulation of Hepatic Energy Metabolism. Endocrinol Metab (Seoul) 2021; 36:1151-1160. [PMID: 34911172 PMCID: PMC8743581 DOI: 10.3803/enm.2021.1331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
The liver is a vital organ that regulates systemic energy metabolism and many physiological functions. Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease and end-stage liver failure. NAFLD is primarily caused by metabolic disruption of lipid and glucose homeostasis. Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic amine with several functions in both the central and peripheral systems. 5-HT functions as a neurotransmitter in the brain and a hormone in peripheral tissues to regulate systemic energy homeostasis. Several recent studies have proposed various roles of 5-HT in hepatic metabolism and inflammation using tissue-specific knockout mice and 5-HT-receptor agonists/antagonists. This review compiles the most recent research on the relationship between 5-HT and hepatic metabolism, and the role of 5-HT signaling as a potential therapeutic target in NAFLD.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Wooju Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Chahyeon Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju,
Korea
| |
Collapse
|
31
|
Teixeira C, Rodrigues P, Serrão P, Figueira L, Guimarães L, Teles LO, Peres H, Carvalho AP. Dietary tryptophan supplementation does not affect growth but increases brain serotonin level and modulates the expression of some liver genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1541-1558. [PMID: 34370152 DOI: 10.1007/s10695-021-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
This study aimed at assessing the effects of the dietary tryptophan (Trp) supplementation on growth and feed utilization, brain serotonin content, and expression of selected liver genes (involved in the liver serotonin pathway, protein synthesis degradation, and antioxidant activity) in zebrafish. A growth trial was conducted with zebrafish juveniles fed five experimental isoproteic (40%DM) and isolipidic (8%DM) fishmeal-based diets containing graded levels of Trp: a Trp-non-supplemented diet (diet Trp0, with 0.22% Trp) and four Trp-supplemented diets containing 2-16 times higher Trp content (diets Trp2, Trp4, Trp8, and Trp16 with 0.40, 0.91, 2.02, and 3.34% Trp, respectively). Diets were tested in quadruplicate, with fish being fed twice a day, 6 days a week for 6 weeks to apparent visual satiation. At the end of the trial, growth performance and feed utilization were assessed, and fish from all experimental groups were sampled for whole-body composition analysis. In addition, fish fed low (Trp0), medium (Trp4), and high (Trp16) Trp diets were also sampled for analysis of brain serotonin content and liver gene expression. Tested tryptophan levels did not influence growth performance nor feed intake. However, values of energy and nitrogen retention as well as body energy content indicate a better feed utilization with diets containing around 0.9% and 2.0% DM Trp. Brain serotonin content increased with increasing dietary tryptophan levels. In addition, regarding liver genes, dietary treatment had a modulatory effect on the expression of Htr1aa and Htr2cl1 genes (encoding for serotonin receptors), TPH1a gene (encoding for tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of serotonin from tryptophan), TOR gene (involved in protein synthesis), and Keap1 gene (involved in antioxidant responses).
Collapse
Affiliation(s)
- Cláudia Teixeira
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| | - Pedro Rodrigues
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Paula Serrão
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Luís Figueira
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Laura Guimarães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Luís Oliva Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Helena Peres
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - António Paulo Carvalho
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| |
Collapse
|
32
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
33
|
Shi L, Lu BL, Qiu Y, Huang L, Huang SY, Mao R, Lin JJ, Du JF, Feng ST, Li ZP, Sun CH, Li XH. Hepatic mosaic enhancement pattern correlates with increased inflammatory activity and adverse therapeutic outcomes in patients with Crohn's disease. Abdom Radiol (NY) 2021; 46:3149-3158. [PMID: 33646351 DOI: 10.1007/s00261-021-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE This study aimed to evaluate the role of hepatic mosaic enhancement pattern (HMEP) on computed tomography images in the disease activity and therapeutic outcome of Crohn's Disease (CD). METHODS Twenty-five CD patients with HMEP comprised the HMEP group, and 25 CD patients without HMEP, who had a similar onset age, sex, and disease course with those in the HMEP group, comprised the non-HMEP group. No underlying liver/biliary disease was observed in any of the patients. Clinical characteristics, laboratory test results, Lémann index, and CD endoscopic index of severity (CDEIS) were compared between the groups using the Student t-, Mann-Whitney U, Chi square, or Fisher's exact tests. Patients received top-down, step-up, or traditional treatment during the follow-up period. After the 1-year follow-up, therapeutic outcomes (active inflammation [CDEIS > 3.5 if the endoscopic data were available, or C-reactive protein level > 5 mg/L if the endoscopic data were unavailable] or remission) were evaluated. RESULTS The occurrence rate of fistulas/abscesses was higher in the HMEP group (84%, 21/25) than in the non-HMEP group (48%, 12/25) with no statistical significance (P = 0.056). The HMEP group showed a higher C-reactive protein level (P = 0.001), erythrocyte sedimentation rate (P = 0.013), and blood platelet count (P = 0.005). There was no significant difference in therapeutic strategies between the groups (P = 0.509). The HMEP group showed a significantly lower remission ratio after anti-inflammatory treatment than the non-HMEP group (P = 0.045). CONCLUSIONS HMEP was correlated with increased inflammatory activity and adverse therapeutic outcomes in CD. This finding provided insights regarding novel markers of CD diagnosis and treatment.
Collapse
Affiliation(s)
- Li Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150, People's Republic of China
| | - Bao-Lan Lu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Si-Yun Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Jin-Jiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Jin-Fang Du
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Can-Hui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.
| | - Xue-Hua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
34
|
Oldenburger A, Birk G, Schlepütz M, Broermann A, Stierstorfer B, Pullen SS, Rippmann JF. Modulation of vascular contraction via soluble guanylate cyclase signaling in a novel ex vivo method using rat precision-cut liver slices. Pharmacol Res Perspect 2021; 9:e00768. [PMID: 34014044 PMCID: PMC8135082 DOI: 10.1002/prp2.768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrotic processes in the liver of non-alcoholic steatohepatitis (NASH) patients cause microcirculatory dysfunction in the organ which increases blood vessel resistance and causes portal hypertension. Assessing blood vessel function in the liver is challenging, necessitating the development of novel methods in normal and fibrotic tissue that allow for drug screening and translation toward pre-clinical settings. Cultures of precision cut liver slices (PCLS) from normal and fibrotic rat livers were used for blood vessel function analysis. Live recording of vessel diameter was used to assess the response to endothelin-1, serotonin and soluble guanylate cyclase (sGC) activation. A cascade of contraction and relaxation events in response to serotonin, endothelin-1, Ketanserin and sGC activity could be established using vessel diameter analysis of rat PCLS. Both the sGC activator BI 703704 and the sGC stimulator Riociguat prevented serotonin-induced contraction in PCLS from naive rats. By contrast, PCLS cultures from the rat CCl4 NASH model were only responsive to the sGC activator, thus establishing that the sGC enzyme is rendered non-responsive to nitric oxide under oxidative stress found in fibrotic livers. The role of the sGC pathway for vessel relaxation of fibrotic liver tissue was identified in our model. The obtained data shows that the inhibitory capacities on vessel contraction of sGC compounds can be translated to published preclinical data. Altogether, this novel ex vivo PCLS method allows for the differentiation of drug candidates and the translation of therapeutic approaches towards the clinical use.
Collapse
Affiliation(s)
- Anouk Oldenburger
- CardioMetabolic Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co. KGBiberach a.d. RissGermany
| | - Gerald Birk
- Target Discovery SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Marco Schlepütz
- Immunology and Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Andre Broermann
- CardioMetabolic Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co. KGBiberach a.d. RissGermany
| | - Birgit Stierstorfer
- Target Discovery SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Steven S. Pullen
- CardioMetabolic Diseases ResearchBoehringer Ingelheim Pharmaceuticals, IncRidgefieldCTUSA
| | - Jörg F. Rippmann
- Cancer Immunology+Immune ModulationBoehringer Ingelheim Pharma GmbH & Co. KGBiberach a.d. RissGermany
| |
Collapse
|
35
|
Almishri W, Davis RP, Shaheen AA, Altonsy MO, Jenne CN, Swain MG. The Antidepressant Mirtazapine Rapidly Shifts Hepatic B Cell Populations and Functional Cytokine Signatures in the Mouse. Front Immunol 2021; 12:622537. [PMID: 33841403 PMCID: PMC8027111 DOI: 10.3389/fimmu.2021.622537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction B cells are important regulators of both adaptive and innate immunity. The normal liver contains significant numbers of B cells, and their numbers increase dramatically in immune-mediated liver diseases. Our previous observations suggest a hepatoprotective effect of the antidepressant mirtazapine in human and experimental immune-mediated liver disease. Therefore, we performed a series of experiments to determine the impact of mirtazapine treatment on hepatic B cell homeostasis, as reflected by B cell number, trafficking and phenotype using flow cytometry (FCM) and intravital microscopy (IVM) analysis. Mirtazapine treatment rapidly induced a significant reduction in total hepatic B cell numbers, paralleled by a compositional shift in the predominant hepatic B cell subtype from B2 to B1. This shift in hepatic B cells induced by mirtazapine treatment was associated with a striking increase in total hepatic levels of the chemokine CXCL10, and increased production of CXCL10 by hepatic macrophages and dendritic cells. Furthermore, mirtazapine treatment led to an upregulation of CXCR3, the cognate chemokine receptor for CXCL10, on hepatic B cells that remained in the liver post-mirtazapine. A significant role for CXCR3 in the hepatic retention of B cells post-mirtazapine was confirmed using CXCR3 receptor blockade. In addition, B cells remaining in the liver post-mirtazapine produced lower amounts of the proinflammatory Th1-like cytokines IFNγ, TNFα, and IL-6, and increased amounts of the Th2-like cytokine IL-4, after stimulation in vitro. Conclusion Mirtazapine treatment rapidly alters hepatic B cell populations, enhancing hepatic retention of CXCR3-expressing innate-like B cells that generate a more anti-inflammatory cytokine profile. Mirtazapine-induced hepatic B cell shifts could potentially represent a novel therapeutic approach to immune-mediated liver diseases characterized by B cell driven pathology.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Rachelle P Davis
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Abdel-Aziz Shaheen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammed O Altonsy
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Craig N Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Khoshnevisan K, Baharifar H, Torabi F, Sadeghi Afjeh M, Maleki H, Honarvarfard E, Mohammadi H, Sajjadi-Jazi SM, Mahmoudi-Kohan S, Faridbod F, Larijani B, Saadat F, Faridi Majidi R, Khorramizadeh MR. Serotonin level as a potent diabetes biomarker based on electrochemical sensing: a new approach in a zebra fish model. Anal Bioanal Chem 2021; 413:1615-1627. [PMID: 33501550 DOI: 10.1007/s00216-020-03122-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) levels have been associated with several exclusively metabolic disorders. Herein, a new approach for 5-HT level as a novel biomarker of diabetes mellitus is considered using a simple nanocomposite and HPLC method. Reduced graphene oxide (rGO) comprising gold nanoparticles (AuNPs) was decorated with 18-crown-6 (18.Cr.6) to fabricate a simple nanocomposite (rGO-AuNPs-18.Cr.6). The nanocomposite was positioned on a glassy carbon electrode (GCE) to form an electrochemical sensor for the biomarker 5-HT in the presence of L-tryptophan (L-Trp), dopamine (DA), ascorbic acid (AA), urea, and glucose. The nanocomposite exhibited efficient catalytic activity for 5-HT detection by square-wave voltammetry (SWV). The proposed sensor displayed high selectivity, excellent reproducibility, notable anti-interference ability, and long-term stability even after 2 months. SWV defined a linear range of 5-HT concentration from 0.4 to 10 μg L-1. A diabetic animal model (diabetic zebrafish model) was then applied to investigate 5-HT as a novel biomarker of diabetes. A limit of detection (LOD) of about 0.33 μg L-1 was found for the diabetic group and 0.15 μg L-1 for the control group. The average levels of 5-HT obtained were 9 and 2 μg L-1 for control and diabetic groups, respectively. The recovery, relative standard deviation (RSD), and relative error (RE) were found to be about 97%, less than 2%, and around 3%, respectively. The significant reduction in 5-HT level in the diabetic group compared to the control group proved that the biomarker 5-HT can be applied for the early diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Farzad Torabi
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mahsa Sadeghi Afjeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hassan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Sadegh Mahmoudi-Kohan
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Farnoush Faridbod
- School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Farshid Saadat
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, 41887-94755, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Zebrafish Core Facility, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
37
|
Bromek E, Daniel WA. The regulation of liver cytochrome P450 expression and activity by the brain serotonergic system in different experimental models. Expert Opin Drug Metab Toxicol 2021; 17:413-424. [PMID: 33400885 DOI: 10.1080/17425255.2021.1872543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Cytochrome P450 (CYP) metabolizes vital endogenous (steroids, vitamins) and exogenous (drugs, toxins) substrates. Studies of the last decade have revealed that the brain dopaminergic and noradrenergic systems are involved in the regulation of CYP. Recent research indicates that the brain serotonergic system is also engaged in its regulation.Areas covered: This review focuses on the role of the brain serotonergic system in the regulation of liver CYP expression. It shows the effect of lesion and activation of the serotonergic system after peripheral or intracerebral injections of neurotoxins, serotonin precursor, or serotonin (5-HT) receptor agonists. An opposite role of the hypothalamic paraventricular and arcuate nuclei and 5-HT receptors present therein in the regulation of CYP is described. The engagement of those nuclei in the neuroendocrine regulation of CYP by hypothalamic releasing or inhibiting hormones, pituitary hormones, and peripheral gland hormones are shown.Expert opinion: In general, the brain serotonergic system negatively regulates liver cytochrome P450. However, the effects of serotonergic agents on the enzyme expression depend on their mechanism of action, the route of administration (intracerebral/peripheral), as well as on local intracerebral site of injection and 5-HT receptor-subtypes present therein.
Collapse
Affiliation(s)
- Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
38
|
Poly (alanine)/NaOH/ MoS2/MWCNTs modified carbon paste electrode for simultaneous detection of dopamine, ascorbic acid, serotonin and guanine. Colloids Surf B Biointerfaces 2020; 196:111299. [DOI: 10.1016/j.colsurfb.2020.111299] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
39
|
Davis RP, Almishri W, Jenne CN, Swain MG. The Antidepressant Mirtazapine Activates Hepatic Macrophages, Facilitating Pathogen Clearance While Limiting Tissue Damage in Mice. Front Immunol 2020; 11:578654. [PMID: 33250892 PMCID: PMC7673391 DOI: 10.3389/fimmu.2020.578654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background and Aims Mirtazapine is an atypical antidepressant with antagonist activity for serotonin and histamine receptors. Clinical and experimental evidence suggests that, in addition to treating depression, mirtazapine also alters liver innate immunity and suppresses immune-driven hepatic macrophage activation. Liver macrophages, Kupffer cells, represent the largest collection of fixed macrophages in the body and are critical in regulating hepatic immunity. In addition to their capacity to regulate inflammation, Kupffer cells are key sentinels for clearing blood-borne pathogens, preventing their dissemination within the body. This process involves pathogen capture, phagocytosis, and activation-induced killing via reactive oxygen species (ROS) production. Therefore, we speculated that mirtazapine might adversely alter Kupffer cell pathogen-associated activation and killing. Methods Mice were treated with mirtazapine and time-dependent changes in Kupffer cells were characterized using intravital microscopy. Macrophage and neutrophil responses, bacterial dissemination, and liver damage were assessed following i.v. infection with a pathogenic strain of S. aureus. Results Mirtazapine rapidly (within 1.5 h) activates Kupffer cells, indicated by a loss of elongated shape with cellular rounding. However, this shape change did not result in impaired pathogen capture function, and, in fact, generated enhanced ROS production in response to S. aureus-induced sepsis. Neutrophil dynamics were altered with reduced cellular recruitment to the liver following infection. Bacterial dissemination post-intravenous administration was not altered by mirtazapine treatment; however, hepatic abscess formation was significantly reduced. Conclusions Mirtazapine rapidly activates Kupffer cells, associated with preserved bacterial capture functions and enhanced ROS generation capacity. Moreover, these changes in Kupffer cells were linked to a beneficial reduction in hepatic abscess size. In contrast to our initial speculation, mirtazapine may have beneficial effects in sepsis and warrants further exploration.
Collapse
Affiliation(s)
- Rachelle Paige Davis
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Craig Neal Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Mark Gordon Swain
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Pivetta RC, Rodrigues-Silva C, Ribeiro AR, Rath S. Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138661. [PMID: 32334225 DOI: 10.1016/j.scitotenv.2020.138661] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 05/06/2023]
Abstract
According to the World Health Organization, >360 million people worldwide suffer from mental diseases such as depression, anxiety, or bipolar disorder, for which psychotropic drugs are frequently prescribed. Despite being highly metabolized in the human organism, non-metabolized portions of these drugs are excreted, subsequently reaching wastewater treatment plants (WWTPs), where they may be incompletely removed during treatment, leading to the contamination of surface waters. In this work, ten psychotropic drugs widely consumed in Brazil (alprazolam, amitriptyline, bupropion, carbamazepine, clonazepam, escitalopram, fluoxetine, nortriptyline, sertraline, and trazadone) were monitored at five WWTPs located in the metropolitan region of Campinas (São Paulo State, Brazil). The drugs were determined in the influents, at different stages of the treatments, and in the effluents. Surface waters from the Atibaia River and the Anhumas Creek were also monitored. Quantitation of the pharmaceuticals was carried out by online solid-phase extraction coupled with ultra-high performance liquid chromatography and tandem mass spectrometry. The method was validated and presented a limit of quantitation of 50 ng L-1 for all the drugs assessed. Six of the substances monitored were quantified in the samples collected from the different treatment processes employed at the WWTPs. These technologies were unable to act as barriers for these psychotropics drugs. The concentrations ranged from 50 to 3000 ng L-1 in the WWTP effluents, while the main contaminants were found in surface waters at concentrations from 25 to 3530 ng L-1. The levels of the psychotropic detected in this work did not appear to present risks to the aquatic biota.
Collapse
Affiliation(s)
- Rhannanda Copetti Pivetta
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil.
| | - Alyson Rogério Ribeiro
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP, Brazil.
| |
Collapse
|
41
|
Blom T, Meinsma R, Rutgers M, Buitenhuis C, Dekken-Van den Burg M, van Kuilenburg ABP, Tytgat GAM. Selective serotonin reuptake inhibitors (SSRIs) prevent meta-iodobenzylguanidine (MIBG) uptake in platelets without affecting neuroblastoma tumor uptake. EJNMMI Res 2020; 10:78. [PMID: 32642907 PMCID: PMC7343696 DOI: 10.1186/s13550-020-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, mainly consisting of persistent and severe thrombocytopenia. While MIBG accumulates in neuroblastoma cells via selective uptake by the norepinephrine transporter (NET), the serotonin transporter (SERT) is responsible for cellular uptake of MIBG in platelets. In this study, we have investigated whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent radiotoxic MIBG uptake in platelets without affecting neuroblastoma tumor uptake. Methods To determine the transport kinetics of SERT for [125I]MIBG, HEK293 cells were transfected with SERT and uptake assays were conducted. Next, a panel of seven SSRIs was tested in vitro for their inhibitory potency on the uptake of [125I]MIBG in isolated human platelets and in cultured neuroblastoma cells. We investigated in vivo the efficacy of the four best performing SSRIs on the accumulation of [125I]MIBG in nude mice bearing subcutaneous neuroblastoma xenografts. In ex vivo experiments, the diluted plasma of mice treated with SSRIs was added to isolated human platelets to assess the effect on [125I]MIBG uptake. Results SERT performed as a low-affinity transporter of [125I]MIBG in comparison with NET (Km = 9.7 μM and 0.49 μM, respectively). Paroxetine was the most potent uptake inhibitor of both serotonin (IC50 = 0.6 nM) and MIBG (IC50 = 0.2 nM) in platelets. Citalopram was the most selective SERT inhibitor of [125I]MIBG uptake, with high SERT affinity in platelets (IC50 = 7.8 nM) and low NET affinity in neuroblastoma cells (IC50 = 11.940 nM). The in vivo tested SSRIs (citalopram, fluvoxamine, sertraline, and paroxetine) had no effect on [125I]MIBG uptake levels in neuroblastoma xenografts. In contrast, treatment with desipramine, a NET selective inhibitor, resulted in profoundly decreased xenograft [125I]MIBG levels (p < 0.0001). In ex vivo [125I]MIBG uptake experiments, 100- and 34-fold diluted murine plasma of mice treated with citalopram added to isolated human platelets led to a decrease in MIBG uptake of 54–76%, respectively. Conclusion Our study demonstrates for the first time that SSRIs selectively inhibit MIBG uptake in platelets without affecting MIBG accumulation in an in vivo neuroblastoma model. The concomitant application of citalopram during [131I]MIBG therapy seems a promising strategy to prevent thrombocytopenia in neuroblastoma patients.
Collapse
Affiliation(s)
- Thomas Blom
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Gastroenterology & Metabolism, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rutger Meinsma
- Gastroenterology & Metabolism, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marja Rutgers
- Department of Experimental Therapy, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Corine Buitenhuis
- Department of Experimental Therapy, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marieke Dekken-Van den Burg
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Gastroenterology & Metabolism, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Nowakowska K, Giebułtowicz J, Kamaszewski M, Adamski A, Szudrowicz H, Ostaszewska T, Solarska-Dzięciołowska U, Nałęcz-Jawecki G, Wroczyński P, Drobniewska A. Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108670. [PMID: 31733407 DOI: 10.1016/j.cbpc.2019.108670] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Antidepressants have been detected in surface waters worldwide at ng-μg/L concentration. These compounds can exert adverse effects on fish even at low levels. But, all previous analyses have concentrated on adult fish. The aim of the study was to assess the effect of environmental concentrations of sertraline, paroxetine, fluoxetine and mianserin, and their mixtures on such unusual endpoints as physiological and histological changes of zebrafish (Danio rerio) larvae. We also determined the bioconcentration of the pharmaceuticals. Fish Embryo Toxicity test was used to analyze the influence on developmental progression. Histological sections were stained with hematoxylin and eosin. Proliferating cells in liver were determined immunohistochemically by detection of Proliferating Cell Nuclear Antigens. The bioconcentration factor was measured by liquid chromatography coupled to mass spectrometry. Pharmaceuticals were used at low, medium and high concentrations in mixtures and at medium concentration as single compound. Exposure to the analyzed pharmaceuticals increased the rate of abnormal embryo and larvae development, accelerated the hatching time and affected the total hatching rate. Three-times lower proliferation of hepatocytes was observed in larvae exposed to paroxetine, mianserin, sertraline and the mixture of the pharmaceuticals at the highest concentrations. The highest bioaccumulation factor (BCF) was obtained for sertraline. The BCF of the analyzed compounds was higher if the organisms were exposed to the mixtures than to single pharmaceuticals. To conclude, the exposure of zebrafish larvae to selected antidepressants and their mixtures may cause disturbances in the organogenesis of fish even at environmental concentrations.
Collapse
Affiliation(s)
- Karolina Nowakowska
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland; Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland.
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences-SGGW, 8 Ciszewskiego Street, Warsaw PL-02-786, Poland
| | - Antoni Adamski
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences-SGGW, 8 Ciszewskiego Street, Warsaw PL-02-786, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Science, 5a Pawinskiego Street, Warsaw PL-02106, Poland
| | - Hubert Szudrowicz
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences-SGGW, 8 Ciszewskiego Street, Warsaw PL-02-786, Poland
| | - Teresa Ostaszewska
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences-SGGW, 8 Ciszewskiego Street, Warsaw PL-02-786, Poland
| | - Urszula Solarska-Dzięciołowska
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland
| | - Piotr Wroczyński
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, Warsaw PL-02097, Poland
| |
Collapse
|
43
|
Kyritsi K, Chen L, O’Brien A, Francis H, Hein TW, Venter J, Wu N, Ceci L, Zhou T, Zawieja D, Gashev AA, Meng F, Invernizzi P, Fabris L, Wu C, Skill NJ, Saxena R, Liangpunsakul S, Alpini G, Glaser SS. Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidase-A/5-Hydroxytryptamine/5-Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology 2020; 71:990-1008. [PMID: 31344280 PMCID: PMC6993623 DOI: 10.1002/hep.30880] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. APPROACH AND RESULTS While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. CONCLUSIONS Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Animals
- Bile Ducts/pathology
- Cell Proliferation
- Cholangitis, Sclerosing/etiology
- Cholestasis/pathology
- Humans
- Liver Cirrhosis/etiology
- Male
- Mice
- Monoamine Oxidase/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/physiology
- Receptor, Serotonin, 5-HT2B/physiology
- Receptor, Serotonin, 5-HT2C/physiology
- Receptors, Serotonin/physiology
- Serotonin/blood
- Serotonin/physiology
- Tryptophan Hydroxylase/physiology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - April O’Brien
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Travis W. Hein
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Julie Venter
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - David Zawieja
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Anatoliy A. Gashev
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Nicholas J. Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Shannon S. Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| |
Collapse
|
44
|
Tseilikman V, Dremencov E, Tseilikman O, Pavlovicova M, Lacinova L, Jezova D. Role of glucocorticoid- and monoamine-metabolizing enzymes in stress-related psychopathological processes. Stress 2020; 23:1-12. [PMID: 31322459 DOI: 10.1080/10253890.2019.1641080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoid signaling is fundamental in healthy stress coping and in the pathophysiology of stress-related diseases, such as post-traumatic stress disorder (PTSD). Glucocorticoids are metabolized by cytochrome P450 (CYP) as well as 11-β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and 2 (11βHSD2). Acute stress-induced increase in glucocorticoid concentrations stimulates the expression of several CYP sub-types. CYP is primarily responsible for glucocorticoid metabolism and its increased activity can result in decreased circulating glucocorticoids in response to repeated stress stimuli. In addition, repeated stress-induced glucocorticoid release can promote 11βHSD1 activation and 11βHSD2 inhibition, and the 11βHSD2 suppression can lead to apparent mineralocorticoid excess. The activation of CYP and 11βHSD1 and the suppression of 11βHSD2 may at least partly contribute to development of the blunted glucocorticoid response to stressors characteristic in high trait anxiety, PTSD, and other stress-related disorders. Glucocorticoids and glucocorticoid-metabolizing enzymes interact closely with other biomolecules such as inflammatory cytokines, monoamines, and some monoamine-metabolizing enzymes, namely the monoamine oxidase type A (MAO-A) and B (MAO-B). Glucocorticoids boost MAO activity and this decreases monoamine levels and induces oxidative tissue damage which then activates inflammatory cytokines. The inflammatory cytokines suppress CYP expression and activity. This dynamic cross-talk between glucocorticoids, monoamines, and their metabolizing enzymes could be a critical factor in the pathophysiology of stress-related disorders.Lay summaryGlucocorticoids, which are produced and released under the control by brain regulatory centers, are fundamental in the stress response. This review emphasizes the importance of glucocorticoid metabolism and particularly the interaction between the brain and the liver as the major metabolic organ in the body. The activity of enzymes involved in glucocorticoid metabolism is proposed to play not only an important role in positive, healthy glucocorticoid effects, but also to contribute to the development and course of stress-related diseases.
Collapse
Affiliation(s)
- Vadim Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Eliyahu Dremencov
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Michaela Pavlovicova
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubica Lacinova
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Natural Sciences, University of Saints Cyril and Methodius, Trnava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
45
|
Mahmoud NI, Messiha BA, Salehc IG, Abo-Saif AA, Abdel-Bakky MS. Interruption of platelets and thrombin function as a new approach against liver fibrosis induced experimentally in rats. Life Sci 2019; 231:116522. [DOI: 10.1016/j.lfs.2019.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
|
46
|
Adumitrăchioaie A, Tertiș M, Suciu M, Graur F, Cristea C. A novel immunosensing platform for serotonin detection in complex real samples based on graphene oxide and chitosan. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
48
|
Abd El Moety HA, Maharem DA, Gomaa SH. Serotonin: is it a marker for the diagnosis of hepatocellular carcinoma in cirrhotic patients? ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hoda Aly Abd El Moety
- Chemical Pathology, Medical Research Institute , Alexandria University , 16 Alexander the Great , Azarita, Alexandria, Egypt
| | - Dalia Aly Maharem
- Internal Medicine, Medical Research Institute , Alexandria University , 16 Alexander the Great , Azarita, Alexandria, Egypt
| | - Salwa Hamdy Gomaa
- Chemical Pathology, Medical Research Institute , Alexandria University , 16 Alexander the Great , Azarita, Alexandria, Egypt
| |
Collapse
|
49
|
Zuo X, Chen Z, Cai J, Gao W, Zhang Y, Han G, Pu L, Wu Z, You W, Qin J, Dai X, Shen H, Wu J, Wang X. 5-Hydroxytryptamine Receptor 1D Aggravates Hepatocellular Carcinoma Progression Through FoxO6 in AKT-Dependent and Independent Manners. Hepatology 2019; 69:2031-2047. [PMID: 30561038 DOI: 10.1002/hep.30430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Serotonin and its receptors have been shown to play critical regulatory roles in cancer biology. Nevertheless, the contributions of 5-hydroxytryptamine 1D (5-HT1D), an indispensable member of the serotonergic system, to hepatocellular carcinoma (HCC) remain unknown. The present study demonstrated that the 5-HT1D expression level was significantly up-regulated in HCC tissues and cell lines. The 5-HT1D expression level was closely correlated with unfavorable clinicopathological characteristics. Survival analyses show that elevated 5-HT1D expression level predicts poor overall survival and high recurrence probability in HCC patients. Functional studies revealed that 5-HT1D significantly promoted HCC proliferation, epithelial-mesenchymal transition, and metastasis in vitro and in vivo. Mechanistically, 5-HT1D could stabilize PIK3R1 by inhibiting its ubiquitin-mediated degradation. The interaction between 5-HT1D and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) enhanced the expression of FoxO6 through the PI3K/Akt signaling pathway; FoxO6 could also be directly transcriptionally activated by 5-HT1D in an Akt-independent manner. MicroRNA-599 was found to be an upstream suppressive modulator of 5-HT1D. Additionally, 5-HT1D could attenuate tryptophan hydroxylase 1 expression through the PI3K/Akt/cut-like homeobox 1 axis in HCC. Conclusion: Herein, we uncovered the potent oncogenic effect of 5-HT1D on HCC by interacting with PIK3R1 to activate the PI3K/Akt/FoxO6 pathway, and provided a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xueliang Zuo
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Department of Gastrointestinal Surgery, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhiqiang Chen
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Juan Cai
- Department of Oncology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Wen Gao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Guoyong Han
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Liyong Pu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Zhengshan Wu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Wei You
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jianjie Qin
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xinzheng Dai
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jindao Wu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
50
|
Stasi C, Sadalla S, Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr Drug Metab 2019; 20:646-655. [PMID: 31345143 DOI: 10.2174/1389200220666190725115503] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serotonin (5-HT) has a pleiotropic function in gastrointestinal, neurological/psychiatric and liver diseases. The aim of this review was to elucidate whether the gut-microbiota played a critical role in regulating peripheral serotonin levels. METHODS We searched for relevant studies published in English using the PubMed database from 1993 to the present. RESULTS Several studies suggested that alterations in the gut-microbiota may contribute to a modulation of serotonin signalling. The first indication regarded the changes in the composition of the commensal bacteria and the intestinal transit time caused by antibiotic treatment. The second indication regarded the changes in serotonin levels correlated to specific bacteria. The third indication regarded the fact that decreased serotonin transporter expression was associated with a shift in gut-microbiota from homeostasis to inflammatory type microbiota. Serotonin plays a key role in the regulation of visceral pain, secretion, and initiation of the peristaltic reflex; however, its altered levels are also detected in many different psychiatric disorders. Symptoms of some gastrointestinal functional disorders may be due to deregulation in central nervous system activity, dysregulation at the peripheral level (intestine), or a combination of both (brain-gut axis) by means of neuro-endocrine-immune stimuli. Moreover, several studies have demonstrated the profibrogenic role of 5-HT in the liver, showing that it works synergistically with platelet-derived growth factor in stimulating hepatic stellate cell proliferation. CONCLUSION Although the specific interaction mechanisms are still unclear, some studies have suggested that there is a correlation between the gut-microbiota, some gastrointestinal and liver diseases and the serotonin metabolism.
Collapse
Affiliation(s)
- Cristina Stasi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Sinan Sadalla
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Milani
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|